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OPERATORS ON ASYMPTOTIC �p SPACES WHICH ARE
NOT COMPACT PERTURBATIONS OF A MULTIPLE OF

THE IDENTITY

KEVIN BEANLAND

Abstract. We give sufficient conditions on an asymptotic �p (for
1 < p < ∞) Banach space to ensure the space admits an operator,

which is not a compact perturbation of a multiple of the identity.

These conditions imply the existence of strictly singular noncom-
pact operators on the HI spaces constructed by G. Androulakis

and the author and by Deliyanni and Manoussakis. Additionally,

we show that under these same conditions on the space X, �∞
embeds isomorphically into the space of bounded linear operators
on X.

1. Introduction

Is there an infinite dimensional Banach space X on which every bounded
linear operator is a compact perturbation of a multiple of the identity? Men-
tioned by Lindenstrauss as question 1 in his 1976 list of problems in Banach
space theory [22], this problem has become known as the scalar-plus-compact
problem and is one of the most famous in functional analysis. In this note,
we give sufficient conditions on a space, whereby the space of bounded lin-
ear operators does not have such a decomposition. Let us start by reviewing
results which relate to this famed open problem.

Lindenstrauss’ question is related to the result of Aronszajn and Smith [12]
in 1954, which implies that if a space X satisfies the above condition and
is a complex space, then every bounded linear operator on X must have
a nontrivial invariant subspace. Thus, a complex space which is a positive
solution to Lindenstrauss’ problem also serves as a positive solution to the
invariant subspace problem for Banach spaces.
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That being said, the possibility that for any Banach space, there is an
operator on the space which is not a compact perturbation of a multiple of
the identity, is still in play. In support of this possibility, sufficient conditions
have been established on a space X which imply �∞ embeds isomorphically
into L(X), the space of bounded linear operators on X (see [2], [14], [21]). If
a space X serves as a positive solution to the scalar plus compact problem, it
has a basis (or more generally the approximation property) and a separable
dual space, then L(X) must be separable. Curiously, each of the results in
support of a negative solution to the scalar plus compact problem, require
the existence of an unconditional basic sequence in the space. The weaker
problem of whether there is an operator which is not a compact perturbation
of a multiple of the inclusion from a subspace of a Banach space to the whole
space has also received attention (see [4], [5], [19], [24]).

In their successful effort to construct the first example of a space with no
unconditional basic sequence, Gowers and Maurey [20] constructed a space,
which as Johnson observed, possesses a stronger property called hereditarily
indecomposable (HI). A Banach space is HI if no (closed) infinite dimensional
subspace can be decomposed into a direct sum of two further infinite dimen-
sional subspaces. This groundbreaking construction was a great leap forward
in the progression towards a positive solution to the scalar-plus-compact prob-
lem. More precisely, it was shown that every operator on the space of Gowers–
Maurey can be decomposed as a strictly singular perturbation of a multiple of
the identity operator. Spaces which have this property are now aptly referred
to as spaces admitting “few operators”. An operator on a Banach space
is called strictly singular if the restriction of it to any infinite dimensional
subspace is not an isomorphism. The ideal of strictly singular operators on
a space contains that of the compact operators, but in some cases (e.g., �p,
1 ≤ p < ∞) they coincide. The fact that Gowers–Maurey space admits few
operators is related to the fact that it is HI. In fact, it was shown in [20] that
every complex HI space admits few operators. In 1997, Ferenczi proved [15]
that a complex space X is HI if and only if every operator from a subspace
of X into X is a multiple of the inclusion plus a strictly singular operator.
It is not the case, however, that admitting few operators implies that the
space is HI. The most recent in a collection of counterexamples is the paper
of Argyros and Manoussakis [10] in which they construct a reflexive space
admitting few operators for which every Schauder basic sequence has an un-
conditional subsequence. The most comprehensive resource for HI spaces and
spaces admitting few operators is [11].

The natural question then becomes: for any of these spaces which admit few
operators does there exist a strictly singular noncompact operator, or do the
strictly singular and compact ideals coincide? There have been results in this
direction as well. In 2000, Argyros and Felouzis [7] constructed an HI space X
with the property that for every infinite dimensional subspace of X there is
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a strictly singular noncompact operator on X with range contained in the
subspace. In 2001, Androulakis and Schlumprecht [6] constructed a strictly
singular noncompact operator on the space of Gowers–Maurey. In 2002, Gas-
paris [16] did the same for certain members of the class of totally incomparable
asymptotic �1 HI spaces constructed in [17]. In 2006, Androulakis, the au-
thor [3], Manoussakis, and Deliyanni [13] independently constructed different
asymptotic �p HI spaces (for p = 2 in the former case and for all 1 < p < ∞ in
the latter). In the following, by extending results in [16], sufficient conditions
are established under which a strictly singular noncompact operators can be
found on each of these spaces.

2. Definitions and notation

Our notation is standard and can be found in [23]. Let (ei)∞
i=1 denote

the unit vector basis of c00(N) = c00, and (e∗
i )

∞
i=1 the biorthogonal functionals

of (ei)i. Let span{(ei)i} denote vectors finitely supported on (ei)i. For a Ba-
nach space X , let Ba(X) = {x ∈ X : ‖x‖ ≤ 1} and S(X) = {x ∈ X : ‖x‖ = 1}.
If E,F ⊂ N then E < F if maxE < minF . If x =

∑∞
i=1 aiei for scalars (ai)i,

let supp(x) = {i : ai �= 0} and the range of x, denoted r(x), be the smallest
interval containing supp(x).

The notion of Schreier families [1] is used throughout. They are defined
inductively as follows. Let S0 = { {n} : n ∈ N} ∪ {∅}. After defining Sn, let

Sn+1

=

{
F ⊂ N : F =

m⋃
i=1

Fi for Fi ∈ Sn and m ∈ N,m ≤ F1 < · · · < Fm

}
∪ {∅}.

A few properties of the Schreier families we need are:

• (Hereditary) For n ∈ N, Sn ⊂ Sn+1.
• (Spreading) If (pi)N

i=1 ∈ Sn and pi ≤ qi for all i ≤ N , then (qi)N
i=1 ∈ Sn.

• (Convolution) If (Fi)N
i=1 is a collection of subsets of N such that Fi ∈ Sn

for all i ≤ N , F1 < · · · < FN and (minFi)N
i=1 ∈ Sm for some n,m ∈ N, then⋃N

i=1 Fi ∈ Sn+m.

Let (Ei)k
i=1 be a sequence of successive subsets of N, we say that (Ei)k

i=1

is Sn admissible if (minEi)k
i=1 ∈ Sn. For E1 < · · · < Ek ⊂ N and (aj)j ∈ c00

the sequence (xi)k
i=1 defined by xi =

∑
j∈Ei

ajej is called a block sequence
of (ej)j . For a block sequence (xi)k

i=1 of (ej)j , we say that (xi)k
i=i is Sn

admissible if (suppxi)k
i=1 is Sn admissible.
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Herein, we define a class of spaces in terms of the norming functionals of
the space. We begin by recalling the notion of a norming set [16].

Definition 2.1. A set N ⊂ span{(e∗
i )i} is called norming if the following

conditions hold:
• (e∗

n)n ⊂ N .
• If x∗ ∈ N , then |x∗(en)| ≤ 1 for all n ∈ N.
• If x∗ ∈ N , then −x∗ ∈ N (N is symmetric).

• If x∗ ∈ N and E is an interval in N, then Ex∗ ∈ N (where Ex∗ denotes the
restriction of x∗ to the coordinates in E).

If N is a norming set, we can define a norm ‖ · ‖N on c00 by∥∥∥∥∑
i

aiei

∥∥∥∥
N

= sup
{

x∗
(∑

i

aiei

)
: x∗ ∈ N

}

for every (ai) ∈ c00. Now, define the Banach space XN to be the comple-
tion of c00 under the above norm. By the definition of norming set, (ei)i is
a normalized bimonotone basis for XN .

For the following definitions and notation, we closely follow [16]. The fol-
lowing are conditions on two increasing sequences of positive integers, (ni)∞

i=1

and (mi)∞
i=1.

(i) m1 > 3, there is an increasing sequence of positive integers (si)∞
i=1, such

that m2j =
∏j−1

i=1 msi
2i, m2j+1 = m5

2i for i ≥ 1 and m5
1 = m2.

(ii) For the sequence of integers, (fi)∞
i=2 defined by

fj = max
{

ρn1 +
∑

1≤i<j

ρin2i : ρ, ρi ∈ N ∪ {0},mρ
1

∏
1≤i<j

mρi

2i < m2j

}

require that 4fj < n2j for all j ≥ 2 and 5n1 < n2.
We now define a particular type of norming set. Our definition is slightly less
general than that which would be considered analogous to (M,N)-Schreier
in [16]. Our goal is to tailor the definition of (M,N,q)-Schreier so as to make
it as apparent as possible that the spaces found in [3] and [13] are (M,N,q)-
Schreier for specified q.

Definition 2.2. For sequences M = (mi)∞
i=1 and N = (ni)∞

i=1 satisfying (i)
and (ii) we call a norming set N , (M,N,q)-Schreier (for 1/q + 1/p = 1 and
1 < p, q < ∞) if for the following sets, with k ∈ N,

Nk =
{

1
m2k

∑
i

γix
∗
i : (γi)i ∈ Ba(�q),

γi ∈ Q, (x∗
i )i is Sn2k

admissible and (x∗
i )i ⊂ N

}
,
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N q
∞ =

∞⋃
k=0

{
1

m2k+1

∑
i

γiEx∗
i : (γi)i ∈ 21/pBa(�q), γi ∈ Q,

E is an interval ⊂ N, (x∗
i )i is an Sn2k+1 admissible ⊂

∞⋃
j=1

Nj

}

we have N ⊂
⋃∞

j=1 Nj ∪ N q
∞ ∪ {±en : n ∈ N} and Nj ⊂ N for all j.

In the case of the Banach space constructed in [3], there are fixed sequences
M = (mi)∞

i=1 and N = (ni)∞
i=1. We suppose further that M and N satisfy

conditions (i), (ii). It follows directly from the definition that the norming set
for this space is (M,N,2)-Schreier.

For the asymptotic �p HI space, X(p), found in [13] the reasoning is sim-
ilar. Assume that the sequences M and N prescribed in [13] satisfy con-
ditions (i), (ii). For a fixed p and 1/q + 1/p = 1, we must show that the
norming set N (denoted K in [13]) is (M,N,q)-Schreier. The reader should
refer to [13] for the precise definitions of K,Kn, and Kn

j . K =
⋃∞

n=1 Kn where
Kn =

⋃∞
j=1 Kn

j . By definition, for j,n ∈ N, Kn
2j ⊂ Nj , and Kn

2j+1 ⊂ N q
∞ (for

the latter inclusion the factor 21/p in the definition of N q
∞ is required). Thus,

K ⊂
⋃

j Nj ∪ N q
∞ ∪ { ±en : n ∈ N}. If x∗ ∈ Nj , then x∗ = 1/m2j

∑
i γix

∗
i where

(x∗
i )i ⊂ N = K, so again by the definition of K, we see that Nj ⊂ N .
It is convenient to view an element of N as successive blocks of the ba-

sis (e∗
i )i. This decomposition into blocks is not unique, and thus our goal is

to find a decomposition that is the most suitable. To this end, we associate
each element of N with a rooted tree. A finite set with a partial ordering
(T , �) is called a tree if for every α ∈ T the set {β ∈ T : β � α} is linearly
ordered. Each element of the tree T is called a node. A node α ∈ T , such that
there is no β with α ≺ β is called terminal (α ≺ β means α � β and α �= β).
If β ≺ α, we say α is a successor of β. For α ∈ T , let Dα(T ) denote the set of
immediate successors of α in T . A branch of T is a maximal linearly ordered
subset.

For each α ∈ T , we define corresponding γα ∈ Q, mα ∈ (mi)∞
i=1 and nα ∈

(ni)∞
i=1. We associate to each x∗ ∈ N a rooted tree T (i.e., a tree with a

unique first node) in the following way: Let α0 be the root of T . There is an
x∗

α0
∈ N , such that x∗ = γα0x

∗
α0

and

x∗
α0

=
1

mα0

∑
β∈Dα0 (T )

γβx∗
β .

In this definition (x∗
β)β∈Dα0 (T ) is Snα0

admissible, mα0 = mj for some j ∈ N

and (γβ)β∈Dα0 (T ) ∈ Ba(�q) if j is even and (γβ)β∈Dα0 (T ) ∈ 21/pBa(�q) if j is
odd. Thus, for any pairwise incomparable collection A of T which intersects
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every branch of T we have

(1) x∗ =
∑
α∈A

∏
β�α γβ∏
β≺α mβ

x∗
α.

Call (x∗
α)α∈T the functional tree of x∗. For β ∈ T , the functional x∗

β has
a corresponding tree Tβ , which is a subset of T .

3. Main results

We start this section by stating the main theorem of the paper. The proof
of this theorem can be found at the end of this section. The majority of this
section is devoted to proving auxiliary lemmas and remarks.

Theorem 3.1. Let N be a norming set which is (M,N,q)-Schreier and XN
be the corresponding Banach space. There is an operator on XN which is not
a compact perturbation of a multiple of the identity. If XN is HI, this operator
is strictly singular. Moreover, �∞ embeds isomorphically into L(XN ).

The existence of the following sequence in the space X∗
N is the main in-

gredient in the construction of the desired operator. The definition below is
tailored to fit our construction.

Definition 3.2. Let (xk)k be a block basic sequence of (ek)k. If there is
a C > 0 such that for all l ∈ N, F ⊂ N with F ≥ l and (xk)k∈F being Sfl

admissible we have ‖
∑

k∈F βkxk ‖ ≤ C‖(βk)k∈F ‖q for every scalar sequence
(βk)k∈F , we say (xk)k satisfies an upper �ω

q estimate with constant C.

For the rest of the section, we fix p, q, and N , such that 1/p+1/q = 1 and N
is a (M,N,q)-Schreier norming set. It follows easily that any normalized block
sequence (xi)m

i=1 with m ≤ suppx1 in XN , satisfies a lower �p estimate with
constant 1/m2. The next remark demonstrates that XN is an asymptotic �p

space by verifying that is satisfies an upper �p estimate on normalized blocks.

Remark 3.3. Let (xi)m
i=1 ∈ XN be a normalized block basic sequence of

(ei)i. For any sequence of scalars (ai)i, the following holds:

∥∥∥∥∥
m∑

i=1

aixi

∥∥∥∥∥
N

≤ 12

(
m∑

i=1

|ai|p
) 1

p

.

Proof. For x∗ ∈ N , let o(x∗) denote the height (i.e., the length of the longest
branch) of the tree T associated with x∗. We proceed by induction on o(x∗).
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We will show that for all x∗ ∈ N , such that o(x∗) = n, x∗(
∑m

i=1 aixi) ≤
12(

∑m
i=1 |ai|p) 1

p holds for any normalized block basic sequence (xi)m
i=1 of (ei)i

and any sequence of scalars (ai)i. For x∗ ∈ N , such that o(T ) = 1, the asser-
tion follows easily. Assume the claim for all y∗ ∈ N , such that o(y∗) < n and
let x∗ = 1/mk

∑
j γjx

∗
j ∈ N with o(x∗) = n. By definition of N , (x∗

j )j is Snk

admissible and (γj)j ∈ 21/pBa(�q). Define the following two sets:

Q(1) = {1 ≤ i ≤ m : there is exactly one j such that r(x∗
j ) ∩ r(xi) �= ∅},

and Q(2) = {1, . . . ,m} \ Q(1). Apply the functional x∗ to
∑m

i=1 aixi to obtain∣∣∣∣∣ 1
mk

∑
j

γjx
∗
j

(
m∑

i=1

aixi

)∣∣∣∣∣
≤ 1

mk

∑
j

|γj |
∣∣∣∣x∗

j

∑
i∈Q(1)

r(x∗
j )∩r(xi) 	=∅

aixi

∣∣∣∣ +
1

mk

∣∣∣∣∑
j

γjx
∗
j

∑
i∈Q(2)

aixi

∣∣∣∣

≤ 12
mk

∑
j

|γj |
( ∑

i∈Q(1)
r(x∗

j )∩r(xi) 	=∅

|ai|p
) 1

p

+
∑

i∈Q(2)

|ai|
∣∣∣∣ 1
mk

∑
j

γjx
∗
j (xi)

∣∣∣∣.

The first inequality follows from the triangle inequality. The second follows
from applying the induction hypothesis for x∗

j (
∑

{i∈Q(1):r(x∗
j )∩r(xi) 	=∅ } aixi)

and using the definition of Q(2). We may apply the induction hypothesis since
the height of the trees associated with the functionals x∗

j are each less than n.
Before continuing, notice that for each i ∈ Q(2) the set Ji = {j : r(x∗

j ) ∩
(xi) �= ∅} is an interval, and therefore

(2)
1

mk

∑
j∈Ji

γj

(
∑

j∈Ji
|γj |q)1/q

x∗
j ∈ N .

The above estimate continues as follows

≤ 4
∑

j

|γj |
( ∑

i∈Q(1)
r(x∗

j )∩r(xi) 	=∅

|ai|p
) 1

p

+
∑

i∈Q(2)

|ai|
(∑

j∈Ji

|γj |q
) 1

q

≤ 4
(∑

j

|γj |q
) 1

q
(∑

j

∑
i∈Q(1)

r(x∗
j )∩r(xi) 	=∅

|ai|p
) 1

p

+
( ∑

i∈Q(2)

|ai|p
) 1

p
( ∑

i∈Q(2)

∑
j∈Ji

|γj |q
) 1

q
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≤ 4
(∑

j

|γj |q
) 1

q
(∑

j

∑
i∈Q(1)

r(x∗
j )∩r(xi) 	=∅

|ai|p
) 1

p

+
( ∑

i∈Q(2)

|ai|p
) 1

p
(

2
∑

j

|γj |q
) 1

q

≤ 12

(
m∑
i

|ai|p
) 1

p

.

In the first inequality, we used the fact that 3 < m1 in the first term and (2)
in the second term. For the second inequality, we applied Hölders inequality.
For the third inequality, we used the fact that for each j there are at most
two values of i ∈ Q(2) such that r(x∗

j ) ∩ r(xi) �= ∅. For the final inequality, we
used (

∑
� |γ�|q)1/q ≤ 2. This finishes the proof. �

The following is a compilation of remarks (variants of which can be found
in [16]) regarding the sequences (mi)∞

i=1, (ni)∞
i=1 and (fi)∞

i=2. In the interest
of completeness, we have included the proofs.

(1.1) If pk = 5n1 +
∑

i<k sin2i for k ≥ 2, then pk ≤ 2fk.
(1.2) If (ai)k−1

i=1 is a sequence of nonnegative integers and a ∈ N ∪ {0}, such
that ma

1

∏
i<k mai

2i < m2k then an1 +
∑

i<k ain2i < pk.
(1.3) Let (a�)k−1

�=1 be a sequence of nonnegative integers, (x∗
i )

t
i=1 ∈ N be

S∑
l<k aln2l

admissible and (βi)t
i=1 ∈ Ba(�q), then we have

1∏
�<k ma�

2�

t∑
i=1

βix
∗
i ∈ N .

The proof of (1.1) follows by induction. For k = 2, we have f2 = 4n1 +(s1 −
1)n2. Since s1 ≥ 2, the claim follows. Suppose the statement is true for some
k ≥ 2. Let fk = γn1 +

∑
i<k γin2i, and observe that

pk+1 = 5n1 +
∑
i<k

sin2i + skn2k

≤ 2
(

γn1 +
∑
i<k

γin2i

)
+ skn2k (by the induction hypothesis)

≤ 2
(

γn1 +
∑
i<k

γin2i + skn2k

)
≤ 2fk+1.

We obtained the third inequality by noting that mγ
1

∏
i<k mγi

2im
sk

2k <
m2kmsk

2k = m2k+2 and using the maximality of fk+1.
To prove (1.2), again proceed by induction. For k = 2, deduce from the

hypothesis that a+5a1 < 5s1. Clearly, a1 < s1. If a < 5, we are done. Suppose
5n ≤ a < 5(n+1) for some n ∈ N. This implies that a1 < s1 − n. The following
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inequality finishes the proof of the base step

an1 + a1n2 < an1 + (s1 − n)n2 ≤ s1n2 + 5(n + 1)n1 − nn2 < 5n1 + s1n2.

The final inequality follows from 5n1 < n2.
Assume the statement is true for some k ≥ 2. By assumption,

ma
1

∏
i<k+1 mai

2i < m2k+2 and by definition m2k+2 = msk+1
2k . Clearly,

ma
1

∏
i<k mai

2i < msk −ak+1
2k . Thus, sk + 1 ≥ ak. This leaves two possibilities,

either sk = ak or sk > ak. In the former case, ma
1

∏
i<k mai

2i < m2k. By the
induction hypothesis, an1 +

∑
i<k ain2i < pk and thus, an1 +

∑
i<k+1 ain2i <

pk+1. If sk > ak, we claim that an1 +
∑

i<k+1 ain2i < skn2k, which clearly
finishes the proof. To see this, we start by showing that an1 +

∑
i<k ain2i ≤

2(sk − ak + 1)fk. By assumption ma
1

∏
i<k mai

2i < msk −ak+1
2k , which implies

that

m
� a

sk −ak+1 �
1

∏
i<k

m
� ai

sk −ak+1 �
2i < m2k,

where �x� is the greatest integer of x. By the maximality of fk, we have⌊
a

sk − ak + 1

⌋
n1 +

∑
i<k

⌊
ai

sk − ak + 1

⌋
n2i ≤ fk.

Since x ≤ 2�x� for x ≥ 0, we see that

a

sk − ak + 1
n1 +

∑
i<k

ai

sk − ak + 1
n2i

≤ 2
(⌊

a

sk − ak + 1

⌋
n1 +

∑
i<k

⌊
ai

sk − ak + 1

⌋
n2i

)
≤ 2fk.

Finally, using 4fk < n2k to observe that

an1 +
∑

i<k+1

ain2i ≤ 2(sk − ak + 1)fk + akn2k < n2k

(
(sk + 1)/2 − ak

)
+ akn2k

< skn2k.

The proof of (1.3) requires a complicated induction. For simplicity, we prove
the case where aj = al = 1 for some j, l ≤ k. Suppose, (x∗

i )
t
i=1 ∈ N is Sn2l+n2j

admissible. Let (βi)t
i=1 ∈ Ba(�q). We wish to show that

1
m2lm2j

t∑
i=1

βix
∗
i ∈ N .

Do this by carefully grouping the functionals. Let (Jk)m
k=1 be successive in-

tervals of integers such that
⋃m

k=1 Jk = {1, . . . , t}, (x∗
i )i∈Jk

is Sn2l
admissible

for each k ≤ m and (x∗
minJk

)m
k=1 is Sn2j admissible. Now, define a sequence
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(z∗
k)m

k=1 by

1
m2lm2j

t∑
i=1

βix
∗
i =

1
m2lm2j

m∑
k=1

∑
i∈Jk

βix
∗
i

=
1

m2j

m∑
k=1

(∑
i∈Jk

|βi|q
) 1

q 1
m2l

∑
i∈Jk

βi

(
∑

i∈Jk
|βi|q)1/q

x∗
i

=
1

m2j

m∑
k=1

(∑
i∈Jk

|βi|q
) 1

q

z∗
k.

It is straightforward to check that z∗
k ∈ Nl for all k ≤ m. The claim follows by

observing that (z∗
k)m

k=1 is Sn2j admissible since (x∗
minJk

)p
k=1 is Sn2j admissible

and ((
∑

i∈Jk
|βi|q)1/q)m

k=1 ∈ Ba(�q).
Before proceeding further, we pause briefly to discuss the structure of the

proof of Theorem 3.1. The proof begins by introducing some auxiliary remarks
and lemmas. Remark 3.4 and Lemma 3.5 follow from the technical definitions
of the sequences (ni)i and (mi)i and the tree structure of the functionals
in N . Lemma 3.5 is quite specific to spaces which are (M,N,p) Schreier and
will be used throughout the proof of Theorem 3.1. The main task at hand
is to construct a sequence of functionals in N which are seminormalized and
satisfy an upper �ω

p estimate with constant 1. We do this in Lemma 3.8. The
construction of these functionals is rather straightforward; it is in proving
that they possess the desired properties that we must make use of Lemma
3.5 and Corollary 3.6. Once we have constructed these norming functionals
(and after making a few easy remarks), we are ready to define the operator.
This is done in a very natural way. The fact that the operator is bounded
and noncompact follows from the properties of the norming functionals from
which it is built.

For any functional tree T , we define a function ϕ : T → N ∪ {0} in the
following way.

ϕ(β) =

⎧⎪⎨
⎪⎩

n2i if nβ = n2i for some i,

n1 if nβ = n2i+1 for some i,

0 if β is terminal.

Remark 3.4. Let (x∗
α)α∈T be a functional tree for some x∗ ∈ N , such that

for α ∈ T , (x∗
β)β∈Dα(T ) is Sϕ(T ) admissible. For every subset A of T consist-

ing of pairwise incomparable nodes, the collection (x∗
α)α∈A is Sd admissible

where d = max{
∑

β≺α ϕ(β) : α ∈ A}.

Proof. We proceed by induction on o(T ). The base step is trivial. Let k ≥ 1
assume the statement for T such that o(T ) < k +1 and suppose o(T ) = k +1.
Let α0 be the root of T and for α ∈ Dα0(T ) let Tα be the tree corresponding
to x∗

α. For the given collection A and α ∈ Dα0(T ) we can define Aα = {β : β ∈
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Tα ∩ A}. Notice that A =
⋃

α∈Dα0 (T ) Aα or A = {α0}. Apply the induction
hypothesis for each collection Aα to conclude that (x∗

β)β∈Aα is Sdα admissi-
ble for dα = max{

∑
α0≺γ≺β ϕ(γ) : β ∈ Aα}. Let dα0 = maxα∈Dα0 (T ) dα. The

block sequence ((x∗
β)β∈Aα)α∈Dα0 (T ) is Sdα0+ϕ(α0) admissible by the convolu-

tion property of Schreier families. Finish by observing that dα0 + ϕ(α0) =
max{

∑
β≺α ϕ(β) : α ∈ A} and ((x∗

β)β∈Aα)α∈Dα0 (T ) = (x∗
α)α∈A. �

Our next lemma allows us to decompose norming functionals. Decomposi-
tions are extremely useful when attempting to find tight upper estimates on
the norm of vectors in the space.

Lemma 3.5 (Decomposition lemma). Let k ∈ N and x∗ ∈ N such that
suppx∗ ≥ 2k. There is an m ∈ N, x∗

1 < · · · < x∗
m ∈ N , a partition I1, I2 of

{1, . . . ,m} and scalars (λi)m
i=1, such that:

(a) x∗ =
∑m

i=1 λix
∗
i .

(b) x∗
i = ±e∗

ji
for i ∈ I1 and {ji : i ∈ I1} ∈ Spk −1.

(c) (
∑

i∈I2
|λi|q)1/q ≤ 2/m2k and (

∑
i∈I1∪I2

|λi|q)1/q ≤ 2.

Proof. Let x∗ ∈ N and k ∈ N. Let T be the tree corresponding to x∗. For
each node β, there are corresponding mβ , nβ , and γβ . Let B denote the set
of branches of T . For each branch b ∈ B, let α(b) denote the node of b, such
that either α(b) is the first node β for which

∏
α≺β mα ≥ m2k holds, or the

terminal node of b if no such β exists. Set A = {α(b) : b ∈ B }. Notice that A
is a collection of pairwise incomparable nodes intersecting every branch of B.
Let A1 denote the set of terminal nodes of A and A2 = A \ A1. Enumerate
A with the set {1, . . . ,m} for some m ∈ N and define It = {i : x∗

i ∈ (x∗
α)α∈At }

for t ∈ {1,2}. By (1) we have

x∗ =
∑
α∈A

∏
β�α γβ∏
β≺α mβ

x∗
α, so, set λi =

∏
β�α γβ∏
β≺α mβ

if x∗
i = x∗

α.

It is left to verify that conditions (b) and (c) hold. Condition (c) follows from
the fact that for each α, (γβ)β∈Dα(T ) ∈ 21/pBa(�q), and observing that(∑

i∈I2

|λi|q
)1/q

=
( ∑

α∈A2

∣∣∣∣
∏

β�α γβ∏
β≺α mβ

∣∣∣∣
q) 1

q

≤ 1
m2k

( ∑
α∈A2

∣∣∣∣ ∏
β�α

γβ

∣∣∣∣
q) 1

q

≤ 21/p

m2k
<

2
m2k

.

The second part of (c) follows similarly. The first part of (b) follows from
the definition. For the second part of (b), we employ Remark 3.4. Let
R =

⋃
α∈A1

{β : β ≺ α}. For α ∈ R, such that mα = m2j+1 for some j ∈ N,
(x∗

β)β∈Dα(R) is S1 and hence, Sn1 admissible. To see this, first note that for
all β ∈ R, mβ < m2k. By the injectivity of the function σ (defined in N q

∞) for
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β,γ ∈ Dα(R), mβ �= mγ < m2k. Since suppx∗ ≥ 2k we have that (x∗
β)β∈Dα(R)

is S1 admissible. Thus, for α ∈ A1, (x∗
β)β∈Dα(R) is Sϕ(α) admissible. By

Remark 3.4, (x∗
α)α∈A1 is Sd admissible where d = max{

∑
β≺α ϕ(β) : α ∈ A1}.

Let α ∈ A1. We have
∏

β≺α mβ = mb1
1

∏
i<k m

b2i+5b2i+1
2i < m2k, where bj =

| {β : β ≺ α,mβ = mj } |. Apply (1.2) for b1 =“a” and b2i + 5b2i+1 =“ai”, to
conclude that

b1n1 +
∑
i<k

(b2i + 5b2i+1)n2i <
∑
i<k

sin2i = pk.

We also have∑
β≺α

ϕ(β) =
( ∑

0≤i<k

b2i+1

)
n1 +

∑
1≤i<k

b2in2i < b1n1 +
∑

1≤i<k

(b2i + 5b2i+1)n2i.

This holds for all α ∈ A1 and thus, max{
∑

β≺α ϕ(β) : α ∈ A1} ≤ pk − 1. �

Corollary 3.6. Let x∗ ∈ N and k ∈ N. Decompose x∗ as

x∗ =
∑

β∈max T

∏
α�β γα∏
α≺β mα

e∗
jβ

.

Then the set {
jβ : |x∗(ejβ

)| ≥
2
∏

α�β γα

m2k
, jβ ≥ 2k

}
is Spk −1 admissible.

Proof. For k ∈ N, we can assume without loss of generality that
suppx∗ ≥ 2k. Apply the decomposition lemma to x∗ to obtain I1 and I2,
such that

x∗ =
∑
i∈I1

λie
∗
ji

+
∑
i∈I2

λix
∗
i ,

where {ji : i ∈ I1} ∈ Spk −1. We claim that,{
jβ : |x∗(ejβ

)| ≥
2
∏

α�β γα

m2k
, jβ ≥ 2k

}
⊂ {ji : i ∈ I1}.

If this were not the case, then for some i0 ∈ I2

2
∏

α�β γα

m2k
≤ |x∗(ejβ

)| = |λi0x
∗
i0(ejβ

)| ≤ |λi0 |.

From the proof of the decomposition lemma,

λi0 =

∏
α�β γα∏
α≺β mα

for some β ∈ A2.

For β ∈ A2, we have that
∏

α≺β mα ≥ m2k serving as our contradiction. �
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Before passing to the main lemma of the paper, we state the following fact
concerning the existence of a particular sequence of scalars. These scalars are
called repeated hierarchy averages and were first studied in [9] and later in
[8, 18]. These averages are defined in [3] for q = 2. In [16], a similar fact is
established for q = 1.

Fact 3.7. For any 1 ≤ q < ∞ and ε > 0, there exist successive subsets of N,
(Fk)∞

k=1, and scalars (ak,i)i∈Fk
, such that for each k ∈ N, Fk ≥ 2k, Fk ∈ Spk

,
‖(ak,i)i∈Fk

‖q = 1 and (
∑

i∈G |ak,i|q)1/q < ε for G ∈ Spk −1.

The next lemma establishes the existence of a seminormalized block se-
quence satisfying an upper �ω

q estimate with constant 1 in XN . These blocks
are constructed using Fact 3.7 and used to construct the desired operator
on XN .

Lemma 3.8. Let (Fk)∞
k=1 be successive subsets of N and scalars (ak,i)i∈Fk

be
such that Fk ≥ 2k, Fk ∈ Spk

, ‖(ak,i)i∈Fk
‖q = 1 and (

∑
i∈G |ak,i|q)1/p < 1/m2k

for all G ∈ Spk −1 and each k ∈ N. The sequence of functionals (x∗
k)∞

k=1 ∈ N
defined by, x∗

k = 1/m2k

∑
i∈Fk

ak,ie
∗
i , are seminormalized and satisfy an upper

�ω
q -estimate with constant 1.

Proof. We start by making an observation concerning the decomposition
of each x∗

k. For fixed k and k0 ≤ k, write Fk =
⋃dk

r=1 Jk,r , such that Jk,1 <

· · · < Jk,dk
, each Jk,r is Spk −pk0

admissible and (Jk,r)dk
r=1 is Spk0

admissible
(we can do this because Fk is Spk

admissible). Then

x∗
k =

1
m2k0

dk∑
r=1

( ∑
i∈Jk,r

|ak,i|q
) 1

q

z∗
k,r for

z∗
k,r =

m2k0

m2k

∑
i∈Jk,r

ak,i

(
∑

i∈Jk,r
|ak,i|q)1/q

e∗
i .

Since m2k0/m2k = 1/
∏

2k0≤�<2k ms�

� and (e∗
i )i∈Jk,r

is Spk −pk0
admissible, we

conclude by (1.3) that z∗
k,r ∈ N for all r ≤ dk. Since, minJk,r = minsupp z∗

k,r ,
we have that (z∗

k,r)
dk
r=1 is Spk0

admissible.
We now show that (x∗

k)k satisfies and upper �ω
q estimate with constant 1.

For starters, let k0 ∈ N and F ⊂ N with F ≥ k0, such that (x∗
k)k∈F is Sfk0

admissible. For every k ∈ F we apply the above (since F ≥ k0) to define
(z∗

k,r)
dk
r=1. The block sequence ((z∗

k,r)
dk
r=1)k∈F is Spk0+fk0

admissible, by the
convolution property of Schreier families. Hence, it is Sn2k0

admissible by (1.1)
and the hereditary property of Schreier families. To conclude, it suffices to
let (βk)k∈F ∈ Ba(�q) and show that

∑
i∈F βix

∗
i ∈ N . We do this by observing
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the following equality:

∑
k∈F

βkx∗
k =

∑
k∈F

βk
1

m2k0

dk∑
r=1

( ∑
i∈Jk,r

|ak,i|q
) 1

q

z∗
k,r

=
1

m2k0

∑
k∈F

dk∑
r=1

βk

( ∑
i∈Jk,r

|ak,i|q
) 1

q

z∗
k,r.

Since (βk(
∑

i∈Jk,r
|ak,i|q) 1

q )k ∈ Ba(�q) and ((z∗
k,r)

dk
r=1)k∈F is Sn2k0

admissible,
it follows that

∑
k∈F βkx∗

k ∈ N . Thus, (x∗
k)k satisfies a upper �ω

q -estimate
with constant 1.

To show that (x∗
k)k is seminormalized, it suffices to find a uniform lower

bound. For each k, define xk =
∑

j∈Fk
a

q/p
k,j ej . It suffices to show that ‖xk ‖ ≤

26/m2k. From this, it follows easily that ‖x∗
k ‖ ≥ 1/26 for all k ∈ N. Let

x∗ ∈ N be an arbitrary norming functional which we may assume without
loss of generality satisfies suppx∗ ≥ 2k (since Fk ≥ 2k). By applying the
decomposition lemma for k ∈ N and x∗, we can estimate ‖xk ‖ from above as
follows:

|x∗(xk)| ≤
∣∣∣∣∑
i∈I1

λie
∗
ji

(xk)
∣∣∣∣ +

∣∣∣∣∑
i∈I2

λiy
∗
i (xk)

∣∣∣∣
≤

∑
i∈I1

|λi| |ak,ji |
q
p +

∑
i∈I2

|λi|12
( ∑

{j:j∈suppyi ∩Fk }
|ak,j |q

) 1
p

≤
(∑

i∈I1

|λi|q
) 1

q
(∑

i∈I1

|ak,ji |q
) 1

p

+ 12
(∑

i∈I2

|λi|q
) 1

q
(∑

i∈I2

∑
{j:j∈suppyi ∩Fk }

|ak,j |q
) 1

p

≤ 2
1

m2k
+ 12

2
m2k

=
26

m2k
.

The first inequality follows from the decomposition lemma and the triangle
inequality. The second inequality follows from the triangle inequality, the de-
finition of xk, and Remark 3.3. The third follows from two applications of
Hölders inequality. For the last inequality, we used condition (c) of the decom-
position lemma, the fact that (ji)i∈I1 is Spk −1 admissible (by condition (b)
of the decomposition lemma) and the definition of (ak,i)i∈Fk

. This concludes
the proof. �

We make two final remarks before proceeding with the proof of the main
theorem.
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Remark 3.9. Let (y∗
i )i be the even subsequence of the seminormalized block

sequence (x∗
i )i satisfying an upper �ω

q estimate with constant 1 defined in
Lemma 3.8. Let k ∈ N, F ⊂ N, with F ≥ k such that (y∗

i )i∈F is Sn2k
ad-

missible. Then ‖
∑

i∈F βiy
∗
i ‖ ≤ 1 for all (βi)i ∈ Ba(�q).

Proof. Let k ∈ N, F be a subset of N, with F ≥ k and (y∗
i )i∈F being Sn2k

admissible. Set G = {i : i = 2j, j ∈ F } and note that (yi)i∈F = (x∗
i )i∈G. Since

F ≥ k, we have i ≥ k + 1 for all i ∈ G. Since (x∗
i )i satisfies an upper �ω

q ,
estimate G ≥ k +1 and (x∗

i )i∈G is Sn2k
admissible and thus, Sfk+1 admissible

we have: ∥∥∥∥∑
i∈F

βiy
∗
i

∥∥∥∥ =
∥∥∥∥∑

i∈G

βix
∗
i

∥∥∥∥ ≤ 1.

This concludes the proof. �

Remark 3.10. Let (y∗
i )i be the subsequence from Remark 3.9. For every

x ∈ S(X), k ∈ N, F ⊂ N with F ≥ k and (y∗
i )i∈F being Sn2k

admissible we
have (y∗

i (x))i∈F ∈ Ba(�p).

Proof. Let x ∈ S(X), k ∈ N and F ⊂ N with F ≥ k such that (y∗
i )i∈F is Sn2k

admissible. By Remark 3.9 for all (βi)i∈F ∈ Ba(�q), we have ‖
∑

i∈F βiy
∗
i ‖ ≤ 1.

Apply this for

βi =
|y∗

i (x)|p/q sign(y∗
i (x))

(
∑

j∈F |y∗
j (x)|p)1/q

and estimate ‖
∑

i∈F βiy
∗
i ‖ from below with x. �

Proof of Theorem 3.1. We are now ready to define the desired operator
on XN . Let (y∗

i )i be the seminormalized block sequence from Remark 3.9.
For x ∈ c00, define the operator T : c00 → c00 by Tx =

∑∞
i=1 y∗

i (x)ei. Once we
show that T is a bounded operator, it can be extended as on operator defined
on XN .

Since (y∗
i )i is a seminormalized block sequence, it follows that T is noncom-

pact. In the case that XN is an HI space, T must be strictly singular. Since
dim(KerT ) = ∞, if there was an infinite dimensional subspace Y of XN , such
that T |Y was an isomorphism. Y + Ker(T ) would be a direct sum. Contra-
dicting the fact that XN is HI. (It is known that the spaces constructed in [13]
have few operators. Using similar techniques, it can be further shown that
the space constructed in [3] has few operators.)

Our final task is to demonstrate that T is bounded. Let x ∈ S(X) and
x∗ ∈ N . If x∗ = ±e∗

j for some j, then |x∗(Tx)| ≤ 1. Thus, assume x∗ ∈ N ,
such that | suppx∗ | > 1. Suppose x∗ has the following decomposition:

x∗ =
∑

β∈max T

∏
α�β γα∏
α≺β mα

e∗
jβ

.
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Define

H2 =
{

jβ :
2
∏

α�β γα

m4
≤ |x∗(ejβ

)| <

∏
α�β γα

m1

}
.

For k > 2, define

Hk =
{

jβ :
2
∏

α�β γα

m2k
≤ |x∗(ejβ

)| <
2
∏

α�β γα

m2(k−1)

}
.

For k > 2, define Gk = {jβ ∈ Hk : jβ ≥ 2k}. Clearly, suppx∗ =
⋃∞

k=2 Hk. Ap-
ply Corollary 3.6 to deduce that Gk ∈ Spk −1. By (1.1) and (ii), Gk ∈ Sn2k

.
By the spreading property of Schreier families, (yi)i∈Gk

is Sn2k
admissible for

all k. For each k, apply Remark 3.10 to deduce that

(3)
( ∑

i∈Gk

|y∗
i (x)|p

) 1
p

≤ 1,

( ∑
i∈H2

|y∗
i (x)|p

) 1
p

≤ 1.

Estimate |x∗(Tx)| from above in the following way:

x∗

( ∞∑
i=1

y∗
i (x)ei

)
≤

∑
i∈H2

|y∗
i (x)| |x∗(ei)|

+
∞∑

k=3

[ ∑
i∈Gk

|y∗
i (x)| |x∗(ei)| +

∑
i∈Hk \Gk

|y∗
i (x)| |x∗(ei)|

]

≤
( ∑

i∈H2

|y∗
i (x)|p

) 1
p
( ∑

i∈H2

|x∗(ei)|q
) 1

q

+
∞∑

k=3

[( ∑
i∈Gk

|y∗
i (x)|p

) 1
p
( ∑

i∈Gk

|x∗(ei)|q
) 1

q

+
( ∑

i∈Hk \Gk

|y∗
i (x)|p

) 1
p
( ∑

i∈Hk \Gk

|x∗(ei)|q
) 1

q
]

<

( ∑
jβ ∈H2

∣∣∣∣ ∏
α�β

γα

∣∣∣∣
q) 1

q 1
m1

+
∞∑

k=3

[( ∑
jβ ∈Gk

∣∣∣∣ ∏
α�β

γα

∣∣∣∣
q) 1

q 2
m2(k−1)

+
( ∑

jβ ∈Hk \Gk

∣∣∣∣ ∏
α�β

γα

∣∣∣∣
q) 1

q 2(k − 1)
m2(k−1)

]

≤ 2
m1

+
∞∑

k=3

4
m2(k−1)

+
4(k − 1)
m2(k−1)

= M.
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The first inequality follows from the triangle inequality and the definitions of
Hk,Gk. For the second, we apply Hölders inequality to each of the terms.
For the first and second terms of the third inequality, we used (3) and the
definition of Hk. For the third term of the third inequality, we used the
fact that |x∗(ei)| ≤ 1 for all i, |Hk \ Gk | ≤ k − 1 and the definition of Hk.
For the final inequality, we used the fact that (|

∏
α�β γα|)β∈A ∈ 2Ba(�q) for

A = Hk,Gk or Hk \ Gk. Thus, ‖T ‖ ≤ max{M,1}.
We conclude by noting that �∞ embeds isomorphically into L(XN ) via the

mapping

(ai)∞
i=1 �−→ SOT - lim

n→∞

n∑
i=1

aiy
∗
i ⊗ ei.

Here, “SOT -lim” denotes the strong operator topology limit. To see that this
is a bounded isomorphism one merely follows, almost identically, the previous
calculation. �
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