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EMBEDDINGS BETWEEN OPERATOR-VALUED DYADIC
BMO SPACES

OSCAR BLASCO AND SANDRA POTT

Abstract. We investigate a scale of dyadic operator-valued BMO
spaces, corresponding to the different yet equivalent characteri-
zations of dyadic BMO in the scalar case. In the language of

operator spaces, we investigate different operator space struc-
tures on the scalar dyadic BMO space which arise naturally from

the different characterizations of scalar BMO. We also give sharp

dimensional growth estimates for the sweep of functions and its
bilinear extension in some of those different dyadic BMO spaces.

1. Introduction

Let D denote the collection of dyadic subintervals of the unit circle T, and
let (hI)I∈D, where hI = 1

|I|1/2 (χI+ − χI− ), be the Haar basis of L2(T). For
I ∈ D and φ ∈ L2(T), let φI denote the formal Haar coefficient

∫
I
φ(t)hI dt,

and mIφ = 1
|I|

∫
I
φ(t)dt denote the average of φ over I . We write PI(φ) =∑

J ⊆I φJhJ .
We say that φ ∈ L2(T) belongs to dyadic BMO, written φ ∈ BMOd(T), if

(1) sup
I∈D

(
1

|I|

∫
I

|φ(t) − mIφ|2 dt

)1/2

< ∞.

Using the identity PI(φ) = (φ − mIφ)χI , this can also be written as

(2) sup
I∈D

1
|I|1/2

‖PI(φ)‖L2 < ∞,
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or

(3) sup
I∈D

1
|I|

∑
J ∈D,J ⊆I

|φJ |2 < ∞.

Due to John–Nirenberg’s lemma, we have, for 0 < p < ∞, that φ ∈ BMOd(T)
if and only if

(4) sup
I∈D

(
1

|I|

∫
I

|φ(t) − mIφ|p dt

)1/p

= sup
I∈D

1
|I|1/p

‖PI(φ)‖Lp < ∞.

It is well known that the space BMOd(T) has the following equivalent
formulation in terms of boundedness of dyadic paraproducts. The map

(5) πφ : L2(T) → L2(T), f =
∑
I∈D

fIhI �→
∑
I∈D

φI(mIf)hI

defines a bounded linear operator on L2(T), if and only if φ ∈ BMOd(T).
For real-valued functions, we can also replace the boundedness of the dyadic

paraproduct πφ by the boundedness of its adjoint operator

(6) Δφ : L2(T) → L2(T), f =
∑
I∈D

fIhI �→
∑
I∈D

φIfI
χI

|I| .

Another equivalent formulation comes from the duality

(7) BMOd(T) = (H1
d(T))∗,

where the dyadic Hardy space H1
d(T) consists of those functions φ ∈ L1(T)

for which the dyadic square function Sφ = (
∑

I∈D |φI |2 χI

|I| )
1/2 is also in L1(T).

Let us recall that H1
d(T) can also be described in terms of dyadic atoms. That

is, H1
d(T) consists of functions φ =

∑
k∈N

λkak, λk ∈ C,
∑

k∈N
|λk | < ∞, where

the ak are dyadic atoms, i.e., supp(ak) ⊂ Ik for some Ik ∈ D,
∫

Ik
ak(t)dt = 0,

and ‖ak ‖ ∞ ≤ 1
|Ik | . The reader is referred to [M] or to [G] for standard results

about H1
d and BMOd.

Let
Sφ = (Sφ)2 =

∑
I∈D

|φI |2 χI

|I|
denote the sweep of the function φ. Using John–Nirenberg’s lemma, one easily
verifies the well-known fact that

(8) If φ ∈ BMOd(T) then Sφ ∈ BMOd(T).

The aim of this paper is twofold. First, it is to investigate the spaces of
operator-valued BMO functions corresponding to characterizations (1)–(7).
In the operator-valued case, these characterizations are in general no longer
equivalent. In the language of operator spaces, we investigate the different
operator space structures on the scalar space BMOd which arise naturally
from the different yet equivalent characterizations of BMOd. The reader is
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referred to [B4], [BP1], [BP2], [PS], [PSm] for some recent results on dyadic
BMO and Besov spaces connected to the ones in this paper. The second aim
is to give sharp dimensional estimate for the operator sweep and its bilinear
extension, of which more will be said below, in these operator BMOd norms.

We require some further notation for the operator-valued case. Let H
be a separable, finite or infinite-dimensional Hilbert space. Let F00 denote
the subspace of L(H)-valued functions on T with finite formal Haar expan-
sion. Given e, f ∈ H and B ∈ L2(T, L(H)), we denote by Be the function
in L2(T, H) defined by Be(t) = B(t)(e) and by Be,f the function in L2(T)
defined by Be,f (t) = 〈B(t)(e), f 〉. As in the scalar case, let BI denote the
formal Haar coefficients

∫
I
B(t)hI dt, and mIB = 1

|I|
∫

I
B(t)dt denote the av-

erage of B over I for any I ∈ D. Observe that for BI and mIB to be well-
defined operators, we shall be assuming that the L(H)-valued function B
is weak∗-integrable. That means, using the duality L(H) = (H ⊗̂ H)∗, that
〈B(·)(e), f 〉 ∈ L1(T) for e, f ∈ H, and for any measurable set A, there exist
BA ∈ L(H) such that 〈BA(e), f 〉 = 〈

∫
A

B(t)(e)dt, f 〉 for e, f ∈ H.
We denote by BMOd(T, H) the space of Bochner integrable H-valued func-

tions b : T → H such that

(9) ‖b‖BMOd = sup
I∈D

(
1

|I|

∫
I

‖b(t) − mIb‖2 dt

)1/2

< ∞

and by wBMOd(T, H) the space of Pettis integrable H-valued functions b :
T → H such that

(10) ‖b‖wBMOd = sup
I∈D,e∈H,‖e‖=1

(
1

|I|

∫
I

| 〈b(t) − mIb, e〉 |2 dt

)1/2

< ∞.

In the operator-valued case, we define the following notions corresponding
to the previous formulations. We denote by BMOd

norm(T, L(H)) the space of
Bochner integrable L(H)-valued functions B such that

(11) ‖B‖BMOd
norm

= sup
I∈D

(
1

|I|

∫
I

‖B(t) − mIB‖2 dt

)1/2

< ∞,

by SBMOd(T, L(H)) the space of L(H)-valued functions B such that Be ∈
BMOd(T, H) for all e ∈ H and

(12) ‖B‖SBMOd = sup
I∈D,e∈H,‖e‖=1

(
1

|I|

∫
I

∥∥(
B(t) − mIB

)
e
∥∥2

dt

)1/2

< ∞,

and, finally, by WBMOd(T, L(H)) the space of weak∗-integrable L(H)-valued
functions B such that Be,f ∈ BMOd for all e, f ∈ H and

‖B‖WBMOd = sup
I∈D,‖e‖=‖f ‖=1

(
1

|I|

∫
I

∣∣〈(B(t) − mIB
)
e, f

〉∣∣2 dt

)1/2

< ∞,(13)
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or, equivalently, such that

‖B‖WBMOd = sup
e∈H,‖e‖=1

‖Be‖wBMOd(T,H) = sup
A∈S1,‖A‖1≤1

‖〈B,A〉 ‖BMOd(T) < ∞.

Here, S1 denotes the ideal of trace class operators in L(H), and 〈B,A〉 stands
for the scalar-valued function given by 〈B,A〉(t) = trace(B(t)A∗).

The space BMOd
Carl(T, L(H)) is the space of weak∗-integrable operator-

valued functions for which

(14) ‖B‖BMOd
Carl

= sup
I∈D

(
1

|I|
∑

J ∈D,J ⊆I

‖BJ ‖2

)1/2

< ∞.

We would like to point out that while B belongs to one of the spaces
BMOd

norm(T, L(H)), WBMOd(T, L(H))) or B ∈ BMOd
Carl(T, L(H)) if and only

if B∗ does, this is not the case for the space SBMOd(T, L(H)). This leads to
the following notion (see [GPTV], [Pet], [PXu]): We say that B ∈ BMOd

so(T,

L(H)), if B and B∗ belong to SBMOd(T, L(H)). We define

(15) ‖B‖BMOd
so

= ‖B‖SBMOd + ‖B∗ ‖SBMOd .

We now define another operator-valued BMO space, using the notion of
Haar multipliers.

A sequence (ΦI)I∈D, ΦI ∈ L2(I, L(H)) for all I ∈ D, is said to be an
operator-valued Haar multiplier (see [Per], [BP1]), if there exists C > 0 such
that∥∥∥∥∑

I∈D
ΦI(fI)hI

∥∥∥∥
L2(T,H)

≤ C

(∑
I∈D

‖fI ‖2

)1/2

for all (fI)I∈D ∈ l2(D, H).

We write ‖(ΦI)‖mult for the norm of the corresponding operator on L2(T, H).
Letting again as in the scalar-valued case PIB =

∑
J ⊆I hJBJ , we denote the

space of those weak∗-integrable L(H)-valued functions for which (PIB)I∈D
defines a bounded operator-valued Haar multiplier on L2(T, H) by
BMOmult(T, L(H)) and write

(16) ‖B‖BMOmult = ‖(PIB)I∈D ‖mult.

We shall use the notation ΛB(f) =
∑

I∈D(PIB)(fI)hI .
Let us mention that there is a further BMO space, defined in terms of

paraproducts, which is very much connected with BMOmult(T, L(H)) and was
studied in detail in [BP2]. Operator-valued paraproducts are of particular in-
terest, because they can be seen as dyadic versions of vector Hankel operators
or of vector Carleson embeddings (see [NPiTV]), which are important in the
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real and complex analysis of matrix valued functions and its applications in
the theory of infinite-dimensional linear systems (see e.g., [JPa], [JPaP]).

Let B ∈ F00. We define the dyadic operator-valued paraproduct with sym-
bol B,

πB : L2(T, H) → L2(T, H), f =
∑
I∈D

fIhI �→
∑
I∈D

BI(mIf)hI ,

and

ΔB : L2(T, H) → L2(T, H), f =
∑
I∈D

fIhI �→
∑
I∈D

BI(fI)
χI

|I| .

It is easily seen that (πB)∗ = ΔB∗ .
We denote by BMOpara(T, L(H)) the space of weak∗-integrable operator-

valued functions for which ‖πB ‖ < ∞ and write

(17) ‖B‖BMOpara = ‖πB ‖.

We refer the reader to [B4], [BP2] and [Me1], [Me2] for results on this space.
It is elementary to see that

(18) ΛB(f) =
∑
I∈D

BI(mIf)hI +
∑
I∈D

BI(fI)
χI

|I| = πBf + ΔBf.

Hence, ΛB = πB + ΔB and (ΛB)∗ = ΛB∗ . This shows that ‖B‖BMOmult =
‖B∗ ‖BMOmult .

Let us finally denote by BMOspara(T, L(H)) the space of symbols B such
that πB and πB∗ are bounded operators, and define

(19) ‖B‖BMOspara = ‖πB ‖ + ‖πB∗ ‖.

Since ΔB = π∗
B∗ , one concludes that BMOspara(T, L(H)) ⊆ BMOmult(T,

L(H)).
We write ≈ for equivalence of norms up to a constant (independent of the

dimension of the Hilbert space H, if this appears), and similarly �,� for the
corresponding one-sided estimates up to a constant.

Recall that for a given Banach space (X, ‖ · ‖), a family of norms (Mn(X),
‖ · ‖n) on the spaces Mn(X) of X-valued n × n matrices defines an operator
space structure on X , if ‖ · ‖1 ≈ ‖ · ‖,

(M1) ‖A ⊕ B‖n+m = max{ ‖A‖n, ‖B‖m} for A ∈ Mn(X), B ∈ Mm(X),
(M2) ‖αAβ‖m ≤ ‖α‖Mn,m(C)‖A‖n‖β‖Mm,n(C) for all A ∈ Mn(X) and all scalar

matrices α ∈ Mn,m(C), β ∈ Mm,n(C)

(see e.g., [ER]). One verifies easily that all the BMOd-norms on L(H)-valued
functions defined above, except BMOd

norm and BMOd
Carl, define operator space

structures on BMOd(T) when taken for n-dimensional H, n ∈ N.
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The aim of the paper is to show the following strict inclusions for infinite-
dimensional H:

BMOd
norm(T, L(H)) � BMOmult(T, L(H)) � BMOd

so(T, L(H))(20)

� WBMOd(T, L(H))

and

(21) BMOd
Carl(T, L(H)) � BMOspara(T, L(H)) � BMOmult(T, L(H)).

This means that the corresponding inclusions of operator spaces over
BMOd(T), where they apply, are completely bounded, but not completely
isomorphic (for the notation, see again e.g., [ER]). We will also consider the
preduals for some of the spaces shown. Finally, we will give sharp estimates for
the dimensional growth of the sweep and its bilinear extension on BMOpara,
BMOmult, and BMOd

norm, completing results in [BP2] and [Me2].
The paper is organized as follows. In Section 2, we prove the chains of

strict inclusions (20) and (21). Actually the only nontrivial inclusion to be
shown is BMOd

norm(T, L(H)) ⊂ BMOmult(T, L(H)). For this purpose, we in-
troduce a new Hardy space H1

Λ adapted to the problem, and then the result
can be shown from an estimate on the dual side. The remaining inclusions
are immediate consequences of the definition, and only the counterexamples
showing that none of the spaces are equal need to be found.

The reader is referred to [Me1] for more on the theory of operator-valued
Hardy spaces.

Section 3 deals with dimensional growth properties of the operator sweep
and its bilinear extension. We define the operator sweep for B ∈ F00,

SB =
∑
I∈D

χI

|I| B
∗
I BI ,

and its bilinear extension

Δ[U ∗, V ] =
∑
I∈D

χI

|I| U
∗
I VI (U,V ∈ F00).

These maps are of interest for several reasons. They are closely connected
with the paraproduct and certain bilinear paraproducts, they provide a tool to
understand the dimensional growth in the John–Nirenberg lemma, and they
are useful to understand products of paraproducts and products of certain
other operators (see [BP2], [PSm]).

Considering (8) in the operator valued case, it was shown in [BP2] that

(22) ‖SB ‖BMOd
mult

+ ‖B‖2
SBMOd ≈ ‖B‖2

BMOd
para

.
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Here, we prove the bilinear analogue

(23) ‖Δ[U ∗, V ]‖BMOd
mult

+ sup
I∈D

1
|I|

∥∥∥∥∑
J ⊂I

U ∗
JVJ

∥∥∥∥ ≈ ‖π∗
UπV ‖.

It was also shown in [BP2] that

(24) ‖SB ‖SBMOd ≤ C log(n + 1)‖B‖2
SBMOd

for dim(H) = n, where C is a constant independent of n, and that this estimate
is sharp.

We extend this by proving sharp estimates of ‖SB ‖ and ‖Δ[U ∗, V ]‖ in terms
of ‖B‖, ‖U ‖, ‖V ‖ with respect to the norms in SBMOd, BMOpara, BMOmult,
and BMOd

norm.

2. Strict inclusions

Let us start by stating the following characterizations of SBMO to be used
later on. Some of the equivalences can be found in [GPTV], we give the proof
for the convenience of the reader.

Proposition 2.1. Let B ∈ SBMOd(T, L(H)). Then

‖B‖2
SBMOd = sup

e∈H,‖e‖=1

‖Be‖2
BMOd(T,H)

= sup
I∈D,‖e‖=1

1
|I| ‖PI(Be)‖2

L2(H)

= sup
I∈D

1
|I|

∥∥∥∥ ∑
J ⊆I

B∗
JBJ

∥∥∥∥
= sup

I∈D

∥∥∥∥ 1
|I|

∫
I

(
B(t) − mIB

)∗(
B(t) − mIB

)
dt

∥∥∥∥
= sup

I∈D

∥∥∥∥mI(B∗B) − mI(B∗)mI(B)
∥∥∥∥.

Proof. The two first equalities are obvious from the definition. Now, ob-
serve that ∥∥∥∥ ∑

J ⊆I

B∗
JBJ

∥∥∥∥ = sup
‖e‖=1,‖f ‖=1

∑
J ⊆I

〈BJ(e),BJ(f)〉

= sup
‖e‖=1

∑
J ⊆I

‖BJ(e)‖2 = ‖PI(Be)‖2
L2(H).

The other equalities follow from

‖mI(B∗B) − mI(B∗)mI(B)‖

=
∥∥∥∥ 1

|I|

∫
I

(
B(t) − mIB

)∗(
B(t) − mIB

)
dt

∥∥∥∥
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= sup
e∈H,‖e‖=1

1
|I|

∫
I

〈(
B(t) − mIB

)∗(
B(t) − mIB

)
e, e

〉
dt

= sup
e∈H,‖e‖=1

1
|I|

∫
I

‖PIBe‖2 dt. �

Lemma 2.2. Let B =
∑N

k=1 Bkrk where rk =
∑

|I|=2−k |I|1/2hI denote the
Rademacher functions. Then

‖B‖SBMOd = sup
‖e‖=1

(
N∑

k=1

‖Bke‖2

)1/2

,(25)

‖B‖BMOso = sup
‖e‖=1

(
N∑

k=1

‖Bke‖2

)1/2

+ sup
‖e‖=1

(
N∑

k=1

‖B∗
ke‖2

)1/2

,(26)

‖B‖WBMOd = sup
‖f ‖=‖e‖=1

(
N∑

k=1

| 〈Bke, f 〉|2
)1/2

.(27)

Proof. This follows from standard Littlewood–Paley theory. �

For x, y ∈ H, we denote by x ⊗ y the rank 1 operator in L(H) given by
(x ⊗ y)(h) = 〈h, y〉x. Clearly, (x ⊗ y)∗ = (y ⊗ x).

Proposition 2.3. Let dim H = ∞. Then

BMOmult � BMOd
so(T, L(H)) � SBMOd(T, L(H)) � WBMOd(T, L(H)).

Proof. Note that if (ΦI)I∈D is a Haar multiplier, then

(28) sup
I∈D,‖e‖=1

|I| −1/2‖ΦI(e)‖L2(T,H) ≤ ‖(ΦI)‖mult.

The first inclusion thus follows from (28) and Proposition 2.1. The other
inclusions are immediate. Let us see that they are strict. It was shown in
[GPTV] that BMOmult(T, L(H)) �= BMOd

so(T, L(H)).
Let (ek) is an orthonormal basis of H and h ∈ H with ‖h‖ = 1. Hence, by

(25), B =
∑∞

k=1 h ⊗ ek rk ∈ SBMOd and B∗ =
∑∞

k=1 ek ⊗ hrk /∈ SBMOd(T,

L(H)). Thus, B ∈ SBMOd(T, L(H)) \ BMOd
so(T, L(H)). Similarly, by (25)

and (27), B ∈ WBMOd(T, L(H)) \ SBMOd(T, L(H)). �

Note that

(29) ΛBf = Bf −
∑
I∈D

(mIB)(fI)hI

which allows to conclude immediately that L∞(T, L(H)) ⊆ BMOmult(T,
L(H)).

Our next objective is to see that BMOd
norm(T, L(H)) � BMOmult(T, L(H)).

For that, we need again some more notation.
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Let S1 denote the ideal of trace class operators on H and recall that S1 =
H ⊗̂ H and (S1)∗ = L(H) with the pairing 〈U, (e ⊗ d)〉 = 〈U(e), d〉.

It is easy to see that the space BMOmult(T, L(H)) can be embedded iso-
metrically into the dual of a certain H1 space of S1 valued functions.

Definition 2.4. Let f, g ∈ L2(T, H). Define

f � g =
∑
I∈D

hI(fI ⊗ mIg + mIf ⊗ gI).

Let H1
Λ(T, S1) be the space of functions f =

∑∞
k=1 λkfk �gk such that fk, gk ∈

L2(T, H), ‖fk ‖2 = ‖gk ‖2 = 1 for all k ∈ N, and
∑∞

k=1 |λk | < ∞.
We endow the space with the norm given by the infimum of

∑∞
k=1 |λk | for

all possible decompositions.

With this notation, B ∈ BMOmult acts on f � g by

〈B,f � g〉 =
∫

T

〈B(t), (f � g)(t)〉 dt = 〈ΛBf, g〉.

By definition of H1
Λ(T, S1), ‖B‖(H1

Λ(T,S1))∗ = ‖ΛB ‖.
We will now define a further H1 space of S1-valued functions. For F ∈

L1(T, S1), define the dyadic Hardy–Littlewood maximal function F ∗ of F in
the usual way,

F ∗(t) = sup
I∈D,t∈I

1
|I|

∫
I

‖F (s)‖S1 ds.

Then let H1
max,d(T, S1) be given by functions F ∈ L1(T, S1) such that F ∗ ∈

L1(T). By a result of Bourgain ([Bou], Th. 12), BMOd
norm embeds continu-

ously into (H1
max,d(T, S1))∗ (see also [B1], [B2]).

Lemma 2.5. H1
Λ(T, S1) ⊆ H1

max,d(T, S1).

Proof. It is sufficient to show that there is a constant C > 0 such that for all
f, g ∈ L2(T, H), f � g ∈ H1

max,d(T, S1), and ‖f � g‖H1
max,d(T,S1) ≤ C‖f ‖2‖g‖2.

One verifies that

f � g =
∑
I∈D

hI(fI ⊗ mIg + mIf ⊗ gI) = f ⊗ g −
∑
I∈D

χI

|I| fI ⊗ gI .

Towards the estimate of the maximal function, let Ek denote the expectation
with respect to the σ-algebra generated by dyadic intervals of length 2−k,

EkF =
∑

I∈D,|I|>2−k

hIFI ,

for each k ∈ N. Then we have

(30) Ek(f � g) = (Ekf) � (Ekg),
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as ∑
I∈D,|I|>2−k

hI(fI ⊗ mIg + mIf ⊗ gI)

=
∑
I∈D

hI

(
(Ekf)I ⊗ mI(Ekg) + mI(Ekf) ⊗ (Ekg)I

)
.

Thus,

(f � g)∗(t) = sup
k∈N

‖Ek(f � g)(t)‖S1

≤ sup
k∈N

‖(Ekf)(t)‖ ‖(Ekg)(t)‖ +
∑
I∈D

χI(t)
|I| ‖fI ‖‖gI ‖

≤ ‖f ∗(t)‖ ‖g∗(t)‖ +
∑
I∈D

χI(t)
|I| ‖fI ‖‖gI ‖,

and
‖(f � g)∗ ‖1 ≤ ‖f ∗ ‖2‖g∗ ‖2 + ‖f ‖2‖g‖2 ≤ C‖f ‖2‖g‖2

by the Cauchy–Schwarz inequality and boundedness of the dyadic Hardy–
Littlewood maximal function on L2(T, H). �

In particular, H1
Λ(T, S1) ⊆ L1(T, S1).

We can now prove our inclusion result.

Theorem 2.6. BMOd
norm(T, L(H)) � BMOmult(T, L(H)).

Proof. The inclusion follows by Lemma 2.5, duality and Bourgain’s result.
To see that the spaces do not coincide, use the fact that BMOd(	∞) �

	∞(BMOd) to find for each N ∈ N functions bk ∈ BMO, k = 1, . . . ,N , such
that sup1≤k≤N ‖bk ‖BMOd ≤ 1, but ‖(bk)k=1,...,N ‖BMOd(T,l∞

N ) ≥ cN , cN →∞ as
N → ∞.

Let (ek)k∈N be an orthonormal basis of H, and consider the operator-
valued function B(t) =

∑N
k=1 bk(t)ek ⊗ ek ∈ L2(T, L(	2)). Clearly, BI =∑N

k=1(bk)Iek ⊗ ek, and for each CN -valued function f =
∑N

k=1 fkek, f1, . . . ,
fN ∈ L2(T), we have

ΛB(f) =
N∑

k=1

Λbk
(fk)ek.

Choosing the fk such that ‖f ‖2
2 =

∑N
k=1 ‖fk ‖2

L2(T) = 1, we find that

‖ΛB(f)‖2
L2(T,�2)

=
N∑

k=1

‖Λbk
(fk)‖2

L2(T) ≤ C

N∑
k=1

‖bk ‖2
BMOd ‖fk ‖2

L2(T) ≤ C,

where C is a constant independent of N . Therefore, ΛB is bounded.
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But since ‖B‖BMOd
norm

= ‖(bk)k=1,...,N ‖BMOd(T,l∞
N ) ≥ cN , it follows that

BMOmult(T) is not continuously embedded in BMOd
norm(T, L(H)). From the

open mapping theorem, we obtain inequality of the spaces. �
The next proposition shows that the space BMOd

Carl belongs to a different
scale than BMOd

norm and BMOmult.

Proposition 2.7. L∞(T, L(H)) � BMOd
Carl(T, L(H)).

Proof. This follows from the result L∞(T, L(H)) � BMOpara in [Me2] (see
Lemma 3.1 below) and the next proposition. We give a simple direct argu-
ment. Choose an orthonormal basis of H indexed by the elements of D, say
(eI)I∈D , and let ΦI = eI ⊗ eI , ΦIh = 〈h, eI 〉eI . Let λI = |I|1/2 for I ∈ D, and
define B =

∑
I∈D hIλIΦI . Then

∑
I∈D ‖BI ‖2 =

∑
I∈D |I| = ∞, so in partic-

ular B /∈ BMOd
Carl(T, L(H)). But the operator function B is diagonal with

uniformly bounded diagonal entry functions φI(t) = 〈B(t)eI , eI 〉 = |I|1/2hI(t),
so B ∈ L∞(L(H)). �

Proposition 2.8.

BMOd
Carl(T, L(H)) � BMOspara(T, L(H)) � BMOmult(T, L(H)).

Proof. The inclusion BMOd
Carl ⊆ BMOspara is easy, since (14) implies that

for B ∈ BMOd
Carl, the BMOd

Carl norm equals the norm of the scalar BMOd

function given by |B| :=
∑

I∈D hI ‖BI ‖. For f ∈ L2(H), let |f | denote the
function given by |f |(t) = ‖f(t)‖. Thus,

‖πBf ‖2
2 =

∑
I∈D

‖BImIf ‖2 ≤
∑
I∈D

(‖BI ‖mI |f |)2 =
∥∥π|B| |f |

∥∥.

The boundedness of πB∗ follows analogously.
To show that BMOd

Carl �= BMOspara, we can use the diagonal operator func-
tion B constructed in Proposition 2.7. There, it is shown that B /∈ BMOd

Carl,
and that the diagonal entry functions φI = 〈BeI , eI 〉 are uniformly bounded.
Since the paraproduct of each scalar-valued L∞ function is bounded, we
see that πB =

⊕
I∈D πφI

is bounded. Similarly, πB∗ is bounded. Thus,
B ∈ BMOspara. It is clear from (18) that BMOspara(T, L(H)) ⊆ BMOmult(T,
L(H)).

Using that L∞(T, L(H)) � BMOspara(T, L(H)) (see [Me2]), one concludes
that BMOspara(T, L(H)) �= BMOmult(T, L(H)). �

3. Sharp dimensional growth of the sweep

We begin with the following lower estimate of the BMOpara norm in terms
of the L∞ norm of certain Mat(C, n × n)-valued functions from [Me2].

Lemma 3.1 (see [Me2], Theorem 1.1). There exists an absolute constant
c > 0 such that for each n ∈ N, there exists a measurable function F : T →
Mat(C, n × n) with ‖F ‖ ∞ ≤ 1 and ‖πF ‖ ≥ c log(n + 1).
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Here are our dimensional estimates of the sweep.

Theorem 3.2. There exists an absolute constant C > 0 such that for each
n ∈ N and each measurable function B : T → Mat(C, n × n),

‖SB ‖BMOpara ≤ C log(n + 1)‖B‖2
BMOpara

,(31)

‖SB ‖BMOmult ≤ C
(
log(n + 1)

)2‖B‖2
BMOmult

,(32)

‖SB ‖BMOd
norm

≤ C
(
log(n + 1)

)2‖B‖2
BMOd

norm
,(33)

and the dimensional estimates are sharp.

Proof. Let B : T → Mat(C, n × n) be measurable. Since ‖SB ‖ ∗ =
limk→∞ ‖S(EkB)‖∗ in all of the above BMO norms (because we are in the
finite-dimensional situation), it suffices to consider the case B ∈ F00.

We start by proving (31). Since

(34) ‖πB ‖ ≤ C ′ log(n + 1)‖B‖BMOd
so

for some absolute constant C ′ > 0 (see [NTV], [K]) and

(35) ‖B‖BMOd
so

≤ ‖B‖BMOmult ,

we have

‖SB ‖BMOpara ≤ C ′ log(n + 1)‖SB ‖BMOmult ≤ C log(n + 1)‖B‖2
BMOpara

by (22).
For the sharpness of the estimate, take F as in Lemma 3.1. Again, ap-

proximating by EkF , we can assume that F ∈ F00. Since each function in
L∞(T,Mat(C, n × n)) is the linear combination of 4 nonnegative-matrix val-
ued functions, the L∞-norm of which is controlled by the norm of the original
function, we can (by replacing c with a smaller constant) assume that F is
a nonnegative matrix-valued function. Each such nonnegative matrix-valued
function F can be written as F = SB with B ∈ F00, for example by choosing
B =

∑
I∈D,|I|=2−k hIBI , where BI = |I|1/2(F I)1/2, F =

∑
I∈D,|I|=2−k χIF

I .
It follows that

‖SB ‖BMOpara ≥ c log(n + 1)‖SB ‖ ∞

≥ c/2 log(n + 1)(‖SB ‖BMOmult + ‖B‖2
BMOd

so
)

� log(n + 1)‖B‖2
BMOpara

again by (22). Here, we use the estimate ‖B‖2
BMOd

so
≤ ‖SB ‖ ∞, which can

easily be obtained by

‖PIBe‖2
2 = ‖SPIBe‖1 ≤ |I| ‖SPIBe‖ ∞ ≤ |I| ‖SPIB ‖ ∞

≤ |I| ‖SB ‖ ∞ for e ∈ H, ‖e‖ = 1.

This proves that (31) is sharp.
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Let us now show (32). Note that by (22) and (34), for B ∈ F00,

‖SB ‖BMOmult � ‖B‖2
BMOpara

≤ C ′2 log(n + 1)2‖B‖2
BMOmult

.

For sharpness, choose B ∈ F00, ‖B‖ ∞ ≤ 1, ‖πB ‖ ≥ c log(n+1) as above, to
obtain

‖SB ‖BMOmult + ‖B‖2
BMOd

so
� ‖B‖2

BMOpara

≥ c2 log(n + 1)2‖B‖2
∞ ≥ c2 log(n + 1)2‖B‖2

BMOmult

and thus
‖SB ‖BMOmult � log(n + 1)2‖B‖2

BMOmult
,

as ‖B‖BMOd
so

≤ ‖B‖BMOmult .
Finally, let us show (33). Again, we can restrict ourselves to the case

B ∈ F00 by an approximation argument. We use the fact that the UMD
constant of Mat(C, n × n) is equivalent to log(n + 1) (see for instance [Pi])
and the representation

SB(t) =
∫

Σ

(TσB)∗(t)(TσB)(t)dσ (B ∈ F00)

(see [BP2], [GPTV]), where Tσ denotes the dyadic martingale transform B �→
TσB =

∑
I∈D σIhIBI , σ = (σI)I∈D ∈ { −1,1} D, and dσ the natural product

probability measure on Σ = { −1,1} D assigning measure 2−n to cylinder sets
of length n, to prove that

‖PISB ‖L1(T,Mat(C,n×n)) = ‖PISPIB ‖L1(T,Mat(C,n×n))

≤ 2‖SPIB ‖
L1

(
T,Mat(C,n×n)

)
�

(
log(n + 1)

)2‖PIB‖2
L2(T,Mat(C,n×n))

≤
(
log(n + 1)

)2|I| ‖B‖2
BMOd

norm
,

which gives the desired inequality.
To prove sharpness, choose B ∈ F00, ‖B‖ ∞ ≤ 1, ‖πB ‖ ≥ c log(n + 1) and

note that by Theorem 2.6,

‖SB ‖BMOd
norm

+ ‖B‖2
BMOd

so
� ‖SB ‖BMOmult + ‖B‖2

BMOd
so

� ‖B‖2
BMOpara

≥ c2 log(n + 1)2‖B‖2
∞

≥ c2 log(n + 1)2‖B‖2
BMOd

norm
.

Since ‖B‖BMOd
so

≤ ‖B‖BMOd
norm

, this implies

‖SB ‖BMOd
norm

� log(n + 1)2‖B‖2
BMOd

norm
. �

We now consider the bilinear extension of the sweep. By [PSm], [BP2]

(36) π∗
UπV = ΛΔ[U ∗,V ] + DU ∗,V (U,V ∈ F00),
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where DU ∗,V is given by DU ∗,V hIe = hI
1

|I|
∑

J ⊂I U ∗
JVJe for I ∈ D, e ∈ H.

Proposition 3.3.

‖π∗
UπV ‖ ≈ ‖Δ[U ∗, V ]‖BMOmult + sup

I∈D

1
|I|

∥∥∥∥∑
J ⊂I

U ∗
JVJ

∥∥∥∥ (U,V ∈ F00).

Proof. Obviously, ‖DU ∗,V ‖ = supI∈D
1

|I| ‖
∑

J ⊂I U ∗
JVJ ‖. Thus, by (36),

‖π∗
UπV ‖ ≤ ‖Δ[U ∗, V ]‖BMOmult + sup

I∈D

1
|I|

∥∥∥∥∑
J ⊂I

U ∗
JVJ

∥∥∥∥.

For the reverse estimate, it suffices to observe that DU ∗,V is the block diagonal
of the operator π∗

UπV with respect to the orthogonal subspaces hI H, I ∈ D,
and therefore ‖DU ∗,V ‖ ≤ ‖π∗

UπV ‖. �

Here are the dimensional estimates of the bilinear map Δ.

Corollary 3.4. There exists an absolute constant C > 0 such that for
each n ∈ N and each pair of measurable functions U,V : T → Mat(C, n × n),

‖Δ[U ∗, V ]‖SBMOd ≤ C log(n + 1)‖U ‖SBMOd ‖V ‖SBMOd ,(37)
‖Δ[U ∗, V ]‖BMOpara ≤ C log(n + 1)‖U ‖BMOpara ‖V ‖BMOpara ,(38)

‖Δ[U ∗, V ]‖BMOmult ≤ C
(
log(n + 1)

)2‖U ‖BMOmult ‖V ‖BMOmult ,(39)

‖Δ[U ∗, V ]‖BMOd
norm

≤ C
(
log(n + 1)

)2‖U ‖BMOd
norm

‖V ‖BMOd
norm

,(40)

and the dimensional estimates are sharp.

Proof. Only the upper bounds need to be shown. For (37), use Proposi-
tion 2.1 to write ‖B‖SBMOd = supI∈D,‖e‖=1 ‖ΛB(hIe)‖ and (36) to estimate

‖Δ[U ∗, V ]‖SBMOd ≤ sup
I∈D,‖e‖=1

‖π∗
UπV hIe‖ + sup

I∈D,‖e‖=1

‖DU ∗,V (hIe)‖.

Now, observe that for e ∈ H, I ∈ D, one has

‖π∗
UπV hIe‖ ≤ ‖U ‖BMOpara ‖V ‖SBMOd ‖e‖

≤ C ′ log(n + 1)‖U ‖SBMOd ‖V ‖SBMOd ‖e‖
by (34). Since DU ∗,V hIe = 1

|I|
∑

J ⊂I U ∗
JVJehI , one obtains

‖DU ∗,V (hIe)‖ = sup
f ∈H,‖f ‖=1

| 〈DU ∗,V (hIe), hIf 〉|

= sup
f ∈H,‖f ‖=1

1
|I|

∣∣∣∣ ∑
J ⊂I

〈VJe,UJf 〉
∣∣∣∣ ≤ ‖Ve‖BMOd(T,H)‖U ‖SBMOd ,

and the proof of (37) if complete.
Using first (34) and (35) and then Proposition 3.3, we obtain (38). In a

similar way, using first Proposition 3.3 and then (34), (35) yields (39).
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Finally, for (40) observe first that for any U,V ∈ F00, e, f ∈ H, t ∈ T,

| 〈Δ[U ∗, V ](t)e, f 〉| =
∣∣∣∣ ∑

I∈D

〈
χI(t)

|I|1/2
VIe,

χI(t)
|I|1/2

UIf

〉∣∣∣∣
≤

(∑
I∈D

∥∥∥∥ χI(t)
|I|1/2

VIe

∥∥∥∥
2)1/2(∑

I∈D

∥∥∥∥ χI(t)
|I|1/2

UIf

∥∥∥∥
2)1/2

= 〈SU (t)e, e〉1/2〈SV (t)f, f 〉1/2 ≤ ‖SU (t)‖1/2‖SV (t)‖1/2

and therefore

(41) ‖Δ[U ∗, V ](t)‖ ≤ ‖SU (t)‖1/2‖SV (t)‖1/2 (t ∈ T).

Now, consider the BMOd
norm norm of Δ[U ∗, V ]. For I ∈ D,

‖PIΔ[U ∗, V ]‖L1(T,Mat(C,n×n))

= ‖PIΔ[PIU
∗, PIV ]‖L1(T,Mat(C,n×n))

≤ 2‖Δ[PIU
∗, PIV ]‖L1(T,Mat(C,n×n))

≤ 2
∥∥‖SPIU (·)‖1/2‖SPIV (·)‖1/2

∥∥
L1(T)

≤ 2‖SPIU ‖1/2
L1(T,Mat(C,n×n))‖SPIV ‖1/2

L1(T,Mat(C,n×n))

≤ 2
(
log(n + 1)

)2‖PIU ‖L2(T,Mat(C,n×n))‖PIU ‖L2(T,Mat(C,n×n))

≤ 2
(
log(n + 1)

)2|I| ‖U ‖BMOd
norm

‖V ‖BMOd
norm

,

where we obtain the third inequality from (41) and the fourth inequality from
the proof of (33). This finishes the proof of (40). �
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