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ARONSSON’S EQUATIONS ON
CARNOT–CARATHÉODORY SPACES

CHANGYOU WANG AND YIFENG YU

Abstract. Let (Rn, dX) be a Carnot–Carathéodory metric space
generated by a family of smooth vector fields {Xi}m

i=1 satisfying

Hörmander’s finite rank condition, and HX = {(x,
∑m

i=1 aiXi(x))|
x ∈ Rn, (ai)

m
i=1 ∈ Rm} be the horizontal tangent bundle gener-

ated by {Xi}m
i=1. Assume that H = H(x,p) ∈ C1(HX) is qua-

siconvex in p-variable. We prove that any absolute minimizer

u ∈ W 1,∞
X (Ω) to F∞(v,Ω) = ess supx∈Ω H(x,Xv(x)) is a viscosity

solution of the Aronsson equation

AX [u] := X(H(x,Xu(x))) · Hp(x,Xu(x)) = 0 in Ω.

1. Introduction

For 1 ≤ m,n, let {Xi}m
i=1 ⊂ C∞(Rn,Rn) be a family of smooth vector fields

satisfying Hörmander’s finite rank condition, i.e., there is an integer r ≥ 1 such
that {Xi}m

i=1 and their commutators up to order r span Rn everywhere. For
x ∈ Rn, let

H(x) = span{X1(x), . . . ,Xm(x)}
be the horizontal tangent space at x. Let

HX = {(x, H(x))|x ∈ Rn}

be the subbundle of the tangent bundle TRn generated by {Xi}m
i=1, called

a horizontal tangent bundle. Endow an inner product on Rn such that
{Xi}m

i=1 be an orthonormal set. Recall that an absolutely continuous curve
ξ : [0, T ] → Rn is a horizontal curve, if there are measurable functions
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ai(t) : [0, T ] → R, 1 ≤ i ≤ m, such that

(1.1)
m∑

i=1

a2
i (t) = 1, ξ′(t) =

m∑
i=1

ai(t)Xi(ξ(t)) for a.e., x ∈ [0, T ].

It is readily seen from (1.1) that t ∈ [0, T ] is the arclength parameter of ξ,
whose length is T . Since {Xi}m

i=1 satisfies Hörmander’s condition, it is well
known (cf. Nagel–Stein–Wainger [NSW]) that there exists at least one hori-
zontal curve joining any pair of points in Rn. Hence, we can introduce the
Carnot–Carathéodory distance (cf. [NSW]):

dX(x, y) = inf{T ≥ 0| ∃ a horizontal curve ξ : [0, T ] → Rn(1.2)
with ξ(0) = x, ξ(T ) = y}

for any x, y ∈ Rn. Moreover, for any compact set K ⊂ Rn, there exists CK > 0
such that

(1.3) C−1
K ‖x − y‖ ≤ dX(x, y) ≤ CK ‖x − y‖ 1

r ∀x, y ∈ K,

where ‖ · ‖ is the Euclidean distance on Rn.
Typical examples of Carnot–Carathéodory metric spaces include (i) the

Euclidean space (Rn, ‖ · ‖) generated by { ∂
∂xi

}n
i=1, and (ii) the Heisenberg

group Hn ≡ Cn × R, the simplest Carnot group of step two, endowed with
the group law:

(z, t) · (z′, t′) =

(
z1 + z′

1, . . . , zn + z′
n, t + t′ + 2Im

(
n∑

i=1

ziz̄′
i

))

∀(z, t), (z′, t′) ∈ Cn × R,

whose Lie algebra h = V1+V2 with V1 = span{Xi, Yi}1≤i≤n and V2 = span{T },
where

Xi =
∂

∂xi
= 2yi

∂

∂t
, Yi =

∂

∂yi
+ 2xi

∂

∂t
, 1 ≤ i ≤ n, T = 4

∂

∂t
.

For any bounded domain Ω ⊂ Rn and u : Ω → R, denote by Xu :=
(X1u, . . . ,Xmu) the horizontal gradient of u. The horizontal Sobolev space,
W 1,∞

X (Ω), is defined by

W 1,∞
X (Ω) :=

{
u : Ω → R

∣∣‖u‖W 1,∞
X (Ω) ≡ ‖u‖L∞(Ω) + ‖Xu‖L∞(Ω) < +∞

}
,

and the horizontal Lipschitz space is defined by

LipX(Ω) :=
{

u : Ω → R
∣∣∣‖u‖LipX(Ω) ≡ sup

x,y∈Ω,x �=y

|u(x) − u(y)|
dX(x, y)

< +∞
}

.

It is known (cf. Garofalo–Nieu [GN], Franchi–Serapioni–Serra [FSS]) that
u ∈ W 1,∞

X (Ω) iff u ∈ LipX(Ω).
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Definition 1.1. For a continuous function H ∈ C(HX), define the L∞-
functional

F∞(v,Ω) = ess supx∈Ω H(x,Xv(x)) ∀v ∈ W 1,∞
X (Ω).

A function u : Ω → R is an absolute minimizer of H if, for any U ⊂⊂ Ω,
u ∈ W 1,∞

X (U) and

(1.4) F∞(u,U) ≤ F∞(v,U) ∀v ∈ W 1,∞
X (U), v = u on ∂U.

Formal calculations yield that an absolute minimizer u : Ω → R of H sat-
isfies the (subelliptic) Aronsson equation:

(1.5) AX [u] :=
m∑

i=1

Xi(H(x,Xu(x))) · Hpi(x,Xu(x)) = 0 in Ω.

Let S m be the set of symmetric m × m matrices, equiped with the usual
order. Note that the Aronsson operator AX : Ω × Rm × S m → R given by

AX(x, p,M) =
m∑

i,j=1

Hpi(x, p)Hpj (x, p)Mij +
m∑

i=1

XiH(x, p)Hpi(x, p)

is degenerately elliptic, i.e., for any (x, p) ∈ Ω × Rm,

(1.6) AX(x, p,M) ≤ AX(x, p,N) ∀M,N ∈ S m, with M ≤ N.

Therefore, we can adapt the notion of viscosity solutions by Crandall–Lions
[CL] (cf. also [CIL]) to define the following definition.

Definition 1.2. A function u ∈ C(Ω) is a viscosity subsolution (or super-
solution, resp.) of (1.5), if for any (x0, φ) ∈ Ω × C2(Ω) such that

0 = (φ − u)(x0) ≤ (or ≥) (φ − u)(x) ∀x ∈ Ω,

then AX [φ](x0) ≥ (or ≤) 0. A function u ∈ C(Ω) is a viscosity solution of
(1.5) if it is both a viscosity subsolution and a viscosity supersolution of (1.5).

Definition 1.3. A function f : Rm → R is quasiconvex if

(1.7) {p ∈ Rm|f(p) ≤ λ} is convex for any λ ∈ R,

or equivalently,

(1.8) f
(
tp + (1 − t)q

)
≤ max{f(p), f(q)} for any p, q ∈ Rm and t ∈ [0,1].

A typical quasiconvex function f , which may not be convex, can be con-
structed by letting f(p) = g ◦ h(p), where g : R → R is a monotone function
and h : Rm → R is a convex function.

The second author has proved in Wang [W] that any absolute minimizer
u : Ω → R of H is a viscosity solution to the Aronsson equation (1.5), provided
that (i) H = H(x, p) ∈ C2(HX) is quasiconvex in p-variable, and (ii) Hp(0,
0) = 0 and H(x, ·) is homogeneous of degree α ≥ 1. See Bieske [B1], [B2]
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and Bieske–Capogna [BC] for earlier works on absolutely minimal horizontally
Lipschitz extensions on Carnot groups.

Since equation (1.5) is defined for H ∈ C1(HX), it is a very natural question
to ask whether the above result by [W] remains true if we weaken H ∈ C1(HX).

In this paper we answer this question affirmatively by proving the following
theorem.

Theorem 1.4. For any family of vector fields {Xi}m
i=1 satisfying Hörman-

der’s finite rank condition, if H = H(x, p) ∈ C1(HX) is quasiconvex in
p-variable for any x ∈ Ω, then any absolute minimizer u : Ω → R is a vis-
cosity solution of the Aronsson equation (1.5).

The study of absolute minimizers was initiated by Aronsson [A1], [A2],
[A3] in dimension one. Jensen established in his seminal paper [J] the equiva-
lence between infinity harmonic functions and absolute minimizing Lipschitz
extensions, and their uniqueness as well. Later, Juutinen [Jp] extended the
main theorem of [J] to Riemannian manifold settings. In the Euclidean set-
ting, Barron–Jensen–Wang [BJW] provided a general study on absolute min-
imizers and established that any absolute minimizer for suitable H(p, z, x) ∈
C2(Rn × R × Ω) is a viscosity solution of the Aronsson equation:

(1.9) Hp(∇u,u,x) · (H(∇u,u,x))x = 0.

Subsequently, Crandall [C] gave a simpler proof of this result of [BJW] under
weaker hypotheses. The techniques employed by [BJW] and [C] rely crucially
on H ∈ C2(Rn × R × Ω), because of the construction of local, C2 solutions
to the Hamilton–Jacobi equation H(∇ψ,ψ,x) = k. Very recently, Crandall–
Wang–Yu [CWY] found a new proof of this theorem even for H ∈ C1(Rn ×R×
Ω). The new observation made by [CWY] is to use global, viscosity solutions
to the Hamilton–Jacobi equation associated with H ∈ C1(Rn × R × Ω) as
comparison functions to absolute minimizers.

Bieske–Capogna [BC] extended the idea of [C] to derive the subelliptic
infinity Laplace equation for an absolute minimizing horizontal Lipschitz ex-
tension on Carnot groups. Wang [W] made a new observation based on [C]
to derive the Aronsson equation for any absolute minimizer of H ∈ C2(HX)
associated with any family of Hörmander’s vector fields. Here, we aim to mod-
ify and extend the observation made in [CWY] to the Carnot–Carathéodory
space (Rn, dX). Roughly speaking, if φ ∈ C2(Ω) is a upper test function for
an absolute minimizer u ∈ W 1,∞

X (Ω), at x0, then we show in Section 3 below
that there exists xr �= x0, such that

φ(xr) − φ(x0)(1.10)
≥ max

{p∈H(x0),H(x0,p)≤H(x0,Xφ(x0))}

〈
p,PH(x0)(xr − x0)

〉
H(x0)

.

Here, PH(x0) : Rn → H(x0) is the orthogonal projection map. Roughly speak-
ing, xr ∈ ∂Br(x0) is a maximal point of u restricted on ∂Br(x0). It can be
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seen from the sections below that the right-hand side of (1.10) is the Finsler
metric function L(x0, xr − x0,H(x0,Xφ(x0))). It turns out that (1.10) is a
crucial ingredient to show that u is a viscosity subsolution of the Aronsson
equation (1.5).

We would like to point out that Crandall–Evans–Gariepy [CEG] has shown
that an absolute minimizing Lipschitz extension can also be characterized by
the comparison principle with cones, which has been subsequently extended by
Gariepy–Wang–Yu [GWY] to absolute minimizers to quasiconvex Hamiltoni-
ans. This characterization for absolute minimizers in term of comparison prin-
ciple with cone type functions has also been obtained for some noneuclidean
spaces including Grushin spaces by [B2], Finsler metric spaces by Champion–
De Pascale [CD], and metric-measure spaces by Juutinen–Shanmugalingam
[JS].

The paper is organized as follows. In Section 2, we establish some pre-
liminary properties of absolute minimizers. In Section 3, we give a proof of
Theorem 1.4.

2. Some preliminary results follow

This section is devoted to some basic facts on absolute minimizer and the
construction of viscosity solutions to Hamilton–Jacobi equation H(x,Xv) = k.

Let dX be the Carnot–Carathéodory distance given by Section 1, and define
subelliptic balls

Br(x0) = {x ∈ Rn|dX(x,x0) < r}, Br(x0) = {y ∈ Rn|dX(x,x0) ≤ r}.

First, we have the following proposition.

Proposition 2.1. Let H = H(x, p) ∈ C(HX) be quasiconvex in p-variable.
Let U ⊂⊂ Ω be a bounded open set.

(a) Suppose (x0, φ) ∈ U × C1(U), and v ∈ LipX(U). If φ touches v at x0

from above, i.e.,

(2.1) 0 = (φ − v)(x0) ≤ (φ − v)(x) ∀x ∈ U

then

(2.2) H(x0,Xφ(x0)) ≤ lim
r↓0

ess supBr(x0) H(x,Xv(x)).

(b) Let u be an absolute minimizer for H in Ω. Assume that x0 ∈ U and
w ∈ LipX(U) satisfy

(2.3) (w − u)(x0) ≤ 0 ≤ (w − u)(x) ∀x ∈ ∂U,

then

(2.4) lim
r↓0

ess supBr(x0) H(x,Xu(x)) ≤ ess supU H(x,Xw(x)).
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Proof. First, observe that by continuity of H , we have

(2.5) lim
r↓0

ess supBr(x0) H(x,Xv(x)) = lim
r↓0

ess supBr(x0) H(x0,Xv(x)).

By replacing φ by φ(x) + ‖x − x0‖2, we may assume that for r > 0 small,

(2.6) 0 = (φ − v)(x0) < (φ − v)(x) ∀x ∈ Br(x0) \ {x0}.

For 0 < ε ≤ r
2 , let vε(x) =

∫
Rn ηε(x − y)v(y)dy ∈ C∞(B r

2
(x0)) be a standard

mollification of v and xε ∈ B r
2
(x0) satisfy

(φ − vε)(xε) = min
x∈B r

2
(x0)

(φ − vε)(x).

It follows from (2.6) that limε↓0 xε = x0. Hence, for small ε, we have xε ∈
B r

4
(x0), so that Xφ(xε) = Xvε(xε) and

(2.7) H(xε,Xφ(xε)) = H(xε,X(vε)(xε)).

We claim

(2.8) |X(vε)(xε) − (Xv)ε(xε)| ≤ C‖X‖C1(Br(x0))‖u‖W 1,∞
X (Br(x0))

ω(r),

where ω(r) denotes the modular of continuity of dX with respect to ‖ · ‖.
The proof of (2.8) was originally due to Friederichs [F] (see also [FSS]

and [GN]). Here, for the convenience of readers, we outline it as follows.
Let Xi(x) =

∑n
j=1 aij(x) ∂

∂xj
for x ∈ Rn and 1 ≤ i ≤ m, with (aij) ∈ C∞(Rn,

Rnm). Then for 1 ≤ i ≤ m and x ∈ B r
2
(x0), we have

(Xiv)ε(x) − Xi(vε)(x)

=
∫
Rn

ηε(x − y)

(
n∑

j=1

aij(y)
∂

∂yj

)
{v(y) − v(x)} dy

−
∫
Rn

n∑
j=1

aij(x)
∂ηε(x − y)

∂xj
{v(y) − v(x)} dy

=
n∑

j=1

∫
Rn

[
− ∂

∂yj

(
aij(y)ηε(x − y)

)
− aij(x)

∂ηε(x − y)
∂xj

](
v(y) − v(x)

)
dy

=
n∑

j=1

∫
Rn

(
aij(y) − aij(x)

)∂ηε(x − y)
∂xj

(
v(y) − v(x)

)
dy

+
n∑

j=1

∫
Rn

∂aij(y)
∂yj

ηε(x − y)
(
v(y) − v(x)

)
dy.

This implies

|(Xiv)ε(x) − Xi(vε)(x)|
≤ C max

1≤j≤n
‖∇aij ‖L∞(Br(x0))
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×
∫
Rn

{ηε(x − y)|v(y) − v(x)| + ‖y − x‖ | ∇ηε(x − y)| |v(y) − v(x)| } dy

≤ C‖Xi‖C1(Br(x0))‖v‖LipX(Br(x0)) max
‖y−x‖ ≤r

dX(y,x)

≤ C‖Xi‖C1(Br(x0))‖v‖LipX(Br(x0))ω(r),

and hence (2.8) follows. Since ‖(Xv)ε‖L∞(B r
2
(x0)) ≤ ‖Xv‖L∞(Br(x0)), it fol-

lows from (2.8) that for small r > 0, |(Xvε)(xε)| ≤ ‖Xv‖L∞(Br(x0)) +1. Hence,

H(xε,X(vε)(xε))(2.9)
≤ H(xε, (Xv)ε(xε))

+ max
x∈Br(x0)

max
{ |p|≤‖Xv‖L∞(Br(x0))+1}

{ |Hp(x, p)|

× |X(vε)(xε) − (Xv)ε(xε)| }
≤ H(xε, (Xv)ε(xε)) + Cω(r)

≤ H(x0, (Xv)ε(xε)) +
{

max
x∈Br(x0)

max
{ |p|≤‖Xv‖L∞(Br(x0))+1}

| ∇xH(x, p)|
}

r

+ Cω(r)
≤ ess supx∈Br(x0) H(x0,Xv(x)) + C

(
r + ω(r)

)
where we have used the quasiconvexity of H(x0, p) in p-variable:

H(x0, (Xv)ε(xε)) ≤ ess supB r
2
(x0) H(x0,Xvε(x))

≤ ess supBr(x0) H(x0,Xv(x)).

Taking r into zero and noting limr↓0 ω(r) = 0, (2.9) and (2.7) imply (2.2).
To prove (b), set for small ε > 0, δ > 0, and

wε,δ(x) = w(x) + ε‖x − x0‖2 − δ, x ∈ U.

Then u(x0) − wε,δ(x0) ≥ δ > 0, and for x ∈ ∂U ,

u(x) − wε,δ(x) ≤ u(x) − w(x) − εmin
∂U

‖x − x0‖2 + δ

≤ δ − ε min
x∈∂U

‖x − x0‖2 < 0

provided that we choose ε and δ, such that

(2.10) δ − ε min
x∈∂U

‖x − x0‖2 < 0.

Hence, there exists another open connected component V of {x ∈ U |u(x) −
wε,δ(x) > 0}, such that x0 ∈ V and V ⊂⊂ U . Since u = wε,δ on ∂V , the
absolute minimality of u implies that

ess supBr(x0) H(x,Xu(x)) ≤ ess supBr(x0) H(x,Xwε,δ(x))

≤ ess supV H(x,Xwε,δ(x))
≤ ess supU H(x,Xwε,δ(x)).
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By sending r ↓ 0 and then ε, δ ↓ 0, (2.4) then follows. �

Similar to [CWY], the second observation is that we may assume

(2.11) lim
{p∈H(x):‖p‖ →+∞}

H(x, p) = +∞ uniformly for x ∈ Ω.

In fact, as in [CWY], Section 2, let u ∈ W 1,∞
X (Ω) be the absolute minimizer

of H under consideration and

R = ‖Xu‖L∞(Ω) + 1,
(2.12)

M = min{H(x, p)|x ∈ Ω, p ∈ H(x),with ‖p‖ ≤ R},

and define

(2.13) Ĥ(x, p) = max{H(x, p), ‖p − PR(p)‖ + M } ∀(x, p) ∈ HX ,

where PR : Rm → Rm is given by

PR(p) = p for |p| ≤ R; R
p

‖p‖ for |p| ≥ R.

It is easy to see that Ĥ is quasiconvex in p-variable and satisfies (2.11), H ≤ Ĥ ,
and

H(x,Xu(x)) = Ĥ(x,Xu(x)) for a.e., x ∈ Ω.

Thus, u is also an absolute minimizer for Ĥ . Finally, if φ ∈ C1(Ω) touches u
from above at x0, then Proposition 2.1(a) implies that |Xφ|(x0) < R, and
hence Ĥp(x0,Xφ(x0)) (= Hp(x0,Xφ(x0)) exists.

Now, we indicate how to construct viscosity solutions of the Hamiltonian–
Jacobi equation H(x,XΦ(x)) = k. Let PH(x) : Rn → H(x), x ∈ Rn, be the
orthogonal projection map. For k ∈ R, x ∈ Br(x0) and p ∈ Rn, define

(2.14) L(x, p, k) = max
{q∈H(x)|H(x,q)≤k}

〈
q,PH(x)(p)

〉
H(x)

.

Notice that the standard method to construct viscosity solutions to the
Hamilton–Jacobi equation H(x,Xψ(x)) = k is through minimization of the
action functional among all admissable paths, which can be closedly related
to the existence of minimal geodesic in the subriemannian setting. From this
view of point, L(x, p, k) comes naturally since it is the Finsler metric on the
Carnot–Carathéodory space (Rn, dX).

Set

(2.15) k0(r) = max
x∈Br(x0)

min
q∈H(x)

H(x, q).

Notice that by (2.11), k0(r) < +∞.
For L(x, p, k), we have the following proposition.

Proposition 2.2. If H = H(x, p) ∈ C(HX) is quasiconvex in p-variable
and satisfies the coercivity condition (2.11). Then for any x ∈ Br(x0), p ∈ Rn

and k ≥ k0(r), we have:
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(1) x → L(x, p, k) is upper-semicontinuous,
(2) p → L(x, p, k) is Lipschitz continuous with respect to the Euclidean dis-

tance ‖ · ‖, and its Lipschitz constant depends only on k,
(3) p → L(x, p, k) is convex, positively 1-homogeneous, and L(x, p, k) = 0

for any p ⊥ H(x),
(4) If M > 0, then there is kM > 0 such that for any k ≥ kM , L(x, p, k) ≥

M |PH(x)(p)| for any (x, p) ∈ Rn × Rn,
(5) k → L(x, p, k) is nondecreasing and continuous from the right.

Proof. In view of (1.7) and (2.11), the proof is straightforward. We leave
the detail to readers. �

Definition 2.3. For r > 0 and x ∈ Br(x0), a horizontal path from x0 to
x in Br(x0) is a horizontal curve ξ : [0, T ] → Br(x0) such that ξ(0) = x0 and
ξ(T ) = x. The set of such horizontal paths is denoted by

hp(x, r) := {horizontal paths ξ from x0 to x in Br(x0)}.

Now, we define for k ≥ k0(r) and x ∈ Br(x0),

(2.16) Ck,r(x,x0) = inf
{∫ T

0

L(ξ(t), ξ′(t), k)dt
∣∣∣ξ ∈ hp(x, r)

}
.

Notice that Ck,r(x,x0) is well-defined and finite, since (Rn, dX) is a length
space, i.e., the distance between any two points can be realized by the length
of a horizontal curve joining the two points. In particular, for any x ∈ Br(x0),
there exists a horizontal curve γ : [0, T ] → Rn joining x0 to x such that T =
dX(x,x0) ≤ r. By Proposition 2.2(5), we have k → Ck,r is nondecreasing. We
set

(2.17) Ck−,r(x,x0) = lim
l↑k

Cl,r(x,x0), Ck+,r(x,x0) = lim
l↓k

Cl,r(x,x0).

Proposition 2.4. Under the assumptions as in Proposition 2.2, for any
k ≥ k0(r), we have (i) Ck,r(x0, x0) ≤ 0, (ii) Ck,2r(x2, x0) ≤ Ck,r(x1, x0) +
Ck,r(x2, x1) for any x1, x2 ∈ Br(x0), and (iii) Ck,r(x,x0) ∈ W 1,∞

X (Br(x0)).

Proof. Since L(x,0, k) = 0, Ck,r(x0, x0) ≤ 0. To see (ii), for ε > 0 be arbi-
trarily small, let ξ1 : [0, T1] → Br(x0) be a horizontal curve connecting x0 to
x1 and ξ2 : [0, T2] → Br(x1) be another horizontal curve connecting x1 to x2,
such that ∫ T1

0

L(ξ1, ξ
′
1, k)dt ≤ Ck,r(x1, x0) + ε,

∫ T2

0

L(ξ2, ξ
′
2, k)dt ≤ Ck,r(x2, x1) + ε.

If we define ξ3 : [0, T1 + T2] → B2r(x0) by letting ξ3(t) = ξ1(t) for 0 ≤ t ≤ T1

and ξ3(t) = ξ2(t − T1) for T1 ≤ t ≤ T1 + T2, then ξ3 is a horizontal curve
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connecting x0 to x2, and

Ck,2r(x2, x0) ≤
∫ T1+T2

0

L(ξ3, ξ
′
3, k)dt

=
∫ T1

0

L(ξ1, ξ
′
1, k)dt +

∫ T2

0

L(ξ2, ξ
′
2, k)dt

≤ Ck,r(x1, x0) + Ck,r(x2, x1) + 2ε.

This implies (ii). To see (iii), for y, z ∈ Br(x0), let η : [0, S] → Br(x0) another
horizontal curve connecting y to z such that dX(z, y) = S. Define

K = max
x∈Br(x0)

max
q∈H(x):H(x,q)≤k

|q|.

Then similar to (ii), we have

Ck,r(z,x0) ≤ Ck,r(y,x0) +
∫ S

0

L(η, η′, k)dt

≤ Ck,r(y,x0) + K

∫ S

0

|η′(t)| dt

= Ck,r(y,x0) + KS

= Ck,r(y,x0) + KdX(y, z).

This implies that Ck,r(y,x0) is Lipschitz continuous in Br(x0) with respect
to dX . �

It follows from Proposition 2.4 and Rademacher’s theorem on (Rn, dX),
which was first proved by Pansu [P] and later by Garofalo–Nieu [GN], that
XCk,r(x,x0) exists for a.e., x ∈ Br(x0).

The main result of this section is the following proposition.

Proposition 2.5. Under the same assumptions as in Proposition 2.2, for
any k ≥ k0(r), Ck,r is a viscosity solution of

(2.18) H(x,XCk,r(x,x0)) = k in Br(x0) \ {x0}.

In particular, H(x,XCk,r(x,x0)) = k for a.e., x ∈ Br(x0).

Proof. For any x1 ∈ Br(x0) \ {x0}, let φ ∈ C1(Br(x0) touch Ck,r(x,x0) at
x1 from above. Let ξ ∈ C1([0, T ],Rn) ∩ hp(x1, r). For 0 < t0 < T , we have∫ T

t0

〈Xφ(ξ(t)), ξ′(t)〉H(ξ(t)) dt(2.19)

= φ(x1) − φ(ξ(t0)) ≤ Ck,r(x1, x0) − Ck,r(ξ(t0), x0)

≤ Ck,2r(x1, ξ(t0)) ≤
∫ T

t0

L(ξ(t), ξ′(t), k)dt.
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Dividing (2.19) by T − t0, taking t0 ↑ T , and applying Proposition 2.2(4), we
obtain

〈Xφ(x1), ξ′(T )〉H(x1) ≤ L(x1, ξ
′(T ), k)(2.20)

= max
{q∈H(x1),H(x1,q)≤k}

〈q, ξ′(T )〉H(x1).

This and the quasiconvexity of H(x1, ·) imply H(x1,Xφ(x1)) ≤ k, i.e., Ck,r is
a viscosity subsolution of (2.18).

To prove that Ck,r is a viscosity supersolution of (2.18), let ψ ∈ C1(Br(x0))
touch Ck,r from below at x1 ∈ Br(x0) \ {x0}. Let ξ ∈ C([0, T ],Rn) ∩ hp(x1, r)
be such that

(2.21) Ck,r(x1, x0) =
∫ T

0

L(ξ(t), ξ′(t), k)dt.

Then for any t0 ∈ (0, T ) we have∫ T

t0

〈Xψ(ξ(t)), ξ′(t)〉H(ξ(t)) dt

= ψ(x1) − ψ(ξ(t0))
≥ Ck,r(x1, x0) − Ck,r(ξ(t0), x0)

≥
∫ T

0

L(ξ(t), ξ′(t), k)dt −
∫ t0

0

L(ξ(t), ξ′(t), k)dt

=
∫ T

t0

L(ξ(t), ξ′(t), k)dt

=
∫ T

t0

max
{p∈H(ξ(t)),H(ξ(t),p)≤k}

〈p, ξ′(t)〉H(ξ(t)) dt.

This implies that there exist tr ↑ T such that ξ′(tr) exist, and

(2.22) 〈Xψ(ξ(tr)), ξ′(tr)〉H(ξ(tr)) ≥ max
{p∈H(ξ(tr)),H(ξ(tr),p)≤k}

〈p, ξ′(tr)〉H(ξ(tr)).

Since 〈ξ′(tr), ξ′(tr)〉H(ξ(tr)) = 1, we assume that there is q ∈ H(x1) with
〈q, q〉H(x1) = 1 such that limtr ↑T ξ′(tr) = q. Taking tr ↑ T , (2.22) implies

(2.23) 〈Xφ(x1), q〉H(x1) ≥ max
{p∈H(x1):H(x1,p)≤k}

〈p, q〉H(x1).

Hence, we conclude H(x1,Xψ(x1)) ≥ k. The proof is complete. �

3. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. We begin with some lemmas. For
x0 ∈ Ω, let r > 0 be such that Br(x0) ⊂ Ω and let φ ∈ C2(Br(x0)) be such
that

(3.1) 0 = (φ − u)(x0) < (φ − u)(x) for x ∈ Br(x0) \ {x0}.
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For k0(r), given by (2.15), define

(3.2) kr = inf{k|k ≥ k0(r), u(x) ≤ u(x0) + Ck,r(x,x0) for x ∈ ∂Br(x0)}.

Notice, that it follows from Proposition 2.2(iv) that for any M > 0, we have

Ck,r(x,x0) ≥ Mr for x ∈ ∂Br(x0)

provided that k > 0 is sufficiently large. This implies that the quantity kr is
well defined.

Lemma 3.1. Let H = H(x, p) ∈ C(HX) be quasiconvex in p-variable and
satisfy (2.11). If u ∈ W 1,∞

X (Ω) be an absolute minimizer of H , then H(x0,
Xφ(x0)) ≤ kr.

Proof. For any k > kr, let w(x) ≡ u(x0) + Ck,r(x,x0). Then it is easy to
see that u(x0) ≥ w(x0) and

(3.3) u(x) ≤ w(x) for x ∈ ∂Br(x0),

Hence, by Proposition 2.1(b), we have

H(x0,Xφ(x0)) ≤ lim
s↓0

ess supBs(x0) H(x,Xu(x))(3.4)

≤ ess supBr(x0) H(x,XCk,r(x,x0)) = k.

Taking k ↓ kr, this yields the result. �

Notice that if Hp(x0,Xφ(x0)) = 0, then AX(φ)(x0) = 0 and Theorem 1.4
is proved. Hence, we assume Hp(x0,Xφ(x0)) �= 0.

Lemma 3.2. Let H = H(x, p) ∈ C1(HX) be quasiconvex in p-variable and
satisfy (2.11). Assume Hp(x0,Xφ(x0)) �= 0, if u ∈ W 1,∞

X (Ω) is an absolute
minimizer of H , then for any sufficiently small r > 0,

(3.5) H(x0,Xφ(x0)) > k0(r).

Proof. It follows from Hp(x0,Xφ(x0)) �= 0 that there is p0 ∈ H(x0) such
that H(x0, p0) < H(x0,Xφ(x0)). By continuity of H , this implies that for a
sufficiently small r > 0 and any x ∈ Br(x0), there exists px ∈ H(x) such that
H(x, px) < H(x0,Xφ(x0)). Hence, H(x0,Xφ(x0)) > k0(r). �

Proof of Theorem 1.4. Denote h0 = H(x0,Xφ(x0)). For any k < h0 ≤ kr

and m sufficiently large, there exist xk
m ∈ ∂B 1

m
(x0), such that

(3.6) Ck, 1
m

(xk
m, x0) ≤ u(xk

m) − u(x0).

For k ↑ h0, assume xk
m → xm ∈ ∂Br(x0). Then (3.6) yields

(3.7) Ch−
0 , 1

m
(xm, x0) ≤ u(xm) − u(x0).
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Let εm > 0 be sufficiently small such that u(xm) − u(x0)+εm < φ(xm) − φ(x0).
By definition of Ch−

0 , 1
m

, there is ξm ∈ C([0, Tm],Rn) ∩ hp(xm, 1
m ) such that∫ Tm

0

L(ξm(t), ξ′
m(t), h−

0 )dt(3.8)

≤ Ch−
0 , 1

m
(xm, x0) + εm ≤ u(xm) − u(x0) + εm

< φ(xm) − φ(x0)

=
∫ Tm

0

〈Xφ(ξm(t)), ξ′
m(t)〉H(ξm(t)) dt.

Thus, there are tm ∈ (0, Tm] such that ξ′
m(tm) exists, and

(3.9) L(ξm(tm), ξ′
m(tm), h−

0 ) < 〈Xφ(ξm(tm)), ξ′
m(tm)〉H(ξm(tm)).

This implies that h0 ≤ H(ξm(tm),Xφ(ξm(tm))). Assume that tm be the
largest value of t ∈ (0, Tm] such that h0 ≤ H(ξm(t),Xφ(ξm(t))). Then we
have H(ξm(t),Xφ(ξm(t))) < h0 for a.e., t ∈ (tm, Tm], and hence

φ(xm) − φ(ξm(tm)) = φ(ξm(Tm)) − φ(ξm(tm))(3.10)

=
∫ Tm

tm

〈Xφ(ξm(t)), ξ′
m(t)〉H(ξm(t)) dt

≤
∫ Tm

tm

L(ξm(t), ξ′
m(t), h−

0 )dt.

Therefore, we have∫ tm

0

L(ξm(t), ξ′
m(t), h−

0 )dt < φ(ξm(tm)) − φ(x0),
(3.11)

H(x0,Xφ(x0)) ≤ H(ξm(tm),Xφ(ξm(tm))).

Set ym = ξm(tm). It is easy to see ym �= x0. By Proposition 2.2(4), we can
find c(h0) > 0 such that

(3.12) L(ξm(t), ξ′
m(t), h−

0 ) ≥ c(h0) for all t ∈ [0, tm].

Therefore, (3.11) implies

(3.13) c(h0) <
φ(ym) − φ(x0)

tm

(
=

1
tm

∫ tm

0

〈Xφ(ξm(t)), ξ′
m(t)〉H(ξm(t)) dt

)
.

Set qm = ym −x0
tm

. Since ‖qm‖ ≤ 1, we may assume that there exist q ∈ Rn,
with ‖q‖ ≤ 1, such that limm→∞ qm = q. Taking m to infinity, (3.13) implies

(3.14) c(h0) ≤
〈
Xφ(x0), PH(x0)(q)

〉
H(x0)

.

This implies

(3.15) Xφ(x0) �= 0, PH(x0)(q) �= 0.
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For any δ > 0, it also follows from (3.11) that

max
{p∈H(x0):H(x0,p)≤h0−δ}

〈
p,PH(x0)(ym − x0)

〉
H(x0)

(3.16)

≤
∫ tm

0

max
{p∈H(x0):H(x0,p)≤h0−δ}

〈p, ξ′
m(t)〉H(x0) dt

≤
∫ tm

0

L(ξm(t), ξ′
m(t), h−

0 )dt

< φ(ym) − φ(x0).

Dividing (3.16) by tm and sending m → ∞, we have

max
{p∈H(x0):H(x0,p)≤h0−δ}

〈
p,PH(x0)(q)

〉
H(x0)

(3.17)

≤
〈
Xφ(x0), PH(x0)(q)

〉
H(x0)

.

Thus,

(3.18)
〈
p,PH(x0)(q)

〉
H(x0)

≤
〈
Xφ(x0), PH(x0)(q)

〉
H(x0)

holds for any p ∈ H(x0) with H(x0, p) < h0. Notice that (3.18) remains true
for any p ∈ C, where C is the convex set

C ≡ {p ∈ H(x0) : H(x0, p) < H(x0,Xφ(x0))}.

Since Hp(x0,Xφ(x0)) �= 0, we have Xφ(x0) ∈ C. Hence, (3.18) implies〈
Xφ(x0), PH(x0)(q)

〉
H(x0)

= max
p∈C

〈
p,PH(x0)(q)

〉
H(x0)

.

Therefore, by the Lagrange multiplier theorem, we have

(3.19) PH(x0)(q) = λHp(x0,Xφ(x0))

for some λ > 0.
Since H(x,Xφ(x)) ∈ C1(Br(x0)), we have

0 ≤ H(ym,Xφ(ym)) − H(x0,Xφ(x0))
tm

(3.20)

=
〈
X(H(x,Xφ(x)))|x=x0 , PH(x0)(qm)

〉
H(x0)

+ o(1).

Sending m → ∞ and using (3.19) lead to

λAX [φ](x0) = λ〈X(H(x,Xφ(x)))|x=x0 ,Hp(x0,Xφ(x0))〉H(x0) ≥ 0.

Since λ > 0, we have AX [φ](x0) ≥ 0 and u is a viscosity subsolution of (1.5).
Similarly, one can prove that u is also a viscosity supersolution. This com-
pletes the proof of Theorem 1.4. �
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