
CLASSES OF FINITE GROUPS AND THEIR PROPERTIES

BY REINHOLD BAER

Of the various properties that a class {D of finite groups may or may not
have, those of interest to us in our present investigation can be described
roughly as follows:

1o The formal or inheritance properties: Subgroups, homomorphic images,
and direct products of groups in {D may or may not belong to {D; and some-
what less superficial is the question whether a product of normal {D-subgroups
is itself a {D-group; see e.g. Specht [1; 1.4.4. etc.].

2. The material properties: These are concerned with the structure of the
minimal normal subgroups of homomorphic images of {D-groups and with
the structure of the automorphism groups induced by homomorphic images
of {D-groups in their minimal normal subgroups. They are furthermore
concerned with the situation of maximal subgroups in {D-groups. In par-
ticular one wants to derive from such properties criteria for a group to be a
{D-group, criteria that will lead to theorems asserting that a group G is a
{D-group if, and only if, G/(G) is a {D-group.

3. Somewhat in between 1 and 9. are questions of the following type: Is a
group G a {D-group if, and only if, every n-tuplet of elements in G, for n a
fixed integer, generates a {D-group? Is furthermore G a {D-group, if there
exists a normal subgroup N of G such that GIN and every {N, xl, Xn}
for x in G and n a fixed integer is a {D-group?

One might try to undertake such an investigation completely in abstracto,

attempting to derive relations between such general properties of a class {D

of finite groups; and some few results of such generality will be found in the
present investigation. But we have been concerned here mainly with more
concrete questions; and the starting point of our investigation was the ob-
servation that such properties as supersolubility, nilpotence, dispersion,
existence of Sylow towers, nilpotence of the commutator subgroup are highly
complex and may be reduced to more elementary properties in the sense that
they are equivalent to certain concatenations of these elementary properties
that different sets of such elementary properties may characterize one and
the same complex property, leads to particularly intriguing problems. We
have considered here just two types of elementary properties. The first one is

Y,-closure: If 2: is a set of primes and if the set of elements in the group G
whose orders are divisible by primes in 2: only is actually a subgroup of G,
then G is termed 2:-closed.
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The other type is constituted by the

(0, )-groups: If 0 is some class of finite groups, and if is a simple group,
then the group G is termed a (0, )-group, if every homomorphic image H
of G induces O-groups of automorphisms in those minimal normal subgroups
M of H which are direct products of groups isomorphic to .
To illustrate how complex properties may be reduced to such elementary

ones, we mention that a group is nilpotent if, and only if, it is p-closed for
every prime p and likewise if, and only if, every homomorphic image induces
in each of its minimal normal subgroups the identity automorphism only.
We have here investigated these elementary classes from the point of view

of the general properties of classes of finite groups outlined in the beginning
of this introduction. We have then considered specially interesting con-
catenations of these elementary properties, spec..alizing the results so ob-
tained to nilpotency and supersolubility. These discussions and successive
specializations led among other things to an elementary proof of Huppert’s
Theorem that a group is supersoluble if, and only if, its maximal subgroups
have index a prime, to new criteria for nilpotency and solubility, and to the
discovery of a great number of classes 0 of finite groups with the property
that G is a 0-group if, and only if, G/cb(G) is a O-group; actually this seems
to be quite the rule.
Some of the auxiliary results, in particular those in 2, may be of inde-

pendent interest.
The author is indebted to Dr. B. Huppert for a careful reading of the

manuscript and for numerous helpful suggestions.

Notations
S x-Sx.

set of all for g in G.
[A, B] subgroup generated by all commutators [a, b] a-lb-lab for a in

A and b in B.
G’ [G, G] commutator subgroup of G.
Z(G) center of G.
G" subgroup generated by the nth powers of elements in G.
F(G) Fitting subgroup of G product of all normal nilpotent subgroups

of G.
D(G) hypercommutator of G intersection of all normal subgroups X

with nilpotent quotient group G/X.
Maximal subgroup proper subgroup, not contained in any greater proper

subgroup.
(G) Frattini subgroup intersection of all maximal subgroups of G.

Minimal normal subgroup of G normal subgroup M 1 of G which does not
contain normal subgroups of G except 1 and M.

Complement of normal subgroup N of G subgroup S of G such that G NS,
1 =NnS.
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Z-element, for 2; a set of primes, is an element whose order is divisible by
primes in 2; only.

Z-group group all of whose elements are 2;-elements.

Z-Sylow subgroup S of G Z-subgroup of G whose index in G is prime to
every prime in 2;.

PZ set of primes not in 2; (so that a P2;-element is an element whose order
is prime to every prime in 2; etc.).

Core So of subgroup S of G intersection of all subgroups conjugate to S
in G.

Only finite groups will be considered.

1. The Frattini lemmas

The arguments used in the proofs of results of this section are due to Frat-
tini. The results and their proofs, probably well known, are here reproduced
for the convenience of the reader.

LEMMA 1. If N is a normal subgroup of the group G, and if T is the nor-
realizer in G of a Sylow subgroup of N, then G NT.

Proof. Assume that T is the normalizer of the p-Sylow subgroup S of N"
If g is an element in G, then S and g-lSg are both p-Sylow subgroups of N’
since g induces an automorphism in the normal subgroup N of G. Conse-
quently there exists an element n in N such that n-ISn g g. Hence
S (gn-)-lSgn- so that gn- belongs to the normalizer T of S in G. The
element g belongs therefore to the subset Tn of TN, proving that G TN.

IEMMA 2. If K is a normal subgroup of the normal subgroup N of G such
that the orders of K and N/K are relatively prime, then there exists a complement
of K in N. If furthermore K or N/K is soluble and T is normalizer in G of
some complement of K in N, then G KT.

Here as always we term complement of K in N a subgroup S of N such that
N KS and 1 K n S (so that in particular S

_
N/K).

Proof. The first part of Lemma 2 is nothing but a restatement of Schur’s
Theorem; see, for instance, Zassenhaus [1; p. 125, Satz 25]. Assume next
that S is a complement of K in N, that T is the normalizer of S and that K
or N/K is soluble. Because of the last hypothesis and the fact that the orders
of K and N/K are relatively prime, any two complements of K in N are
conjugate in N; see Zassenhaus [1; p. 126, Satz 27]. Consider now some
element g in G. Then g induces an automorphism in the normal subgroup N
of G so that S and g-Sg are both complements of K in N. Consequently
there exists an element n in N such that n-Sn g-ISg. Hence gn- belongs
to the normalizer T of S in G so that g belongs to TN, proving G TN.
Since S is part of its normalizer T, it follows now that

G TN TSK TK.
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LEMMA 3. If the group G possesses one and only one minimal normal sub-
group M, and if G/M possesses a normal subgroup, not 1, whose order is prime
to the order of M, then (G) 1.

Proof. If firstly M is not soluble, then M is not part of the nilpotent group
(G). Since M is on the other hand contained in every normal subgroup,

not 1, of G, this implies (G) 1. Assume therefore next the solubility of M.
By hypothesis there exists a normal subgroup N/M 1 of G/M such that
the orders of M and N/M are relatively prime. By Lemma 2 there exists a
complement S of M in N; and the normalizer T of S in G satisfies G MT.
Since S 1 does not contain the one and only one minimal normal subgroup
M of G, S is not a normal subgroup of G so that T G. Consequently there
exists a maximal subgroup R of G which contains S. Clearly
G MT MR R so that M is not part of R. Consequently M is
not part of q)(G) either; and this implies as before (G) 1.

2. The core of a maximal subgroup

Maximal subgroups and minimal normal subgroups are dual concepts and
their relations dominate our investigation.

LEMMA ]. IfM is a soluble minimal normal subgroup of G, then M is abelian
and Mp 1 for some prime p. If a maximal subgroup S of G does not contain
M, then G MS and l M n S.

The simple proof of these well known facts may be indicated for the reader’s
convenience. Since M is free of proper characteristic subgroups (as these
would be normal subgroups of G), and since the commutator subgroup M’ of
the soluble group M is different from M, M’ 1 so that M is abelian. If p
is a prime divisor of the order of the abelian group M, then Mp is a charac-
teristic subgroup of M and M < M so that M 1. If the maximal sub-
group S of G does not contain M, then clearly G MS. If 1 is an ele-
ment in M, then the minimal normal subgroup M of G is generated by the
set of the elements in G conjugate to in G. Since M is abelian,

Ms s. HenceG MS {t}S {t,S} so thatMnS 1.

If S is any subgroup of the group G, then the core Se of S in G is the inter-
section of all the subgroups conjugate to S in G, i.e.

S= N S.
Ig is clear ha So is a normal subgroup of G which is par of S; and
every normal subgroup of G which is eongained in S is likewise par of So.
Thus So is he produeg of all he normal subgroups of G which are contained
in S. The only normal subgroup of G/So which is eongained in S/So is eon-
sequengly 1; and his will make i possible in many siuagions o assume
Se 1. In this latter case a true representation of G is obtained by map-
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ping every element in G upon the permutation it induces in the set S of
subgroups conjugate to S in G.

LEMMA 2. If S is a maximal subgroup of the group G, if So 1, if N 1
is a normal subgroup of G and C the centralizer of N in G, then C n S 1 and
C is either 1 or a minimal normal subgroup of G.

Remar]c. The reader will observe that Lemma 2 and its proof remain valid
without the hypothesis that G be finite.

Proof. Since 1 is the only normal subgroup of G which is contained in the
maximal subgroup S of G, N is not contained in S, and G NS. The cen-
tralizer C of N is a normal subgroup of G, since N is a normal subgroup of G.
Consequently C n S is a normal subgroup of S so that S is part of the nor-
malizer of C n S in G. Since N is part of the centralizer of C, and hence of
C S, NS G is the normalizer of C n S. Thus C S is a normal subgroup
of G which is contained in S; and this implies C S 1 because of So 1.

Suppose now that the normal subgroup X 1 of G is contained in C. As
before we see that X is not part of the maximal subgroup S of G and that
therefore G XS. Hence X <= C <= XS; and application of Dedekind’s
Law shows that

C X(C n S) X.

Hence either C or else C is a minimal normal subgroup of G.

COnOLbaV 1. If S is a maximal subgroup of the group G and if So 1,
then

(a) there exists at most one abelian normal subgroup, not 1, of G; and

(b) there exist at most two different minimal normal subgroups of G.

Remark. These results and their proofs are valid without the hypothesis
that G be finite.

Proof. If X 1 is an abelian normal subgroup of G, then X is part of its
centralizer C in G. Hence 1 < X =< C; and, by Lemma 2, C is a minimal
normal subgroup of G. Consequently X C is a minimal normal subgroup
of G. Assume now by way of contradiction the existence of abelian normal
subgroups U and V of G such that 1 U V 1. By the preceding re-
sult U and V are both minimal normal subgroups of G so that in particular
U n V 1. Consequently U is part of the centralizer of V. But V has
been shown to be its own centralizer so that U -<_ V, a contradiction which
proves (a).
Assume next by way of contradiction the existence of three different mini-

real normal subgroups P, Q, and R of G. Then P n R P n Q 1 so that
R and Q are both contained in the centralizer of P. Since R n Q 1, RQ
is not a minimal normal subgroup of G so that the centralizer of P in G is
neither 1 nor a minimal normal subgroup of G. This contradicts Lemma 2;
and this contradiction proves (b).
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COROLLARY 2. If S is a maximal subgroup of the group G, if Sq 1, and
if A and B are two different minimal normal subgroups of G, then

(a) G AS BS, 1 A [ S B n S;

(b) A is the centralizer of B in G [and B the centralizer of A];
(c) A, B, and AB S are isomorphic non-abelian groups.

Remarlc. These results and their proofs remain valid without the hypothe-
sis that G be finite.

Proof. Since A and B are two different minimal normal subgroups of G,
A B 1 so that B is part of the centralizer of A. We apply Lemma 2 to
see that B is the centralizer of A in G; and likewise we see that A is the cen-
tralizer of B. This proves (b).

Because Sa 1, neither A nor B is contained in the maximal subgroup S
of G. Hence G AS BS. Since A is the centralizer of B in G, A S 1
is a consequence of Lemma 2; and likewise we see that B S 1. This
proves (a).
That neither A nor B is abelian, may be deduced from Corollary 1, (a) or

from the present property (b). From A <= AB <= AS G and Dedekind’s
Law we deduce that

A (AB S) AB B(AB n S).

Since 1 S n A A B B n S, this implies the isomorphy of the groups
A, AB/B, AB S, AB/A, B; and this completes the proof.

The structure of groups G possessing two minimal normal subgroups and a
maximal subgroup S satisfying Sa 1

If M is one of the two minimal normal subgroups of G, then the centralizer
C of M in G is the second minimal normal subgroup of G [Corollary 2, (b)].
We note that M and C are isomorphic non-abelian groups [Corollary 2, (c)].
We recall from the proof of Corollary 2 that MC C(MC S) (MC S)M;
and now it is easy to see that the elements in MC S induce in M exactly
the full group of inner automorphisms of M. By Corollary 2, (a), we have
G MS SCand I Mn S S C. It follows that G is a splitting
extension of M, that S is essentially the same as a group of automorphisms
of M which contains the group of inner automorphisms of M;and every auto-
morphism of M which is induced in M by an element in G is already induced
by an element in S.

If T happens to be a second maximal subgroup of G satisfying Ta 1,
then T too induces in M the group of all automorphisms induced by elements
in G; and different elements in T induce different automorphisms in M. Con-
sequently there exists one and only one isomorphism a of S upon T such that
the element x in S and its image x in T induce the same automorphism in M.
Since S and T are both complements of M in G, there exists one and only one
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automorphism * of G which leaves invariant every element in M and which
maps x in S upon x in T.
The preceding remarks make it fairly clear how to construct the most gen-

eral example of such a situation: Denote by N some non-abelian group and
by 2; a group of automorphisms of N with the following two properties: 2
contains every inner automorphism of N, and i and N are the only 2-invariant
subgroups of N (i.e. N is Z-simple). Denote by G the splitting extension of
N by 2; so that the elements of a complement S of N in G induce in N exactly
the automorphisms in 2. Then So 1, S is a maximal subgroup of G; and
N and its centralizer C in G are two different minimal normal subgroups of G.

LEMMA 3. If the group G possesses a maximal subgroup with core 1, then
the following properties of G are equivalent:

(i) The indices in G of all the maximal subgroups with core 1 are powers of one
and the same prime p.

(ii) There exists one and only one minimal normal subgroup of G; and there
exists a common prime divisor of all the indices in G of all the maximal sub-
groups with core 1.

(iii) There exists a soluble normal subgroup, not 1, in G.

Proof. If condition (i) is satisfied by G, then it is clear that the second part
of condition (ii) is also satisfied by G. Assume by way of contradiction the
existence of two minimal normal subgroups A and B of G. Because of the
existence of maximal subgroups with core 1 we may apply Corollary 2. It
follows that A is non-abelian and that G AX, 1 A n X for every maximal
subgroup X of G whose core is 1. Since the order of A consequently equals
the index [G’X], and since the latter index is, by (i), a prime power, A is a
minimal normal subgroup of prime power order. Since such groups are solu-
ble, Lemma 1 implies the commutativity of A; and we have arrived at the
contradiction which proves that (ii) is a consequence of (i).
Assume next the validity of (ii). Then there exists one and only one mini-

mal normal subgroup M of G; and there exists a prime p such that [G" X] is
a multiple of p for every maximal subgroup X of G whose core Xa 1. There
exists, by hypothesis, a maximal subgroup S of core 1. It is clear that M $ S
and that therefore G MS. It follows that [G" S] [M’M n S] is a multi-
ple of p so that in particular p is a divisor of the order of M. Denote by P
some p-Sylow subgroup of M; and assume by way of contradiction that
P < M. Since P 1 and M is a minimal normal subgroup, P is not a nor-
mal subgroup of G so that the normalizer Q of P in G is different from G.
Application of 1, Lemma 1 shows G MQ. Since Q G, there exists a
maximal subgroup R of G which contains Q; and it is clear that
G MQ MR. But thenM $ R;andthisimpliesRq 1, sinceMis
the one and only one minimal normal subgroup of G. By (ii), [G" R] is a mul-
tiple ofp. SinceG=MR,[G:R]= [M’MnR]. SinceP=<MaQ=<MR,
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[M:P] is a multiple of [G:R]. Since R is a maximal subgroup of G and Ro 1,
[G:R] is a multiple of p and hence [M:P] is a multiple of p. But P is a
p-Sylow subgroup of M so that [M:P] is prime to p. We have arrived at a
contradiction which proves that M P is a p-group, not 1. Since p-groups
are soluble, we have shown that (iii) is a consequence of (ii).
Assume finally the validity of (iii). Then there exists a soluble minimal

normal subgroup N of G; and N is, by Lemma 1, an elementary abelian
p-group. If X is a maximal subgroup of G and the core Xo 1, then N X;
and G NX, 1 N n X by Lemma 1. It follows that [G:X] is exactly the
order of N; and the latter number is a power of p. Hence (i) is a consequence
of (iii), completing the proof.

Remark 1. Note that we have proved condition (i) in the following stricter
form:

(i’) If X and Y are mazimal subgroups of G and Xo Yo then
[G:X] [G:Y] is a power of a prime.

Remark 2. Assume that the group G possesses maximal subgroups of core 1
and that G possesses two minimal normal subgroups A and B. Then A and
B are non-abelian isomorphic groups; and G AX, 1 A n X for every
maximal subgroup X of core 1 [Corollary 2]. Thus the second half of condi-
tion (ii) is always satisfied when the first part of condition (ii) is not satisfied.
Since the first half of condition (ii) is not a consequence of the existence of
maximal subgroups with core 1, it is impossible to omit the first, half of con-
dition (ii). Likewise it does not suffice to assume that all the maximal sub-
groups of core 1 have the same index in G (or even that they are eoniugate
in G).

Application to the product of all soluble normal subgroups

It is well known and esily verified that the product A (G) of all the soluble
normal subgroups of the group G is itself soluble characteristic subgroup of G.
If the normM subgroup N of G does not contain A(G), then NA(G)/N is a
soluble normal subgroup, not 1, of GIN. Consequently A (G) _-< N whenever
N is normal subgroup of G such that GIN is free of soluble normM sub-
groups except 1. If we denote by A*(G) the intersection of M1 the normM
subgroups N of G such that GIN is free of soluble normM subgroups except 1,
then we hve seen that A (G) <= A*(G).
Next we denote by A**(G) the intersection of M1 the cores C of mximM

subgroups of G such that G/C is free of soluble normal subgroups except 1.
It is clear that A*(G) =< A**(G).
Assume now by wy of contradiction that A(G) A**(G). Then there

exists minimM normal subgroup M of H G/A (G) which is contained in
the normM subgroup A**(G)/A(G) 1 of H. If M W/A (G) were solu-
ble, then W would be soluble as an extension of the soluble group A (G) by
the soluble group M. But this would imply W _-< A (G) < W, an impossi-
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bility. Hence M is not soluble. Among the normal subgroups of H which
do not contain M there exists a maximal one, say K. Since M is a minimal
normal subgroup of H, we have M n K 1. If U is a normal subgroup of
H and K < U, then M _-< U because of the maximality of K. Hence KM/K
is the one and only one minimal normal subgroup of H/K. Since
M
_
KM/K, the latter group is not soluble either; and this implies in particu-

lar that KM/K = (H/K). Consequently there exists a maximal subgroup
S/K of H/K which does not contain the one and only one minimal normal
subgroup KM/K of H/K. It follows that 1 is the core of S/K and that
therefore K is the core of the maximal subgroup S of H. Since the non-
soluble group KM/K is the one and only one minimal normal subgroup of
H/K, this latter group does not possess soluble normal subgroups, except 1.
Consequently A**(H) <= K. Since A**(H) A**(G)/A(G), we have fur-
thermore M <= A**(H) <-_ K. But K has been chosen in such a way as not
to contain M; and we have arrived at a contradiction which proves that

A (G) A*(G) A**(G).

Recalling that A**(G) is the intersection of all the cores C of maximal sub-
groups of G whose quotient groups G/C are free of soluble normal subgroups,
not 1, and applying Lemma 3, we find that

the product A (G) of all the soluble normal subgroups of G is the intersection of
all the cores C of maximal subgroups of G with the following property"

There exist maximal subgroups X and Y of core C in G whose indices [G :X]
and [G" Y] are not powers of the same prime.

IEMMA 4. Assume that G possesses a soluble normal subgroup, not 1, and
that the core of the maximal subgroup S of G is 1.

(a) The existence of a soluble normal subgroup, not 1, of S implies the existence
of a normal subgroup, not 1, of S whose order is relatively prime to [G: S].

(b) If there exists a normal subgroup, not 1, of S whose order is relatively prime
to [G" S], then S is conjugate to every maximal subgroup T of G whose core To 1.

Remark. The general situation will be reduced to the one considered in
Lemma 4- by considering the maximal subgroup S/So of the group G/Sa.
Clearly our lemma provides a criterion for coniugacy of equicore maximal
subgroups which generalizes the result of Ore [1] that equicore maximal sub-
groups of soluble groups are coniugate.

Proof. From our hypothesis we deduce first the existence of a soluble mini-
mal normal subgroup M of G. By Lemma 1, M is abelian and M 1 for
some prime p. If furthermore X is a maximal subgroup of G whose core is 1,
thenM $ X;andLemma limpliesG MX, 1 MnX. In particular
G/M X, and [G" X] equals the order of M which happens to be a power of p.
Note that this my be applied to X S too.
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If there exists a soluble normal subgroup, not 1, of S, then the same is true
of the isomorphic group G/M. Consequently there exists a soluble minimal
normal subgroup N/M of G/M. By Lemma 1, N/M is abelian and
(N/M)q 1 for some prime q. Assume by way of contradiction that p q.
Then N is a p-group. Since M is a normal subgroup, not 1, of the p-group N,
M contains center elements, not 1, of N. But the center of N is a character-
istic subgroup of a normal subgroup of G; and as such Z(N) is a normal
subgroup of G. The minimality of M and 1 M n Z(N) imply that M is
part of Z(N) and that therefore N is part of the centralizer C of M. Since
G possesses maximal subgroups with core 1, and since 1 < M =< C (as M is
abelian), C is a minimal normal subgroup of G [Corollary 2]. Hence
C M < N _-< C, a contradiction proving p # q. The isomorphic groups
G/M and S contain therefore a normal subgroup, not 1, of order a power
of q, whereas [G" S] equals the order of M which is a power of the prime p # q.
This completes the proof of
Assume next the existence of a normal subgroup, not 1, of S whose order

is prime to [G" S]. Then the group G/M - S contains a normal subgroup
P/M # 1 whose order is prime to [G" S]. Since the order of M equals [G" S],
we see that the orders of M and P/M are relatively prime. Consider now
some maximal subgroup X of G whose core X, 1. Then G MX,
1 M n X. Because of M <= P <= MX and Dedekind’s Law, we have
P M(PraX) so thatPnXis a complement of MinP. SinceP X
is a normal subgroup of X, X is part of the normalizer of P n X. Since G
possesses maximal subgroups with core 1 as well as the abelian minimal nor-
real subgroup M, M is, by Corollaries 1 and 2, the one and only one minimal
normal subgroup of G. Hence P n X is not a normal subgroup of G so that
the normalizer of P X is exactly the maximal subgroup X of G.
Suppose now that the core of the maximal subgroup T of G is 1. Applica-

tion of the results of the preceding paragraph of our proof shows that P n S
and P T are both complements of M in P, that S is the normlizer of P n S
and T the normalizer of P n T in G. Since the orders of M and P/M are
relatively prime, and since M is abelian, any two complements of M in P are
conjugate in P; see Zassenhaus [1 p. 126, Satz 27]. Consequently there exists
an element in P transforming P n S into P T. But this element natu-
rally transforms the normalizer S of P S into the normalizer T of P n T,
Q.E.D.

LEMMA 5. The group G is soluble, if it possesses a maximal subgroup of
core 1, and if every maximal subgroup of core 1 is nilpotent.

Remarlc. This result constitutes, essentially, a generalization of the theo-
rem of O. Schmidt [1] and Iwasawa [1] which asserts the solubility of every
group G all of whose proper subgroups are nilpotent. We shall, however,
make use of this theorem in the proof of our result.

Proof. If the group G happens to be simple, then every maximal subgroup
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of G has core 1. In this case, therefore, every proper subgroup of G is nil-
potent so that G is soluble (and of order a prime) by the Theorem of O.
Schmidt and Iwasawa referred to above.
Assume next that G is not simple. Consider a maximal subgroup S of core

Sa 1; and suppose by way of contradiction that the prime p divides both
[G:S] and the order of S. Since S is, by hypothesis, nilpotent, the p-Sylow
subgroup P of S is a direct factor of S so that S is certainly part of the nor-
realizer of P. Since the order of S is a multiple of p, P 1; and since Sa 1,
P is not a normal subgroup of G. Since [G: S] is a multiple of p, P is not a
p-Sylow subgroup of G; and there exists therefore p-subgroup Q of G such
that P <: Q. By the well known properties of p-groups, the normalizer P*
of P in Q satisfies P P* <-_ Q. The normalizer R of P in G contains conse-
quently S and P*. Since P is a p-Sylow subgroup of S, and since P* is a
p-group grea.ter than P, P* is not part of S. Since S is a maximal subgroup
of G, IS, P*} G. HenceGisthenormalizerRofPinGsothatPis
normal subgroup of G, a contradiction. Thus we have shown that the order
of S and the index [G:S] are relatively prime for every maximal subgroup S
of G whose core SG 1.

Since G is not simple, G possesses a minimal normal subgroup M, and
M G. If X and Y are maximal subgroups of G whose cores Xa Ya 1,
then neither X nor Y contains M so that G MX MY. It follows that
[G:M] [X:MnX] [Y:Mn Y]. SinceM G, there exists a prime p
which divides [G:M] and which consequently divides the orders of X and Y.
Since X and Y are, by hypothesis, nilpotent, the p-Sylow subgroup Xp of X
is a direct factor of X and the p-Sylow subgroup Yp of Y is a direct factor of Y.
We have shown in the preceding paragraph of our proof that the order of X
is relatively prime to the index [G:X]; and this implies that X is p-Sylow
subgroup of G, since X, 1. Likewise Y, is a p-Sylow subgroup of G. Con-
sequently there exists an element in G such that t-lX, Y,. Since X
is part of the normalizer of X,, t-lxt is part of the normalizer of Y. But
Y is part of the normalizer of Y so that {Y, t-ixt} is part of the normalizer
of Yp. Since Y 1 Yq, Y is not a normal subgroup of G. Hence the
normalizer of Y. in G is different from G; and this implies G Y, t-iXt}.
Since X, t-ixt, and Y are maximal subgroups of G, this implies Y t-Xt;
and we have shown that any two maximal subgroups of core 1 are conjugate
in G.
Assume now by way of contradiction the existence of a second minimal

normal subgroup W of G. Since G possesses by hypothesis maximal sub-
groups of core 1, then, by Corollary 2,

G MS WS, 1 M n S W n S for every maximal subgroup S
of core S 1;and

M and W are isomorphic non-abelian groups.
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Since maximal subgroups S of core 1 are nilpotent, G/M is nilpotent. Hence
M
_
W MW/M is nilpotent; and this implies, by Lemma 1, that the non-

abelian minimal normal subgroup M is abelian, a contradiction. Thus we
see that M is the one and only one minimal normal subgroup of G.

Consequently we have verified the validity of condition (ii) of Lemma 3;
and this implies the existence of a soluble normal subgroup N 1 of G.
Since M is the one and only one minimal normal subgroup of G, M _-< N.
Hence M is soluble (and, by Lemma 1, abelian). But G/M MS/M for
every maximal subgroup S of core 1; and since these maximal subgroups S
are nilpotent, G/M is nilpotent. Hence G is soluble; and this completes
the proof.

3. The A-commutator subgroup of a group
A group theoretical property A defines a class of groups. Thus every group

G either has the property A or else it does not have this property. It will be
convenient to term A-group every group with the property A.
Throughout we shall assume of such a property A that the identity group

is a A-group. In this section and elsewhere we shall usually require that A
be homomorphism-invariant, i.e. that homomorphic images of A-groups are
A-groups. It should be noted, however, that there exist interesting classes
of groups which are not homomorphism-invariant, for instance, the direct
products of cyclic groups of equal order.
As all groups considered in this investigation are supposed to be finite,

A is likewise supposed to be a property of finite groups only.

DEFINITION. The A-commutator sub,qroup [G, A] of the group G is the inter-
section of all the normal subgroups X of G with A-quotient group G/X.

Since GIG is always a A-group, [G, A] is a well determined characteristic
subgroup of G. In general, G/[G, A] will not be a A-group, as may be seen
from easily constructed examples; if, for instance, A is the class of cyclic
groups, then [G, A] is the commutator subgroup G’ of G and GIG’ is cyclic in
exceptional cases only.

It is easy to verify the equivalence of the following two properties of A:

(a) A is homomorphism-invariant and G/[G, A] is a A-group for every group G.

(b) The homomorphic image X of the group Y is a A-group if, and only if, X
is a homomorphic image of Y/[Y, A].

Group theoretical properties A, mecting these two equivalent requirements
(a) and (b), shall be termed strictly homomorphism-invariant. A useful char-
acterization of these properties is contained in our next result.

PROPOSITION 1. The following properties of the homomorphism-invariant
group theoretical property A are equivalent"

(i) G/[G, A] is a A-group for every group G.
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(ii) If the group G is the product of A-subgroups A and B such that ab ba
for every a in A and b in B, and if S is a subgroup of G such that
G AS SB BA, then S is a A-group.

(iii) If U and V are normal subgroups of the group G such that G/U and G/V
are A-groups, then G/(U r V) is a A-group.

Proof. Assume the validity of (i); and consider a product G of (necessarily
normal) A-subgroups A and B such that ab ba for every a in A and b in B.
Assume that S is a subgroup of G satisfying G AS SB BA. We form
the direct product D of the groups A and B. The elements in D are then the
pairs (a, b) for a in A and b in B. Denote by a the mapping of D onto G
defined by (a, b) ab. This mapping is a homomorphism of D onto G, since

[(a, b)(a’, b’)] (aa’, bb’) aa’bb’ aba’b’ (a, b)(a’, b’).
Denote by T the inverse image of S under . Then T is the totality of ele-
ments in D which are mapped by upon elements in S. It is clear that T is a
subgroup of D and that D (A, 1)T T(1, B), since G AS SB. The
direct factors (A, 1) and (1, B) of D are A-groups, since A and B are A-groups.
Since D is the direct product of (A, 1) and (1, B), we obtain now the follow-
ing isomorphies:

(A, 1) D/(1, B) (1, B)T/(1, B) T/IT n (1, B)].

Hence T/[T n (1, B)] is a A-group; and that T/[T n (A, 1)] is a A-group,
is seen likewise. Consequently

[T,A] =< (1, B) nTn(A, 1) 1 or 1 [T,A].

Application of (i) shows now that T/[T, A] T is a A-group. Since A is
homomorphism-invariant, the homomorphic image S T of T is a A-group;
and thus we have shown that (ii) is a consequence of (i).
Assume next the validity of (ii); and consider normal subgroups U and V

of a group G such that G/U and G/V are A-groups. Form the direct product
E of G/U and G/V; and map the element g in G upon the element
g (Ug, Vg) in E. It is easily seen that is a homomorphism of G onto a
subgroup S of E; and that U n V is the kernel of this homomorphism .
Since E is the direct product of its A-subgroups (G/U, 1) and (1, G/V), and
since E (G/U, 1)S S(1, G/V), we may apply condition (ii) to see that
S is a A-group. Since S and G/(U n V) are isomorphic, the latter group is
a A-group too.; and thus we have seen that (iii) is a consequence of (ii).

If finally (iii) is satisfied by 4, then one verifies by an obvious inductive
argument that G/[N1 n... n Nk] is a A-group whenever every G/N is a
A-group; and this shows that (i) is a consequence of (iii), Q.E.D.

COROLLARY 1. If subgroups and homomorphic images of A-groups are
A-groups, then the following two properties of A are equivalent:
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(a) G/[G, A] is a A-group for every group G.

(b) Direct products of A-groups are A-groups.

Proof. If G is the direct product of A-groups, then [G, A] i so that (a)
implies (b). If conversely (b) is satisfied by A, and if U and V are normal
subgroups of the group G with A-quotient groups G/U and G/V respectively,
then G/(U a V) is isomorphic to a subgroup of the direct product D of G/U
and G/V. By (b), the direct product D of A-groups is a A-group; and, by
hypothesis, every subgroup of a A-group is a A-group. Hence G/(U n V) is
a A-group; and we have verified the validity of condition (iii) of Proposition 1.
Hence (a) is a consequence of (b), Q.E.D.

PROPOSITION 2. If A is a strictly homomorphism-invariant property and if
the group W is not a A-group, though every proper homomorphic image of W is a
A-group, then IV possesses one and only one minimal normal subgroup.

Proof. W 1, since W is not a A-group. Consequently there exist mini-
mal normal subgroups of W. Assume by way of contradiction the existence
of two different minimal normal subgroups A and B of W. Then W/A and
W/B are both A-groups as proper homomorphic images of W; and A n B 1.
Consequently [W, A] = A B 1 so that W/[W, A] W would, by hy-
pothesis, be a A-group, an impossibility. Consequently there exists one and
only one minimal normal subgroup of W.

LEMM 1. If A is strictly homomorphism-invariant, and if ( is a homo-
morphism of the group G upon the group H, then [G, A] [H, A].

Proof. It is clear that induces a homomorphism of the A-group G/[G,
onto HI[G, A] so that the latter group is a A-group too. Consequently
[H, A] =< [G, A]. Denote now by L the inverse image of [H, A] under
Since G H, the groups G/L and HI[H, /] are isomorphic groups. Since
the latter group is a A-group, so is the former. Consequently [G, A] =< L;
and this implies [G, A] -<_ L [H, A] since G H. Hence [G, A] [H, A],
as we wanted to show.

4. -closed groups
Throughout this section 2; is going to designate a set of primes which may,

in extreme cases, be vacuous or the set of all primes. If 2; happens to consist
of one prime p only, then we shall usually say p instead of

DEFLeCTiON. The group G is Z-closed, if products of Z-elements in G are
Z-elements.

It is clear that the group G is 2;-closed if, and only if, the set of 2;-elements

in G is a subgroup of G, a subgroup which is necessarily a characteristic
2;-subgroup of G. Likewise it is easy to see the equivalence of the following
three properties of a group G" the group G is Z-closed; the group G possesses
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one and only one maximal N-subgroup; the group G possesses a maximal
2:-subgroup which is at the same time a normal subgroup of G. It follows
that a group G is 2:-closed for every set 2: of primes if, and only if, G is nil-
potent.

Trivially the group G will be 2:-closed, if either none or all of the prime divi-
sors of the order of G belong to 2:.
Subgroups and homomorphie images of 2:-closed groups are obviously

2:-closed groups. A simple group is 2:-closed if, and only if, it is either
2:-group or of order prime to every prime in 2:. Since minimal normal sub-
groups are direct products of isomorphic simple groups, every minimal normal
subgroup of a homomorphie image of a 2:-closed group is either a 2:-group or
else of order prime to every prime in 2:;in other words" 2:-closed groups are
2:-soluble in the sense of Cuniehin, though the converse is dearly false.

It is clear that direct, products of 2:-closed groups are 2:-closed. By 3,
Corollary 1, Z-closure is a strictly homomorphism-invariant property.

If 0 is a set of E-closed normal subgroups of the group G, then we denote
by Xz, for X in O, the set of all Z-elements in X. It is clear that X is
normal Z-subgroup of G. Next denote by P the product of all the Xz for
X in O. It is clear that P is a normal 2:-subgroup of G. Finally denote by
Q the product of all the subgroups X in O. It is clear that Q is a normal
subgroup of G, and that Q/P is the product of all the normal subgroups

PX/P X/(X n P)
___

[X/Zz]/[(X n P)/Zx]

of G/P. Since every IX’X x] is prime to every prime in 2:, [Q’P] is likewise
prime to every prime in E. IIenee Q is 2:-closed; and we have shown that
products of 2:-closed normal subgroups are 2:-dosed.

It is easy to construct examples showing that the extension G of the
E-dosed group N by the 2:-closed group GIN need not be 2:-closed. It is,
however, obvious that this extension G will be 2:-closed, if either N is
group or [G’N] is prime to every prime in E. Somewhat deeper and more
interesting is the following criterion.

PROPOSITION 1. If N is a normal subgroup of the group G, and if GIN and
{N, g} for every Z-element g of prime power order in G are Z-closed, then G is
Z-closed.

Proof. By hypothesis N and GIN are 2:-closed. The totality K of E-ele-
ments in N is consequently a characteristic Z-subgroup of N; and the totality
TIN of Z-elements in GIN is likewise a characteristic 2:-subgroup of GIN.
We note that T is a normal subgroup of G, that [G" T] is prime to every
prime in 2:, and that K is a normal subgroup of G.

Let H T/K and M N/K. Then M is a normal subgroup of H and
HIM TIN is a X-group, whereas the order of M is prime to every prime
in 2:. Thus order and index of M in H are relatively prime. We may
therefore apply Schur’s Theorem to assure the existence of a complement R
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of M in H; see Zassenhaus [1; p. 125, Satz 25]. Suppose that r is an element
of prime power order in R. Then r Kx where x is of prime power order
too; and since r is a Z-element, so is x. By hypothesis {N, x} is Z-closed;
and this implies that /M, r} is Z-closed too. Thus the totality r* of 2-ele-
ments in IM, r} is a characteristic Z-subgroup of /M, r} which contains r.
Since the order of M is prime to every prime in 2;, it follows that {M, r} is
the direct product of M and r*. Thus r commutes with every element in
M. Since R is a complement of M in H, it follows that H is the direct product
of M and R. Since R - HIM is a 2-group whereas M is of order prime to
every prime in 2, it follows that R is the totality of Z-elements in H and
that therefore H is Z-closed.

Since T is au extension of the 2;-group K by the Z-closed group
H T/K, T is 2;-closed; and since G is an extension of the Z-closed group T
by the group G/T whose order is prime to every prime in 2, G too is Z-closed,
Q.E.D.

If every pair of 2-elements in G generates a 2-closed subgroup of G, then
G is clearly Z-closed. A somewhat deeper question arises when requiring
only that pairs of elements of prime power order generate 2-closed sub
groups.

PROPOSITION 2. The following two conditions are necessary and sucient
for the group G to be Z-closed:

(a) If x is a p-element and y a q-element in G, if p is in and q is not in ,
then {x, Y is a 2;-closed subgroup of G.

(b) If the simple group S is a homomorphic image of a subgroup of G, and if
A and B are two different maximal Z-subgroups of S, then the normalizer of
A n B in A is different from A n B.

Remart 1. If 2; happens to consist of one prime p only, then condition (b)
is satisfied by every group, as every proper subgroup of a p-group is different
from its normalizer. But it seems to be an open question whether (b) can
be omitted in general.

Proof. If G is Z-closed, then every subgroup of G is Z-closed, proving the
necessity of (u). If the simple group S is a homomorphic image of sub-
group of the Z-closed group G, then S is 2-closed so that either S itself is a
Z-group or else 1 is the only Z-subgroup of S. In either case S possesses
one and only one maximal 2;-subgroup so that (b) is satisfied by default.
This shows the necessity of our conditions.

If the conditions (a) and (b) were not sufficient for Z-closure, then there
would exist a group G of minimal order with the following two properties:

(1) G is not 2;-closed.

(2) G meets requirements (a) and (b).
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Every subgroup and every homomorphic image of G meets requirements
(a) and (b). Because of the minimality of G it follows that

(3) every proper subgroup and every proper homomorphic image of G is
Z-closed.

Assume now by way of contradiction that N is a normal subgroup of G
and 1 < N < G. Then N is 2:-closed by (3); and the set N* of 2:-elements
in N is a characteristic 2:-subgroup of N. Clearly N* is a normal subgroup
of G; and N* 1 would imply, by (3), that G/N* is 2:-closed. But exten-
sions of 2-groups by 2-closed groups are 2:-closed so that G would be 2:-closed
contradicting (1). Hence N* 1 so that the order of N is prime to every
prime in 2:. By (3), GIN is 2:-closed so that the set G*/N of 2:-elements in
GIN is a characteristic 2:-subgroup of GIN. Then G* is a normal subgroup
of G and [G:G*] is prime to every prime in 2:. If G* G, then G* would
be 2:-closed by (3); and this would imply the 2:-closure of G, contradicting
(1). Hence G G* so that GIN is a 2-group.

Since GIN is a 2-group and the order of N is prime to every prime in
order and index of N in G are relatively prime. Thus we may apply Schur’s
Theorem; see Zassenhaus [1; p. 125, Satz 25]. Consequently there exists
complement R of N in G; and R GIN is a Z-group. Consider elements x
in R and y in N which are both of prime power order. Then condition
is applicable so that {x, y} is 2-closed. The totality X of Z-elements in
{x, y} is consequently a characteristic 2:-subgroup of {x, y} which contains x.
Furthermore N n {x, y} is a normal subgroup of Ix, y} which contains y and
whose order is prime to every prime in 2; and therefore to the order of the
2-group X. Consequently {x, y} is the direct product of X and N n {x, y};
and this implies in particular that xy yx. It follows that every element
in R commutes with every element in N and that therefore G is the direct
product of the Z-group R and the group N whose order is prime to every
prime in 2:. But then R is the totality of 2:-elements in G so that G is 2-closed,
contradicting (1). Hence

(4) G is simple.

Assume next by way of contradiction the existence of different maximal
2:-subgroups whose intersection is different from 1. Then there exists
pair A B of maximal 2:-subgroups of G whose intersection has maximal
order. Because of (4) we may apply condition (b) to show that the nor-
malizer A* of A r B in A is different from A B and that likewise the nor-
realizer B* of A B in B is different from A a B. Thus

1 <Ac, B<A*<=A <G and 1 < A nB < B* <= B < G.

By (4), A n B is not a normal subgroup of G so that the normalizer of A n B
is different from G. Hence {A*, B*} < G. By (3), therefore, {A*, B*} is
2-closed; and since A* and B* are E-groups, {A*, B*} is itself a E-group.



But then there exists a maximal E-subgroup C of G which contains {A*, B*}.
Since B* is not part of A, C A; and A n B < A* =< A n C, contradicting
the maximality of the intersection A n B. We have arrived at a contradiction
which proves that

(5) A n B 1 if A and B are different maximal 2:-subgroups of G.

Suppose that the prime q does not belong to 2: and that is a q-element in
G. Consider a maximal Z-subgroup A of G; and consider in A an element.
a 1 of prime power order. We may apply condition (a) to the pair a, t;
and consequently the set a* of E-elements in {a, t} is a characteristic N-sub-
group of a, t} which contains a. There exists a maximal Z-subgroup B of G
which contains a*. Since a belongs to A n B, we deduce A B from (5);
and this implies a* -<_ A. Hence t-lat belongs to A; and now it follows
that A t-tAt.
Next we note that G is simple, by (4), not Z-closed, by (1). Hence G is

generated by the elements of prime power order prime to 21. Consequently
every maximal Z-subgroup of G is a normal subgroup of G which is different
from G. By (4) this implies that 1 is the only maximal Z-subgroup of G
so that the order of G is prime to every prime in 2:. But then G would be
2:-closed, contradicting (1), and this contradiction shows the sufficiency of
our conditions.

PROPOSITION 3. The following properties of the group G are equivalent:

(i) G is Z-closed.

(a) If S is a maximal subgroup of G and if [G: So] is a multiple of some

)prime in Z, then every prime divisor of [G:S] belongs to .
(ii) (b) If M is a minimal normal subgroup of the homomorphic image H of G,

[then M possesses, Z-Sylow subgroups, and any two Z-Sylow subgroups of
[M are conjugate in M.

(iii) If S is a maximal subgroup of G, if G/So possesses one and only one min-
imal normal subgroup M, and if [G: So] is a multiple of some prime in ,
then M is a Z-group.

(iv) G/q(G) is Z-closed.

Remark 2. Here as always we term the subgroup X of Y a Z-Sylow sub-
group of Y, if X is Z-group and [Y:X] is prime to every prime in Z. It is
clear that every 2:-Sylow subgroup is a maximal 2:-subgroup, though the
converse is, in general, false. As a matter of fact maximal Z-subgroups
always exist, whereas 2-Sylow subgroups may or may not exist. See in
this context a recent investigation by Ph. Hall [1].
Remark 3. If 2: happens to consist of one prime p only, then condition

(ii.b) is satisfied by every group, showing the indispensability of (ii.a).
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Whether it is possible to omit condition (ii.b) in general, appears to be an
open question.

Proof. Assume first that G is Z-closed. If S is a maximal subgroup of
G, and if [G: So] is a multiple of some prime in 2;, then the set T of 2-ele-
ments in G/So is a characteristic 2-subgroup, not 1, of G/So. But then T
is not part of the maximal subgroup S/So of G/So so that G/So T(S/So).
Hence [G: S] is a factor of the order of the 2-group T so that (ii.a) is saris-
fled by G. Every minimal normal subgroup of a homomorphic image of G
is a direct product of isomorphic simple 2:-closed groups. But a simple
21-closed group is either a 2:-group or of an order prime to every prime in
2; and thus (ii.b) is satisfied by G too. Hence (ii) is a consequence of (i).
Assume next the validity of (ii); and consider a maximal subgroup S of

G with the following two properties"

H G/So possesses one and only one minimal normal subgroup M;

the order of H is a multiple of some prime in

Then V S/So is a maximal subgroup of H and the core VH 1. If U is
some maximal subgroup of H whose core Ua 1, then, by (ii.a), [H" U]
is divisible by primes in 2; only.

It is clear that M is not contained in the maximal subgroup V of H. Hence
H MV so that [H" V] [M’M n V]; and this implies in particular that
the order of M is multiple of some prime in
By (ii.b) there exists a 2;-Sylow subgroup B of M. Since the order of M

is divisible by primes in 2:, B 1. If M were not a E-group, then
1 < B < M so that B would not be a normal subgroup of H. The normalizer
C of B in H is consequently different from H. If h is an element in H, then
h-lBh is likewise a 2:-Sylow subgroup of M. By (ii.b), 2:-Sylow subgroups
of M are conjugate in M. Hence there exists an element m in M such that
m-iBm h-Bh. It follows that hm- belongs to the normalizer C of B
and that h belongs therefore to the subset Cm of CM. Hence H MC.
Since C <: H, there exists a maximal subgroup D of H which contains C.
Since D < H MC MD, M D; and since M is contained in every
normal subgroup, not 1, of H, we have DH 1. Consequently [H’D] is
divisible by primes in 2: only. Hence [M’M D] [MD’D] [H’D] is
divisible by primes in 2; only. On the other handB _-< Ma C -< M D
so that [M:B] is a multiple of [M’M D]. Since B is a 2:-Sylow subgroup of
M, [M" B] is prime to every prime in 2; so that [M’M n D] is likewise prime
to every prime in 2. It follows that [M’M D] 1; and this implies M
M n D __< D, a contradiction. Thus we have been led to a contradiction by
ssuming that M is not a E-group; and we have shown that (iii) is a conse-
quence of (ii).

If (i) were not a consequence of (iii), then there would exist a group G
of minimal order with the following two properties"
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(1) G is not 2-elosed.

(2) Condition (iii) is satisfied by G.

It is clear that every homomorphic image of G meets requirement (iii);
and thus it follows from the minimality of G that

(3) every proper homomorphic image of G is E-closed.

Since 2;-closure is strictly homomorphism-invariant, it is a consequence
of (3) and 3, Proposition 2 that

(4) there exists one and only one minimal normal subgroup M of G.

Assume by way of contradiction the existence of a maximal subgroup S
of G which does not contain M. Then M So; and this implies So 1
by (4). By (1), the order of G is a multiple of some prime in 2:. Thus we
may apply (iii). Hence M is a E-group. Since G/M is Z-closed by (3),
it follows that G itself is 2:-closed. This contradicts (1). Hence M is part
of every maximal subgroup of G so that

(5) M -< (G).

Since the Frattini subgroup is nilpotent, the minimal normal subgroup
M of G is soluble. We apply 2, Lemma 1 to see that

(6) M is an elementary abelian p-group.

If p were in 2;, then M would be a Z-group; and this would imply, by (3),
that G were Z-closed, contradicting (1). Hence

(7) p is not in 2;.

By (3), G/M is 2:-closed. The set T/M of N-elements in G/M is conse-
quently a characteristic 2;-subgroup of G/M; and this implies that T is a
characteristic subgroup of G. Since the orders of M and G/T are prime
to every prime in 2:, and since G is not 2-closed, M < T. Since the order
of M is prime to IT:M], and since M is abelian, we may apply 1, Lemma 2.
Consequently there exists a complement A of M in T and G MB where
B is the normalizer of A in G. Since M is contained in every normal sub-
group, not 1, of G, since 1 < T/M A, and since M A, it follows that
A is not a normal subgroup of G; and that therefore B < G. Consequently
there exists a maximal subgroup C of G which contains B; and this implies
C < G MB MC so that M $ C. This contradicts (5), proving that
(i) is a consequence of (iii).
The equivalence of (i) and (iv) is an immediate consequence of the equiv-

alence of (i)and (iii).

5. -dissolved groups

If 2; is a set of primes, and if the totality of Z-elements in the group G is a

soluble subgroup of G, then we shall say that G is a Z-dissolved group. It is
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clear that Z-dissolved groups are Z-closed, but not conversely. If 2 happens
to consist of at most two primes, then, according to a celebrated Theorem of
Burnside, every Z-closed group is also Z-dissolved. Furthermore one verifies
without any difficulty that subgroups, homomorphic images, and direct
products of Z-dissolved groups are likewise Z-dissolved.

If 0 is a set of 2-dissolved normal subgroups of the group G, then we de-
note by Xz, for X in O, the set of ll 2-elements in X. It is clear that X
is a soluble normal Z-subgroup of G; and this implies that the product P of
all the Xz, for X in O, is likewise a soluble normal Z-subgroup of G. If Q
is the product of all the normal subgroups X in O, then Q/P is the product
of all the normal subgroups PX/P X/(X P) [X/X]/[(X P)/X];
and all these groups have order prime to every prime in 2; so that Q/P has
order prime to every prime in 2;. Products of Z-dissolved normal subgroups
are consequently 2-dissolved.

LEMMA 1. If N is a normal subgroup of the Z-closed group G, and if N and
GIN are both Z-dissolved, then G is Z-dissolved.

Proof. The totality T of 2-elements in G is subgroup of G, since G
is 2;-closed. Since N and GIN are Z-dissolved, their 2-subgroups N T
and NT/N T/(T N) are soluble. Thus T is soluble as n extension of
the soluble group N T by the soluble group T/(T N).

COROLLAnY 1. If N is a normal subgroup of the group G, and if GIN and
IN, g} for every g in G are Z-dissolved, then G is Z-dissolved.

This is an immediate consequence of Lemma 1 and 4, Proposition 1.

COROLLARY 2. G is Z-dissolved if, and only if, G/(G) is Z-dissolved.

This is an immediate consequence of Lemma 1 and 4, Proposition 3.

PROPOSITION 1. The following properties of the group G (and of the set Z
of primes) are equivalent:

(i) G is Z-dissolved.

(ii) If X and Y are maximal subgroups of G, if X( Y(, and if [G:XG] is
divisible by some prime in Z, then [G:X] and [G: Y] are powers of the same
prime in Z.

(iii) If X and Y are maximal subgroups of G, if X( Ya, and if [G:Xv] is
divisible by some prime in Z, then X and Y are conjugate in G, and [G:X] is a
multiple of some prime in Z.

(iv) If N is the core of some maximal subgroup of G and [G:N] is divisible by
some prime in Z, then there exists a maximal subgroup S of G with core N such
that [G: S] is divisible by some prime in Z, and there exists a common prime
divisor p of all the indices [G:X] of maximal subgroups X with core N.
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(v) If N is the core of some maximal subgroup of G and [G:N] is divisible by
some prime in 2:, and if GIN possesses one and only one minimal normal sub-
group M, then M is a soluble Z-group.

Proof. Assume first the validity of (i) and consider maximal subgroups X
and Y of G such that Xo Y and such that [G:Xo] is a multiple of some
prime in 2:. The homomorphic image H G/Xo is likewise Z-dissolved,
and the order of H is a multiple of some prime in 2:; U X/X and
V Y/Ya Y/Xa are maximal subgroups of H whose cores in H are 1.
The totality T of 2:-elements in the Z-dissolved group H is a soluble char-

acteristic Z-subgroup of H; and T 1, since the order of H is a multiple of
some prime in 2:. Consequently there exists a minimal normal subgroup M
of H which is contained in T; and M is not contained in U or V, since their
cores are 1. Since M is a soluble minimal normal 2:-subgroup of H, applica-
tion of 2, Lemma 1 shows the following facts: M is abelian, MY 1 for
some primepin2:,H- UM MV, 1 U r M M r V.

These facts imply in particular the isomorphy of U, V, and HIM as well
as the equality of [H: U], [H:V] and of the order of the p-group M. Conse-
quently [G:X] [H: U] [H: V] [G: Y] is a power of the prime p in 2:.
To prove that U and V are conjugate subgroups of H we distinguish two

cases.

Case l. M= T.
Since HIM HIT is free of 2:-elements, not 1, whereas M T is a 21-group,

the orders of the groups M and HIM are relatively prime. Since U and V
are complements of M in H, and since M is abelian, we may apply a theorem
of Zassenhaus [1; p. 126, Satz 27] to prove that U and V are conjugate in H.

Case 2. M < T.
We recall that the cores of U and V are 1, that H contains the abelian

normal subgroup M 1, and that the isomorphic groups U, V, and HIM
possess a soluble normal subgroup, not 1, since TIM 1 is a soluble charac-
teristic subgroup of HIM. Consequently we may apply 2, Lemma 4 to
prove that U and V are conjugate in G.

Since Xa Yo, and since U X/Xo and V Y/Xo are conjugate in
H G/Xo, X and Y are conjugate in G; and now it is clear that (ii). and
(iii) are both consequences of (i).

It is obvious that (iv) is a consequence of either of the conditions (ii) and
(iii). Assume next the validity of (iv); and consider the core N of some
maximal subgroup of G with the following two properties"

G/N possesses one and only one minimal normal subgroup M; and

[G :N] is divisible by some prime in 21.

Clearly G/N possesses a maximal subgroup with core 1; and it is a conse-
quence of (iv) that there exists a common prime divisor of all the indices
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[GIN:X] of maximal subgroups X of GIN with core 1. Thus we may apply
condition (ii) of 2, Lemma 3; and consequently there exists a soluble normal
subgroup, not 1, ot GIN. Since M is the one and only one minimal normal
subgroup of G/N, M is contained in this soluble normal subgroup of GIN
so that M itself is soluble.
We apply (iv) again to see that there exists a maximal subgroup S of GIN

whose core is 1 and whose index [GIN:S] is a multiple of some prime p in 2.
It is clear then that M is not part of S. Application of 2, Lemma 1 shows
now that M is abelian and M 1 for some prime q; and that GIN MS,
1 M n S. It follows in particular that the order of M equals the index
[G/N: S]. Since the latter is a multiple of p, so is the former. But M is a
q-group. Hence p q; and thus we have shown tha.t M is an abelian p-group.
Since p belongs to 2, M is in particular a Z-group; and thus we have shown
that (v) is a consequence of (iv).
Assume now by way of contradiction that (i) is not a consequence of (v).

Then there exists a group G of minimal order with the following two proper-
ties"

(a) G is not 2-dissolved.

(b) Condition (v) is satisfied by G.

Since (v) is satisfied by every homomorphic image of G, we deduce from
the minimality of G that

(c) every proper homomorphic image of G is E-dissolved.

Since Z-dissolution is a strictly homomorphism-invariant property, ap-
plication of 3, Proposition 2 to (c) shows that

(d) there exists one and only one minimal normal subgroup M of G.

If (G) were not 1, then G/(G) would be Z-dissolved by (b); and this
would imply that G itself is 2;-dissolved [Corollary 2], an impossibility.
Hence

(e) (a) 1.

By (e), there exists a maximal subgroup S of G which does not contain
M 1; and it is a consequence of (d) that So 1. By (a), the order
of G which happens to be [G: S] is divisible by some prime in 2;. Because
of (d) we may apply condition (v). It follows that G G/S( possesses
u soluble normal 2-subgroup, not 1. By (d), M is contained in this
soluble Z-group so that M itself is a soluble 2-group. The totality TIM
of 2;-elements in G/M is, by (c), a soluble characteristic 2-subgroup of G/M.
It is clear then that T is a soluble 2;-group. Since T by its construction
contains every 2;-element in G, T is actually the totality of all 2:-elements
in G. Thus G is 2;-dissolved, contradicting (a). We have arrived at the
desired contradiction which proves that (i) is a consequence of (v); and this
completes the proof.
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Remark. An obvious combination of conditions (ii) and (iii) shows the
validity of the following condition (ii’) which is stricter than either of the
conditions (ii) and (iii) and satisfied by all 2;-dissolved groups:

(ii’) If X and Y are maximal subgroups of G, if Xa Y(, and if [G:Xa] is
divisible by some prime in Z, then [G:X] [G:Y] is a power of a prime in Z.

Likewise it is almost trivial to show that Z-dissolved groups G meet the
following requirement (v’) which is somewhat stricter than our condition (v):

(v’) If N is the core of some maximal subgroup of G and [G :N] is divisible by
some prime in , then there exists a soluble normal Z-subgroup, not 1, of GIN.
The group G is clearly soluble if, and only if, G is E-dissolved for 2 the

set of all primes. Consequently the following solubility criterion is a special
case of Proposition 1.

COROLLARY 3. The following properties of the group G are equivalent:

(i) G is soluble.

(ii) If X and Y are maximal subgroups of G and Xa Ya, then [G:X] and
[G:Y] are powers of the same prime.

(iii) If X and Y are maximal subgroups of G and Xa Ya, then X and Y
are conjugate in G.

(iv) If N is the core of some maximal subgroup of G, then there exists a com-
mon prime divisor p of all the indices [G:X] of maximal subgroups X with
core N.

(v) If N is the core of some maximal subgroup of G, and if G/N possesses
one and only one minimal normal subgroup M, then M is soluble.

Remark. The implication of (iii) by (i) had already been showa by Ore [1].

6. The elementary structure properties
Before defining these properties we recall the fact that every minimal

normal subgroup M of a group G is a direct product of isomorphic simple
groups; see, for instance, Zassenhaus [1; p. 77, Satz 2]. If is a class of
isomorphic simple groups, and if the minimal normal subgroup M of G is
the direct product of simple groups belonging to this class , then we term

the characteristic of M. If in particular is the class of cyclic groups of
order the prime p, then we shall shortly write p instead of ; and it is a
consequence of 2, Lemma 1 that soluble minimal normal subgroups have
prime number characteristic.
Denote next by 0 some group theoretical property. No restrictions are

imposed upon 0 so that, in particular, 0 may be the class of all groups or

may be vacuous. If is some class of isomorphic simple groups, then we
define the property (0, ) of a group G as follows:
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(0, ) If the minimal normal subgroup M of the homomorphic image H of G
has characteristic , then the group of automorphisms induced in M by elements
in H has property O.

Groups with this property shall be called (0, )-groups, exactly as the
groups with property 0 shall be termed O-groups. A useful restatement of
the above property is obtained as follows. If M is a minimal normal sub-
group of H, then the centralizer M* of M in H is a normal subgroup of H;
and H/M* is essentially the same as the group of automorphisms, induced
in M by elements in H. Thus property (0, ) requires H/M* to be a O-group
whenever the characteristic of the minimal normal subgroup M of the homo-
morphic image H of G is $.
Two extreme cases will illustrate the range of this definition. We sha.ll term

(0, ) unconditional, if every group is a (0, )-group, otherwise conditional.
If, for instance, 0 is the class of all groups, then (0, ) is unconditional.
A group G is certainly a (0, )-group, if every minimal normal subgroup of
every homomorphic image of G has characteristic different from . If these
groups are the only (0, )-groups, then we term (O, ) exclusive. Whenever

is a class of non-abelian simple groups and 0 is a class of soluble groups,
(0, ) is going to be exclusive. For if M is a minimal normal subgroup of
H, if M* is the centralizer of M in H, and if the characteristic of M is not
a prime, then M n M* 1 so that H/M* contains a subgroup isomorphic
to M and so that therefore H/M* is not soluble. Likewise (0, ) is going
to be exclusive whenever 0 is vacuous.
We have pointed out already that there exist always (0, $)-groups; and it

is fairly clear from our definition that homomorphic images of (0, )-groups
are (0, )-groups. On the other hand it is easy to construct examples which
show that subgroups of (0, )-groups need not be (0, )-groups. If, for
instance, p is a prime, then every non-abelian simple group is a (0, p)-group,
though its subgroups will, in general, not have this property.

Dr. B. Huppert has pointed out that the group G is a (0, )-group, if (and
only if) there exists a principal chain of normal subgroups N of G with the
following property"

If the minimal normal subgroup N+I/N of G/N has characteristic ,
then a 0-group of automorphisms is induced in N+I/N by the elements in G.

A proof of the sufficiency of this condition is easily obtained by applying
the Jordan-HSlder-Schreier Theorem to the operator group G where we
choose as operators the inner automorphisms of G.
Using this criterion it would be possible--as has been pointed out to me

by Dr. Huppert--to shorten the proofs of Proposition 1, Corollary 1 and
Theorem 1.

If G is a group, then we may form the intersection [G, O, ] of all normal
subgroups X of G whose quotient group G/X is a (0, )-group. This is nothing
but the (0, )-commutator subgroup of G introduced in 3.
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PROPOSITION 1. G/[G, O, ] is always a (0, )-group.

Proof. Since the property (0, ) is homomorphism-invariant (and is
satisfied by some groups), we may apply 3, Proposition 1; and thus it suffices
to verify condition (iii) of 3, Proposition 1. Consequently we consider
normal subgroups U and V of a group G such that G/U and G/V are (0, )-
groups. To prove that G/(U n V) is likewise a (0, )-group, consider normal
subgroups M and N of G such that U n V =< N < M and M/N is a minimal
normal subgroup of GIN whose characteristic is . Denote by M*/N the
centralizer of M/N in GIN. Then M* is a normal subgroup of G; and
G/M* is essentially the same as the group of automorphisms of M/N which
are induced in M/N by elements in GIN (or by elements in G). We have
to show that G/M* is a 0-group. We distinguish two cases.

Case 1. M <- NU.
Then U r V <= N < M <= NU; and we deduce from Dedekind’s Law

that

M N(Mn U), V(N U) n (Mr U) (Nn U)(Vn U) N U.

Consequently

M/N N(M U)/N (M c V)/(N U) (M U)/[V(N c U) a (M n V)]- V(M n U)/V(N n V).

Denote by D/V(N n U) the centralizer of V(M n U)/V(N n U) in
G/V(N n U); and recall that M*/N is the centralizer of M/N in GIN. Then
D is a normal subgroup of G; und

[M, D] [N(M U), D] [N, D][M n U, D]

<= IN, D][V(M U)n U, D] N[V(N n U)n V] N

so that D -< M*. On the other hand

[V(M n U), M*] IV, M*][M n U, M*]

-< IV, M*]([M, M*] n [U, M*]) <= V(N n U)

so that M* =< D. Hence D M*; and this implies in particular that

V(N n U) <- D M*.

The group G/M* G/D is consequently essentially the same as the groups
of automorphisms induced in the isomorphic groups M/N and
V(M n U)/V(N n U) by elements in G. Since M/N is a minimal norma
subgroup of characteristic of G/N, the group V(M U)/V(N n U) is like
wise a minimal normal subgroup of characteristic of G/V(N n U). Since
the latter group is a homomorphic image of the (0, )-group G/V,
G/D G/M* is a O-group.
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Case2. M :5 NU.
Then N -< M ra NU < M; and this implies, by Dedekind’s Law,

N(M n U) M n NU N or Ma U =< N,
since M, N, U re normM subgroups of G and M/N is mJnimM normal sub-
group of GIN. Consequently

M/N M/(M n NU)
_

UM/UN.

Denote by E/UN the centralizer of UM/UN in G/UN; and recall that
M*/N is the centralizer of M/N in G/N. Then

[M,E] <= Mn[UM, E] <= Mn UN N

so that E __< M*. On the other hand,

[UM, M*] [V, M*][M, M*] =< VX
so that M* __< E. Consequently M* E; and this implies in particular
that UN <- E M*.
The group G/M* G/E is consequently essentiMly the sme as the groups

of utomorphisms induced in the isomorphic groups M/N and UM/UN
by elements in G. Since M/N is minimal normal subgroup of character-
istic $ of G/N, the group UM/UN is likewise minimM normM subgroup of
characteristic $ of G/UN. Since the ltter group is homomorphic image
of the (0, o)-group G/U, G/E G/M* is O-group.
Thus we have shown in both cases that G/M* is 0-group; nd this com-

pletes the proof of the fct that G/(U V) is (0, $)-group whenever G/U
and G/V re both (0, )-groups, Q.E.D.

COnOLAV 1. If the normal subgroup N of G is contained in [G, O, ],
and if [G, O, ]/N is a minimal normal subgroup of G/N, then is the charac-
teristic of [G, O, ]/N and the group of automorphisms induced in [G, O, ]/N
by elements in GIN is not a O-group.

Proof. Among the normal subgroups X of G sa.tisfying N X n [G, 0, ],
there exists mximl one, sy K. If the normM subgroup Y of G satisfies
K < Y, then [G, 0, ] -<_ Y, since [G, 0, ]/N is minimal normM subgroup
of GIN. Consequently K[G, O, ]/K is the one nd only one minimal normal
subgroup of G/K. Next we note that, by Proposition 1, G/[G, 0, $] nd
consequently /K[G, O, ] are (0, )-groups, that [G/K, O, ] K[G, O, ]/K
is the one nd only one minimM normM subgroup of G/K, nd that therefore
G/K is not (0, )-group. It follows now esily enough that is the charc-
teristic of K[G, O, ]/K nd that the group of utomorphisms induced in
K[G, O, ]/K by elements in G/K is not a 0-group. But

[G, 0, ]/N [G, 0, ]/(K n [G, 0, $]) K[G, 0, ]/K.
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Furthermore an element x in G satisfies [[G, 0, ], x] -< N if, and only if,
[K[G, O, ], x] =< K, since N K n [G, 0, ]. Consequently essentially
the same group of automorphisms is induced by elements in G in the iso-
morphic groups [G, 0, ]/N and K[G, O, g]/K. Thus the minimal normal
subgroup [G, O, ]/N of GIN has characteristic ; and the group of auto-
morphisms induced in it by elements in GIN is not a O-group.

COROLLARY 1’. /f there exist O-groups, then [G, O, ] [G, [G, O, R]].

This is an immediate consequence of Corollury 1.
From now on we shall always assume the existence of O-groups; and we shall

not make explicit reference to this hypothesis again. It is then an immediate
consequence of Corollary 1’ that a group has property (0, ) if, and only if,
its central quotient group has this property; and now it follows by an obvious
inductive argument that a group has property (0, ) if, and only if, its hyper-
center quotient group is a (0, )-group.

If 0 is homomorphism-invariant and G a O-group, and if M is minimal
normal subgroup of the homomorphic image H of G, then the group of auto-
morphisms, induced in M by elements in H, is homomorphic image of G
and consequently a O-group. Hence O-groups are (0, )-groups for every
characteristic . This implies clearly that

[G, O, ] _-< [G, O] for eery group G, eery homomorphism-inariant property O,
and every characteristic .
We recall that 0 is strictly homomorphism-invariant, if 0 is homomorphism-

invarint and G/[G, O] is a O-group for every group G; see 3.
THEOnE 1. If 0 is strictly homomorphism-invariant, then the following

condition is necessary and sucient for the group G to be a (0, )-group"

(C) If M is a minimal normal subgroup of characteristic of the homomorphic
image H of [G, 0], then M <= Z(H).

Remarlc. The property of being the identity group we denote by 1. Then
condition (C) may be restated as follows"

(C’) [G, O] is a (1, )-group.

The property (1, ) is strictly homomorphism-invrint by Proposition 1.
But unless the characteristic is a prime, the property (1, ) is not going
to be subgroup-inherited. Still, it is not difficult to see that normal sub-
groups of (1, )-groups are likewise (1, )-groups; and on the basis of this
remark one sees without difficulty that conditions (C) and (C’) are equiva-
lent to

(C") G is an extension of a (1, )-group by a O-group.

Furthermore one verifies now quite easily that

[G, O, ,] JIG, 0], 1, ] for every group G.
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Proof. Assume first that G is a (0, )-group. To verify the necessity of
our condition (C), consider normal subgroups A and B of C [G, O] such that
A < B and B/A is a minimal normal subgroup of characteristic of C/A.
There exist normal subgroups N of G such that N n B =< A, for instance N 1
and among these there exists a maximal one, say U. Since U n B <_- A < B,
G/U 1; and consequently there exists a minimal normal subgroup V/U
of G/U. Because of the maximality of U we have V n B

_
A so

that A < A(V n B) _<- B. Since V n B is a normal subgroup of C and B/A
is a minimal normal subgroup of C/A, we have B A (V n B) B n AV
or B _< A V. Furthermore

VaA VA(UaB)= VAUnB Bn U(VaA)

(Bn V) n U(VaA)
so that

B/A A(V B)/A (V B)/(V A) (V B)/[(V B) U(V A)]

U(V n B)/U(V n A).

Next we note that C is a characteristic subgroup of G, that therefore V a C
is a normal subgroup of G and that

U <= U(VnA) < U(VnB) <- U(VnC) <- V.

Since V/U is a minimal normal subgroup of G/U, V/U is a direct product of
isomorphic simple groups, and the normal subgroups U(V n A)/U and
U(V n B)/U of the normal subgroup U(V n C)/U of V/U are direct factors
of V/U. Because of the isomorphy B/A

_
U(V n B)/U(V n A), it follows

now that V/U and B/A have the same characteristic . Denote by W/U
the centralizer of V/U in G/U. Then W is a normal subgroup of G, and G/W
is essentially the same as the group of automorphisms induced in V/U by
elements in G/U (or in G). But V/U is a minimal normal subgroup of char-
acteristic $ of the homomorphie image G/U of the (0, )-group G. Conse-
quently G/W is a O-group; and this implies [G, O] -< W. Hence
IV, C] -_< IV, W] _-< U. Since A and B are normal subgroups of C, and since
U n B _-< A, we find that

[B, C] [A(VnB), C] [A, C][VnB, C]

__< [A, C]([V, C] n [B, C]) _-< A(U n B) A

and that therefore B/A <__ Z(C/A) and this completes the proof of the neces-
sity of condition (C).
Assume conversely the validity of (C); and consider a minimal normal sub-

group M of the homomorphic image H of G such that is the characteristic
of M. Since [H, O] is by 3, Lemma 1 a homomorpbic image of [G, O], and
since condition (C) is preserved by epimorphisms, (C) is satisfied by [H, O].

Since M is a minimal normal subgroup of H and since [H, O] is a charac-
teristic subgroup of H, either M n [H, O] or M =< [H, 0]. In the former
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case we have certainly [M, [H, 0]] 1. In the latter case M is the direct
product of minimM normal subgroups M of [H, 0]. Since M is the direct
product of simple groups of type , each of the M has characteristic ..
Application of (C) shows that every M is part of the center of [H, 0]; and
consequently M itself is contained in the center of [H, 0]. Thus we have
shown [M, [H, 0]] 1 in both cases; and this implies that [H, 0] is part of the
centralizer M* of M in H. Consequently H/M* is a 0-group, since 0 is
strictly homomorphism-invariant. Hence a 0-group of automorphisms is in-
duced in M by the elements in H; and thus we have shown that G is a (0, )-
group.

COROLLARY 2. If 0 is strictly homomorphism-invariant, and if products of
normal O-subgroups are O-groups, then products of normal (0, )-subgroups are
(0, )-groups.

Proof. Assume that the group G is the product of two normal (0, )-
subgroups; and consider a minimal normal subgroup M of characteristic
of the homomorphic image H of G. By hypothesis H is the product of its
normal (0, )-subgroups A and B. The 0-commutator subgroups [A, O] and
[B, O] are normal subgroups of H, since they are characteristic subgroups of
normal subgroups of H. If firstly M n [A, 0] 1, then [A, O] is part of the
centralizer of M, since M and [A, O] are both normal subgroups of H. If
M n [A, 0] # 1, then M n [A, 0] M, since M is a minimal normal sub-
group of H. Hence M __< [A, 0]. The product of all the minimal normal
subgroups of [A, 0] which are contained in M is a normal subgroup of H,
since M and [A, 0] are normal subgroups of H. It follows that the minimal
normal subgroup M of H is a product of minimal normal subgroups of [A, 0].
Since M is of characteristic $, each minimal normal subgroup X of [A, 0]
which is part of M is likewise of characteristic . Application of Theorem 1,
(C) shows that each of these minimal normal subgroups X of [A, O] is part of
the center of [A, 0]. Hence M <= Z([A, 0]); and thus we have shown in
either case that [A, O] is part of the centralizer of M. Likewise we see that
[B, O] is part of the centralizer of M. Hence [A, 0][B, 0] is part of the cen-
tralizer of M. But HI[A, O][B, O] is the product of its normal subgroups
[B, O]A/[B, O][A, 0] and [A, O]B/[A, 0][B, 0] which are both 0-groups. By
hypothesis therefore HI[A, O][B, O] is a O-group; and this implies that H in-
duces a 0-group of automorphisms in M. Thus we see that G is a (0, ,)-
group; and our corollary follows by an obvious inductive argument.

COROLLARY 3. If the property 0 is strictly homomorphism-invariant and if
the characteristic is not a prime, then the following properties of the group G
are equivalent"

(i) G is a (0, )-group.

(ii) No minimal normal subgroup of a homomorphic image of [G, 0] has char-
acteristic .



CLASSES OF FINITE GROUPS AND THEIR PROPERTIES 145

(iii) If the homomorphic image H of G possesses one and only one minimal nor-
mal subgroup M, and if is the characteristic of M, then H is a O-group.

(iv) G/F[G] is a (O, )-group.

Here as always we denote by F(G) the Fitting subgroup of G. This is the
product of all nilpotent normal subgroups of G; and as such it is nilpotent
characteristic subgroup of G.

Proof. Since the characteristic is not a prime, groups of characteristic
are not abelian; and as such they cannot be subgroups of the center of any
other group. Now one verifies without difficulty that in our case the present
condition (ii) and the condition (C) of Theorem 1 are equivalent; and this
shows the equivalence of conditions (i) and (ii).

(i) implies (iv), since (0, ) is homoraorphism-invariant.--If (iv) is satis-
fied by G, and if the one and only one minimal normal subgroup M of the
homomorphic image H of G has characteristic , then F(H) 1, since M
is not nilpotent as is not a prime. Hence H is a homomorphic image of
the (0, $)-group G/F(G); and as such H is a (0, )-group. Since M is not
abelian, M is not part of its centralizer; and since M is part of every normal
subgroup, not 1, of H, the centralizer of M equals 1. Thus H is essentially
the same as the group of automorphisms, induced in M by elements in H;
and this group is a O-group, since H is a (0, )-group and is the character-
istic of M. Hence (iii) is a consequence of (iv).
Assume finally the validity of (iii); and consider a minimal normal sub-

group U of characteristic $ of the homomorphic image V of G. Among the
normal subgroups X of V, satisfying X n U 1, there exists a maximal one,
say W. Then U and WU/W are isomorphic groups; and one verifies without
difficulty that WU/W is a minimal normal subgroup of V/W, that the char-
acteristic of WU/W is , and that the groups of automorphisms, induced in
U and WU/W by elements in V, are essentially the same. But WU/W is,
because of the maximality of W, the one and only one minimal normal sub-
group of V/W. Thus, we may apply (iii) to see that V/W is a 0-group.
Hence 0-group of automorphisms is induced in WU/W and in U by ele-
ments in V. Consequently G is a (0, )-group. Thus (i) is a consequence
of (iii), completing the proof.
To obtain a better insight into the nature of (0, p)-groups for p a prime, we

shall investigate a certain subclass of this class. With this in mind we intro-
duce the following concept.

DEFINITION. The group G is p-separated, if every minimal normal subgroup
of every homomorphic image of G is either a p-group or of order prime to p.

This concept has been discussed first, under the name p-soluble, by Cuni-
chin. The change of name is motivated by our having used the word n-solu-
ble for designation of a different concept.

It is almost obvious that subgroups, homomorphic images, and direct prod-
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ucts of p-separated groups are p-separated.
homomorphism-invariant [3, Corollary 1].

This property is therefore strictly

PROPOSITION 2. The following properties of the group G are equivalent"

(i) The set of elements of order prime to p in G is a subgroup.

(ii) G is p-separated; and if the minimal normal subgroup M of the homomorphic
image H of G has characteristic p, then M <- Z(H).

(iii) If the order of the minimal normal subgroup M of the homomorphic image
H of G is a multiple of p, then M <-_ Z(H).

Remark O. The class of groups, characterized by Proposition 2, has often
been termed p-nilpotent. A result equivalent to ours may also be found in
an as yet unpublished investigation of B. Huppert.
Remark 1. If Pp is the set of all primes q p, then condition (i) just

requires Pp-closure of G. Note that the set of elements of order prime to p,
if it is a subgroup, is a characteristic subgroup of order prime to p.
Remark 2. The second part of (ii) is iust a restatement of condition (C)

of Theorem 1 in case p and O 1.

Proof. Assume first the validity of (i); and suppose that the order of the
minimal normal subgroup M of the homomorphic image H of G is a multiple
of p. Since G meets requirement (i), so does its homomorphic image H. The
totality T of elements of order prime to p in H is consequently a character-
istic subgroup of order prime to p. Since M contains elements of order p,
M :5 T; and M n T 1 is a consequence of the miniinality of M. Thus M
does not contain elements of order prime to p, except 1; and this implies that
M is a p-group. Furthermore [M, T] 1 so that T is part of the centralizer
of M in H. It follows that a p-group of automorphisms is induced in M by the
elements in H. But a p-group of automorphisms, operating on a p-group,
not 1, possesses fixed elements, not 1. Because of the minimality of M this
implies that every element in M is a fixed element of this group of auto-
morphisms, i.e. M <= Z(H). This shows that (ii) is a consequence of (i);
and it is almost obvious that (iii) is a consequence of (ii).
Assume finally the validity of condition (iii). Assume that N 1 is a

normal subgroup of G and that the set TIN of elements of order prime to p
in GIN is a characteristic subgroup of order prime to p. Because N 1
there exists] a normal subgroup K of G such that K < N and such that
M N/K is a minimal normal subgroup of H G/K. If firstly the order
of M is prime to p, then T/K is a group of order prime to p. If Kx is an
eleInent of order prime to p in H, then Nx is an element of order prime to p
so that Nx belongs to TIN and Kx to T/K. Hence T/K is the totality of
elements of order prime to p. If next the order of M is a multiple of p, then
M <-_ Z(H) by (iii). Application of 2, Lemma 1 shows that M is an ele-
mentary abelian p-group. Since TIN (T/K)/M is of order prime to p
and M is a p-group, ve may apply Schur’s Theorem; see Zassenhaus [1; p. 125,
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Satz 25]. Consequently there exists a complement R of M in T/K. Since
M <= Z(H), T/K is the direct product of M and R so that R is the totality of
elements of order prime to p in T/K. Hence R is the set of all elements of
order prime to p in H. Thus we have shown in either case that (i) is satisfied
by H; and an obvious inductive argument completes the proof of the fact
that (i) is a consequence of (iii).

PROPOSITION 3. The following properties of the group G (and the prime p)
are euivalent"
(i) G is p-separated.

(ii) G/F(G) is p-separated.

(iii) If the homomorphic image H of G possesses one and only one minimal nor-
mal subgroup M, and if the order of M is a multiple of p, then [H" S] is a power
of p for every maximal subgroup S of H whose core S 1.

Proof. The equivalence of (i) and (ii) is almost obvious. Likewise one
sees easily, using 2, Lemma 1, that (i) implies (iii). If the group G satisfies
(iii) without being p-separated, then there exists a homomorphic image H
of minimal order of G which is not p-separated. Then H possesses a mini-
mal normal subgroup M whose order is a multiple of p, though M is not a
p-group. Because of the minimality of H it is impossible that a normal sub-
group, not 1, of H does not contain M; and so M is the one and only one
minimal normal subgroup of H. Since the minimal normal subgroup M is
not a p-group, M is not part of (H); and consequently there exist maximal
subgroups of H which do not contain M. But these must all have core 1.
Application of (iii) and 2, Lemma 3 leads to a contradiction which proves
our result.

THEOREM 2. If 0 is strictly homomorphism-invariant, then the following
properties of the group G (and the prime p) are equivalent"

(i) G is a p-separated (0, p)-group.

(ii) G/[G, 0] is p-separated and the set of elements of order prime to p in [G, O]
is a subgroup.

(iii) If the homomorphic image H of G possesses one and only one minimal
normal subgroup M, and if the order of M is a multiple of p, then every maximal
subgroup S of H whose core S 1 is a O-group and its index [H" S] is a power
ofp.

(iv) G/(G) is a p-separated (0, p)-group.

Remark 3. The second part of (ii) states the Pp-closure of [G, 0]. If
0-groups happen to be p-separated, then condition (ii) may be stated more
simply as follows" [G, 0] is Pp-closed.

Proof. Assume firstly the validity of (i). Then G/[G, 0] and [G, 0] are
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both p-separated. If the order of the minimal normal subgroup U of the
homomorphic image V of [G, O] is a multiple of p, then U is a p-group, has
characteristic p. We apply Theorem 1, (C) to see that U <= Z(V). Thus
condition (iii) of Proposition 2 is satisfied by the group [G, 0]; and this implies
that the set of elements of order prime to p in [G, 0] is a subgroup. Hence
(i) implies (ii).
Assume next the validity of (ii). Then one sees without difficulty that G

is p-separated. To verify the validity of (iii) consider a homomorphic image
H of G which possesses one and only one minimal normal subgroup M; and
assume furthermore that the order of M is a multiple of p and that there exist
maximal subgroups of H whose core is 1. Since G is p-separated, H is p-sepa-
rated; and thus M is a p-group. Application of 2, Lemma 1 shows that M
is an elementary abelian p-group; and H MS, 1 M n S, HIM S for
every maximal subgroup S of H which does not contain M. The existence
of maximal subgroups of H whose core is 1 assures us of the existence of such
an S; and application of 2, Lemma 2 shows that M is its own centralizer.
This implies in particular that HIM is essentially the same as the group of
automorphisms, induced in M by elements in H.
By (ii), the set T of elements of order prime to p in [H, 0] is a subgroup.

Since T is of order prime to p, T n M 1. Since T is a characteristic sub-
group of a characteristic subgroup, T is a characteristic subgroup of H. Since
M is part of every normal subgroup, not 1, of H, it follows that T 1 and
that therefore [H, 0] is a p-group. If [H, 0] 1, so is Z([H, 0]); and the
center of a characteristic subgroup is likewise a characteristic subgroup so
that M =< Z([H, 0]) in this case. Hence [H, O] is part of the centralizer of M
which has been shown to be M itself; and thus we have shown in either case
that [H, O] =< M. But 0 is strictly homomorphism-invariant; and this im-
plies now that HIM is a O-group.

If S is a maximal subgroup of H and if S 1, then it follows from pre-
vious remarks that H SM, 1 S c, M, S HIM. Hence S is a O-group
and the index [H:S] is the order of M, a power of p. Thus we have shown
that (iii) is a consequence of (ii).
Assume now by way of contradiction that (iii) does not imply (i). Then

there exists a group G of minimal order with the following properties:

(1) G is not a p-separated (0, p)-group.

(2) G meets requirement (iii).

It is an immediate consequence of (2) and Proposition 3 that

(3) G is p-separated;

and this shows in combination with (1) that

(1’) G is not a (0, p)-group.
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Every homomorphic image of G meets requirement (iii). Hence it follows
from the minimality of G that

(4) every proper homomorphic image of G is a (0, p)-group.

The property (0, p) is strictly homomorphism-invariant by Proposition 1.
Application of (4), (1), and 3, Proposition 2 shows therefore that

(5) there exists one and only one minimal normal subgroup M of G.

Next note that every proper homomorphic image of G is a (0, p)-group,
that G itself is not a (0, p)-group, and that M is the one and only one minimal
normal subgroup of G. It follows that

(6) M is a p-group and G does not induce a 0-group of automorphisms inM

Recall that (0, p) is strictly homomorphism-invariant [Proposition 1].
Thus [G, 0, p] 1, since G is not a (0, p)-group. Combine this with (5) and
an inequality verified before to see that

(7) M -<_ [G, O, p]-<_ [G, 0].

Assume by way of contradiction that [G, 0] is a p-group. Since the center
of a characteristic subgroup is a characteristic subgroup, since [G, 0] is, by (7)
a p-group, not 1, and since therefore its center is different from 1, it follows
from (5) that M <= Z([G, 0]). Then [G, 0] is part of the centralizer M* of
M in G. Since 0 is strictly homomorphism-invariant, G/M* is a 0-group so
that G induces in M a 0-group of automorphisms, contradicting (6). Thus
we have shown that

(8) [G, O] is not a p-group.

It is a consequence of (7) that [G/M, 0] [G, 0J/M; and this group is not
a p-group by (6) and (8). We note the fact, already verified, that every
p-separated (0, p)-group has property (ii). By (3) and (4), G/M is a p-sepa-
rated (0, p)-group. The set TIM of elements of order prime to p in [G/M, 0]
is consequently a characteristic subgroup of order prime to p; and T/M 1
is a consequence of (8). Application of (5) and 1, Lemma 3 shows now that

(9) O(G) 1.

Consequently there exists a maximal subgroup S of G which does not con-
tain M. Application of 2, Lemma 1 shows that G MS, 1 M n S,
S G/M, since M is, by (6), a p-group. Since M is, by (5), contained in
every normal subgroup, not 1, of G, and since M is not part of S, the core of
S is So 1. Because of (2), (5), and (6) we may apply (iii) on S. Hence
S is a O-group so that G/M is likewise a 3-group. Consequently M [G, @]
by (7) so that (6) and (8) contradict each other. Thus we have arrived at a
contradiction which completes the proof of the equivalence of the first three
conditions.
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That (iv) and (i) are equivalent, is easily derived from the equivalence of
conditions (i) and (iii), Q.E.D.

DEFLNITION. The group theoretical property A is subgroup-inherited, if
subgroups of A-groups are always A-groups.

Though the properties of interest to us will usually be subgroup-inherited,
there are important examples of properties which are not subgroup-inherited,
for instance, simplicity.

COROLLARY 4. If 0 is strictly homomorphism-invariant and subgroup-
inherited, then the p-separated (0, p)-groups form a subgroup-inherited class.

Remart 4. The property 0 is, by 3, Corollary 1, strictly homomorphism-
invariant and subgroup-inherited if, and only if, subgroups, homomorphic
images, and direct products of 0-groups are O-groups.

Proof. Assume that S is a subgroup of the p-separated (0, p)-group G.
One verifies without difficulty that S is p-separated. Next we note the iso-
morphy S/(S n [G, 0]) --- [G, O]S/[G, 0]. The latter group is a O-group,
since G/[G, O] is a O-group (as 0 is strictly homomorphism-invariant) and
since subgroups of 0-groups are supposed to be 0-groups. It follows that
[, o] -< [G, o].
The set T of elements of order prime to p in [G, 0] is a subgroup, since 0

is strictly homomorphism-invariant and G is a p-separated (0, p)-group
[Theorem 2]. The set T n [S, 0] of elements of order prime to p in [S, 0] is
therefore a subgroup too. Hence condition (ii) of Theorem 2 is satisfied by
S so that S is a p-separated (0, p)-group, as we wanted to show.
The following result will prove useful in applications.

COROLLARY 5. If 0 is strictly homomorphism-invariant, and if N is a normal
p-subgroup of the p-separated group G whose centralizer in G is a p-group, then
the following properlies are equivalent:

(i) G is a (0, p)-group.

(ii) [G, 0] is a p-group.

(iii) [GIN, 0] is a p-group.

Proof. If the p-separated group G is a (0, p)-group, then the set T of ele-
ments of order prime to p in [G, O] is a characteristic subgroup of G whose
order is prime to p [Theorem 2]. Since N is a p-group, N n T 1 so that
T is part of the centralizer of N in G. But the centralizer of N is a p-group
so that T 1. Hence [G, O] is a p-group, proving that (ii) is a consequence
of (i).
By 3, Lemma 1, [G/N, 0] N[G, O]/N --- [G, O]/(N [G, 0]). This shows

the equivalence of (ii) and (iii), since N is a p-group.
That finally (ii) implies (i), is an immediate consequence of Theorem 2.
If we denote by 2(p) the property that the set of elements of order prime
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to p be a subgroup (= Pp-closure), then one derives from Theorem 2 with-
out difficulty that

[G, O, p] JIG, 0], 2:(p)] for every p-separated group G,

since [G, 0, p] =< [G, O] has been shown to be true for every group G.

7. Extension and Iocalisation

If zX is a group theoretical property and n an integer, then we formulate
the following extension property of

(E.n) IfN is a normal subgroup of the group G, and if GIN and N, xl

for every n-tuplet of elements xi in G are A-groups, then G is a A-group.

The condition that GIN be a A-group is necessary whenever A is homor-
phism-invariant; and the condition that every {N, xl, x, be a A-group
is necessary whenever A is subgroup-inherited.

Extensions of soluble groups by soluble groups are soluble; and so solu-
bility meets requirement (E.0). It is a consequence of 4, Proposition 1 that
Z-closure meets requirement (E.1); and it is quite easy to construct examples
showing that Z-closure does not satisfy (E.0), except if 2: is vacuous or the
set of all primes. In 11 it will be shown that supersolubility meets require-
meat (E.2), but not (E.1). Moreover to every positive integer n there exists
a property satisfying (E.n 1), but not (E.n).

PROPOSITION 1. Assume that the group theoretical property A is homomor-
phism-invariant and meets requirement (E.n). Then every subgroup of the
group G is a A-group, if (and only if)

(a) there exists a soluble normal subgroup N of G such that every subgroup of
GIN is a A-group and

(b) every (n - 1)-tuplet of elements in G gererates a A-subgroup of G.

Proof. If our proposition were false, then there would exist a group G of
minimal order with the following properties"

(1) Not every subgroup of G is a A-group.

(2) Conditions (a) nd (b) are stisficd by G.

As in (a) we shall denote by N a soluble normal subgroup of G such that
every subgroup of GIN is a A-group. If S is a subgroup of G, then N n S is a
soluble normal subgroup of S; and S/(S n N) is isomorphic to the subgroup
NS/N of GIN. Thus (a) and (b) are satisfied by S too. If next
homomorphism of G onto a group H, then N is a soluble normal subgroup of
G H; and H/N is a homomorphic image of GIN. Since A is homomor-
phism-invariant, one sees that (a) and (b) are satisfied by H too. Because
of the minimality of G it follows now that
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(3) every subgroup of every proper subgroup of G and every subgroup of
every proper homomorphic image of G is a A-group.

By (3) every proper subgroup of G is a A-group. By (1) therefore

(4) G is not a A-group.

Since every subgroup of GIN is a A-group, (4) implies N 1. Conse-
quently there exists a minimal normal subgroup M of G which is part of N.
Then M is soluble; and application of 2, Lemma 1 shows that

(5) M is an elementary abelian p-group.

Assume by way of contradiction that G/M is generated by n elements.
Then there exists a subgroup S of G whicb is generated by n elements such
that G MS. If 1 is an element in M, then the minimal normal sub-
group M {ta} {tMs} {ts}, since M is abelian. Consequently
G=MS= {ts}S {t, S} so that G is generated by n-kl elements. By
(b), G is a A-group, contradicting (4). Hence

(6) G/M is not generated by n elements.

By (3), G/M is a A-group. If xl, x, are elements in G, then, by (6),
M, xl,..., x} < G. By (3), {M, x,..., x} is therefore a A-group.
We apply the extension property (E.n) to show that G itself is a A-group,
contradicting (4). Thus we have arrived at a contradiction which proves
the validity of our proposition.

Remartc 1. Solubility meets requirement (E.0). On the other hand every
cyclic subgroup of every group is soluble. Thus it is impossible to omit
condition (a). The indispensability of (b) need hardly be mentioned.
Remart 2. It is a famous conjecture of Burnside that every simple group

may be generated by two elements. If this conjecture were true, then a
group would be soluble if each pair of elements generates a soluble subgroup.
Thus the truth of Burnside’s conjecture would imply that condition (a) is a
consequence of condition (b) whenever 0 < n and A-groups are soluble.

Condition (b) is just the special case j n -t- 1 of the following localisation
property:

(Ix.j) The group G is a A-group, if every j-tuplet of elements in G generates a
A-subgroup of G.

One verifies easily that A is subgroup-inherited and meets requirement
(L.j) if, and only if, A meets the following slightly stricter requirement:

(L’.j) The group G is a A-group if, and only if, every j-tuplet of elements in
G generates a A-subgroup of G.

The class of Z-groups, for 2: a set of primes, meets requirement (L.1); the
classes of abelian and Z-closed groups meet requirement (L.2), but not (L.1);
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and supersolubility is an example of a property meeting requirement (L.3),
but not (L.2); see 11. Moreover to every positive integer n there exists a
property satisfying (L.n-t-1), but not (L.n).

If A is subgroup-inherited, then (L.n) clearly implies (E.n); and Proposi-
tion 1 is a weak form of a criterion asserting that (E.n) implies (L.n A- 1).

PROPOSITION 2. If the strictly homomorphism-invariant and subgroup-in-
herited property 0 meets requirement (L.n), and if the characteristic is
not a prime, then (E.n) is satisfied by (0, ).

Proof. If this were false, then there would exist a group G of minimal order
with the following two properties:

(1) G is not a (0, )-group.

(2) There exists a normal subgroup N of G such that GIN and every subgroup
[N, xl, xl of G is a (0, )-group.

Since (0, ) is homomorphism-invariant, every homomorphic image of G
meets requirement (2). Because of the minimality of G it follows that

(3) every proper homorphic image of G is a (0, )-group.

Because of (1) and (3) we may apply 6, Proposition 1 and 3, Proposition
2 to show that

(4) there exists one and only one minimal normal subgroup M of G.

Combining (1) and (2) we see that N 1. Applying (1), (3), and (4), it
tollows that

(5) M [G, 0, $] =< N.

A combination of (1), (3), and (4) shows next that

(6) the characteristic of M is . and the group of automorphisms, induced in
M by elements in G, is not a O-group.

Since is not a prime, M is, by (6), not abelian. Hence M is not contained
in its centralizer in G; and this iInplies, by (4), that the centralizer of M in G

1, since centralizers of normal subgroups are normal subgroups. Conse-
quently G is essentially the same as the group of automorphisms, induced in
M by elements in G. By (6), G is consequently not a O-group. Thus we
have shown that

(7) the centralizer of M in G is 1 and G is not a O-group.

Suppose now that the subgroup S of G is generated by n elements. Appli-
cation of (2) shows that NS is a (0, )-group. Since M is part of NS, and
since [NS, O] is a characteristic subgroup of NS, M n [NS, O] is a normal
subgroup of NS and of M. Since the characteristic of M is , M and its
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normal subgroups are direct products of simple groups of type o. Thus
M r INS, 0] 1 would imply the existence of a minimal normal subgroup of
characteristic . of [NS, 0]. Thus condition (ii) of 6, Corollary 3 would not
be satisfied by NS so that NS would not be a (0, )-group, contradicting (2).
Hence M r [NS, O] 1. Since M and [NS, O] are normal subgroups of NS,
[NS, O] is part of the centralizer of M. By (7), [NS, 0] 1 so that NS is a
O-group. Since 0 is subgroup-inherited, S is a 0-group. Thus every n-tuplet
of elements in G generates a O-subgroup of G. Since (L.n) is satisfied by 0, G
is a 0-group, contradicting (7). Consequently we have arrived at the desired
contradiction which proves our proposition.

LEMMA l. If the strictly homomorphism-invariant and subgroup-inherited
property 0 meets requirement (L.n), then

[G, O] II[S[G, 0], 0] for every group G

where the product ranges over all subgroups S of G which are generated by n
elements.

Proof. If S is a subgroup of G, then [G, O]S/[G, O] is a 0-group as a sub-
group of the O-group G/[G, 0]. Consequently [S[G, 0], O] =< [(7, 0]. Since
IS[G, 0], O] is a characteristic sugroup of S[G, 0], it follows now that IS[G, 0], 0]
is a normal subgroup of [G, O] for every subgroup S of G. Consequently we
may form the product

w II [sta, o], o]

where S ranges over all the subgroups S of G which are generated by n ele-
ments; and it is clear that W is a normal subgroup of [G, 0]. If is an auto-
morphism of G, then [S[G, O], 0] [S*[G, O], O] for every subgroup S of G,
since [G, 0] is a characteristic subgroup of G; and now it is clear that W is a
characteristic subgroup of G.

If the subgroup U of G/W is generated by n elements, then there exists a
subgroup S of G which is generated by n elements such that U WS/W.
Since

[ziG, o], o] =< w =< ws __< [a,

U WS/W is a homomorphic image of a subgroup of the O-group
S[G, O]/[S[G, 0], 0]. Hence U itself is O-group. Thus every n-tuplet of
elements in G/W generates a O-subgroup of G/W. Application of (L.n)
shows that G/W is a O-group. Hence [G, 0] _-< W and consequently
[G, 0] W, Q.E.D.
Remartc 3. It is worth recalling that each of the IS[G, 0], 0] is a normal

subgroup of [(7, 0].

CouoL,AuY 1. Assume that the strictly homomorphism-invariant and
subgroup-inherited property 0 meets requirement (L.n) and that G is p-separated.
Then
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() G is a (0, p)-group if, and only if, S[G, O] is a (0, p)-group whenever the
subgroup S of G is generated by n elements; and

(b) [G, O] is a p-group if, and only if, [S[G, 0], O] is a p-group whenever the
subgroup S of G is generated by n elements.

Remark 4. It is an immediate consequence of 6, Theorem 2 that G is a
(0, p)-group in case [G, 0] is a p-group.

Proof. It is a consequence of 6, Corollary 4 that subgroups of p-separated
(0, p)-groups are p-separated (O, p)-groups.

If G is a (0, p)-group, then all its subgroups are (0, p)-groups, proving the
necessity of the condition given under (a). If conversely S[G, 0] is a (0, p)-
group whenever S is generated by n elements in G, then the elements of order
prime to p in IS[G, 0], 0] form a subgroup of order prime to p [6, Theorem 2].
The same is true then of the product of all these subgroups [S[G, 0], 0]; and
this product is, by Lemma 1, just [G, 0]. By 6, Theorem 2 therefore, G
is a (0, p)-group.
That (b) is a consequence of Lemma 1, is almost obvious.

PROPOSITION 3. If 0 is strictly homomorphism-invariant and subgroup-in-
herited, then the following two properties (of 0 and the prime p) are equivalent:

(a) (E.n) is satisfied by the class of p-separated (0, p)-groups.

(b) If G is a p-separated (0, p)-group, and if [S, O] is a p-group whenever the
subgroup S of G is generated by n elements, then [G, O] is a p-group.

Proof. Assume first the validity of (a); and consider a p-separated (0, p)-
group G such that [S, 0] is a p-group whenever the subgroup S of G is gener-
ated by n elements. It is easy to construct elementary abelian p-groups pos-
sessing a group of automorphisms isomorphic to G; and consequently there
exists an extension E of an elementary abelian p-group A such that A is its
own centralizer in E and E/A

___
G. In particular therefore E/A is a p-sepa-

rated (0, p)-group; and this implies that E and all its subgroups are p-separated.
Consider now a subgroup S of E which contains A and which is generated
modulo A by n elements. This is equivalent to saying that the subgroup S/A
of E/A is generated by n elements. Since E/A

_
G, this implies that [S/A, 0]

is a p-group. Since A is its own centralizer in the p-separated group S and A
is a p-group, we may apply 6, Corollary 5 to show that S is a p-separated
(0, p)-group. Hence we may apply (E.n) on E to show that E is a p-sepa-
rated (0, p)-group. Since the normal p-subgroup A of E equals its own cen-
tralizer in E, we may apply 6, Corollary 5 again to show that [E/A, 0] is a
p-group. But E/A G so that [G, 0] is a p-group; and thus we have shown
that (b) is a consequence of (a).
Assume next the validity of (b). If it were not true that then (E.n) is

satisfied by the class of p-separated (0, p)-groups, then there would exist a
group G of minimal order with the following two properties"
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(1) G is not a p-separated (0, p)-group.

(2) There exists a normal subgroup N of G such that GIN and {N, Xl, x
for x in G is a p-separated (0, p)-group.

It is a consequence of (2) that N and GIN are p-separated. Since exten-
sions of p-separated groups by p-separated groups are p-separated,

(3) G is p-separated;

and this implies in combination with (1) that

(1’) G is not a (0, p)-group.

It is clear that every homomorphic image of G satisfies condition (2) too;
and thus it follows from the minimality of G and (1’) that

(4) every proper homomorphic image of G is a (p-separated) (0, p)-group.

Because of (1) and (4) we may apply 6, Proposition 1 and 3, Proposition
2 to show that

(5) there exists one and only one minimal normal subgroup M of G.

Combining (1) and (2) we see that N 1. Applying (1’), (4), and (5),
it follows that

(6) M [G, 0, p]-< N;

and a combination of (1’), (4), and (5) shows next that

(7) the characteristic of M is p and the group of automorphisms, induced in
M by elements in G, is not a O-group.

q(G) 1 would imply (by (4)) that G/(G) is a (0, p)-group; and this
would imply, by 6, Theorem 2, that the p-separated group G is a (0, p)-
group. This contradicts (1’). Hence

(8) (G)= 1.

Consequently here exists a maximal subgroup U of (7 which does no
contain M. This implies U 1, since M is, by (5), the one and only one
minimal normal subgroup of G. We deduce from 2, Lemma 1 and (7) tha
M is an elementary abelian p-group; and thus it, follows from 2, Lemma 2 th

(9) M is is own centralizer in G.

Suppose now that the subgroup /M of G/M is generated by elements.
Then the subgroup N/N of G/N is generated by n elements, since M _-< N.
We apply (2) o see that N is a p-separated (0, p)-group. Since 0 is strictly
homomorphism-invariant and subgroup-inherited, the same is true of the
property of being a p-separated (0, p)-group [6, Corollary 4]. hus the
subgroup S of N is a p-separated (0, p-group. By (9), M is its own ten-
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tralizer in S; and clearly M is a normal p-subgroup of S; see (7). Hence we
may apply 6, Corollary 5 to see that IS/M, @] is a p-group. Thus we have
shown that G/M is a p-separated (0, p)-group (by (4)) and [U, O] is a p-group
whenever the subgroup U of G/M is generated by n elements. We apply
condition (b) to show that

(10) [G/M, 0] is a p-group.

Since M is a normal p-subgroup of the p-separated group G, and since M
is its own centralizer in G, we may apply 6, Corollary 5; and it follows be-
cause of (10) that G is a p-separated (0, p)-group, contradicting (1). This
contradiction shows that (a) is a consequence of (b), as we wanted to prove.

8. Soluble groups with nilpotent o-commutator group
Combination of the various elementary properties discussed in the pre-

ceding sections leads to new properties of groups. Combining the properties
of the elementary classes of groups we obtain properties of the more complex
ones; and these combinations lead to sharper results than might be expected
offhand. The classes of groups to be discussed in the present section, though
still of considerable generality, provide a quite striking example for the
applicability of this principle.

THEOREM 1. Assume that 0 is strictly homomorphism-invariant.

(a) The group G is a (0, )-group for every characteristic if, and only if,
[G, 0] is nilpoteut.

(b) Nilpotency of [G, 0] is a strictly homomorphism-invariant property.

The proof of (a) is easily derived from 6, Theorem 1, if one remembers only
the characteristic property of nilpotency" The group N is nilpotent if, and
only if, every minimal normal subgroup of every homomorphic image of N
is contained in the center. (b) is readily deduced from (a), since, by 6, Prop-
osition 1, every property (0, ) is strictly homomorphism-invariant.

It might be well to remember that a group G is, by definition, a (0, )-group
for every characteristic if, and only if, every homomorphic image of G
induces in each of its minimal normal subgroups a 0-group of automorphisms.

THEOREM 2. If 0 is strictly homomorphism-invariant, then the following
properties of the group G are equivalent:

(i) [G, 0] is nilpotent and G/[G, 0] is soluble.

(ii) G is, for every prime p, a p-separable (0, p)-group.

(iii) If the homomorphic image H of G possesses one and only one minimal normal
subgroup, then every maximal subgroup S of H with core S, 1 is a O-group;
and there exists a prime p such that [H :S] is a multiple ofp whenever S is a max-
imal subgroup of H whose core SH 1.
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(iv) If S is a maximal subgroup of G, then S/So is a O-group; and maximal
subgroups with equal core are conjugate in G.

(v) [G/(G), O] is nilpotent and G/(G) is soluble.

Remark 1. If we recall that the Fitting subgroup F(G) of G is nilpotent and
contains every nilpotent normal subgroup of G, then we may restate (i) in
the following more striking form.

(i’) G/F(G) is a soluble O-group.

Remark 2. If we assume that every 0-group is soluble, then we may omit
the solubility requirements from (i), (i’), and (v). Similarly the second half
of condition (iv) may be dropped if we make the blanket hypothesis that G
be soluble.

Proof. Since groups are soluble if, and only if, they are p-separable for every
prime p, and since extensions of soluble groups by soluble groups are soluble,
the equivalence of (i) and (ii) is a consequence of Theorem 1, (a).
Assume next the validity of the equivalent conditions (i) and (ii); and

consider a homomorphic image H of G possessing maximal subgroups with
core 1. Then H is soluble and its minimal normal subgroups are abelian [2,
Lemma 1]. Consequently H possesses one and only one minimal normal
subgroup [2, Corollary 2, (c)]. We apply 6, Theorem 2, (iii) to show that
the maximal subgroups of H with core 1 are O-groups. Hence S/So is a 0-
group for every maximal subgroup S of G. That maximal subgroups of a
soluble group are conjugate, if their cores are equal, is a consequence of
5, Corollary 1; and thus we have shown that (iv) is implied by the equivalent
conditions (i) and (ii).

It is fairly obvious that (iv) implies (iii); and that (iii) implies (ii), may be
deduced from 2, Lemma 3 and 6, Theorem 2. The equivalence of (i) and
(iv) implies finally the equivalence of (i) and (v).

COROLLARY 1. If 0 is strictly homomorphism-invariant, and if O-groups are

nilpotent, then the following properties of the group G are equivalent:

(i) [G, O] is nilpotent.

(ii) Every homomorphic image of G induces in each of its minimal normal
subgroups a O-group of automorphisms.

(iii) S/So is a O-group for every maximal subgroup S of G.

(iv) [G/(G), O] is nilpotent.

Proof. Since G/[G, O] is a O-group and consequently nilpotent, our present
condition (i) is equivalent to condition (i) of Theorem 2.

Consider next a minimal normal subgroup M of the homomorphic image
H of G. If H induces in M a O-group of automorphisms, then H induces in
M a nilpotent group of automorphisms. Thus in particular the group of
inner automorphisms of M is nilpotent so that the minimal normal subgroup
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M of H is nilpotent. Application of 2, Lemma 1 shows that M is an ele-
mentary abelian p-group. Now one sees without difficulty the equivalence
of our present condition (ii) to condition (ii) of Theorem 2.

It is clear that condition (iv) of Theorem 2 implies our present condition
(iii). If conversely our present condition (iii) is satisfied by G, then S/So
is nilpotent for every maximal subgroup S of G. Application of 2, Lemma 5
shows the solubility of G/So for every maximal subgroup S of G. We apply
2, Lemma 4, (b) to show that maximal subgroups of equal core are conjugate
in G. Consequently our present condition (iii) is equivalent to condition
(iv) of Theorem 2.
On the basis of the preceding remarks the equivalence of conditions (i),

(ii), and (iii) is an immediate consequence of Theorem 2; and the equivalence
of (i) and (iii) implies the equivalence of (i) and (iv).
To obtain a rather striking application of this result, we need the following

simple

IEMMA 1. If an abelian group of automorphisms is induced by the elements
of the group G in the minimal normal subgroup M of G, then M is an elementary
abelian p-group, for p a prime, and the induced group of automorphisms is
cyclic of order prime to p.

Remark. This result and its proof may also be found in Huppert [1]. We
include them here for the reader’s convenience.

Proof. The centralizer M* of M in G is a normal subgroup of G, and G/M*
is essentially the same as the group of automorphisms of M which are induced
in M by elements in G. By hypothesis, G/M* is abelian. If M were not
abelian, then M M* so that M n M* 1 because of the minimality of M.
But then M --- M*M/M* would be abelian; and this would imply M <-_ M*.
This contradiction shows that M is abelian and that M is part of M*. Ap-
plication of 2, Lemma 1 shows that Mp 1 for some prime p.
The automorphisms induced in the abelian group M by elements in G span

a ring E of endomorphisms of M. Since the group of automorphisms, in-
duced by G, is abelian, the ring E is commutative. Since M is a minimal
normal subgroup of G, there do not exist E-admissible subgroups of M, except
1 and M. Thus we may apply Schur’s Lemma on the commutative ring E
and find that E is a finite field. The characteristic of E is p, since M is an
elementary abelian p-group. Thus the multiplicative group of E is a cyclic
group of order prime to p. Since the group of automorphisms, induced in
M by G, is a subgroup of the multiplicative group of E, the group of auto-
morphisms is likewise a cyclic group of order prime to p.

COROLLARY 2. The following properties of the group G are equivalent"

(i) G’ is nilpotent.

(ii) Every homomorphic image of G induces in each of its minimal normal sub-
groups a cyclic group of automorphisms.
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(iii) If S is a maximal subgroup of G, then S/So is cyclic.

(iv) If S is a maximal subgroup of G, then S/So is abelian.

(v) (G/(G))’ is nilpotent.

Proof. Denote by I the class of abelian groups. Then [G, [] G’. The
equivalence of conditions (i), (iv), and (v) is therefore an immediate conse-
quence of Corollary 1.

If [G, I] G’ is nilpotent, then, by Corollary 1, (ii), an abelian group of
automorphisms is induced by every homomorphic image of G in each of its
minimal normal subgroups; and an immediate application of Lemma 1 shows
that these groups of automorphisms are cyclic. Thus (ii) is a consequence
of (i).
Assume next the validity of (ii); and consider a maximal subgroup S of G.

There exists a miniraal normal subgroup M of G/So; and G/So induces in
M a cyclic group of automorphisms, by (ii). The group of inner automor-
phisms of M is therefore cyclic too; and this implies the commutativity of M.
Since M is not part of S/So, the maximal subgroup S/So of G/So is a com-
plement of the abelian miniraal normal subgroup M [2, Lemraa 1]; and since
the core of S/So is 1, M is its own centralizer [2, Lemma 2]. Thus S/So,
(G/So)/M, aad the cyclic group of autoraorphisms, iaduced ia M by G/So,
are isomorphic groups; and this shows that (iii) is a consequence of (ii).
Since (iv) is a consequence of (iii), and (i), (iv), (v) are equivalent, we have
completed the proof of the equivalence of properties (i) to (v).
Remark 3. If A and B are normal subgroups of the group G, then AB and

its commutator subgroup are normal subgroups of G too. We note next that
(AB) A [A, B]B’. The commutator subgroup of AB is consequently
nilpotent if, and only if, A, B, and [A, B] are nilpotent. It is clear now that
products of normal subgroups with nilpotent commutator subgroup need
not have nilpotent commutator subgroups; and it is not difficult to construct
examples substantiating this remark; see 11, Examples 1, 2. The above
remark makes it clear, however, that the commutator subgroup of AB is
nilpotent in case A and B’ are nilpotent; and this shows in particular that the
Fitting subgroup F(G) is contained in every normal subgroup of G which is
maximal with respect to the property of having a nilpotent commutator sub-
group. If we denote by P(G) the product of all normal subgroups of G whose
commutator subgroup is nilpotent, then F(G) <= P(G) and P(G)/F(G) is
the product of all abelian normal subgroups of G/F(G). If we denote by
J(G) the intersection of all normal subgroups of G which are maximal with
respect to the property of having a nilpotent commutator subgroup, then
F(G) <-_ J(G) and J(G)/F(G) Z[P(G]/F(G)], since the center of a product
of abelian normal subgroups is exactly the intersection of its maximal abelian
normal subgroups.

If the property 0 is strictly homomorphism-invariant and subgroup-in-
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herited, then the class of soluble groups with nilpotent 0-commutator sub-
group is likewise strictly homomorphism-invariant [Theorem 1,(b)] and
subgroup-inherited [6, Corollary 4].

THEOREM 3. If 0 is strictly homomorphism-invariant and subgroup-inherited,
then the following properties of 0 are equivalent"

(i) (E.n) is satisfied by the class of soluble groups with nilpotent O-commutator
subgroup.

(ii) If G is soluble, [G, 0] nilpotent, and every n-tuplet of elements in G generates
a O-subgroup of G, then G is a O-group.

(iii) If G is soluble and every n-tuplet of elements in G generates a O-subgroup
of G, then G is a O-group.

Proof. Assume first the validity of (i) and consider a soluble group G
whose 0-commutator subgroup [G, 0] is nilpotent and whose n-tuplets gen-
erate 0-subgroups. If p is a prime, then one constructs easily (and in many
ways) a group E possessing a normal subgroup P with the following proper-
ties"

P is an elementary abelian p-group;

P is its own centralizer in E;

E/P G.

It is clear that E is soluble, since P and G are soluble. If the subgroup SIP
of E/P is generated by n elements, then SIP is a 0-group, since n-tuplets of
elements in G E/P generate 0-subgroups. Hence [S, 0] -<_ P so that
[S, 0] is abelian and consequently nilpotent. Thus we have shown that E/P
and P, xl, x for xi in E are soluble groups with nilpotent 0-commuta-
tor subgroup. But the class of soluble groups with nilpotent 0-commutator
subgroup meets requirement (E.n) by (i); and this implies that [E, 0] is nil-
potent. The elements of order prime to p in [E, 0] form consequently a
characteristic subgroup of E; and this implies that they belong to the central-
izer of the normal p-subgroup P of E. But P is its own centralizer in E; and
thus it follows that [E, 0] is a p-group. But then PIE, O]/P is a p-group too.
This group is, by 3, Lemma 1, identical with [E/P, 0]; and now it follows
that [G, O] is a p-group. But the only group which is a p-group for every prime
p is the identity. Hence [G, 0] 1 so that G is a 0-group, since 0 is strictly
homomorphism-invariant. Hence (ii) is a consequence of (i).
Assume next the validity of (ii); and consider a soluble group G whose

n-tuplets generate 0-subgroups. Assume by way of contradiction that
[G, O] 1. Since G is soluble, so is [G, 0]; and this implies that
[G, 0]’ < [G, 0]. The commutator subgroup of the 0-commutator subgroup
is a characteristic subgroup; and thus we may form H G/[G, 0]’. Then



162 REINHOLD BAER

every n-tuplet of elements in H generates a 0-subgroup, since 0 is homo-
morphism-invariant; and H is soluble, since G is soluble. By 3, Lemma 1,
we have [H, O] [G, O]/[G, 0]’ so that [H, 0] is an abelian group, not 1. We
apply condition (ii) to see that H is a O-group; and this implies that [H, O] 1,
a contradiction. Thus [G, O] 1 so that G is a 0-group, since 0 is strictly
homomorphism-invariant. Hence (iii) is a consequence of (ii).
Assume now the validity of (iii). If (i) were not a consequence of (iii),

then there would exist a group G of minimal order with the following
properties"

(1) G is not a soluble group with nilpotent O-commutator subgroup.

(2) There exists a normal subgroup N of G such that GIN and N, xl, xn
for x in G are soluble groups with nilpotent 0-commutator subgroups.

This implies in particular that N and GIN are soluble; and thus it follows
that

(3) G is soluble, whereas [G, 0] is not nilpotent.

It is clear that every homomorphic image of G has property (2). This
implies, because of the minimality of G, that

(4) the O-commutator subgroup of every proper homomorphic image of G is
nilpotent.

Since the class of soluble groups with nilpotent 0-commutator subgroup is
strictly homomorphism-invariant, application of 3, Proposition 2 shows that

(5) there exists one and only one minimal normal subgroup M of G.

By (2) and (3) both N and [G, 0] are different from 1. By (5), consequently

(6) M [G,O]nN.

If (G) were not 1, then G/(G) would be a soluble group with nilpotent
O-commutator subgroup (by (3) and (4)). By Theorem 2, (v), G itself would
be a soluble group with nilpotent 0-commutator subgroup, contradicting (1).
Hence

(7) (G) 1.

Since M is a soluble minimal normal subgroup of G, and since (G) 1,
application of (5) and 2, Lemmas 1 and 2 shows that

(8) M is an elementary abelian p-group, for p a prime; there exist maximal
subgroups of G whose core is 1 and which are complements of M in G; M is
its own centralizer in G.

Thus G/M is essentially the same as the group of automorphisms induced
in M by elements in G. If this group were a 0-group, then a combination of
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(4), (5), and Theorem 2 would show that G is a soluble group with nilpotent
O-commutator subgroup, contradicting (1). Hence

(9) G/M is not a O-group.

Assume now that the subgroup S/M of G/M is generated by n elements.
Since M =< N, by (6), NS is, by (2), a soluble group with nilpotent 0-commu-
tator subgroup. Since the class of soluble groups with nilpotent 0-commu-
tator subgroup is subgroup-inherited, [S, 0] is nilpotent. The elements of
order prime to p in [S, O] form therefore a characteristic subgroup T of S
whose order is prime to p. Since M is a normal p-subgroup of S, and since
M n T 1, T is part of the centralizer of M which is, by (8), equal to M.
Hence T 1; and we have shown that [S, 0] is a p-group. Since S/M is
a subgroup of G/M, and since 0 is subgroup-inherited and strictly homo-
morphism-invariant, [S/M, O] -< [G/M, 0]. By 3, Lemma 1,
IS/M, 0] M[S, O]/M is a p-group. By (4), [G/M, 0] is nilpotent so that
the set of p-elements in [G/M, 0] is a characteristic p-subgroup W/M of
G/M. SinceMisap-group, soisW. HenceMnZ(W) 1. ButZ(W)
is a normal subgroup of G as a characteristic subgroup of W. Consequently
M <-_ Z(W) so that W is part of the centralizer of M. This implies M W
by (8). Since the p-subgroup [S/M, O] of [G/M, O] is a subgroup of
W/M 1, we have shown that [S/M, O] 1 and that therefore S/M is a
O-group. Hence every n-tuplet of elements in the soluble group G/M gen-
erates a O-subgroup; and this implies, by (iii), that G/M is a 0-group, con-
tradicting (9). Thus we have arrived at a contradiction which completes
the proof of the equivalence of properties (i) to (iii).

COROLLARY 3. If 0 is strictly homomorphism-invariant and subgroup-
inherited, and if (L.n) is satisfied by the class of soluble O-groups, then (E.n) is

satisfied by the class of soluble groups with nilpotent O-commutator subgroup.

This is an immediate consequence of Theorem 3. Cp. 7, Proposition 1 in
this context.
Remark 4. The class ?I of abelian groups is strictly homomorphism-invari-

ant, subgroup-inherited; and a group is abelian if, and only if, every pair of
its elements generates an abelian subgroup. Thus Corollary 3 may be ap-
plied, proving that (E.2) is satisfied by the class of groups with nilpotent
commutator subgroup. A similar remark may be made concerning the class
of nilpotent groups etc.

Derived properties

If 0 is a group theoretical property, then we denote by O’ the class of groups
with nilpotent O-commutator subgroups. If 0 is strictly homomorphism-in-
variant and subgroup-inherited, and if every O-group is soluble, then 0 is
strictly homomorphism-invariant and subgroup-inherited and every O-group
is soluble. This process may be iterated in an obvious fashion. We want to
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illustrate this general principle by discussing shortly a particularly interesting
instance.

Denote by A the identity class, consisting of the group of order 1 only;.
and define A" inductively by the rule" An+l (As) ’. Since A 1 is strictly
homomorphism-invariant, subgroup-inherited, and a class of soluble groups,
the same is true of every As.
To obtain interesting characterisations of these classes, we define the iter-

ated Fitting subgroups of a group G by the rules"

Fo(G)-- 1, Fn+(G)/’F(G) F[G/F,(G)].

It is clear that the F,(G) form an ascending chain of characteristic subgroups
of G; and that G is soluble if, and only if, G Ft(G) for some t. One proves
now without too much difficulty the equivalence of the following properties.
of the group G and the positive integer n"

(i) G- Fn(G).

(ii) G is a AS-group.

(iii) Every homomorphic image of G induces in each of its minimal normal
subgroups a An-Lgroup of automorphisms.

(iv) If S is a maximal subgroup of G, then S/S( is a An-Lgroup; and maxima1
subgroups of equal core in G are conjugate (are isomorphic, have equal index)

(v) G/,(G) is a A%group.

9. Dispersed 9roups

If 0 is a set of sets of primes, then we may term O-group any group G which
is Z-closed for every set 2; in 0. Applying the results of 4 one notes the fol-
lowing properties of this class 0" it is strictly homomorphism-invariant and
subgroup-inherited; it meets requirements (E.1) and (L.2); G is a O-group if,
and only if, G/(G) is a 0-group and products of normal 0-subgroups are
O-groups. In the present section we are going to investigate a specialization
of this concept which permits a more intensified study. The class of group-
theoretical properties which we shall obtain shares to an astonishing degree
the properties of the class of nilpotent groups.
Suppose that a partial order has been defined in the set 2; of primes. We

shall write p q whenever p and q are different primes in 2; and p precedes q
in the partial order z; if we permit equality, then we shall write p q. As 2
is the range of the partial order , it will often suffice to refer to this partially
ordered set of primes as . We admit all possibilities" 2; may be vacuous;
2; may be the set of all primes and p q for every pair of primes; 2 may be
the set of all primes and just the natural ordering of the primes, and so on.

It will be convenient to term segment of any subset 0 of 2; which contains
with any prime p every prime x satisfying x p. Two special types of seg-
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ments will prove useful. If p is prime in 2:, then z(p) is the totality of 11
primes x in 2: such that p x. It is clear that z(p) is segment nd that p
belongs to (p). A second segment arises by omitting p from z(p).

DE’INTON. If r is a partially ordered set of primes, and if the group G is
-closed for e;ery segment " of r, then G is z-dispersed.

We mention few extreme examples of z-dispersion. If firstly the range
2: of r is empty, then every group is z-dispersed; nd more generally every
group is -dispersed whose order is prime to every prime in the rnge
If next 2 is the set of all primes, and if the partial order is the trivial one
i.e. p q for every pair of primesthen z-dispersion and nilpotency are equiva-
lent concepts. If finally 2: is the set of all primes and some complete order-
ing of the primes, then it may be verified easilyand will be contained in
some of our results belowthat z-dispersion amounts to what is also called
the Sylow Tower Property [Huppert]; and Ore has termed a group dispersed
if it is z-dispersed (for the inverted natural ordering of the primes).

If is a partially ordered set of primes and G a group, and if the prime p
in 2: is a divisor of the order of G, though for every prime divisor x of the order
of G which belongs to 2: we have x p, then we say that p is a z-minimal
G-relevant prime. The z-maximal G-relevant primes are defined similarly.
It will often be possible to omit from this term without danger of confusion;
and this we shall do. Finally we denote by 2:(G) the set of all z-G-relevant
primes; these are the primes in 2: which divide the order of G. Since 2:(G) is
always finite, the existence of z-minimal and z-maximal G-relevant primes is
assured, as soon as 2:(G) is not vacuous.

THEOREM 1. If r is a partial ordering of the set of primes, then the follow-
ing properties of the group G are equivalent"

(i) G is r-dispersed.

(ii) G is -dissolved for every z-segment

(iii) G/q(G) is z-dispersed.

(iv) Every homomorphic image H of G is p-closed for every z-minimal H-rele-
vant prime p.

(v) If H is a homomorphic image of G and p a z-minimal H-relevant prime,
then there exists a normal p-subgroup, not 1, of H.

(vi) If H is a homomorphic image of G, then [H’F(H)I is prime to every
z-minimal H-relevant prime.

(vii) If H is a homomorphic image of G and N(H) not vacuous, then there
exists an element h 1 in H such that hx xh for every element x in H whose
order is divisible by z-minimal H-relevant primes only.
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(viii) If the homomorphic image H of G possesses one and only one minimal
normal subgroup M, and if Z(H) is not vacuous, then there exists one and only
one (r-minimal H-relevant prime p and M is a p-group.

(ix) If S is a maximal subgroup of G and p a a-minimal (G/Sa)-relevant
prime, then [G:S] is a power of p and [S:Sa] is prime to p.

(x) If S is a maximal subgroup of G and Z(G/S() not vacuous, then there
exists one and only one z-minimal (G/S()-relevant prime p, and [G:S] is a
multiple of p.

(xi) G is Z-dissolved and a (Pz(p), p)-group for every prime p in Z(G).

(xii) G is Z-dissolved, and [G, Pz(p)] is Pp-closed for every prime p in Z(G).

(xiii) G is Z-closed; and if S is a Z-subgroup of G, then [S:S’] is a multiple of
every a-maximal S-relevant prime.

(xiv) G is Z-closed; and if S is a characteristic Z-subgroup of G, then [S:S’] is
a multiple of every z-maximal S-relevant prime.

(xv) G is 2;-closed; and if N is a normal 2;-subgroup of G and p a z-maximal
N-relevant prime, then IN: IN, Gz(p)]] is a multiple of p.

(xvi) G is Z-closed; and if N is a characteristic Z-subgroup of G and p a
(r-maximal N-relevant prime, then [N, G(r(p)] N.

(xvii) Pairs of elements of relatively prime prime power order generate (r-dis-

persed subgroups of G.

(xviii) If the orders ofthe elements x and y in G are powers of the same (r-G-relevant

prime, then Ix, y} is a z-dispersed subgroup of G.

Here as always we have used the following notations: The group X is a
Z-group, if every prime divisor of the order of X belongs to Z; and X is a

PZ-group, if none of the prime divisors of the order of X belongs to 2;, i.e. if
the order of X is prime to 2;. Consequently a group X will be termed PZ-
closed, if the set of elements of order prime to 2; in X is a P2;-subgroup of X.
If X is a group and A a set of primes, then XA is the subgroup of X which is
generated by the A-elements in X.
To connect the properties discussed here with those investigated in 6 it

might be worthnoting that a group G i.s Z-dissolved if, and only if, G is Z-closed
and p-separated for every p in 2.

If every prime divisor of the order of G is contained in 2;, then several of
the above properties may stated in a simpler form. For instance, the re-

quirement of Z-closure may then be dropped from conditions (xiii) to (xvi);
and for the requirement of Z-dissolution, solubility may be substituted in (xi)
and (xii).

Proof. If G is a-dispersed, then every homomorphic image H of G is (r-dis-
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persed too. If p is a z-minimal H-relevant prime, then we form the segment
i5 of all the primes x in 2; which satisfy x p. It is clear that p is the only
prime divisor of the order of H which belongs to i5. Since H is z-dispersed,
the set T of iS-elements in H is a characteristic subgroup of H; and since p
is the only prime divisor of the order of H which belongs to i5, T is a p-group.
Hence H is p-closed; and we have shown that (i) implies (iv).

It is obvious that (iv) implies (v). If (v) is satisfied by G, if p is a z-mini-
mal H-relevant prime for the homomorphic image H of G, if N is a normal
p-subgroup of H and p a divisor of [H’N], then p is a z-minimal (H/N)-
relevant prime; and there exists, by (v), a normal p-subgroup K/N 1 of
the homomorphic image H/N of G. Thus N is not a maximal normal p-sub-
group of H; and now it is clear that (iv) and (v) are equivalent properties.

Since p-groups are nilpotent, and since the Fitting subgroup is the nilpotent
characteristic subgroup which contains every nilpotent normal subgroup,
it is clear that (iv) implies (vi). Since the center of nilpotent groups, not 1,
is different from 1, and since the Fitting subgroup is nilpotent, (vi) implies
(vii).
Assume now the validity of (vii) and consider a homomorphic image H oI

G which possesses one and only one minimal normal subgroup M. Assume
furthermore that 2;(H) is not vacuous. Then there exist z-minimal H-relevant
primes. Consider one of them, say p; and assume by way of contradiction
that M is not a p-group. Form the set A of all elements in H which commute
with every p-element in H. It is clear that A is a characteristic subgroup
of H; and it is a consequence of (vii) that A 1. Since M is the one and
only one minimal normal subgroup of H, we have M -<_ A. The p-elements
in A belong to the p-component W of the center of A. Since W is a charac-
teristic subgroup of the characteristic subgroup A of H, W is a characteristic
p-subgroup of H which cannot contain M. Since M is part of every normal
subgroup, not 1, of H, W 1; and this implies that the order of A is prime
to p. It follows that p is a a-minimal (H/A)-relevant prime. We apply
(vii) to prove the existence of an element Au 1 in H/A which commutes
with all p-elements in the homomorphic image H/A of G. If x is a p-element
in H, then the commutator [u, x] belongs to A so that in particular
x[u, x] [u, x]x and the order of [u, x] is prime to p. However, it follows
successively that

--1 --ix ux u[u, x], x x u[u, x], u x-ux u[u, x]

where pk is the order of x. Thus [u, x]’ 1; and this implies [u, x] 1,
since the order of [u, x] is prime to p. Hence u commutes with every p-
element in H. Thus u belongs to A, contradicting Au 1. We have arrived
at a contradiction which proves that M is a p-group, if p is any z-minimal
H-relevant prime. Hence (viii) is a consequence of (vii).
Assume next the validity of (viii). To show that (x) is a consequence of
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(viii), consider a maximal subgroup S of G such that 2(G/So) is not vacuous.
Then U S/So is a maximal subgroup of H G/So and the core U, 1.
Assume by way of contradiction that A and B are two different minimal
normal subgroups of H. It is a consequence of 2, Corollary 2 that A and B
are isomorphic non-abelian groups and that A is the centralizer of B in H.
If N is a normal subgroup of H such that A -< N and B ; N, then B n N 1
so that N is part of the centralizer A of B, and hence A N. It follows
that AB/A is the one and only one minimal normal subgroup of H/A. Since
A

___
B
_

AB/A, the orders of H and H/A are divisible by the same primes
so that in particular Z(H/A) Z(H) Z(G/So) is not vacuous. We may
apply condition (viii) to see that AB/A is p-group; and this implies, by
2, Lemma 1, that the isomorphic groups A, B, and AB/A are abelian, an
impossibility. Consequently H itself possesses one and only one minimal
normal subgroup M. We apply condition (viii) to see that there exists one
and only one a-minimal H-relevant prime p and that M is a p-group. Since
M is not part of the maximal subgroup U of core 1, and since M is a minimal
normal subgroup of H, we deduce from 2, Lemma 1 that M is an elementary
abelian p-group and that U is a complement of M. It follows in particular
that [G:S] [H: U] is the order of M and as such a power of p; and thus
we have verified the validity of (x).
Assume next the validity of (x); and consider a segment of . To verify

the validity of condition (iii) of 4, Proposition 3 we consider a maximal
subgroup S of G such that [G" So] is a multiple of some prime x in . and such
that G/So possesses one and only one minimal normal subgroup M. Since
x is in 2:, Z(G/So) is not vacuous. Application of (x) shows two facts: firstly
there exists one and only one z-minimal (G/So)-relevant prime p; and secondly
[G: U] is multiple of p for every maximal subgroup U of G which satisfies
Uo So. Since the prime x belongs to Z(G/So), p = x; and since x belongs
to the a-segment ., p is in . Thus condition (ii) of 2, Lemma 3 is satisfied
by G/So; and this implies the solubility of the one and only one minimal
normal subgroup M of G/So as well as the fact that [G: S] is a power of p.
By 2, Lemma 1, the maximal subgroup S/So is a complement of M in G/So
and this implies that M is a p-group and hence a -group. Thus we have
verified the validity of condition (iii) of 4, Proposition 3 (with respect to
). Hence G is E-closed for every z-segment ; and this proves that G is
a-dispersed. The equivalence of conditions (i), (iv), (v), (vi), (vii), (viii)
and (x) is now completely verified.
The equivalence of (i) and (iii) is a consequence of 4, Proposition 3, as

has been noted before. If N is a normal subgroup of the z-dispersed group
G, and if F,(G/N) is not vacuous, then there exists, by (v), a prime p in
(G/N) <- (G) and a normal subgroup M of G such that N < M and M/N
is a p-group. If in particular N is a maximal normal soluble Z-subgroup of G,
then it follows from the previous remark that Z(G/N) is vacuous; and thus
we have shown that
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a-dispersed groups are Z-dissolved.

A special consequence of this fact is the equivalence of properties (i) and (ii).
Assume again that G is a-dispersed. Then G is in particular Z-dissolved;

and this is clearly equivalent to the following property"

G is Z-closed and p-separated for every p in Z.

Suppose now that p is in and M a minimal normal subgroup of characteristic
p of the homomorphic image H of G. The set T of a(p)-elements in the a-

dispersed group H is a a(p)-subgroup of H, since a(p) is a a-segment; and it
is clear that this characteristic subgroup T of H contains the p-group M. The
primes different from p in a(p) form likewise a a-segment; and thus it follows
that the set S of elements of order prime to p in T is a subgroup of T and
H. Clearly S is a characteristic subgroup of order prime to p. Hence
S n M 1; and this implies that S is part of the centralizer of M in H. The
elements in the characteristic subgroup T of H induce therefore in the minimal
normal p-subgroup M of H a p-group of automorphisms--note that IT:S]
is a power of p--and this implies that T is part of the centralizer of M. Re-
calling that T contains every a(p)-element in H, it follows now that a Pa(p)-
group of automorphisms is induced in M by the elements in H; in other words:
G is a (Pa(p), p)-group for every prime p in 2:(G). Hence (xi) is a conse-
quence of (i). The equivalence of conditions (xi) and (xii) may be deduced
from 6, Theorem 2.
Assume now the validity of (xii). Suppose that the homomorphic image H

of G possesses one and only one minimal normal subgroup M and that 2;(H)
is not vacuous. Since G is E-dissolved, so is H. The set T of all Z-elements
in H is consequently a soluble characteristic Z-subgroup of H. Since Z(H)
is not vacuous, T 1; and this implies M _-< T, sinceM is part of every normal
subgroup, not 1, of H. Hence M is a soluble Z-group. By 2, Lemma 1,
M is an elementary abelian p-group for p a prime in Z(H). It is a conse-
quence of 3, Lemma I that (xii) is satisfied by the homomorphic image H of
G. The elements of order prime to p in [H, Pa(p)] form therefore a character-
istic subgroup W of order prime to p. Since M is part of every normal sub-
group, not 1, of H, W 1. Thus [H, Pa(p)] is a p-group and H/[H, Pa(p)]
is Pa(p)-group. It follows that p is the one and only one a-minimal H-relevant
prime. Hence (viii) is a consequence of (xii); and thus we have verified the
equivalence of (i), (xi), and (xii).

If G is a-dispersed, S a maximal subgroup of G and p a a-minimal (G/So)-
relevant prime, then the set T of p-elements in H G/So is, by (iv), a charac-
teristic p-subgroup of H. Since T 1, there exists a minimal normal sub-
group of H which is contained in the center of T (as the center of a p-group,
not 1, is likewise different from 1). Since S/So is maximal subgroup of H
whose core is 1, application of 2, Lemmas 1 and 2 and 2, Corollary 1 shows
that T itself is a minimal normal p-subgroup of H whereas S/So is a comple-
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ment of T in H. It is clear then that [G" S] is the order of T and hence a
power of p, whereas S/So is isomorphic to HIT and consequently of order
prime to p. Hence (ix) is a consequence of (i). It is almost obvious that (x)
is a consequence of (ix); and thus we have completed the proof of the equiva-
lence of conditions (i) to (xii).

If G is z-dispersed, then G is certainly 2-closed. If S is a 2-subgroup of G,
then S too is a-dispersed. Suppose that p is a a-maximal S-relevant prime.
The totality p of primes x in 2; which do not satisfy p - x is a segment so that
the set T of 5-elements in S is a subgroup of S. Clearly T S and SIT is a
p-group; and this implies that iS" S’] is a multiple of p. Hence (xiii) is a
consequence of (i); and it is trivial that (xiv) is a consequence of (xiii).
Assume again the validity of (xiii); and consider a normal 2-subgroup N of

G and a a-maximal N-relevant prime p. It is a consequence of (xiii) that
iN" N’] is a multiple of p. Since N’ is a characteristic subgroup of the normal
subgroup N of G, N’ is a normal subgroup of G; and now one verifies easily
the existence of a normal subgroup K of G with the following properties:
N’ <_- K N and N/K is a minimal normal p-subgroup of G/K. It is a
consequence of (xi) that the elements in G induce in N/K a Pz(p)-group of
automorphisms. Thus every a(p)-element in G/K belongs to the centralizer
of N/K. Hence iN, Gz(p)] K so that iN" K] is a divisor of iN" iN, Ga(p)]].
Thus we have shown that (xv) is a consequence of (xiii); and by a similar
argument one sees that (xvi) is a consequence of (xiv). Furthermore it is
clear that (xvi) is a consequence of (xv).
Assume now the validity of (xvi). If C is a characteristic 2-subgroup

of G, then we denote by D(C) the intersection of all the normal subgroups X
of C with nilpotent quotient group C/X. As a characteristic subgroup of a
characteristic subgroup D(C) is a characteristic 2-subgroup of G. It is
clear that C/D(C) is nilpotent; as a matter of fact D(C) is just the terminal
member of the descending central chain of C. Consider now a a-maximal
C-relevant prime p. If x is a prime in 2;(C), then certainly p x so that x
belongs to z(p). It follows that C is, as a E-group, a a(p)-group. Hence
C <-_ Ga(p). Since D(C)/[D(C), C] <= Z(C/[D(C), C]), and since C/D(C) is
nilpotent, C/[D(C), C] is likewise nilpotent; and this implies D(C) [D(C), C],
since D(C) is contained in every normal subgroup of C with nilpotent quotient
group. It follows that

D(C) [D(C), C] _-< [D(C), Ga(p)] _-< D(C)or D(C)= [D(C), Gz(p)I.

If p were a divisor of the order of the characteristic subgroup D(C) of G, then
p would be a -maximM D(C)-relevant prime; and this would imply
[D(C), Ga(p)] D(C) by (xvi). Hence p is prime to the order of D(C);
and thus we have derived from (xvi) the following condition"

(xvi’) If C is a characteristic Z-subgroup q( G, and if D(C) is the intersection

of all the normal subgroups X of C with nilpotent quotient group C/X, then the
order of D(C) is prime to every o--maximal C-relevant prime.
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We note next that (xvi) implies furthermore

(xvi") G is Z-closed.

We assume now the validity of the conditions (xvi’) and (xvi"). The set
S of 2:-elements is, by (xvi"), a characteristic 2:-subgroup of G. Condition
(xvi’) implies in particular the following fact" If C is a characteristic E-sub-
group of G, then D(C) is a characteristic G-subgroup of G and C/D(C) is nil-
potent; if C 1, then D(C) < C. By an obvious inductive argument it
follows now that S is soluble; and thus we have shown that G is E-dissolved.

Consider now some prime p in 2:(G). The characteristic subgroup
[G, Pz(p)] is, by definition, the intersection of all normal subgroups X of G
whose index [G’X] is prime to every prime in z(p), i.e. to all primes x in 2:
which satisfy p x. Recall that S is a characteristic Z-subgroup of G and
that [G" S] is prime to every prime in 2:. Consequently [G, Pa(p)] __< S so
that [G, Pz(p)] is a characteristic 2-subgroup of G.

If q is a prime divisor of the order of the nilpotent group
[G, Pz(p)]/D([G, Pa(p)]), then there exists a characteristic subgroup Q of G
such that D([G, Pa(p)]) _-< Q < [G, Pa(p)] and [[G, Pa(p)]’Q] is a power of q
whereas [Q’D([G, Pa(p)])] is prime to q, since nilpotent groups are direct
products of characteristic primary groups. Since G/Q is not a Pa(p)-group
as Q < [G, Pa(p)], it follows that q belongs to a(p); and thus we have shown
that p q for every prime divisor q of [[G, Pa(p)]’D([G, Pa(p)])]. This
index is, by (xvi’), a multiple of every a-maximal [G, Pa(p)]-relevant prime
m so that p m for all these primes m. This implies the following alternative-
either p is not a divisor of the order of [G, Pa(p)], or else p is a a-maximal
[G, Pa(p)]-relevant prime. But in the latter case p is, by (xvi’), not a divisor
of the order of D([G, Pa(p)]) and thus we have shown that p is in neither case
a divisor of the order of D([G, Pa(p)]). Since C/D(C) is, as a nilpotent group,
a direct product of characteristic primary groups, it is now easily seen that
[G, Pa(p)] contains a characteristic subgroup of order prime to p and index
a power of p; in other words" [G, Pa(p)] is Pp-closed. Thus we have shown
that (xii) is a consequence of conditions (xvi’) and (xvi"); and this completes
the proof of the equivalence of the conditions (i) to (xvi).

Since subgroups of z-dispersed groups are likewise a-dispersed, condition
(i) implies both (xvii) and (xviii). If conversely (xviii) is satisfied by the
group G, then the same is true for every homomorphic image H of G. If p
is a z-minimal H-relevant prime, and if x and y are p-elements in H, then
{x, y is, by (xyiii), a-dispersed. The set of p-elements in {x, y} is conse-
quently a subgroup [by (iv)] so that {x, y} is a p-group. Hence xy-1 is a
p-element. The set of p-elements in H is consequently a subgroup of H.
Thus (xviii) implies (iv).
Assume finally the validity of (xvii); and consider a homomorphic image

H of G and a a-minimal H-relevant prime p. If x is a p-element in H and
y a q-element in H for q a prime different from p, then p is a a-minimal {x, y}-
relevant prime. Since {x, y} is, by (xvii), z-dispersed, {x, y} is p-closed by
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(iV). Thus condition (a) of 4, Proposition 2 is satisfied by H (and N p).
Since condition (b) of 4, Proposition 2 is automatically satisfied in our case
[4, Remark 1], we may apply 4, Proposition 2 to prove p-closure of H.
Thus we have shown that (xvii) implies (iv); and this completes the proof.

Remarlc. If A and A are segments of 2, and if A n A is free of G-relevant
primes, then the set D of A-elements in G and the set L of A-elements in G are
characteristic subgroups of the z-dispersed group G such that D n L 1.
It follows that every A-element in G commutes with every A-element in G.
This property of a-dispersed groups will not lead us to a criterion for z-

dispersibility, as may be seen from the special case where z is a complete
ordering of the set of all primes and where our property is satisfied by all
groups.

COROLLA:R l. If z is a partial ordering of the set of all primes, and if every
proper subgroup of the group G is z-dispersed, then G is soluble.

Remarlc. This is a slight generalization of the theorems of Schmidt [1],
Iwasawa [1] and Huppert [1]. The following proof is an adaptation of Hup-
pert’s proof; see Huppert [1; p. 429, Satz 22].

Proof. If Corollary 1 were false, then there would exist a group G of minimal
order with the following two properties:

(1) G is not soluble.

(2) Every proper subgroup of G is a-dispersed.

Since z is a partial ordering of the set of all primes, z-dispersed groups are
soluble. In particular every proper subgroup of G is soluble. Every homo-
morphie image of G has property (2); and thus it follows from the minimality
of G that every proper homomorphie image of G is soluble. Since extensions
of soluble groups by soluble groups are soluble, one deduces now from (1) that

(3) G is simple.

Since z is a partial ordering of the set of all primes, there exists a -maximal
G-relevant prime p. Suppose now that the order of the proper subgroup S of
G is divisible by p. The totality i of primes q p satisfying p q is a segment
that contains every prime divisor, not p, of the order of G. The totality of
iS-elements in S is therefore a characteristic subgroup of S; and this implies
the following fact, since S is, by (2), z-dispersed:

(4) If S is a proper subgroup of G, then the set of elements of order prime to
p in S is a subgroup of S.

We distinguish now two eases.

Case 1. G is p-normal.

This signifies that the center Z(S) of a p-Sylow subgroup S of G is the center
of every p-Sylow subgroup of G which contains Z(S). Consider now a p-Sylow
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subgroup S of G. Then its center Z(S) 1, and it is a consequence of (1)
and (3) that Z(S) is not a normal subgroup of G. The normalizer T of Z(S)
in G is consequently different from G; and it is clear that Z(S) <= S -< T. We
may apply (4). Hence the totality T of elements of order prime to p in T is a
characteristic subgroup of T and TIT S. We apply a Theorem of Grtin
to show that S is a homomorphic image of G; see Zassenhaus [1; p. 135, Satz 6].
This contradicts (1) and (3).

Case 2. G is not p-normal.

Then we apply a Theorem of Burnside to show the existence of a p-subgroup
W 1 of G and of an element in the normalizer of W which induces in W an
automorphism, not 1, of order prime to p; see Zassenhaus [1; p. 103, Satz 8].
It is consequence of (1) and (3) that W is not a normal subgroup of G.
The normMizer V of W is therefore a proper subgroup G. Application of (4)
shows that the set V of elements of order prime to p in V is a characteristic
subgroup of V. Since W is a normal subgroup of V and since V n W 1,
it follows that a p-group of automorphisms is induced in W by its normalizer
V. This contradicts the presence of the element in V. Thus we have
arrived at a contradiction in either case, completing the proof of our result.

Appendix I: Nilpotent groups

Denote by the trivial partial ordering of the set of all primes so that p q
for no pair of primes. Then every set of primes is a segment of ; and every
prime is both -minimal and -maximal. We have mentioned before that
the group G is nilpotent if, and only if, G is -dispersed. By an almost im-
mediate specialization of 9, Theorem 1, one obtains now the following theo-
rem--in one instance one has to make use of the Remark at the end of 9;
and we have noted each time the condition of 9, Theorem 1 whose specializa-
tion is the present criterion.
The following properties of the group G are equivalent:

(1) G is nilpotent [(i)].

(2) If p is a prime divisor of the order of the homomorphic image H of G,
then there exists a normal p-subgroup, not 1 of H [(v)].

(3) If H 1 is a homomorphic image of G, then Z(H) 1 [(vii)].

(4) If the homomorphic image H of G possesses one and only one minimal
normal subgroup, then H is a p-group [(viii)].

(5) Maximal subgroups of G are normal [(ix)].

(6) If S is a maximal subgroup of G, then G/So is a p-group [(x)].

(7) If M is a minimal normal subgroup of the homomorphic image H of G,
then M _-< Z(H)[(xi)].
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(8) iS: S’] is, for every subgroup S of G, a multiple of every prime divisor of
the order of S [(xiii)].

(9) [C’C’] is, for every characteristic subgroup C of G, a multiple of every
prime divisor of the order of C [(xiv)].

(10) If N is a normal subgroup of G and p a prime divisor of the order of N,
then iN" iN, G]] is a multiple of p [(xv)].

(11) If N 1 is a characteristic subgroup of G, then iN, G] < N [(xvi)].

(12) Pairs of elements of relatively prime prime power order commute [(xvii)
and the Remark at the end of 9].

(13) If x and y are p-elements in G, then {x, y} is nilpotent [(xviii)].

Most of these criteria are more or less well known and have been restated
here only for the purpose of showing that they are special cases of 9, Theo-
rem 1.

Appendix II a-dispersed A-groups
Thoughout this appendix we assume that a is a partial ordering of the set

of all primes. If G is a a-dispersed group, and if p is a a-minimal G-relevant
prime, then the set of all p-elements in G is a characteristic p-subgroup of G
which is necessarily contained in the Fitting subgroup F(G) of G. An obvious
inductive argument shows now that G FI(G) if the order of G is divisible
by at most n different primes. Thus a-dispersed groups whose orders are
divisible by at most n different primes are An-groups; cp. the end of 8 for
the definitions of Fn and Am.

LEMMA. If A is strictly homomorphism-inariant and subgroup-inherited,
and if (L.n), for 2 <= n, is satisfied by the class of a-dispersed A-groups, then
(E.n) and (L.n - 1) are satisfied by the class of a-dispersed groups with nil-
potent A-commutator subgroups (= a-dispersed A’-groups).

Proof. We note first that a-dispersion is strictly homomorphism-invariant
and subgroup-inherited, that a-dispersed groups are soluble, and that a-dis-
persion meets requirements (E.1) and (L.2). An immediate application of
8, Corollary 3 shows that (E.n) is satisfied by the class of a-dispersed
groups. Suppose next that every (n - 1)-tuplet of elements in the group G
generates a a-dispersed A’-group. Then every pair of elements in G geaerates
a a-dispersed subgroup of G so that G is a-dispersed and in particular soluble.
Consequently we may apply 7, Proposition 1 to show that (every subgroup
of) G is a a-dispersed A’-group.
By an obvious inductive argument it follows from this Lemma that (E.n)

and (L.n + 1) are satisfied by the class q[ a-dispersed A%groups, if we only
remember that (E.1) and (L.2) are satisfied by the class A of nilpotent groups.
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10. Strictly dispersed groups
The strictly dispersed groups are going to be dispersed groups meeting a

further requirement. For a convenient enunciation of the properties to be
discussed we recall first the concept of a Steinitz E-number. This is a formal
product

e H pC(p)
p

where the product ranges over all the primes p and where e(p) is 0 or a positive
integer or the symbol . One says that the E-number e is a divisor of the
E-number e’, or e’ is a multiple of e, or e/e’, if e(p) <= e’(p) for every prime
p (where naturally every integer is smaller than the symbol ). Without
danger of confusion factors of the form p0 may be omitted; and this we shall
do quite often. Thus positive integers may be considered as E-numbers too
and may be treated accordingly.

If the E-number m is a multiple of the order of every element in the group G,
then G is termed an v(m)-group. Thus a group G is certainly an (m)-
group if the order of G is a divisor of m, though the converse is not true. In
particular every p-group is an (p)-group. More generally: if Z is a set
of primes, then the class of 2:-groups is exactly the class of -(IIp in z p)-groups.

Subgroups, homomorphic images, and direct products of e(m)-groups are

likewise e(m)-groups, i.e. e(rn) is strictly homomorphism-invariant and sub-
group-inherited. The property e(rn) clearly and trivially meets the require-
ments (L.1) and (E.1) whereas extensions of e(m)-groups by e(rn)-groups
need not be e(m)-groups.

If G is any group, then we may form the e(m)-commutator subgroup
[G, e(m)]. If m happens to be an ordinary positive integer, then one sees

easily that [G, e(m)] is the subgroup of G which is generated by all the mth
powers of elements in G. If, however, m is not an ordinary integer, then we
form the G.C.D. rn* of m and the order of G. One verifies again that [G, e(m)]
is the subgroup of G which is generated by the m*th powers of elements in G,
since the order of G is a multiple of the order of every element in G and since
G G for every positive integer i which is prime to the order of G. These
remarks may be expressed shortly by the (symbolic) equation

[G, v(m)] am.
Suppose now that is a partial ordering of the set 21 of primes and that to

every prime p in 21 we have assigned an E-number s(p) of the form

II x
x,tz(p

Recall that (p) is the set of primes y in 21 such that p y.
(p) if, and only if, either x is not in 21, or else p x.

Hence x is not in
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DEFINITION. The group G is a z-s-dispersed group, if for every homomorphic
image H of G and for every z-minimal H-relevant prime p

() the set H of p-elements in H is a subgroup of H and

(b) the elements in H induce in H an ’(ps(p))-group of automorphisms.

Comparison of condition (a) with 9, Theorem 1, (iv) shows that z-s-dis-
persed groups are z-dispersed. It is furthermore not difficult to see that
subgroups, homomorphic images, and direct products of z-s-dispersed groups
are likewise z-s-dispersed.

If in particular every exponent s(p, x) , then the class of z-s-dispersed
groups may be shown to be identical with the class of z-dispersed groups.

THEOREM l. If z is a partial ordering of the set of primes, then the following
properties of the group G are equivalent:

(i) G is z-s-dispersed.

(ii) G is z-dispersed; if N is a normal p-subgroup of the homomorphic image
H of G, and if p belongs to Z, then H induces an v(ps(p))-group of auto-
morphisms in N.

(iii) If H is a homomorphic image of G and p a z-minimal H-relevant prime,
then there exists a minimal normal subgroup M of H whose order is a multiple
of p and in which H induces an s(s(p))-group of automorphisms.

(iv) G is Z-dissolved; and if the order of the minimal normal subgroup M of the
homomorphic image H of G is a multiple of the prime p in 2, then H induces an
(s(p))-group of automorphisms in M.

(v)

(vi)

G is Z-dissolved and an (e(s(p)), p)-group for every prime p in Z.

G is Z-closed and G() is Pp-closed for every prime p in .
(vii) If H is a homomorphic image of G and p a z-minimal H-relevant prime,
then H() is the direct product of a p-group and a Pp-group.

(viii) If S is a maximal subgroup of G, and if E(G/Sa) is not vacuous, then there
exists a prime p in such that [G: S] is a power of p and S/S( is an (s(p))-
group.

(ix) G/(G) is z-s-dispersed.

(x) Pairs of elements of relatively prime prime power order in G generate
z-s-dispersed subgroups of G.

Remark. In (viii), the prime p is uniquely determined as the one and only
one z-minimal (G/S)-relevant prime.--If the order of the minimal normal
subgroup M of H is a multiple of p and if H induces an v(s(p))-group of auto-
morphisms in M, then M is an elementary abelian p-group. Hence it suffices
to assume 2;-closure in (iv).
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Proof. It is an almost immediate consequence of the definition of
dispersion and of 9, Theorem 1, (iv) that (ii) is a consequence of (i). If
(ii) is satisfied by G, and if H is a homomorphic image of G and p a z-minimal
H-relevant prime, then the set P of p-elements in H is a characteristic p-
subgroup of H. Since P 1, so is Z(P); and it is clear that Z(P) is likewise
a characteristic p-subgroup of H. Consequently there exists a minimal
normal subgroup M of H which is part of Z(P). Then M is a p-group. Since
P is part of the centralizer of M, the order of the group of automorphisms,
induced in M by elements in H, is prime to p. Application of (ii) shows then
that H induces in M an e(s(p) -group of automorphisms. (iii) is therefore
consequence of (ii).
Assume next the validity of (iii) and consider a minimal normal subgroup
M of the homomorphic image H of G such that the order of M is a multiple
of some prime p in 21. Among the normal subgroups X of H satisfying
X n M 1, there exists a maximal one, say K. Then H* H/K is a homo-
morphic image of H and G. The normal subgroup

M* KM/K
_
M/(M n K) M

of H* is the one nd only one minimal normal subgroup of H*, since every
normal subgroup, not 1, of H* has the form U/K where U is a normal subgroup
of H and K < U so that M n U # 1 because of the maximality of K and
hence M =< U because of the minimMity of M. If q is a a-minimal H*-rele-
vant prime, then there exists, by (iii), a minimal normal subgroup W of H*
whose order is a multiple of q and in which H* induces an e(s(q))-group of
automorphisms. Thus W induces in particular an e(s(q))-group of automor-
phisms in W; and since s(q) is prime to q, it follows that the center of W is not
1 and that therefore the minimal normal subgroup W is abelin. By 2,
Lemm 1, W is an elementary abelian q-group. We recall next that M* is
the one and only one minimal normM subgroup of H*. Hence M* W
so that M and W are isomorphic. Since the order of M is a multiple of p,
and since W is a q-group, p q. Thus H* induces an e(s(p))-group of auto-
morphisms in M*; and this is equivalent to sying that

[M*, H*()] 1.
This implies

[M,H()] =< MK 1

so that H() is part of the centralizer of M in H. It follows that H induces
in M an (s(p) -group of automorphisms.
The result of the preceding paragraph implies in particular that the second

part of (iv) is a consequence of (iii). To prove that G is 2-dissolved we form
the product S of all normal soluble 2-subgroups of G. Then S is a characteris-
tic soluble 21-subgroup of G. If Y,(G/S) were not vacuous, then there would
exist a z-minimal (G/S)-relevant prime r. By (iii) there exists a minimal
normal subgroup R/S of G/S whose order is a multiple of r. By the result



178 REINHOLD BAER

of the preceding paragraph of our proof R/S is an r-group so that R is a
soluble 2:-group. Since R is a normal subgroup of G, we have S < R =< S,
a contradiction. Hence [G:S] is prime to every prime in p; and it follows that
the characteristic soluble E-subgroup S of G is the set of all Z-elements in G.
Hence G is E-dissolved; and we have shown that (iv) is a consequence of (iii).

It is almost obvious that (v) is a consequence of (iv); and application of
6, Theorem 2, (ii) shows that (vi) is a consequence of (v).
Assume next the validity of (vi); and consider a homomorpbie image H of

G. Then every subgroup of H is 2:-closed, since G is 2;-closed. If q is a
prime in 2(H), then H() is a homomorphie image of GS(); and this implies,
by (vi), that Hs(q) is Pq-elosed. The set T(q) of elements of order prime to
q in Hs() is consequently a characteristic subgroup of H8() and H whose order
is prime to q. Since every subgroup of H is 2;-closed, the set S(q) of N-ele-
ments in T(q) is a characteristic 2:-subgroup of H. The order of S(q) is
likewise prime to q; and S(q) is the set of 2:-elements of order prime to q in

If p is a a-minimal H-relevant prime, then denote by P the intersection of
all the S(q) with q p in 2:(H):

P ["l S(q).
qY, (H)--,

It is clear that P is a characteristic subgroup of H and that P is a 2:-group as
the intersection of Z-groups. If q p is a prime, then the order of P is
prime to q whenever q is not in Z; and if q is in 2:, then P is part of the group
S(q) of order prime to q. Thus the order of P is prime to every prime q p;
and this implies that P is a p-group.
Suppose next that x is a p-element in H and that q belongs to 2:(H). Be-

cause of the minimality of p we have then q p so that p belongs to a(q).
Consequently p is prime to s(q); and this implies that the p-element x belongs
to Us(q). If we assume in addition that p q, then the order of x is prime
to q so that x belongs to T(q); and since p is in 2:, x belongs even to S(q). It
follows that x belongs to the intersection P of all the S(q) with q p in 2:(H)
and this implies that P is the totality of all the p-elements in H.

Since s(p) is prime to p, P is part of HstP); and now it is clear that H8(p)

is the direct product of the p-group P and the Pp-group T(p). Hence (vii)
is a consequence of (vi).
Assume next the validity of (vii); and consider a homomorphic image H of

G and a a-minimal H-relevant prime p. Then Hs() is the direct product of a
p-group P and of a group Q of order prime to p. It is clear that P is the
totality of p-elements and Q the totality of Pp-elements in H"(). Hence
P and Q are characteristic subgroups of a characteristic subgroup of H; and
as such they are characteristic subgroups of H. Since s(p) is prime to p,
Hs() contains every p-element in H so that P is the totality of p-elements in
H. Since Q is part of the centralizer of P, the group of automorphisms of
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P which are induced in P by elements in H is a homomorphic image of H/Q.
Since H’(q)/Q P is a p-group, H/Q is an v(ps(p))-group so that H induces
in P an s(ps(p))-group of automorphisms. Thus we have verified that G
is z-s-dispersed; and this completes the proof of the equivalence of conditions
(i) to (vii).
Assume again that G is -s-dispersed; and consider a maximal subgroup S

of G such that E(G/So) is not vacuous. Then there exists a -minimal
(G/So)-relevant prime p. By (iii)--the equivalence of (i) and (iii) has al-
ready been established--there exists a minimal normal subgroup M of G/So
whose order is a multiple of p and in which G/So induces an e(s(p))-group of
automorphisms. By (v), G is E-dissolved. Hence M is a p-group. If we
note that M is not part of the maximal subgroup S/So of G/So, then it
follows from 2, Lemma 1 that S/So is a complement of M in G/So and
from 2, Lemma 2 that M is its own centralizer in G/So. Thus S/So,
(G/So)/M, and the group of automorphisms induced in M by elements in
G/So are isomorphic. Since [G:S] equals the order of M, we see that (viii) is
a consequence of the equivalent conditions (i) to (vii).
Assume conversely the validity of (viii). Noting that every prime divisor

q of s(x) satisfies p q it follows that the prime p occurring in (viii) is the one
and only one -minimal (G/S)-relevant prime. Hence (viii) implies in par-
ticular condition (x) of 9, Theorem 1. Hence G is -dispersed. It is now
easy to see that condition (iii) of 6, Theorem 2 is satisfied by every prime p
in 2; together with 0 e(s(p)). Thus we see that G is -dispersed and hence
Z-dissolved; and that G is an (e(s(p)), p)-group for every p in 2. Hence (v)
is a consequence of (viii); and we have shown the equivalence of conditions
(i) to (viii). The equivalence of conditions (i) and (viii) implies the equiva-
lence of conditions (i) to (ix).

Let us note that property (vi) is trivially subgroup-inherited. The equiva-
lence of (i) and (vi) shows now that -s-dispersion is a subgroup-inherited
property--we pointed out before that this fact admits of easy direct verifica-
tion. It implies in particular that (x) is a consequence of (i). If conversely
(x) is satisfied by G, then condition (xvii) of 9, Theorem 1 is satisfied by G,
since every -s-dispersed group is -dispersed. It follows that G is -dis-
persed. Consider next a normal p-subgroup N of the homomorphic image
H of G; and assume that p belongs to E. Suppose that h is a q-element in H
and that q # p. If x is an element in N, then x is a p-element; and it is a

consequence of (x) that U {x, h} is -s-dispersed. Since N n U is a normal
subgroup of U, and since (ii) holds in U, the element h induces in the normal
p-subgroup N n U of the -s-dispersed group U an automorphism whose order
is a divisor of s(p). The minimal positive integer i such that x xh"is con-
sequently a divisor of s(p). Now it is easy to see that H induces in N an

e(ps(p))-group of automorphisms. Thus (ii) is a consequence of (x); and
this completes the proof of our theorem.
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COROLLAnY 1. Property (E.1) is satisfied by z-s-dispersion.

Proof. Assume that N is a normal subgroup of the group G and that G/N
and every IN, x} for x in G is a z-s-dispersed group. Since z-s-dispersed
groups are z-dispersed, and since z-dispersion meets requirement (E.1) [4,
Proposition 1], G is z-dispersed; and this implies that G is 2;-dissolved.

Consider now a minimal normal subgroup M of the homomorphic image H
of G; and assume that the order of M is a multiple of the z-minimal H-relevant
prime p. Since G is 2-dissolved, G is p-separated; and consequently M is a
p-group--actually an elementary abelian p-group [2, Lemma 1]. The homo-
morphism mapping G onto H maps N upon a normal subgroup K of H such
that H/K and K, x} for every x in H is z-s-dispersed.

Case 1. M K 1.

Then M KM/K; and the group of automorphisms induced in M by ele-
ments in H is essentially the same as the group of automorphisms induced in
KM/K by elements in H/K. Thus KM/K is a minimal normal p-subgroup
of the z-s-dispersed group H/K; and this implies that the group of auto-
morphisms induced in M and MK/K by elements in H is an e(s(p))-group.

Case 2. M K 1.

This implies M =< K, since M is a minimal normal subgroup of H. Con-
sider now an element in H whose order is prime to p. Then {K, t} is
dispersed; and the group of utomorphisms induced by K, t} in its normal
p-subgroup M is, by Theorem 1, (ii), an e(pOs(p))-group. If i is the order
of the automorphism induced by in M, then i is a divisor of s(p). Next we
recall that G is z-dispersed. Since p is z-minimal H-relevant prime, the
set P of p-elements in H is a characteristic p-subgroup of H [9, Theorem 1,
(iv)]. Since M is a minimal normal p-subgroup of H, M _-< P. Hence
M [ Z(P) 1, and consequently M <= Z(P). Thus P is part of the central-
izer of M. We have shown therefore that H() is part of the centralizer of M;
and this implies that an e(s(p))-group of automorphisms is induced in M by H.

This completes the verification of the validity of condition (iv) of The-
orem 1; and G is consequently a z-s-dispersed group.

We terminate this section by a short discussion of a special case which
will prove important in the next section. Denote by a the inverted natural
ordering of the set of all primes so that p a q if, and only if, q < p. Further-
more let a(p) p- 1 for every prime p. Then the pair a, a meets the re-
quirements imposed upon pairs z, s in Theorem 1. Consequently the fol-
lowing results are obtained by straightforward specialization of Theorem 1
und Corollary 1.
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THEOREM 2. The following properties of the group G are equivalent:

(i) G is -a-dispersed.

(ii) G is -dispersed; if N is a normal p-subgroup of the homomorphic image H
of G, then H induces an c(p(p 1))-group of automorphisms in N.

(iii) If H is a homomorphic image of G and p the maximal prime divisor of the
order of H, then there exists a minimal normal subgroup M of H whose order is a
multiple of p and in which H induces an c(p 1)-group of automorphisms.

(iv) If M is a minimal normal subgroup of the homomorphic image H of G,
and if the order of M is a multiple of the prime p, then H induces an e(p 1)-
group of automorphisms in M.

(v) G is soluble and an ((p 1), p)-group for every prime p.

(vi) G1 is Pp-closed for every prime p.

(vii) If H is a homomorphic image of G and p the maximal prime divisor of the
order of H, then H- is the direct product of a p-group and a Pp-group.

(viii) If S is a maximal subgroup of G, and if p is the maximal prime divisor
of [G:S], then [G: S] is a power of p and (S/So)- 1.

(ix) G/(G) is a-a-dispersed.

(x) Pairs of elements of relatively prime prime power order in G generate
a-a-dispersed subgroups of G.

Note that (iv) may also be stated in the following equivalent form:

If M is a minimal normal subgroup of the homomorphic image H of G,
then M’ M [M, H-] 1 for some prime p.

COOLLAn 2. Property (E.1) is satisfied by a-a-dispersion.

11. Supersoluble groups

We begin by proving some simple facts needed in the derivation of the
principal result of this section.

LEMMA 1. If S is a maximal subgroup of G whose core So 1 and whose
index [G:S] is a prime p, then q < p for every prime divisor q of the order of S.

Proof. There is nothing to prove if S 1. If S 1, then So 1 implies
that S is not a normal subgroup of G. Since S is a maximal subgroup of G,
S is its own normalizer in G. Since [G:S] p, this implies that S possesses
exactly p conjugate subgroups in G. Every element x in S induces a per-
mutation in the set of p 1 subgroups which are conjugate to S, but different
from S. If i is the order of this permutation, then x belongs to the intersec-
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tion So 1 of all the subgroups conjugate to S, since each subgroup conjugate
to S is equal to its own normalizer. Hence x 1 and i is the order of x.
Thus the order of x is a divisor of (p 1)!; and this implies that every prime
divisor of the order of S is smaller than p, Q.E.D.

LEMMA 2. The following properties of the group G are equivalent"

(i) There exists a normal subgroup of G whose order is a prime and which is
equal to its own centralizer.

(fi) There exists a maximal subgroup S of G whose core Sa 1, whose index
[G:S] is a prime, and which is abelian.

(iii) There exists a maximal subgroup S of G whose core So 1, whose index
[G" S] is a prime, and which satisfies S n S 1 whenever S S.
(iv) (G) 1; there exists one and only one minimal normal subgroup M of G,
and the order of M is a prime.

(v) There exist maximal subgroups whose core is 1; and every maximal sub-
group with core 1 has index a prime.

Proof. Assume first the existence of a normal subgroup N of G whose
order is a prime p and which is equal to its own centralizer. Then GIN is
essentially the same as a group of automorphisms of the cyclic group N of
order p; and this implies that GIN is a cyclic group whose order is a divisor of
p 1. Since the orders of the cyclic groups N and GIN are relatively prime,
there exists an element w in G whose order is exactly [G’N]. Then S {w}
is a complement of N in G; and now it is clear that (ii) is a consequence of (i).
Assume next the existence of a maximal subgroup S of G whose core So 1,

whose index [G’S] is a prime, and which is abelian. If S S, then
G S, S}, since S and S are distinct maximal subgroups. Since S and S
are both abelian, the centralizer of S n S contains both S and S so that
S n S <= Z(G). But subgroups of the center are normal. Hence
S n S =< Sa 1;and we see that (ii) implies (iii).
Assume next the validity of (iii). Then it is clear that (G) 1. There

exists a maximal subgroup S of G whose core So 1, whose index [G" S] p
is a prime, and which satisfies S S 1 whenever S S. If S 1, then
the order of G is p. If S 1 So, then S is not a normal subgroup of G.
But S is maximal; and consequently S equals its normalizer in G. It follows
that the number of subgroups conjugate to S in G is exactly p [G" S]. It
is a consequence of Lemma 1 that the order n of S is prime to p. Since pn
is the order of G, it follows that p is the order of every p-Sylow subgroup
of G. The number of elements contained in S and its conjugate subgroups is
exactly 1 + p(n 1); and this implies that the number of elements of order
p in G is exactly p 1. Hence there exists one and only one subgroup M
of order p; and now it is easy to deduce (iv) from (iii) [use 2, Corollary 1].
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Assume next the existence of one and only one minimal normal subgroup
M of G; and assume furthermore that the order of M is a prime p and that
O(G) 1. The last hypothesis implies the existence of a maximal subgroup
which does not contain M. If X is a maximal subgroup of G which does not
contain M, then it is clear that Xo 1 and that X is a complement of M in
G so that [G:X] p. Hence (v) is a consequence of (iv).
Assume finally the validity of (v). If S is a maximal subgroup of G and

if So 1, then [G: S] is, by hypothesis, a prime; and we deduce from Lemma 1,
that [G:S] is the maximal prime divisor p of the order of G and that further-
more p is prime to the order of S. By 2, Lemma 3, there exists a soluble
normal subgroup N 1 of G; and this implies the existence of a soluble mini-
mal normal subgroup M of G. Application of 2, Lemma 1 shows that M is
an elementary abelian group; and that every maximal subgroup of core 1 is a
complement ofM in G. The order of M equals the index [G:S] p for every
maximal subgroup S of core 1; and application of 2, Lemma 2 shows that
M is its own centralizer in G. Hence (i) is a consequence of (v), completing
the proof.
Remart 1. The derivation of (iv) from (iii) could have been shortened

slightly by applying a celebrated Theorem of Frobenius. But this theorem
and its proof are rather deep, whereas our derivation was quite elementary.
Of the various possible definitions of supersolubility we select the following

one which fits best into the general mood of our discussion.

DEFINITION. The group G i’ supersoluble, if every minimal normal subgroup
of every homomorphic image of G is cyclic (of order a prime).

It is well known, and easily verified, that subgroups, homomorphic images,
and direct products of supersoluble groups are supersoluble; in short" the
property of supersolubility is subgroup-inherited and strictly homomorphism-
invariant.

THEOREM 1. The following propertie’ of the group G are equivalent:

G is supersoluble.

Every homomorphic image, not 1, of G possesses a cyclic normal subgroup,

(i)

(i)
not 1.

(iii)

(iv)

Every maximal subgroup of G has index a prime.

If S is a maximal subgroup of G, then G/So possesse’ a cyclic normal sub-
group, not 1.

(v) If S is a maximal subgroup of G, then [G:S] is a power of a prime p and
S/So is an abelian (p 1)-group.

(vi) If S is a maximal subgroup of G, then [G:S] is a power of a prime p and
S/So is a cyclic group whose order is a divisor of p 1.
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(vii) G is nilpotent and G is an s-a-dispersed group.

(viii) If the order of the minimal normal subgroup M of the homomorphic image
H of G is a multiple of p, then [M, H’Hp-l] 1.

(ix) G is soluble; and if the maximal subgroup S of G does not contain the nor-
mal subgroup N of G, then N n S is a maximal subgroup of N.

(x) G/(G) is supersoluble.

Remarl 2. The equivalence of properties (i) and (iii) has been discovered
by Huppert [1]. The present proof, however, appears to be essentially dif-
ferent from Huppert’s.
Remark 3. Combining (vii) with 8, Corollary 2 and 10, Theorem 2 a

great number of further supersolubility criteria may be obtained.
Remark 4. The indispensability of the first half of condition (ix) may be

seen from the remark that the second part of this condition is vacuously
satisfied by all simple groups.
Remart 5. That supersoluble groups are a-dispersed and that their com-

mutator subgroups are nilpotent, has already been noted by Ore and Zappa.
Proof. It is clear that (i) implies (ii). If (ii) is true and S is a maximal

subgroup of G, then G/So contains a cyclic normal subgroup different from 1;
and this implies the existence of a normal subgroup M of G/S( such that the
order of M is a prime p. It is clear then that S/So is a complement of M
in G/S( and that consequently the order p of M equals the index [G: S]. Thus
(iii) is a consequence of (ii).

It is an immediate consequence of Lemma 2 that (iii) implies (iv). If next.
(iv) is satisfied by G and S is a maximal subgroup of G, then G/Sa possesses
a normal subgroup M whose order is a prime p. It is clear then that S/Sq
is a complement of M in G/S( and that therefore the order of M equals the
index [G:S]. One deduces furthermore from 2, Lemma 2 that M is its own
centralizer in G/S(; and (G/S)/M is therefore essentially the same as the
group of automorphisms induced in M by elements in G/S(. Since M is.
cyclic of order p, its group of automorphisms is cyclic of order p- 1 and
this implies that S/S is a cyclic group whose order is a divisor of p- 1.
Hence (iv) implies (vi); and it is obvious that (vi) implies (v).

It is an immediate consequence of 8, Corollary 2 and 10, Theorem 2 that
(v) implies (vii). If (vii) is satisfied by G, then G is soluble; and if the order
of the minimal normal subgroup M of the homomorphic imageH of G is a mul-
tiple of p, then M is, by 2, Lemma 1, an elementary abelian p-group. H
consequently induces in M an abelian [by 8, Corollary 2] v(p- 1)-group
of automorphisms. Hence H’H-1 is contained in the centralizer of M so
that [M, H-IH] 1. Hence (viii) is a consequence of (vii).
Assume next the validity of (viii); and consider a minimal normal sub-

group M of the homomorphic image H of G. Then [M, Hp] 1 so that H
is part of the centralizer of M. Thus H induces in M an abelian group of
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automorphisms; and this implies by 8, Corollary 2 the nilpotency of G so
that in particular G is soluble. It follows in particular that M is soluble; and
this implies, by 2, Lemma 1, that M is an elementary abelian p-group. As
noted before H induces in M an abelian group 0 of automorphisms. By
(viii), we have [M, H-] 1. Hence H"- is part of the centralizer of M
in H so that 0"- 1. Next we form the ring of endomorphisms which is
spanned by O. Since 0 is abelian, is commutative. Since 0 is the group
of automorphisms, induced by H in its minimal normal subgroup M, 1 and
M are the only -admissible subgroups of M. We apply Schur’s Lemma to
see that is a (finite and commutative) field whose characteristic is p, since
M" 1. Since 0- 1, the elements in 0 belong to the prime field of char-
acteristic p; and since is spanned by O, is the prime field of characteristic
p. But then every element in (and in 0) is a multiple of the identity so
that every subgroup of M is -admissible. It follows that M is cyclic of
order p, since 1 and M are the only -admissible subgroups of M. Thus (i)
is a consequence of (viii); and we have completed the proof of the equivalence
of conditions (i) to (viii).

If G is supersoluble, then G is certainly soluble. If the normal subgroup
N of G is not contained in the maximal subgroup S of G, then G NS so
that [G:S] [N:N S]. But this index is, by (iii), a prime so that N S
is a maximal subgroup of N. Thus (ix) is a consequence of (i). If conversely
(ix) is satisfied by G, then consider a maximal subgroup S of G. There exists
a minimal normal subgroup M of H G/Sa. Since G is soluble, so is M;
and this implies by 2, Lemma 1 that M is an elementary abelian p-group
and that S/S( is a complement of M in GISt. But, by (ix), 1 M (S/Se)
is a maximal subgroup of M; and this implies that M is cyclic of order p.
Hence (iv) is a consequence of (ix), showing the equivalence of conditions
(i) to (ix).
The equivalence of conditions (i) and (x) is a consequence of the equiva-

lence of conditions (i) and (iii). Q.E.D.

COROLLARY 1. Properties (E.2) and (L.3) are ’atisfied by supersolubility.

Proof. It is a consequence of 10, Corollary 1 that property (E.1) is satis-
fied by a-a-dispersion. Since a group is abelian if, and only if, every pair of
elements generates an abelian subgroup, we may deduce from 8, Theorem 3
that the class of groups with nilpotent commutator subgroup meets require-
ment (E.2). Application of Theorem shows now that the class of super-
soluble groups meets requirement (E.2).
Assume next that every triplet of elements in the group G generates a super-

soluble subgroup. Then every pair of elements in G generates an a-dispersed
subgroup of G; and this implies clearly that G itself is a-dispersed. But
a-dispersed groups are soluble. Since supersolubility meets requirement
(E.2), we may now use 7, Proposition to show that G is supersoluble,
proving the validity of (L.3).
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COnOLLAY 2. If G is the product of its normal supersoluble subgroups
N1, Nk then the following properties of G are equivalent:

(a) G is supersoluble.

(b) G’ is nilpotent.

(c) [N, Nj] is nilpotent for i j.

Proof. It is a consequence of Theorem 1 that (a) implies (b); and it is
clear that (b) implies (c). Since every N is supersoluble, every N is nil-
potent [Theorem 1]; and now it is clear that (b) is a consequence of (c). Since
every N is as a supersoluble group a-a-dispersed, G is a a-a-dispersed; and
it is a consequence of Theorem 1 that (b) implies (a), Q.E.D.

Example 1. Denote by p an odd prime which is 1 modulo 4; and denote
by M a direct product of two cyclic groups of order p. Let a, b be a basis
of M. Then automorphisms r and s of M may be defined by the rules"

ar= b-1, b= a;

a b b-- a.

It is clear that s is of order 2, that r -1 and. that srs r--1. The group
A of automorphisms of M which is generated by r and s has consequently
order 8; and the element r generates a normal subgroup of order 4 of A. We
note furthermore that A is the product of its normal subgroups S {s, r}
and T {sr, r} each of which normal subgroups is a direct product of two
cyclic groups of order 2.
Denote now by G the subgroup of the holomorph of M which is generated

by M and A. This group G is obtained by adjoining to M elements r and s,
subject to the relations-

r4-- 1, s2-- 1, r-lar b-1, r-lbr a, sas b, sbs a.

This group G has the following properties"

1. G’ /M, r:} so that G’ is not nilpotent.

2. {M, r, s} MS and IM, r, sr} MT are normal subgroups of G which
both contain the commutator subgroup as a subgroup of index 2, and whose
product is just G. Each of these normal subgroups of G is supersoluble in
spite of the fact that the commutator subgroup of G is not nilpotent.

3. It is easily seen that G is a-dispersed, but not a-a-dispersed, since G in-
duces in its normal p-subgroup M an automorphism of order 4, though 4
is not a divisor of p 1.

Example 2. Modify Example 1 by assuming that 4 is a divisor of p 1;
but leave everything else unchanged. Then G will be a-a-dispersed, though
its commutator subgroup is not nilpotent. Furthermore every subgroup
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M, x} for x in G is then supersoluble; and G/M is even nilpotent (a 2-group).
It follows that supersolubility does not meet requirement (E.1); and the same
is true of the property of having a nilpotent commutator subgroup. Every
pair of elements generates a supersoluble subgroup; and so it follows that
property (L.2) is satisfied neither by supersolubility nor by the property of
having a nilpotent commutator subgroup.

BIBLIOGRAPHY

REINHOLD BAER
1. Nilgruppen, Math. Zeit., vol. 62 (1955), pp. 402-437.

S. A. UNICHIN
1. Sur les p-propridts des groupes, C. R. (Doklady) Acad. Sci. URSS (NS), vol. 55

(1947), pp. 477-480.
A. P. DIETZMANN

1. On an extension of Sylow’s Theorem, Ann: of Math., vol. 48 (1947), pp. 137-146.
PIt. HALL

1. Theorems like Sylow’s, Proc. London Math. Soc., vol. 6 (1956), pp. 286-304.
PIt. HALL AND G. HIGMAN

1. On the p-length of p-soluble groups and reduction theorems for Burnside’s problem,
Proc. London Math. Soc., vol. 6 (1956), pp. 1-42.

B. IIuPPERT
1. Norlmalteiler und maximale Untergruppen endlicher Gruppen, Math. Zeit., vol.

60 (1954), pp. 409-434.
N. IT6

1. On II-structures of finite groups, TShoku Math. J., vol. 4 (1952), pp. 172-177.
K. IWASAWA

1. ber die Strultur der endlichen Gruppen, deren echte Untergruppen sgimtlich nilpo-
tent sind, Proc. Phys.-Math. Soc., Japan, vol. 23 (1941), pp. 1-4.

O. OaE
1. Contributions to the theory of groups of finite order, Duke Math. J., vol. 5 (1939),

pp. 431---450.
O. SCHMIDT

1. ber Gruppen, deren sgimtliche Teiler spezielle Gruppen sind, Rec. Math. Moscou
[Mat. Sbornik], vol. 31 (1922), pp. 366-372.

W. SPECItT
1. Gruppentheorie, Berlin-GSttingen-Heidelberg, 1956.

G. ZAPPA
1. Sui gruppe di Hirsch supersolubili, Rend. Sere. Mat. Univ. Padova, vol. 12 (1941),

pp. 1-11 and 62-80.
H. ZASSENHAUS

1. Lehrbuch der Gruppentheorie I, Leipzig and Berlin, 1937.

UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS

DIE UNIVERSIT)T

FRANKFURT AM. ([AIN GERMANY


