
ON A CLASS OF LINEAR DIFFERENTIAL EQUATIONS
WITH PERIODIC COEFFICIENTS

BY JACK K. HALE
Consider the system of linear differential equations

(1) y" - A()y (t, )y + (t, )y’ (’ d/dt)

where h is a rel parameter, y (y,-.., y), A() diag (, ..., a),
and are n X n mtrices whose elements are rel, periodic functions of of

period T 2/, are L-integrble in [0, T], are analytic in and have mean
value zero. Further, suppose that each a(), j 1, 2, n is a real posi-
tive analytic function of with

(0) aa(0), (rood i), j h, j, h 1, 2, ..-, n.

Systems of type (1) for small hve recently been extensively investigated
by a method which hs been successively developed and modified by L.
Cesari, R. A. Gambill and J. K. Hale for both linear [1, 4, 5, 6, 9] and weakly
nonlinear differential systems [7, 10]. The aim of the present pper is to
prove a theorem, concerning the boundedness of the AC (absolutely con-

tinuous) solutions of (1), which contains s prticular cse one of the various
theorems proved in [1] and [4]. Applying the methods of [1], we prove the
following:

T.OM.

( (11

where are matrices with and of dimension X , and if (a) 1,
: . are even in t, () are odd in t, then, for i] suciently
small, all the AC solutions of (1) are bounded in (-, + ).

For identically zero, and A independent of X, and each element of an
even function of having mean value zero and possessing absolutely convergent
Fourier series, this theorem was first proved by L. Cesari [1] and then extended
by the author [9] to L-integrable functions. Using the techniques in [1],
R. A. Gsmbill [4] extended the theorem of Cesari to the case where is odd in t.
We shall prove the above theorem by showing that there is a fundamental

system of AC solutions of (1.) which re bounded for all values of t. Further-
more, we shall see that each solution y of the fundamental system so obtained
has the following property: if the first components of y are even (or odd),
then the last n components re odd (or even).

If we make the transformation of variables

1 (z:_ z), yi ( i_1 z) j 1, 2, n,(2)
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then system (1) is transformed into the first order system

z. -iz-= +, z_+ -z

j 1,2,...,n.

Since we re looking for a fundamental system of solutions we shll write this
in mtrix form

(4) Z’ A*Z + X*Z,

where Z ((z)) is an n n matrix, A* dig (z, z), z_
iz, z -iz and * is a 2n 2n matrix.
By considering n auxiliary equation of (4),

(5) Z’ B*Z + X*Z,

transforming it into an integral equation, and applying a convenient modifica-
tion of successive pproximations, we will obtain AC solutions of the equation

(6) Z’ (B* XD)Z + X*Z,

where D is a constant matrix which depends on B*, * nd h. Then, by de-
termining B* such that

(7) B*- XD A*,

the obtained solutions of (6) become.solutions of (4).
In the following, we shall let C denote the fmily of ll functions which

are finite sums of functions of the form f(t)= e’t(t),
where a is ny complex number nd (t) is ny complex-va.lued function of the
real vriable t, periodic of period T 2/, L-integrable in [0, T]. If
hs a Fourier series, (t) =_cet, then we shall denote the series

as the series ssocited with f(t). Moreover, we shall denote by mean alue
m[f] of f(t) the number m[f] 0 if in + a

a 0 for some n. It is known [8] that if f(t) e C and m[f] O, then there
is one nd only one primitive of f(t), sy F(t), which belongs to C and such
that m[F] O.
Put B* dig (p, ..., Pn), where

p_ ir, p --ir, j 1, 2, n,

each r is real number, and p p (mod i), i j, i, j 1, 2, 2n.
If we put

e*t dig (e’t, e’t), X() diag (aet, ae’, a,e’),
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where each at is a nonzero complex number, then any solution of the equation

(9) Z(t) X() + he’*t f e-"",*(a, ))Z(a) da
J

is an AC solution of (5). Let

(10) Z() X() + XX() + + XX(),
where each X(i) is, in general, a function of h, and define a matrix D(r) by

(11) aDtr) m[e-B*td2*Z("-l)], r 1, 2, 3,

where 0 diag (al, 32).
We now define the method of successive approximations as follows"

Z() X) diag (al d’it a:, d’2’t)
(12) lZ(.)=x(O)/,e"fe-’*.(’)Z’-)d (mod -1h ),m= 1,2,...,

where

(13) (m) (i), Erm__ kr-ln(r) m 1,2, ...,
and the integrations are performed so as to obtain the unique primitive of
mean value zero. The symbol (rood hm-l) denotes that the function Z
contains only the terms in ., j 0, 1, m, of the expression on the right.
If we replace Z) in (12) by (10) and equate coefficients of powers of h, we
obtain

(X() diag (a. e’lt ,’’" a:,. e’’t),

(14) X(’) eB*t f (D()x(’-) + + D(m)X())] da,

m-- 1,2,....

By defining the method in this manner, it is clear, since the p are two by two
incongruent modulo oi, that D(r) diag (d) d(r), d:,n), the integrand
belongs to the class C of functions and is of mean value zero; consequently,
there is a unique primitive of mean value zero. Furthermore, if X(m)=

(X(m)( . )) it is clear that

(15) x(). e’p. (t), j 1, 2, -..,2n, h 1, 2, ...,2n,

where each p) is periodic of period 2/o. This method of successive approxi-
mations is exactly the same as the one defined by L. Cesari [1] except for the
congruence modulo )m+ (see also [4]). The proof of the convergence of the
method to a solution of an equation of the form (6) may be supplied in the
same way as described in [1] or [9].
We shall first show that for a proper choice of the constants al, a
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rl(r) (r) (r)_.the numbers .. are such that dh-1,2-i ah, (-- is the complex conjugate),
h 1, 2, -.., n, r 1, 2, ..., for every system of equations of the form
(9). Under the conditions of the theorem and some additional restrictions on

al, ,a, we shall show that z(r) -(%- h 1, 2, n,Cb2h--l,2h--1 (2h,za
r 1, 2, -... Consequently, the system of 2n equations (7) reduces to
the n equations

h 1,2, ,n,

where each d-l,h_ d._,_., h 1, 2, n, is purely
imagiaary. From the implicit function theorem, there exist real numbers
r,, r analytic in }, for h sufficiently small satisfying the above system
of equations. Consequently, there will be a solution of (4) with components
z.h of the form ^ x. (t), where .h (t) is given by (15). We shall then
show that this solution leads to a fundamental system of bounded rel AC
solutions of (1) and, thus, the theorem will be proved.

In order to prove the following two lemmas, we need to rewrite (14) in terms
of the components of the matrix X() as follows"

(16)

(m)
X2j--1 ,q

LEMMA ]. If we apply the preceding algorithm to system (9) with a2_1 b,
a, - j 1, 2, n, then

-(’)--X2],2n ],2h--1 2]--1,2h $2h--1,2h--1

forr- O, 1,2, ...,h 1,2, ...,n,j- 1,2, ...,n.
(r) (r)Proof. We shall first prove by induction that x.-1,2_ ., and

r). =(r)x.._ --x_i. for all r, j, h. The assertion is clearly true for r 0 by
our choice of X(). Assume the assertion true for r 0, 1, m 1 and
all j, h. From the definition of* in (4) and relation (11), we have
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b d),2h_l )p-1m e_ _, 1 x( x()

(x ,_
(17)

+ (z ,,) r 1,

(r)Therefore, from our assumption on the x and the fact that
and the r are real numbers, we have

(18) a_,_ ,, r 1, 2, m, h 1, 2, n.

Now, if we use (18) and our assumption on the , we see easily from (16)
() () () () and the induction on the x()that 2i--1,2h-1 --2],2h 2],2h--1 --&2/--1,2h ]h

is completed. Finally, (18) holds for all r and the lemma is proved.

LEMMA 2. U and satisfy conditions () and () of the theorem and

a_ b ic, a -5 ic,, s 1, 2,

where c c are nonzero real numbers, then

Xr) (r) [t_,_( t) Xu_,(-t) x2u,2jk ], U 1 2,_(t),

X
(r) (r) (r) (r)_l,_(-t) x,:(t), x_,(-t) x,_(t),

v + 1, .-.,n, j 1,2, ,n,

and

property.
for r 0.

d(r),_,_ ,, r 0, 1,2, ..., h 1,2, ...,n.

We shall first prove by induction that the h satisfy the above
By our choice of the numbers a, we see that the assertion is true
Assume the assertion true for r 0, 1, m 1. Let

q)(t) ()(t)[x_i,_(t) + i_(t)],X2k,

i (t) (t)tx_,(t) + , ,
(p) x(p)(t) (t)x_,_(t) ,_l(t)],

T(p) x() It(t) (t) x-, ,(t)].
(r)Then, from our assumption regarding the , we have

() c() T() for h < <,, (-t) (t), u, n,,, .,, (-t) ,, (t),
(p) () T(), (-t) -,, (t), Z, (-t) , (t), for u < h <= n, =< n.
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Therefore, since m[f(-t)] m[f(t)], we anay replace by -t in the first part
of (17) to obtain

(r)_ d2s 8 1, 2,

bt d t2t,2t n.t-l,2t-1 t + 1,

Since bs ics, s 1, 2, u, and bt ct t + 1, n, where
cl, cn are nonzero real numbers, we have

-’(). () h 1, 2, n, r- 1 2, m.(19) a_,_l -d.,

If f(t) e C, m[.f] 0 and F(t) e C is the unique primitive of f of mean
value zero, then it is clear that F(-t) is equal to the negative of the primitive
of f(-t) of mean value zero. Consequently, if we use (19) and the above

o(r) (r) (r) r(r)properties of the functions k, k, ., ., then it is easily shown that
,(m) x(m)X2u,2(t) 2u-l,(-t) x2u--1,2 u,-(t),

u 1,2,...,, j 1,2,..., n,

--x,_(t),,(t) _,(-t)

v u + 1,..-,n, j 1,2,...,n,
(r)and the induction on the x. is completed. Consequently, formula (19)

holds for all r and the lemma is proved.
Thus, from the remarks preceding Lemma 1, it remains only to show that

the above solution of (4) leads to a fundamental system of bounded real AC
solutions of (1). This is clearly the case since the solution of (4) constructed
in the above manner is a fundamental system of AC solutions and it is oh-
viously bounded since the numbers v. are real. However, we wish to go
further and actually show how to obtain, from the solution of (4), a funda-
mental system of real solutions of (1) and discuss the nature of this solution.

Let the solution of (4) be denoted by ((z.)) where

(20) ^ x. (t), j, h 1, 2, 2n,
(m)and x. (t) is defined by (16). Then applying Lemma 1 and the transforma-

tion formulas (2), we see that the columns of the n X 2n matrix Y ((y.))
where

1 (z,_ + z._,)1 (z_,_ + z,) + 2-.Y ,2h--1

(2)
y;, 1/2(z._,_ z.,,3 + 1/2(z,_ z_,),

h 1,2,...,n, j= 1,2,...,n

form a fundamental system of real AC solutions of (1).
Lemma 2, we see that

Furthermore, using
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(y,,a_(--t) y._(t), y.(--t) --y.(t), u 1, 2,..., #,

(22) y,2h-l(--t) --yv,2h-(t), yv,2(--t) y,(t),

v + 1,...,n, h 1,2,-.-,n

or each solution of the fundamental system of solutions of (1) is such that if
the first components of y (ylk, yk) are even (or odd), then the last
n t components of yk are odd (or even). R.A. Gambill [6] has given more
detailed expressions for solutions of (1) represented by (21).
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