
ON MATRIX CLASSES CORRESPONDING TO AN IDEAL
AND ITS INVERSE

BY OLGA TAUSSK

1. It is known (Latimer and MacDuffee [1], Taussky [2], Zassenhaus [3],
Reiner [4]), that there is a 1-1 correspondence between classes of n X n matrices
A of rational integers and ideal classes. The matrix A is assumed to be a
zero of an irreducible polynomial f(x) of degree n with rational integral co-
efficients and first coefficient 1. The class associated with A consists of all
matrices S-1AS where S runs through all unimodular matrices with rational
integral coefficients. Let a be an algebraic number root of f(x) O. Then
the 1-1 correspondence between the matrix classes and the ideal classes may
be described as follows" If (al, a,) is a modular basis for an ideal a in
the ring generated by a and a(al, a)’ A(al, n)’, then the ideal
class determined by corresponds to the matrix class determined by A. In

form an integral basiswhat follows we assume that the numbers 1, , ,
in the field R(a).

It was further shown (Taussky [5], [6]) that for quadratic fields the matrix
class generated by the transpose of A corresponds to. the inverse class. It is
now shown that this is always true. This fact is established in two different
ways, once directly, secondly by using a known lemma (Hasse [7], pp. 327-
328). Both proofs make use of the so-called complementary ideal (see
Dedekind [8], pp. 374-376; see also Hecke [9], pp. 131-133).

It is easily seen directly that both the companion matrix C of f(x) nd its
transpose correspond to the principal class in R(a). Hence

C’ S-CS
where S is unimodular. The matrix S can be constructed explicitly.

It is further shown that the matrix classes defined by unimodular matrices
S with S 1 coincide with the classes defined by St =t= 1 if and only if
he field has a unit e with norm -1.

In [5], [6] the matrix classes which correspond to ideal classes of order 2
in a quadratic field were studied. The transpose of a matrix in such a class
belongs to the same class. It is now shown that such a class contains a sym-
metric matrix if the fundamental unit e has norm -1. This can also
be regarded as a special case of a theorem proved by Faddeev [10] from a dif-
ferent point of view.

THEOREM 1. Let the matrix A correspond to the ideal class determined
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by the ideal (0/1, 0/,) and let the transpose A’ correspond to the ideal
b (1, n). Then belongs to the inverse class of .

First proof. We first prove that the numbers/ are proportional to a set of
numbers /i in the same field such that trace (0/ ’k) tk. This implies (see
[9]) that the ideal (/1, ’,) 1/ab where b is the so-called different ideal
of the field. Since 1, 0/, ..., 0/ form an integral basis b 1. Hence

a-1 follows.
In order to find the numbers ,, denote the conjugates of 0/ 0/1) by

() ()
0/ and the matrix (0/) by A, further the (i,/) cofactor of A by A.
The numbers 0/1, 0/ form an eigenvector of A with respect to 0/. It

is known that an eigenvector is orthogonal to those eigenvectors of A’ which
do not correspond to 0/. Similarly (1, n) forms an eigenvector of A’
orthogonal to the eigenvectors of A which do not correspond to 0/. Hence

() 0, i 2, ...,n.1 0/1 + 2 0/2
(i) + + n 0/(i)

From this it follows that the two sequences 1, n and , A/I A I,
i 1, --., n, are proportional. It can be shown that the numbers / lie in
the original field R(a). For, they are invariant under the permutations of the
Galois group which leave that field invariant. For, such a permutation of the
Galois group will only alter AI and A by the same factor -+-1 which cancels
out. For the conjugates of ,i we have

) Ak/lA[, i= 1,...,n, k 1,...,n

since the rows of A consist of the conjugates of the rows of A and since a
possible permutation will affect A and AI simultaneously.
We therefore have

trace (0/i) 0/)() E (>h //lJ =.
Second proof. We use the following lemma (see [7])-

LEMMA. Let A (a()) as before. Then A A’- is again of the form
((()), and the numbers & form a basis of the ideal 1/ab.

From the definition of the correspondence we have

This implies

A

A-AA
(2)

i= 1, ...,n.
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where the right hand matrix is a diagonal matrix.
both sides we have

Taking the transpose of

fl
(1)

(2)
O/ .

O
(n)

Hence, in virtue of the lemma, the ideal which corresponds to A’ is equivalent
to 1/b.

THEOREM 2. The companion matrix of f(x) and its transpose both correspond
to the principal class in R(a).

Proof. This follows immediately from Theorem 1. However, a more
elementary direct proof can be given. This proof can also be used to give an
elementary demonstration for the fact that b 1 in our case. Let f(x)
a0 -t- al x q- q- a_l xn-1 q_ x. The companion matrix is

0 1 0 0 0
0 0 1 0 0

0 0 0 0 1
--a0 --al --a2

It has the eigenvalue a with corresponding eigenvector (1, a,..., oln-1).
It is also easily checked that C’ has as eigenvector corresponding to a the
vector

(Orn-1 -" a_l a
’-2 -- -t- al, a

n-2 - a_ a
n-3 -{- -- a2, a -t- an-l,

which is obtained from (1, a, a"-1) by a unimodular substitution.

3. For ideal classes the concept of class division in the "large sense" and
class division in the "narrow sense" is used. Similarly, but in a weaker sense,
we have two possibilities for the definition of matrix class, one by assuming
S q-1, the other by assuming that S 4-1. The following theorem

shows when the two definitions coincide.

THEOREM 3. The two definitions of matrix class coincide if and only if the

field R(a) contains a unit e of norm e -1.

Proof. We first establish two lemmas.

LEMMA 1. Let A and B be n X n matrices with rational integral eoedcients
which commute, and let the characteristic polynomial of A be an irreducible poly-
nomial. Then B is a polynomial in A with rational coedcients.

Proof. That B is a polynomial in A follows from the fact that the charac-
teristic roots of A are different, see e.g. [11]. This polynomial can be chosen of
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degree <n. In order to prove that the coefficients are rational we use the
fact that a pair of commutative matrices have a common eigenvector (see
e.g. [12]). Let x be this vector, and a,/ the corresponding eigenvalues. We
then have

Ax ax, Bx x.
Since the vector x can be chosen in the field R(a), generated by a, the number

also lies in R(a). Hence is a polynomial in a of degree <n with rational
coefficients which are uniquely determined. It must coincide with the above
polynomial.
From the proof of lemma 1 we obtain immediately the following other

lemma:

LEMMA 2. Let A and B be matrices with rational integral coecients which
commute. Let the characteristic polynomial of A be an irreducible polynomial
f(x) whose zero a forms with its powers an integral basis in the ring of algebraic
integers in R(oO. Then B is a polynomial in A with rational integral coecients.
We now return to the proof of Theorem 3. Assume that the two definitions

coincide. Then to a given matrix S with S I= -1 there must exist a
matrix T with T 1 such that S-1AS T-1A T. This implies

TS-1AST-I= A,

i.e. there exists a matrix X ST-1 with rational integral elements and de-
terminant -1 which commutes with A. Since A has distinct characteristic
roots, X is a polynomial in A, p(A). By Lemmas 1 and 2 the coefficients of
this polynomial are rational integers. Since the eigenvalues of p(A) are
p(a), it follows that the polynomial p(a) is a unit e in R(a) of norm e -1.

Conversely, if there is such a unit in R(a), then it is a polynomial in a with
integral coefficients. The corresponding polynomial in A is a matrix Y which
commutes with A and has determinant 1. If then S is a unimodular matrix
with IS -1, then

S-1AS S-Y-1A YS,
hence

S-1AS T-1AT
where T YS and[ T 1.

4. If the ideal class is of order 2, the transposed matrix lies in the same class
as the original matrix. In some cases the matrix class which corresponds to an
ideal class of order 2 can even contain a symmetric matrix.

THEOREM 4. Let m be a square free positive integer. Let the fundamental
unit of the field R(-) be of norm -1. Then every class of matrices which
corresponds to an ideal class of order 2 in this field contains a symmetric matrix.

Proof. Let S-1AS be a matrix class which corresponds to an ideal class of
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order 2, and let T-1AT A’. In [5] it was shown that the class S-IAS con-
tains a symmetric matrix if T can be chosen of the form XX’ where X is again
a matrix of integers. This is certainly the case if T 1 since in this case
T can also be assumed to be positive definite, and since it is known that a
positive definite unimodular 2 X 2 matrix is of the form XX’. Theorem 4
then follows from Theorem 3.
Remark. S. Chowla communicated to me the following simple proof for the

fact that a positive definite 2 X 2 matrix of integers ( bc) withac-b=i
can bewrittenintheform( flS)( )wherea, tS,%tiareintegers. As-

sume also that a/t t’ 1. Factorize b d- i into its prime factors in the
Gaussiau field. Let , -4- tii be the product of those prime factors of c (with
repetition) which occur in b d- i. Let a i be the product of the remaining
factors of b + i. Then

b+ (-i)(+),
hence
(1)

(u)

b

1

Since b -t- i is not divisible by a rational prime, -t- iti cannot be divisible by
a rational prime. This implies that -t-lc. This again implies that
,2 z7 ti2 c, for

norm (b + i) b -- 1 ac

and -t- i is the largest common divisor of b + i and c. Hence

(3) a

(4) c 2 -t- ti2.

The relations (1), (2), (3), (4) imply that
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