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RAPIDLY GROWING ENTIRE FUNCTIONS WITH THREE
SINGULAR VALUES

SERGEI MERENKOV

Abstract. We settle the problem of finding an entire function
with three singular values whose Nevanlinna characteristic dom-
inates an arbitrarily prescribed function.

1. Introduction

Let f be a transcendental meromorphic function in the plane C. A critical
point of f is a point at which the spherical derivative of f vanishes. The value
of f at a critical point is called a critical value. A point a in the sphere C is
called an asymptotic value of f if there exists a curve γ : [0,1) → C such that

γ(t) → ∞ and f(γ(t)) → a as t → 1.

A point a in C is a singular value of f if it is either a critical or an asymptotic
value. In this paper we study the growth behavior of entire and meromorphic
functions which have finitely many singular values. The class of such functions
is usually denoted by S , after Speiser [19], [20].

If f is an arbitrary meromorphic function in the plane, the Nevanlinna
characteristic of f is defined as (see [9], [17])

T (r, f) = N(r, f) + m(r, f),

where

N(r, f) =
∫ r

0

n(t, f)
t

dt, m(r, f) =
1
2π

∫ 2π

0

log+ |f(reiϕ)| dϕ,

and n(t, f) is the number of poles of f in { |z| < t}. Here we assumed that 0
is not a pole of f . If f is a rational function of degree d, then its Nevanlinna
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characteristic T (r, f) grows like d log r, as r → ∞. If f is a transcendental
meromorphic function, then T (r, f) grows faster than any multiple of log r,
but it is easy to see that for any a > 1 one can find a transcendental f for
which T (r, f) grows slower than loga r, as r → ∞.

The question of slowest possible growth of the Nevanlinna characteristic for
meromorphic functions with finitely many singular values has been studied in
recent years, notably by Eremenko [6], and Langley [14], [15]. In particular,
it was proved that if f is a transcendental meromorphic function with three
singular values, then

lim inf
r→∞

T (r, f)
log2 r

≥
√

3
π

,

and the constant on the right-hand side is sharp. Langley established the
existence of an absolute constant for the right-hand side, and Eremenko found
the exact value for this constant. If f is a transcendental entire function
with three singular values, then lim infr→∞ T (r, f)/log2 r is infinite. In fact,
the Nevanlinna characteristic T (r, f) of such a function dominates a positive
multiple of

√
r.

In general, if f is a transcendental meromorphic function which has finitely
many singular values, then Langley showed that

lim inf
r→∞

T (r, f)
log2 r

> 0,

but the left-hand side can be as small as one wishes if the number of singular
values is greater than three.

Here we investigate the question of arbitrarily rapid growth.

Theorem 1. For every R-valued function M(r), r ≥ 0, there exists an
entire function f with three singular values 0, 1, and ∞ such that

T (r, f) ≥ M(r), for r ≥ r0,

and some r0 > 0.

Our proof of this theorem is based on a combinatorial construction of a
Riemann surface spread over the sphere which branches over three points.
The desired map is obtained as a composition of a uniformizing map of this
Riemann surface and the projection map to the sphere. One of the key steps
in proving Theorem 1 is to establish a quantitative control on the volume
growth of a graph in terms of the combinatorial modulus. This is done in
Lemma 1.

A meromorphic function whose Nevanlinna characteristic dominates an
arbitrarily prescribed function is easier to produce. Indeed, there is more
flexibility in constructing surfaces spread over the sphere that correspond to
meromorphic functions, since one does not need to worry about ∞ being an
omitted value. The construction is outlined in Section 6.
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2. Graphs

A graph G is a pair (VG,EG), where VG is a set of vertices and EG is
a subset of unordered pairs of elements in VG, called edges. If v1, v2 ∈ VG,
and {v1, v2} ∈ EG, we say that v1 and v2 are connected by an edge, and write
v1 ∼ v2. We assume that no vertex is connected to itself by an edge. A graph
is called bipartite if the vertices can be subdivided into two disjoint sets, say
A and B, and every edge connects a vertex from A to one from B. A subgraph
G′ of a graph G is a graph whose vertex set forms a subset of VG, and if two
vertices of G′ are connected by an edge in G′, then they are connected by an
edge in G. If A is a subset in VG, we denote by |A| the cardinality of A, where
|A| = ∞ if the set A is infinite.

The valence of v ∈ VG is | {u ∈ VG : u ∼ v} |. The valence of G is the supre-
mum of the valences over all vertices of G. A graph G is called locally finite,
if the valence of each vertex is finite. A graph is said to have a finite valence,
if there is a uniform bound on the valence at each vertex. A graph is called
homogeneous of valence q if every vertex has the same valence q.

A chain in G is a sequence (. . . , x−1, x0, x1, . . . ) of vertices, finite or infinite
in one or both directions, such that · · · ∼ x−1 ∼ x0 ∼ x1 ∼ · · · . We also refer
to a chain as a sequence of vertices along with the edges connecting them.
A chain (. . . , y−1, y0, y1, . . . ) is a subchain of a chain (. . . , x−1, x0, x1, . . . ), if
yj = xk(j) for some monotone increasing sequence (k(j)). We say that a chain
(x1, . . . , xn) connects two subsets A and B of VG, if x1 ∈ A and xn ∈ B.
A chain (x1, x2, . . . ) connects a finite set A to ∞, if x1 ∈ A and it eventually
leaves every finite set, i.e., for every finite subset K of VG there exists k ∈ N

such that xj /∈ K for j ≥ k. A set B in VG is said to separate a set A ⊂ VG

from ∞ if every chain connecting A to ∞ has a vertex in B.
A loop in a graph is a finite chain (x1, . . . , xn), such that x1 = xn and all

other vertices of the chain are distinct. A tree is a graph that does not contain
any loops (x1, . . . , xn) with n > 3. A subtree is a subgraph of a tree.

If G is a graph and V is a subset of the vertex set VG, we consider the
subgraph G′ of G determined by the vertex set V to be the graph whose
vertex set is V , and two vertices v1 and v2 are connected by an edge in G′ if
and only if they are connected by an edge in G.

A domain D in a graph G is a subset of the vertex set VG which is connected
in the sense that every two vertices in D can be connected by a chain all of
whose vertices are in D. The boundary of D in G, denoted by ∂GD, or ∂D if
the graph is understood, is the set of all vertices in VG that are not in D, and
each of which is connected by an edge in EG to a vertex in D. An annulus in
a graph G is a subset of VG whose complement in VG consists of two disjoint
domains. Not every graph contains an annulus. A sequence of annuli (Ak) is
called nested if the annuli are pairwise disjoint, and Ak+1 separates Ak from
∞.
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In this paper we only consider planar graphs, i.e., graphs embedded in the
plane R

2. If we fix an embedding of a graph into R
2, then we can speak of

faces of the graph. These are complementary components of the image of the
graph in the plane. A side of a face is a part of its boundary that is the image
of an edge under the embedding. If G is a planar graph, one can also define
its dual G∗. The vertices of G∗ are in one to one correspondence with the
faces of G. Two vertices of G∗ are connected by an edge if and only if the
boundaries of the corresponding faces of G share a side.

A connected graph can be viewed as a metric space if one declares that
every edge is isometric to a unit interval on the real line. This metric restricts
to the space whose elements are vertices of the graph, in which case it is
said that the graph is endowed with the word metric. Thus, we can speak of
geodesics in a graph, i.e., chains connecting two vertices or two sets and having
the smallest lengths among all such chains. If A and B are two subsets of VG,
we denote by δ(A,B) the word distance between A and B, i.e., the number
of edges in a geodesic connecting A and B. If A is a one vertex set {v}, we
write δ(v,B) instead of δ({v},B). Similarly, δ(v,w) stands for δ({v}, {w}).

3. Surfaces of Speiser class

A surface spread over the sphere is an equivalence class of pairs [(X,π)],
where X is an open, i.e., non-compact, simply connected topological surface
and π : X → C is a continuous, open, and discrete map. Two pairs (X1, π1)
and (X2, π2) are equivalent if there exists a homeomorphism h : X1 → X2 such
that π1 = π2 ◦ h. The map π is called the projection.

In a neighborhood of each point x in X, the map π is given in some local
coordinates (for neighborhoods of x and π(x)) by z 
→ zk, where k = k(x) ∈ N

is called the local degree of f at x. If k ≥ 2, then x is called a critical point
of f , and in this case the value f(x) is called a critical value. As in the case
X = C and π a meromorphic function, a ∈ C is called an asymptotic value if
there exists a curve γ : [0,1) → X, such that

γ(t) → ∞ and π(γ(t)) → a as t → 1.

Here, γ(t) → ∞ means that γ(t) leaves every compact set of X as t → 1.
A point a in C is a singular value of π if it is either a critical or an asymptotic
value.

According to Stöılow [21], X supports a complex structure, the pullback
structure, in which the map π is holomorphic. A surface spread over the
sphere is said to have parabolic type, or is called parabolic, if X endowed with
the pullback structure is conformally equivalent to the plane. Otherwise it
is said to have hyperbolic type. The homeomorphism h in the definition of
equivalence is a conformal map in these pullback structures, and therefore
the conformal type of a surface spread over the sphere is well defined. For
simplicity, below we refer to a pair (X,π), rather than an equivalence class, as
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a surface spread over the sphere. If g is a uniformizing map for X defined in
the complex plane or the unit disc, then f = π ◦ g is a meromorphic function.
If π omits the value ∞, then f is holomorphic. The surface spread over the
sphere (X,π) is classically referred to as the “surface of f −1.”

A surface spread over the sphere belongs to Speiser class S if π has only
finitely many singular values. If {a1, . . . , aq } is the set of singular values of
π, then π restricted to π−1(C \ {a1, . . . , aq }) is a covering map. Surfaces
spread over the sphere of class S have combinatorial representations in terms
of Speiser graphs.

Assuming that (X,π) ∈ S and π has q singular values a1, . . . , aq , we fix an
oriented Jordan curve L in C, visiting the points a1, . . . , aq in cyclic order of
increasing indices. This curve decomposes the sphere into two simply con-
nected regions. Let Li, i ∈ {1,2, . . . , q}, be the arc of L from ai to ai+1 (with
indices taken modulo q). Let us fix points p1 and p2 in the two complementary
components of L, and choose q Jordan arcs γ1, . . . , γq in C, such that each
arc γi has p1 and p2 as its endpoints, and has a unique point of intersection
with L, which is in Li. These arcs are chosen to be interiorwise disjoint,
that is, γi ∩ γj = {p1, p2} when i �= j. Let Γ′ denote the graph embedded in
C, whose vertices are p1 and p2, and whose edges are γi, i = 1, . . . , q, and
let Γ = π−1(Γ′). We identify Γ with its image in R

2 under an orientation-
preserving homeomorphism of X onto R

2. The graph Γ is infinite, connected,
homogeneous of valence q, and bipartite. The vertices that project to p1 are
labelled × and the ones that project to p2 are labelled ◦. A graph, prop-
erly embedded in the plane and having these properties is called a Speiser
graph. Two Speiser graphs Γ1, Γ2 are said to be equivalent , if there is an
orientation-preserving homeomorphism of the plane which takes Γ1 to Γ2.
Each face of the Speiser graph Γ is labelled by the corresponding element of
the set {a1, . . . , aq }.

The above construction of a Speiser graph from a surface spread over the
sphere of class S is reversible. Suppose we are given a Speiser graph Γ whose
faces are labelled by a1, . . . , aq . A necessary condition for existence of a surface
spread over the sphere of class S with singular values a1, . . . , aq and whose
Speiser graph is Γ is that the labels should satisfy a certain compatibility
condition. Namely, when going counterclockwise around a vertex ×, the in-
dices are encountered in their cyclic order, and around ◦ in the reversed cyclic
order. We fix a simple closed curve L ⊂ C passing through a1, . . . , aq . Let
H1,H2 be the complementary regions whose common boundary is L, and let
L1, . . . ,Lq be as above. Let Γ∗ be the planar dual of Γ. The vertices of Γ∗

are naturally labelled by a1, . . . , aq . If e is an edge of Γ∗ connecting aj and
aj+1, let π map e homeomorphically onto the corresponding arc Lj of L. This
defines a map π on the edges and vertices of Γ∗. We then extend π to map
the faces of Γ∗ homeomorphically to H1 or H2, depending on the orientation
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of the boundaries. This defines a surface spread over the sphere (R2, π) ∈ S .
The corresponding labelled Speiser graph is the graph Γ with the prescribed
labels. Thus, up to a choice of the curve L, we have a one to one corre-
spondence between surfaces spread over the sphere of class S and equivalence
classes of labelled Speiser graphs. See [7] and [17] for further details.

4. Type problem

A long studied problem is the one of recognizing the conformal type of a
surface spread over the sphere of class S from its Speiser graph. An infinite
locally finite connected graph is called parabolic if the simple random walk
on it is recurrent. Otherwise it is called hyperbolic. Doyle [3] gave a criterion
of type for a surface spread over the sphere of class S in terms of a so-called
extended Speiser graph.

Let Z+ denote the set of non-negative integers. A half-plane lattice Λ is
the graph embedded in R

2 whose vertices form the set Z × Z+, and (x′, y′) ∼
(x′ ′, y′ ′) if and only if (x′ ′ − x′, y′ ′ − y′) = (±1,0) or (0, ±1). The boundary of
the half-plane lattice Λ is the infinite connected subgraph of Λ determined by
the vertex set Z × {0}. There is an action of Z on Λ by horizontal shifts. A half-
cylinder lattice Λn is Λ/nZ. The boundary of Λn is the induced boundary
from Λ.

Suppose that Γ is a Speiser graph and let n ∈ N be given. If we replace each
face of Γ with 2k edges on the boundary, k ≥ n, by the half-cylinder lattice
Λ2k, and each face with infinitely many edges on the boundary by the half-
plane lattice Λ, identifying the boundaries of the faces with the boundaries of
the corresponding lattices along the edges and vertices, we obtain an extended
Speiser graph Γn. The graph Γn is an infinite connected graph embedded in
the plane, containing Γ as a subgraph. It has a finite valence, and all faces of
Γn have no more than max{2(n − 1),4} sides.

Theorem A ([3]). A surface spread over the sphere (X,π) ∈ S is parabolic
if and only if Γ1 is parabolic.

In [16] we proved a slight modification of Theorem A.

Theorem B ([16]). Let n ∈ N be fixed. A surface spread over the sphere
(X,π) ∈ S is parabolic if and only if Γn is parabolic.

Doyle’s arguments are probabilistic and electrical, whereas [16] employs
geometric methods, using results of Kanai [12], [13]. Below we derive Theo-
rem B from Theorem A using results from [4].

Kanai shows the invariance of type under quasi-isometries for spaces with
bounded geometry. A map Φ : (X1, d1) → (X2, d2) between two metric spaces
is called a quasi-isometry, if the following conditions are satisfied:
1. for some ε > 0, the ε-neighborhood of the image of Φ in X2 covers X2;
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2. there are constants k ≥ 1, C ≥ 0, such that for all x1, x2 ∈ X1,

k−1d1(x1, x2) − C ≤ d2(Φ(x1),Φ(x2)) ≤ kd1(x1, x2) + C.

The metric space (X1, d1) is quasi-isometric to the metric space (X2, d2) if
there exists a quasi-isometry from X1 to X2. This is an equivalence relation.
The notion of quasi-isometry, or rough isometry, was introduced by Gromov
[8].

A Riemannian surface has bounded geometry if it is complete, the Gaussian
curvature is bounded from below, and the radius of injectivity is positive. The
latter means that there exists δ > 0 such that every open ball whose radius
is at most δ is homeomorphic to a Euclidean ball. Kanai proves that if a
Riemannian surface has bounded geometry and is quasi-isometric to a finite
valence graph with the word metric, then the surface and the graph have the
same type. Likewise, two quasi-isometric graphs with finite valence have the
same type.

Proof of Theorem B. By Theorem A one needs to show that Γn is para-
bolic if and only if Γ1 is. Assume first that Γ1 is parabolic. The graph Γn is
obtained from Γ1 by cutting the edges that connect the vertices of Γ, viewed
as a subgraph of Γ1 using the obvious embedding, on the boundary of faces
of Γ with 2k edges, k < n, to the vertices of Λ2k. Therefore, this direction
follows from the Cutting Law [4], page 100. For the other direction, assume
that Γ1 is hyperbolic. We consider a new graph Γ̃1, obtained from Γ1 by
shorting all nonboundary vertices of every half-cylinder lattice Λ2k, k < n,
that have replaced a face of Γ. Here, shorting a set of vertices means identi-
fying them. By the Shorting Law [4], page 100, Γ̃1 is also hyperbolic. But Γ̃1

has finite valence and is quasi-isometric to Γn. The quasi-isometry is given
by an embedding of Γn into Γ̃1 induced from the obvious embedding of Γn

into Γ1. Therefore, Γn is hyperbolic. �

Due to the nature of a construction, as in our case below, it is often easier
to establish the type for the dual graph Γ∗

n to the extended Speiser graph Γn.

Theorem C. Let n ∈ N be fixed. A surface spread over the sphere (X,π) ∈
S is parabolic if and only if Γ∗

n is parabolic.

Proof. The graph Γn in question and its dual have finite valences. A map
Φ that sends every vertex v of Γ∗

n to any vertex on the boundary of the face
of Γn corresponding to v is a quasi-isometry. Indeed, the first condition for
quasi-isometry follows since every vertex of Γn is on the boundary of a face
and there is a uniform bound on the number of sides of each face since Γ∗

n has
finite valence. Therefore, every vertex of Γn is within a uniformly bounded
distance from an image of a vertex in Γ∗

n under Φ.
The second condition follows since both graphs have finite valence. Let γ∗

be a geodesic chain in Γ∗
n connecting two vertices v1 and v2. By tracing the
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boundaries of faces corresponding to the vertices of γ∗, one can find a chain
in Γn connecting Φ(v1) and Φ(v2), and whose length is at most C1 times the
length of γ, where C1 depends only on the valences of Γn and Γ∗

n. Conversely,
for every geodesic chain γ in Γn connecting two vertices Φ(v1) and Φ(v2), one
can find a chain in Γ∗

n that connects v1 and v2 by following the faces that
contain γ on their boundaries, such that the length of this new chain is at
most C2 times the length of γ. The constant C2 depends only on the valences
of Γn and Γ∗

n.
Since the graphs Γn and Γ∗

n are quasi-isometric and have finite valences,
they have the same type. Now the result follows from Theorem B. �

5. Combinatorial modulus

In 1962, Duffin [5] introduced a combinatorial modulus for chain families
in graphs. In his setting, the masses are assigned to the edges of the graph.
Parabolicity of a locally finite graph is equivalent to the condition that the
modulus of the family of chains connecting a fixed vertex to infinity is zero.
For our purposes, it is more convenient to use a different notion of modu-
lus, introduced more recently by Cannon [2], where masses are assigned to
vertices rather than edges. This approach leads to certain combinatorial uni-
formization results, see e.g., [18]. If a graph has finite valence, as in our case
below, it does not matter which definition of combinatorial modulus one uses
when establishing parabolicity. This can be seen by distributing masses from
vertices to edges and vice versa.

A mass distribution for a graph G is a non-negative function on VG. Let C
be a family of chains in G. We say that a mass distribution m is admissible for
C, if for each chain (. . . , x−1, x0, x1, . . . ) ∈ C, its weighted length

∑
m(xj) ≥ 1.

We denote by modG C the combinatorial modulus of the chain family C, namely

modG C = inf
{∑

m(v)2
}

,

where the infimum is taken with respect to all admissible mass distributions,
and the sum is over all vertices in VG. We write mod C if the graph is under-
stood. To distinguish, the conformal modulus of a curve family on a surface
will be denoted by Mod. If C is the family of all chains connecting sets A and
B, or a set A to ∞, we denote mod C by mod(A,B) or mod(A, ∞), respec-
tively. If A is an annulus in a graph G, then modA denotes the modulus of
the family of all chains that connect the complementary components of A in
VG.

As for the classical conformal modulus, if C and C ′ are two families of
chains, such that every chain in C contains a subchain which is in C ′, then
mod C ≤ mod C ′. Also, if (Ak) is a sequence of (disjoint) nested annuli, then

mod({v0}, ∞) ≤ 1∑
1/modAk

,
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for any vertex v0 that is separated from ∞ by every Ak. The first property
follows immediately from the definition. A proof of the inequality mimics that
for the classical conformal modulus. Now, as in the classical case, to show
parabolicity of a finite valence graph, it is enough to exhibit a sequence (Ak)
of (disjoint) nested annuli, such that

∑ 1
modAk

= ∞.

This will be used in the proof of Lemma 1.

6. Meromorphic example

Since later we prove that the Nevanlinna characteristic of an entire function
dominates an arbitrarily prescribed function, here we only give an outline that
such a meromorphic function exists.

Consider the infinite half-strip in the plane

S = {z = x + iy : 0 ≤ x ≤ 2,0 ≤ y < ∞},

subdivided into squares

{z : j ≤ x ≤ j + 1, n ≤ y ≤ n + 1}, j = 0,1, n = 0,1,2, . . . .

For each even n = 2k, we attach N(k) Euclidean squares with side length 1
to the edge

ek = {z : x = 1,2k ≤ y ≤ 2k + 1},

so that all of these squares share the side ek, and are otherwise disjoint. More
specifically, we cut the strip S along ek, take a two-sided unit square cut along
one of its edges, and glue the square to the strip along a cut. We repeat this
operation if necessary, attaching more squares to ek. What results can be
thought of as a book spread open along its spine.

The result of the gluing of all the squares is a simply connected Riemann
surface Y with boundary, which corresponds to the boundary of S. Now
we consider the double X of Y across the boundary. This means that X is
obtained from two copies of Y by identifying every boundary point of one
copy with the point of the other copy that corresponds to the same point
of Y . This is a simply connected Riemann surface without boundary. For
each n = 0,1,2, . . . , let An denote the annulus in X that consists of all points
corresponding to the points of the horizontal rectangle {n ≤ y ≤ n + 1} of S
and all points of squares attached to en/2 if n is even. Each surface X is
parabolic since it contains a sequence of annuli (An), where n is odd, of fixed
modulus. Using a modulus estimate, one can show that if F is a uniformizing
map of C onto X , then the image Ir under F of the disc Dr centered at 0 of
radius r contains a ball (in the intrinsic metric of X) of radius

L(r) ≥ C log r,
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where C is a constant not depending on the sequence (N(k)). Indeed, let s
denote the set in X that corresponds to the segment in S connecting (0,0) to
(2,0), and let sF be the preimage of s under F . The set sF is homeomorphic
to a line segment. Suppose that n(r) is the smallest natural number so that
the annulus An(r) is not contained in Ir. The conformal modulus of the curve
family consisting of curves in Dr that separate sF from the boundary of Dr

grows like log r/(2π) as r → ∞. On the other hand, the conformal modulus
of the image family in X is bounded above by C ′n(r), where C ′ is a constant
independent of (N(k)). This can be seen by choosing a weight function equal
1/2 at all points of the annuli A0,A1, . . . ,An(r)+1 that correspond to points
of S, and equal 0 at all other points of these annuli. From the invariance of
modulus under conformal maps we obtain that

n(r) ≥ log r/(2πC ′),

which immediately gives the desired estimate for L(r).
Now, by choosing N(k) to grow sufficiently rapidly, one can arrange arbi-

trarily rapid growth of the areas, with respect to the radii, of the intrinsic balls
of X centered at some point. Arbitrarily rapid growth of the areas implies
arbitrarily rapid growth of the Nevanlinna characteristic (see Ahlfors–Shimizu
characteristic in [9]). A similar fact is based on the First Main Theorem of
Nevanlinna and it will be discussed in Section 8.

By subdividing each square of the surface X into four triangles using diago-
nals, and considering the Speiser graph which is dual to such a triangulation,
we obtain a meromorphic function with three singular values that has the
desired properties.

7. Entire functions with three singular values

If f is a transcendental entire function with three singular values 0,1, and
∞, then f −1([0,1]) forms a locally finite, infinite tree T embedded in R

2.
The vertices are the preimages of 0 and 1, and the edges are the preimages
of [0,1]. Indeed, the graph is connected since f restricted to f −1(C \ {0,1})
is a covering map. The valence of each vertex is the local degree of f at the
corresponding point. The graph is infinite since f is transcendental. Finally,
it is a tree because otherwise there would exist a complementary component
of f −1([0,1]) that is compactly contained in C. This is impossible since such
a component would have to contain a preimage of ∞, but f is assumed to be
entire.

Conversely, suppose we are given an arbitrary locally finite, infinite, em-
bedded tree T , whose vertices are labelled 0 and 1, and each edge connects 0
and 1. We construct a surface spread over the sphere (X,π) with three sin-
gular values as follows. For every vertex v in VT of valence k, we consider k
non-homotopic, non-intersecting Jordan arcs in R

2 \ T that originate at v and
escape to infinity. We can choose the arcs corresponding to different vertices
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to be disjoint. This gives a triangulation T ′ of R
2, with each triangle having

an ideal vertex at infinity. Every triangle of T ′ has an edge of T and two arcs
escaping to infinity as its sides. Each vertex of T ′ has an even valence, and it
receives a label 0 or 1 from the corresponding label of T . The ideal vertices
at infinity are labelled by ∞.

Consider the dual graph to T ′, denoted Γ. The graph Γ is an infinite
connected graph, properly embedded in the plane. It has valence three at
each vertex, and every face of Γ has an even (or infinite) number of vertices
on its boundary, so Γ is bipartite. Therefore Γ is a Speiser graph. Let (X,π)
denote a surface spread over the sphere that corresponds to Γ with the induced
labels from T ′, which are 0, 1, and ∞. These are the singular values of π,
and π omits the value ∞. Thus, the composition of a uniformizing map of X
with π is a holomorphic function. We proceed by explicitly describing (X,π)
up to conformal equivalence.

Let
α = {(x, y) : 0 ≤ x,0 ≤ y ≤ 1}

be a half-strip in the plane. To each triangle t of T ′ we associate a copy of α,
which we denote by α(t), so that under an orientation-preserving homeomor-
phism of the plane the side of t contained in T corresponds to the segment
joining (0,0) and (0,1), and the sides of t that are in T ′ \ T correspond to two
horizontal rays. If t1 and t2 are adjacent triangles, we glue α(t1) and α(t2)
along the corresponding sides using the identity map. The result of the glu-
ing is a simply connected open Riemann surface, which we denote by S(T ).
A tree isomorphic to T embeds in S(T ), and we identify this tree with T .
Now we consider the conformal map, continuously extended to the boundary,
from the half-strip

αo = {(x, y) : 0 < x,0 < y < 1}
to the lower half-plane that takes (0,0), (0,1), and ∞ to 0, 1, and ∞, respec-
tively. This map extends by reflection to a conformal map from the Riemann
surface S(T ) to the surface spread over the sphere (X,π) with the pullback
complex structure. The tree T is isomorphic to π−1([0,1]) with the natural
graph structure.

Since we need to consider an extended Speiser graph in deciding the type
of a surface spread over the sphere, the following subdivision of S(T ) is useful.
We subdivide α into squares

αk = {(x + k, y) : 0 ≤ x ≤ 1,0 ≤ y ≤ 1}, k = 0,1,2, . . . .

The subdivision of α by αk, k = 0,1,2, . . . , induces a subdivision of S(T ) into
squares, a square subdivision. The 1-skeleton of this subdivision considered as
a graph will be denoted by σ = σ(T ). The tree T is a subgraph of σ. In the
case when the tree T has valence n, as in our example below with n = 3, the
graph σ(T ) is the dual graph Γ∗

n to the extended Speiser graph Γn. According
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to Theorem C, the surface spread over the sphere (X,π) is parabolic if and
only if σ is.

8. Volume growth

The First Main Theorem of Nevanlinna (see [9], [17]) asserts that for every
a ∈ C,

T (r, f) = N

(
r,

1
f − a

)
+ m

(
r,

1
f − a

)
+ O(1), r → ∞.

Therefore, by choosing a to be either 0 or 1, we conclude that in order to find
f with T (r, f) growing arbitrarily rapidly, it is sufficient to find an embedded
tree T with the following properties. The corresponding surface S(T ) is para-
bolic, and if M(r), r ≥ 0, is a prescribed function, and g a uniformizing map
from C to S(T ), then the number of vertices of g−1(T ) in the disc of radius
r about 0 is greater than M(r), for all r ≥ r0 > 0. In this case, the first term
N(r,1/(f − a)) alone dominates M(r).

Assuming that S(T ) is parabolic and g is a uniformizing map from C to
S(T ), we denote by n(r,T, g) the number of vertices of g−1(T ) contained in the
disc of radius r centered at 0. This is an analog of the counting function n(r, f)
in the definition of Nevanlinna characteristic T (r, f). Theorem 1 follows from
the following theorem, proved in Section 10.

Theorem 2. Given any R-valued function M(r), r ≥ 0, there exists a lo-
cally finite, infinite tree T , embedded in the plane, such that S(T ) is parabolic,
and n(r,T, g) ≥ M(r), r ≥ r0, for any uniformizing map g and r0 = r0(g) > 0.
Moreover, we can choose T to be a subtree of the regular tree of valence three,
denoted T3.

The tree T3 is homogeneous of valence 3, and we think of T3 as being em-
bedded in the plane. Let v0 be a fixed vertex in VT3 , and ε0 denote the com-
binatorial modulus modT3({v0}, ∞), which is a positive number because T3 is
hyperbolic, as is well known. The complement of T3 in the plane has infinitely
many components, three of which have v0 on their boundaries. We consider
one of these three components, denoted D, and let c = (. . . , v−1, v0, v1, . . . ) be
the chain in T3 such that vj �= vk for j �= k, and c together with the edges that
connect its vertices bounds D.

If k ∈ N, then T3 \ {vk, v−k } is a union of five disjoint domains, one of which
contains v0, and each of the four others is bounded by either vk or v−k. For
each k ∈ N ∪ {0}, let Ck be the family of all chains (x1, x2, . . . ) in T3 that
connect {v0} to ∞, and such that all but finitely many of xj ’s are contained
in one of the domains into which T3 \ {vk, v−k } splits, that does not contain
v0. The family C0 consists of all chains connecting v0 to ∞. If k > 0, each
chain of Ck should have all but finitely many of its vertices to lie in one of the
four domains of T3 \ {vk, v−k } that does not contain v0. In other words, every
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chain in Ck should escape to infinity through either vk or v−k. It is easy to
see that the sequence (εk) defined by εk = modT3 Ck decreases, 0 < εk ≤ ε0 for
every k ∈ N, and limεk = 0.

For two quantities a and b, we use the notation a � b if there exists a
constant C > 0 which depends only on the data of an underlying space, such
that a ≤ Cb. The key step in the proof of Theorem 2 is the following lemma.

Lemma 1. Let c, Ck, and εk be as above, k ∈ N ∪ {0}. Let L(ε), 0 < ε ≤ ε0,
be a positive decreasing function, L(ε0) ≥ 1. Let B′

k be the subset of vertices
of T3 defined by

B′
k = {v ∈ VT3 : δ(v, v0) = δ(v, c) + k},

and let Bk be the subset of B′
k given by

Bk = {v ∈ B′
k : δ(v, c) ≤ L(εk+1)}.

Then the subtree T of T3, determined by the vertex set

VT =
∞⋃

k=0

Bk,

satisfies the property that for every ε ∈ (0, ε0], and every domain D in T with
v0 ∈ D, we have

(1) modT ({v0}, ∂D) < ε ⇒ |D| > L(ε).

Moreover, if

(2) 2[L(ε1)] + · · · + 2[L(εk)] ≤ C2[L(εk+1)], k = 1,2, . . . ,

where C is a positive constant, then S(T ) is parabolic.

Proof. It follows from the definition that B′
k, k = 0,1,2, . . . , are disjoint,⋃∞

k=0 B′
k = VT3 , and every chain in Ck has all but finitely many of its vertices

in
⋃

l≥k B′
l .

Suppose that ε ∈ (0, ε0], and let D be a domain in T with v0 ∈ D, and
such that modT ({v0}, ∂D) < ε. There exists k ∈ N ∪ {0} such that εk+1 <
ε ≤ εk. Assume for contradiction that |D| ≤ L(ε). Since L is decreasing,
|D| ≤ L(εk+1), and therefore every chain in Ck contains a subchain in T that
connects {v0} to ∂T D, the boundary of D in T . Indeed, D can also be
considered as a domain in T3, and it cannot contain vertices of B′

l , l ≥ k,
that are more than distance [L(εk+1)] − 1 away from c because |D| ≤ L(εk+1).
Thus every boundary vertex of D ⊂ T3 contained in

⋃
l≥k B′

l is a boundary
vertex of D ⊂ T . Since v0 ∈ D, every chain c′ in Ck has a subchain connecting
v0 to some boundary vertex v′ of D in T3. Furthermore, c′ contains a subchain
connecting v0 to v′ ∈ ∂T D. If not, let v′ ′ be the last vertex of c′ that belongs
to the boundary of D in T3. Since D is a domain, and hence is connected,
and T3 is a tree, v′ ′ either belongs to c or is contained in

⋃
l≥k B′

l . But c is
contained in T , and in the latter case v′ ′ belongs to T as a boundary vertex of
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D ⊂ T3 contained in
⋃

l≥k B′
l . The desired subchain is obtained by removing

edges of c′ that connect vertices outside of VT .
Now, we have

εk = modT3 Ck ≤ modT ({v0}, ∂D) < ε.

This last estimate contradicts our understanding that ε ≤ εk, and proves (1).
It remains to prove that under condition (2), S(T ) is parabolic. The tree

T has an axis of symmetry passing through v0 so that under the symmetry
transformation the vertex vk is mapped to v−k and vice versa, and each Bk as
well as the chain c are invariant. One should think of this axis of symmetry as
being orthogonal to c. Let σ = σ(T ) be the 1-skeleton of the square subdivision
of S(T ) that was created using the αk’s. The graph σ has also an axis of
symmetry, denoted a, induced by the axis of symmetry of T . We claim that
σ is parabolic. For that purpose, we exhibit a sequence of nested annuli (Ak)
and verify that

∑
1/modAk = ∞.

For each k = 1,2, . . . , we consider an annulus Ak in σ obtained as follows.
The vertices of T separate those of σ into two groups, which we call V+ and V−.
The sets V+ and V− form the sets of vertices of the upper and lower square
grids {(m,n) : m ∈ Z, n ∈ N} and {(m,n) : m ∈ Z, −n ∈ N}, respectively, so
that for each of these sets the vertices with coordinates (0, n) are located on
the symmetry axis a. Each Ak consists of the vertices of the set Bk ⊂ VT

defined above, vertices (m,n) in V+ such that max{|m|, |n| } = k, and vertices
(m,n) in V− such that ak ≤ max{ |m|, |n| } ≤ bk, where ak and bk are chosen
as follows. The number ak is the least one such that the vertex (ak, −1) of V−
is connected by an edge to vk, and bk is the largest number such that (bk, −1)
is connected by an edge to vk. A direct calculation gives

ak = 2[L(ε1)] + 2
(
2[L(ε2)] + · · · + 2[L(εk)]

)
− k + 1,

bk = 2[L(ε1)] + 2
(
2[L(ε2)] + · · · + 2[L(εk+1)]

)
− k − 1.

Indeed, for each l > 0, the number of vertices of Bl lying to one side of the
axis of symmetry a is 2[L(εl+1)], and the total number of vertices v of V− to
one side of a, such that v is connected to a vertex in Bl, is 2[L(εl+1)]+1 − 1.
Adding the latter terms for l = 1,2, . . . , k − 1 and for l = 1,2, . . . , k together,
each along with 2[L(ε1)], contributed by B0, we obtain the quantities ak and
bk + 1, respectively.

Now, we assign mass 1 to all vertices in Ak ∩ V+, mass 1/2l−1 to vertices v
in Bk such that δ(v, c) = l, l = 1,2, . . . , [L(εk+1)], and mass 1/2[L(εk+1)]−1 to
the vertices in Ak ∩ V−. This is an admissible mass distribution for the family
of chains that connect the two components of Vσ \ Ak. Indeed, if a chain
contains a vertex in Ak ∩ V+, we are done. If a chain only contains vertices of
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Ak ∩ V−, then its weighted length is at least

bk − ak

2[L(εk+1)]−1
= 4

(
1 − 1

2[L(εk+1)]

)
≥ 1,

since we assumed that L(ε0) ≥ 1, and L is decreasing. A chain that contains
only vertices of Bk has weighted length at least 1, because the subgraph of
σ determined by the vertex set Bk is a tree, and hence such a chain has to
contain the vertex vk. The remaining case is when a chain γ contains vertices
of Ak ∩ V− as well as vertices in Bk. It is easy to see that then there is a
chain that contains only vertices of Ak ∩ V−, and whose weighted length is
comparable to that of γ, with absolute constants. Such a chain is obtained
by replacing each vertex v of γ that belongs to Bk by a chain of vertices in
Ak ∩ V− of the form (m, −1), so that the first and the last vertices of this
chain are connected by edges in σ to v. Multiplying the mass distribution by
an appropriate constant produces an admissible mass distribution.

The mass bound is

� k +
[L(εk+1)]∑

l=1

2l

22(l−1)
+

(2bk)2 − (2ak)2

22([L(εk+1)]−1)

� k + 1 +
(

1 + 2
2[L(ε1)] + · · · + 2[L(εk)]

2[L(εk+1)]

)
� k, k = 1,2, . . . .

Since
∑∞ 1/k = ∞, we conclude that σ is parabolic. �

9. Comparison of moduli

The results of this section are essentially contained in [1], Section 8.
A pathwise connected metric measure space (X,d,μ) is an n-Loewner space

if
inf{Modn(E,F ) : Δ(E,F ) ≤ t}

is a positive function for all t > 0, where Modn(E,F ) denotes the n-modulus
of a curve family connecting two disjoint continua E and F in X , and

Δ(E,F ) =
dist(E,F )

min{diamE,diamF }
is called the relative distance between E and F . Loewner spaces were intro-
duced in [11], see also [10].

Recall that σ = σ(T ) is the 1-skeleton of the square subdivision of S(T ).
Let U = {Uv : v ∈ Vσ } be an open cover of S(T ), where Uv is the interior of
the union of all squares in σ that have a vertex at v ∈ Vσ . If J > 0, we define
the J-star of v ∈ Vσ as

StJ(v) =
⋃

{Uu : u ∈ Vσ, δ(u, v) < J }.
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Note that St1(v) = Uv . Since T is a tree, it is easy to see that StJ(v) is an
open, connected, and simply connected subset of S(T ). For a set A in S(T )
we denote by VA the set of vertices v such that Uv ∩ A �= ∅.

Lemma 2. Assume that the valence k of T is finite. Let v be a vertex of σ,
and ρ be an arbitrary Borel measurable non-negative function on St2(v). If
Y1, Y2 ⊂ S(T ) are continua with Yi ∩ Uv �= ∅, and diam(Yi) ≥ c0 > 0, i = 1,2,
then there is a rectifiable curve η in St2(v) connecting Y1 and Y2, such that∫

η

ρds ≤ C0

(∫
St2(v)

ρ2 dμ

)1/2

,

where C0 > 0 depends only on c0 and k.

Proof. The result follows from the observation that there are only finitely
many, depending on k, different possibilities for St2(v) that can occur, and
from Theorem 6.13 in [11], which implies that St2(v) is a 2-Loewner space. In-
deed, the Loewner property gives that the conformal modulus Mod(Y1, Y2) ≥
c > 0, where c depends on c0 and k only. This means that for every Borel
measurable non-negative function ρ on St2(v) we have∫

St2(v)

ρ2 dμ ≥ c inf
γ

(∫
γ

ρds

)2

,

where the infimum is taken over all curves γ in St2(v) that connect Y1 and
Y2. Thus, for every ε > 0 there exists a rectifiable curve η ⊂ St2(v) connecting
Y1 and Y2 such that (∫

η

ρds

)2

≤ 1
c

∫
St2(v)

ρ2 dμ + ε.

Choosing ε = 1
c

∫
St2(v)

ρ2 dμ completes the proof in the case when ρ is not zero
almost everywhere on St2(v). The latter case is trivial. �

Lemma 3. If T is an infinite embedded tree of valence k, then there exists
a constant C1 ≥ 1, depending only on k, such that if A,B ⊂ S(T ) are two
continua not contained in any set St2(v) for v a vertex of σ, then

(3) modσ(VA, VB) ≤ C1 Mod(A,B).

Proof. Let ρ : S(T ) → [0, ∞] be an admissible Borel function for the pair
(A,B), i.e., ∫

γ

ρds ≥ 1,

for every rectifiable curve γ that connects A and B. We consider the mass
distribution on σ defined by

m(v) =
(∫

St2(v)

ρ2 dμ

)1/2

.
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To prove (3) we need to establish a mass bound and verify admissibility. The
mass bound is

∑
v∈V

m(v)2 ≤
∑
v∈V

( ∑
u : δ(u,v)<2

∫
Uu

ρ2 dμ

)

�
∑
v∈V

∫
Uv

ρ2 dμ �
∫

S(T )

ρ2 dμ,

where the constants understood depend only on k.
To show admissibility, we let v1, v2, . . . , vk be vertices of a chain in σ that

connect VA and VB . Then Uv1 ∩ A �= ∅, Uvk
∩ B �= ∅, and Uvi−1 ∩ Uvi �= ∅.

We set λ1 = A, λk+1 = B, and for i = 2, . . . , k, let λi be a square in the
square subdivision σ with two of the vertices being vi−1 and vi. Then for
i = 2, . . . , k, we have λi ∈ Uvi−1 ∩ Uvi , and diamλi =

√
2. Also, since A and B

are not contained in any St2(v), there exists an absolute constant c0 > 0 such
that diamA ≥ c0 and diamB ≥ c0. Using Lemma 2 we can inductively find
rectifiable curves η1, . . . , ηk, satisfying the condition∫

ηi

ρds ≤ C0m(vi),

and such that ηi connects λ1 ∪ η1 ∪ · · · ∪ ηi−1 and λi+1. The constant C0

depends only on c0 and k. The union η1 ∪ · · · ∪ ηk contains a rectifiable curve
η connecting A and B, and having the property

1 ≤
∫

η

ρds ≤ C0

k∑
i=1

m(vi).

Thus C0m is an admissible mass distribution for the pair (VA, VB), and the
proof is complete. �

10. Proof of Theorem 2

Let M(r), r ≥ 0, be an arbitrary R-valued function, and L(ε) be a function
that satisfies the conditions of Lemma 1, and such that L(4πC1/ log r) ≥ M(r),
where C1 is the constant from Lemma 3 when k = 3. Let T be the subtree of
T3 given by Lemma 1. Then S(T ) is parabolic, and let g be a uniformizing
map from C to S(T ). Let Ar′ and Br be the images under g of circles Cr′ and
Cr centered at 0 of radii r′ and r, respectively, 1 < r′ < r. We choose r′ such
that Ar′ is not contained in any set St2(v), v ∈ Vσ . Using Lemma 3 and the
conformal invariance of Mod, we obtain that

modσ(VAr′ , VBr) ≤ C1 Mod(Cr′ , Cr) <
4πC1

log r
, r ≥ r0 = (r′)3.
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Since T is a subgraph of σ, from monotonicity we have

modT (VAr′ , VBr) <
4πC1

log r
, r ≥ r0.

If D is the domain in T which is the connected component of VT \ VBr

containing v0, then modT ({v0}, ∂D) < 4πC1/ log r. Therefore, by Lemma 1,
|D| > L(4πC1/ log r) ≥ M(r). The proof is complete.
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