ON INGHAM'S TRIGONOMETRIC INEQUALITY

by L. J. Mordell

Ingham has recently ${ }^{1}$ proved the following
Theorem. Let

$$
f(t)=\sum_{n=N}^{N^{\prime}} a_{n} e^{-\lambda_{n} t i},
$$

where the λ^{\prime} 's are real and $\lambda_{n}-\lambda_{n-1} \geqq \gamma>0\left(N<n \leqq N^{\prime}\right)$, and let $\gamma T=\pi$. Then

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{1}{T} \int_{-T}^{T}|f(t)| d t \quad\left(N \leqq n \leqq N^{\prime}\right) \tag{1}
\end{equation*}
$$

He notes that we may take $\gamma=1, T=\pi$ by the substitution $\gamma t=t^{\prime}$. We may then rewrite the result as the

Theorem. Let

$$
\begin{equation*}
f(t)=\sum_{r=0}^{n} a_{r} e^{-\lambda_{r} t i} \tag{2}
\end{equation*}
$$

where the λ 's are real and $\lambda_{r}-\lambda_{r-1} \geqq 1(1 \leqq r \leqq n)$. Then

$$
\begin{equation*}
\left|a_{r}\right| \leqq \frac{1}{\pi} \int_{-\pi}^{\pi}|f(t)| d t \quad(0 \leqq r \leqq n) \tag{3}
\end{equation*}
$$

His proof, to which he was led by considerations of Fourier transforms, is quite short. Its essential idea, however, as I see it, can be presented in a rather simpler way, which also leads to a more precise result. He has shown that the factor $1 / T$ in (1) cannot be replaced by a factor c / T where c is an absolute constant <1, but my proof shows that the factor $1 / \pi$ in (3) can be replaced by a factor $K_{r}<1 / \pi$ depending upon the λ 's.

On multiplying (2) throughout by $e^{\lambda_{r} t i}$, it suffices to take $f(t)$ in the form

$$
\begin{equation*}
f(t)=\sum_{r=-m}^{n} a_{r} e^{-\lambda_{r} i t}, \quad \lambda_{0}=0, \quad \lambda_{r}-\lambda_{r-1} \geqq 1 \quad(-(m-1) \leqq r \leqq n) \tag{4}
\end{equation*}
$$

and to estimate $\left|a_{0}\right|$. I prove that

$$
\begin{equation*}
\left|a_{0}\right| \leqq \frac{K_{0}}{\pi} \int_{-\pi}^{\pi}|f(t)| d t \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
K_{0}=1-\frac{1}{2} \prod_{r=-m}^{r=n}\left(\mu_{r} / \lambda_{r}\right) \tag{6}
\end{equation*}
$$

Received November 6, 1956.
${ }^{1}$ A further note on trigonometric inequalities, Proceedings of the Cambridge Philosophical Society, vol. 46 (1950), pp. 535-537.
where the dash denotes the omission of $r=0$, and μ_{r} is defined to be the integer such that μ_{r} has the same sign as λ_{r}, and $\left|\mu_{r}\right|$ is the greatest integer \leqq $\left|\lambda_{r}\right|$. Clearly $K_{0}=\frac{1}{2}$ when all the λ 's are integers.

Write

$$
\begin{equation*}
g(t)=\sum_{s=-m}^{n} A_{s} e^{\mu_{s} i t}, \quad \mu_{0}=0 \tag{7}
\end{equation*}
$$

where we shall presently define the A 's as real constants and the μ 's as a steadily increasing set of real numbers. We have

$$
\begin{equation*}
\int_{-\pi}^{\pi} f(t) g(t) d t=\sum_{r, s=-m}^{n} a_{r} A_{s} \int_{-\pi}^{\pi} e^{-\lambda_{r} i t+\mu_{s} i t} d t \tag{8}
\end{equation*}
$$

We now impose the condition on the A 's that the coefficients of all the a 's except a_{0} are zero. We have a simple expression for a_{0} if we assume now that the μ 's are integers. Then

$$
2 \pi a_{0} A_{0}=\int_{-\pi}^{\pi} f(t) g(t) d t
$$

and so

$$
\begin{equation*}
2 \pi\left|a_{0}\right|\left|A_{0}\right| \leqq \int_{-\pi}^{\pi}|f(t)| \sum_{s=-m}^{n}\left|A_{s}\right| d t \tag{9}
\end{equation*}
$$

We assume for the time being that none of the differences $\lambda_{r}-\mu_{\mathrm{s}}$ are zero except $\lambda_{0}-\mu_{0}$. Then

$$
\begin{array}{rlr}
\int_{-\pi}^{\pi} e^{-\lambda_{r} i t+\mu_{s} i t} d t & =\frac{2 i \sin \left(\mu_{s}-\lambda_{r}\right) \pi}{i\left(\mu_{s}-\lambda_{r}\right)} \\
& =\frac{2(-1)^{\mu_{s}} \sin \lambda_{r} \pi}{\lambda_{r}-\mu_{s}} & \left(\lambda_{r} \neq \mu_{s}\right) \\
& =2 \pi & \left(\lambda_{0}=\mu_{0}=0\right)
\end{array}
$$

Hence

$$
\begin{equation*}
\sum_{s=-m}^{n} \frac{A_{s}(-1)^{\mu_{s}}}{\lambda_{r}-\mu_{s}}=0 \quad(-m \leqq r \leqq n, r \neq 0) \tag{10}
\end{equation*}
$$

This is a system of $m+n$ homogeneous linear equations in the $m+n+1$ unknown A 's, and so there is a solution in which all the A 's are not zero. Such systems are well known, and a solution is given when the A 's are such that

$$
\begin{equation*}
\sum_{s=-m}^{n} \frac{A_{s}(-1)^{\mu_{s}}}{x-\mu_{s}}=\frac{\prod_{r=-m}^{r=n}\left(x-\lambda_{r}\right)}{\prod_{r=-m}^{n}\left(x-\mu_{r}\right)} \tag{11}
\end{equation*}
$$

is the identity given by splitting the right-hand side into partial fractions. This is obvious on putting $x=\lambda_{r}$. Multiply (11) by $x-\mu_{s}$ and then put $x=\mu_{s}$. Hence

$$
\begin{equation*}
A_{s}(-1)^{\mu_{s}}=\prod_{r=-m}^{n} I^{\prime}\left(\mu_{s}-\lambda_{r}\right) / \prod_{r=-m}^{n}\left(\mu_{s}-\mu_{r}\right) \tag{12}
\end{equation*}
$$

where the double dash denotes the omission of the term with $r=s$. In particular,

$$
\begin{equation*}
A_{0}=\prod_{r=-m}^{n}\left(\lambda_{r} / \mu_{r}\right) \tag{13}
\end{equation*}
$$

We wish to estimate (9). Since we see, on multiplying (11) by x and making $x \rightarrow \infty$, that

$$
\begin{equation*}
\sum_{s=-m}^{n} A_{s}(-1)^{\mu_{s}}=1 \tag{14}
\end{equation*}
$$

we write (9) as

$$
\begin{equation*}
2 \pi\left|a_{0}\right|\left|A_{0}\right| \leqq \int_{-\pi}^{\pi}|f(t)| \sum_{s=-m}^{n}\left|A_{s}(-1)^{\mu_{s}}\right| d t \tag{15}
\end{equation*}
$$

We show now that we can choose the integers μ_{s} as a steadily increasing sequence and so that $A_{0}>1$ and $A_{s}(-1)^{\mu_{s}}<0$ when $s \neq 0$. We have already taken $\mu_{0}=0$, and we now take the other μ_{r} such that μ_{r} has the same sign as λ_{r} and $\left|\mu_{r}\right|$ is the greatest integer not exceeding $\left|\lambda_{r}\right|$, and so here less than $\left|\lambda_{r}\right|$. The μ_{r} are all different since the successive λ 's define intervals of length at least one. Then (13) shows that $A_{0}>1$. Suppose first that $s>0$. There are $n-s$ negative factors in the denominator of (12) arising from $r=s+1, \cdots, n$, and $n-s+1$ negative factors in the numerator arising from $r=s, \cdots, n$. Hence $A_{s}(-1)^{\mu_{s}}<0$. Suppose next $s=-\sigma<0$. Then there are $n+\sigma$ negative factors in the denominator arising from $r=-\sigma+1, \cdots, n$, and $n+\sigma-1$ negative factors in the numerator arising from $r=-\sigma+1,-\sigma+2, \cdots,-1,1, \cdots, n$. Hence again $A_{s}(-1)^{\mu_{s}}<0$.

We now rewrite (15) as

$$
2 \pi\left|a_{0}\right| A_{0} \leqq \int_{-\pi}^{\pi}|f(t)|\left(A_{0}-\sum_{s=-m}^{n} A_{s}(-1)^{\mu_{s}}\right) d t
$$

Then from (14)

$$
\begin{equation*}
\left|a_{0}\right| \leqq\left(1-\frac{1}{2 A_{0}}\right) \frac{1}{\pi} \int_{-\pi}^{\pi}|f(t)| d t \tag{16}
\end{equation*}
$$

and this is (5).
We have temporarily supposed in (4) that none of the λ 's except $\lambda_{0}=0$ are integers. The simplest limiting process in (16) shows that (5) still holds when any of the λ 's are integers, $\lambda_{0}=0$, and the μ 's are as defined there.

I wish to thank Mr. Ingham for comments on my manuscript.

St. Johns College
Cambridge, England

