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Abstract Weshall prove that themapHi(SOn(K),Z)→Hi(SOn+1(K),Z) is bijective

for 2i < n and surjective for 2i ≤ n. Here K is an arbitrary Pythagorean field and the

special orthogonal group SOn(K) is the subgroup of K-linear automorphisms over Kn

with determinant onewhich preserve theEuclidean quadratic formq(x) = x2
1+ · · ·+x2

n.

It is derived from the homological stability of the orthogonal groupsOn(K)with twisted

coefficients Zt.

1. Introduction

1.1
Let ιn : Gn → Gn+1 (n ∈ N) be a sequence of groups, and let ρn : Mn →Mn+1

(n ∈N) be a sequence of abelian groups where eachMn is a Gn-module and ρn is a

Gn-module homomorphism through ιn. It defines a sequence of homomorphisms

on homology groups of Gn with coefficients in Mn:

(ιn)∗ : Hi(Gn,Mn)→Hi(Gn+1,Mn+1).

We say that a sequence of groups and modules (Gn,Mn) satisfies the homolog-

ical stability if for any i there exists ni such that if n > ni, then (ιn)∗ is an

isomorphism. There are plenty of sequences of groups and modules which have

the homological stability, and we are interested in the following cases.

Let On(K) be the orthogonal group over a field K. It is the subgroup of

linear transformations on Kn preserving the Euclidean quadratic form q(x) =∑
x2
i so that On(K) = {x ∈ GLn(K) | xtx = En}. A quadratic space which is

isometric to (Kn,q) is called a Euclidean space. Now let K be a Pythagorean

field, which means that the sum of two squares in Kn is always a square (see [4,

Definition 8.3]), of characteristic different from 2. Quadratically closed fields and

real-closed fields are typical examples of Pythagorean fields. In particular, the

field of real numbers R and the field of complex numbers C are Pythagorean. Note

that a field is Pythagorean if and only if every nondegenerate linear subspace of

a Euclidean space is again Euclidean. Note also that, for any odd prime p and

any positive integer f , a finite field of pf elements has (pf +1)/2 squares. Since
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p is an odd prime, (pf +1)/2 does not divide pf . This means that a Pythagorean

field of characteristic different from 2 is never finite.

There is a standard inclusion ιn : On(K)→ On+1(K). We will let Z be the

abelian group of integers with the trivial action. We denote by Hi(G) the homol-

ogy group with coefficients in Z. Let Zt be the abelian group of integers with the

action through the determinant. This means that an element g in On(K) acts on

n in Z as (detg)n. Then (On(K),Z) and (On(K),Zt) make sequences of groups

and modules. The identity morphism on Z induces a sequence of homomor-

phisms on homology groups Hi(On(K)) →Hi(On+1(K)) and Hi(On(K),Zt)→
Hi(On+1(K),Zt). Let SOn(K) denote the special orthogonal subgroup. If we

restrict to SOn, then we get an isomorphism Z= Zt of SOn-modules. It defines a

sequence of homomorphisms on homology groups Hi(SOn(K))→Hi(SOn+1(K)).

We will prove that the following homological stability statements hold for

any Pythagorean field K of characteristic different from 2.

THEOREM 1.1

Let K be a Pythagorean field of characteristic different from 2. The induced maps

on homology

(ιn)∗ : Hi

(
SOn(K),Z

)
→Hi

(
SOn+1(K),Z

)
are bijective if 2i < n and surjective if 2i≤ n.

THEOREM 1.2

Let K be a Pythagorean field of characteristic different from 2. The induced maps

on homology

(ιn)∗ : Hi

(
On(K),Zt

)
→Hi

(
On+1(K),Zt

)
are bijective if 2i < n and surjective if 2i≤ n.

The theorems above extend and complement the following results, which are due

to C. H. Sah and J.-L. Cathelineau.

THEOREM 1.3

(a) The induced maps

(ιn)∗ : Hi

(
On(K)

)
→Hi

(
On+1(K)

)
are bijective if i < n and surjective if i≤ n (see [5], [2]).

(b) Let Z[1/2] be the ring of rational numbers whose denominators are pow-

ers of 2. Then on homology with Z[1/2]-coefficients, the induced maps

(ιn)∗ : Hi

(
SOn(K),Z[1/2]

)
→Hi

(
SOn+1(K),Z[1/2]

)
are bijective if 2i < n and surjective if 2i≤ n (see [2]).

(c) The homology groups with twisted Z[1/2]-coefficients Hi(O2n(K),Z[1/2]t)

are trivial if i < n (see [2]).
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(d) For the field of real numbers R,

H2

(
SO3(R)

)
→H2

(
SOn(R)

)
→H2

(
SOn+1(R)

)
are bijective if n≥ 5 (see [5]).

Cathelineau proved that the kernel of (ιn)∗ in Hn(SO2n(K),Z[1/2]) is equal to

Hn(O2n(K),Z[1/2]t), and if K is quadratically closed, then this kernel is the nth

Milnor K-group of K tensored with Z[1/2], which is not zero in general (see [2,

Theorem 1.5]). It is also conjectured that Hi(O2n(K),Zt) is closely connected to

motivic cohomology groups of K if n < i < 2n, which is supposed to be far from

zero in general. We note also that these groups play an important role in the

calculation of scissors congruence groups of spheres (see [3]).

We will see in the last section that Hi(SOn)→Hi(On) are injective in the

range of stability above.

1.2. Notations
A Pythagorean field K is fixed. Let us denote On(K) just by On. We act similarly

for SOn.

We use a standard isometric embedding of Euclidean spaces

Kn →Kn+1, v �→ (0, v),

which defines the inclusion map

ιn : On →On+1, g �→
(
1 0

0 g

)
and its restriction between special orthogonal subgroups. Note that any other

isometric embeddings are conjugate to the above one by the Witt extension

theorem (see [4, p. 26]); hence, ιn induces the same map in homology.

2. Proofs of Theorems 1.2 and 1.1

2.1. Complex C·
An l-simplex is an ordered (l+1)-tuple of vectors (v0, . . . , vl) in Kn+1. We assume

that all vi’s are on S(Kn+1) = {v ∈ Kn+1 | q(v) = 1}. We call each vi a vertex

of the simplex, and we call an ordered (k + 1)-tuple (w0, . . . ,wk) a face of the

simplex if it is obtained from (v0, . . . , vl) by discarding some vertices. We say that

an l-simplex is nondegenerate if the linear space spanned by all of its vertices

is nondegenerate with respect to the quadratic form. An l-simplex (v0, . . . , vl) is

called geometric if all of its faces are nondegenerate (see [2, Definition 2.1]).

In this paper we say that a geometric simplex (v0, . . . , vl) is normal if the

set of vertices contains neither redundant pairs nor antipodal pairs. That is, for

any different i and j, vi �= vj and vi �= −vj . Notice that every face of a normal

simplex is again normal. Let Cl denote the free Z-module generated by normal

l-simplices. We have that On+1 acts diagonally on l-simplices:

g · (v0, . . . , vl) := (gv0, . . . , gvl),
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and this action sends any normal simplex to another normal simplex; hence, Cl

is an On+1-module. We can define a homomorphism ∂l : Cl →Cl−1 as

∂l(v0, . . . , vl) :=

l∑
i=0

(−1)i(v0, . . . , v̂i, . . . , vl).

These define a chain complex of ZOn+1-modules, and it has the augmentation

homomorphism of the On+1-module, where a : C0 → Z is sending each 0-vertex

to 1. Then

0← Z
a←−C0

∂1←−C1
∂2←−C2 ← · · ·

is exact. This fact is derived from the extension property given in [2, Proposi-

tion 2.6(ii)] and [5]. Thus we get a resolution C· of Z.

We set Ct
· =C· ⊗Zt, and then Ct

· → Zt is a resolution. The associated spec-

tral sequence (filtration by rows; see [6, Definition 5.6.2]) E1
p,q :=Hp(On+1,C

t
q)

strongly converges to Hp+q(On+1,Z
t).

2.2
We have that C· is a subcomplex of the resolution associated with geometric

simplices studied by Sah [5, Section 1]. We may use a variant of C· consisting of

geometric simplices without having antipodal pairs of vertices. Then it would be

a subcomplex of C∗(n) in [2, Proposition 2.5] studied by Cathelineau.

2.3
There exists a filtration Fs of chain complexes of On+1-modules on C· (see [5,

Section 1], [2, Proposition 2.6]); Fs is generated by simplices c having dim(c) less

than or equal to (s+ 1), where dim(c) is the dimension of the linear subspace

in Kn+1 spanned by the vertices of c. It is an increasing filtration of On+1-

modules on C·, which induces a filtration F •
p on (E1

p,·, d
1) for each p as (F s

p )q =

Hp(On+1, (Fs)q).

2.4
We can choose a representative (v0, . . . , vl) in the On+1-orbit of any simplex

c so that all the vi’s are in the K-linear subspace spanned by the standard

orthonormal bases e1, . . . , edim(c). We will write the orbit class which represents

a simplex (v0, . . . , vl) as [v0, . . . , vl].

2.5
We will prove by induction on n the following statement:

(2.1:n) (ιn)∗ : Hi(On,Z
t)→Hi(On+1,Z

t) is

{
bijective if 2i < n,

surjective if 2i≤ n.

Note that if n is an odd number n= 2m+ 1, then O2m+1 contains a scalar

matrix −12m+1 of −1, which has det(−12m+1) =−1. Therefore the center kills
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lemma (see [3, Lemma 5.4]) tells us that

(2.2) Hi(O2m+1,Z
t)∼=Hi(O2m+1,Z

t)⊗Z/2

for every i and m. Thus, if (2.1:n) is true, the following statement holds:

(2.3) if 2i < n, then Hi(On,Z
t)∼=Hi(On,Z

t)⊗Z/2.

Because O0 = {1} and O1 = Z/2, the map

Z=H0(O0,Z
t)

H0(ι0,Z
t)−−−−−−→H0(O1,Z

t) = Z/2

between coinvariant parts coincides with the epimorphism. We also have that

Z/2 =H0(O1,Z
t)

H0(ι1,Z
t)−−−−−−→H0(O2,Z

t) = Z/2

is bijective; hence, (2.1:0) and (2.1:1) are true. We may assume that n≥ 2 from

now on.

Firstly we have to show that

(2.4) E1
p,0 =Hp(On+1,C

t
0)

∼=Hp(On,Z
t)∼=E2

p,0.

From Shapiro’s lemma (see [1, Proposition 6.2] or [3, Lemma 5.5]) we obtain

that the first isomorphism E1
p,0

∼= Hp(On,Z
t) for the stabilizer subgroup of 0-

simplex is isomorphic to On. We have that

E1
p,1 =Hp(On+1,C

t
1)

∼=
⊕
c

Hp

(
Stab(c),Zt

)
⊗Zc,

where the index c runs through all the On+1-orbits of simplices in Ct
1, and Stab(c)

is the stabilizer subgroup of c in On+1, where all the groups Stab(c) are isomor-

phic to On−1 in this case.

Now let c = (v0, v1) be a normal 1-simplex, and let α be an element in

Hp(Stab(c),Z
t); then we have that

d1p,1
(
α⊗ (v0, v1)

)
= α⊗ (v1)− α⊗ (v0).

We can find an element g ∈On+1 so that g(v1) = v0 and det(g) = 1 for v0 �=±v1
by the assumption of normality. Any such g commutes with all the elements of

Stab(c), and g acts trivially on Hi(Stab(c),Z
t); hence α ⊗ (v1) = α ⊗ g(v0) =

α⊗ (v0) in Hi(Stab(c),Z
t). This induces d1p,1(α⊗ c) = 0. Thus, d1p,1 = 0 on E1

p,1,

which implies (2.4).

Secondly we have to show that

(2.5:p) E1
p,∗ is (n− 2p− 2)-acyclic for 0≤ 2p < n augmented by E1

p,0

under the inductive hypothesis (2.1:n′) for all n′ < n.

If a geometric simplex c has dim(c) ≤ n − 2p, then by the hypothesis of

induction (2.1:p), we get that

Hp

(
Stab(c),Zt

)∼=Hp(On+1−dim(c),Z
t)∼=Hp(O2p+1,Z

t).
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Thus, if q ≤ n− 2p− 1, then it holds that

E1
p,q =Hp(On+1,C

t
q)

∼=
⊕
c

Hp

(
Stab(c),Zt

)
⊗Zc

(2.5)
∼=Hp(O2p+1,Z

t)⊗
⊕
c

Zc.

In particular, as we saw in (2.2) we have that the elements in (2.5) are annihilated

by 2. (Notice that, through the isomorphism of Shapiro’s lemma (2.5), d1p,∗ may

not equal idHp(O2p+1,Zt) ⊗ ∂∗, because the action of On+1 on C· is twisted in

Hp(On+1,C
t
q) by the determinant and these data may cause a change of sign on

the fixed representatives of On+1-orbits. But this problem can be ignored because

of (2.3) and the induction hypothesis in this case.)

We take l arbitrarily for 0< l ≤ n− 2p− 2. Let γ ∈ E1
p,l satisfy d1p,l(γ) = 0.

Apply (2.5), so

γ =
∑
j

αj ⊗ [vj0, . . . , v
j
l ],

where each αj is in Hp(O2p+1,Z
t) and (vj0, . . . , v

j
l ) ∈Cl is a representative chosen

as in Section 2.4. Then we have Span
K
(vj0, . . . , v

j
l )⊥ el+2 (Span

K
means the lin-

ear span of vectors), and the inclusion O2p+1 ↪→ Stab(vj0, . . . , v
j
l ) factors through

Stab(vj0, . . . , v
j
l , el+2) for l≤ n− 2p− 2. Since K is Pythagorean, [v0, . . . , vl, el+2]

has a representative of geometric and thus normal simplex. Define γ#e as fol-

lows. For each orbit class of a normal l-simplex γ = (v0, . . . , vl), we set γ#e =

[v0, . . . , vl, el+2]. Then γ#e is normal and we extend this linearly: γ#e=
∑

j αj ⊗
[vj0, . . . , v

j
l , el+2], which is contained in E1

p,l+1. (This construction is called orthog-

onal join construction by Sah in [5, proof of (1.5)].) From Witt’s extension the-

orem, we see that

d1p,l+1(γ#e) = d1p,l(γ)#e+ (−1)l+1γ.

Since d1p,l(γ) = 0, we obtain that d1p,l+1(γ#e) = (−1)l+1γ.

Finally we have to extend the acyclicity of E1
p,∗ one more degree above:

(2.6:p) E1
p,∗ is (n− 2p− 1)-acyclic for 0≤ 2p < n.

Again we have that

E1
p,n−2p =

⊕
c

Hp

(
Stab(c),Zt

)
⊗Zc

(2.6)
=

⊕
c

Hp(O2p,Z
t)⊗Zc⊕

⊕
c′

Hp(O2p+1,Z
t)⊗Zc′,

where the index c in the first sum runs through On+1-orbits of simplices in Cn−2p

which satisfy dim(c) = n−2p+1, and the index c′ in the second sum runs through

On+1-orbits of simplices which satisfy dim(c′)≤ n− 2p, that is, the second sum

is in the associated filtration Fn−2p−2
p .
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Let γ ∈ E1
p,n−2p−1 be such that d1p,n−2p−1(γ) = 0. If γ ∈ Fn−2p−2

p , then the

orthogonal join γ#e constructed as before is contained in the second component

in (2.6), and it is a boundary element.

If γ /∈ Fn−2p−2
p , then we may assume that γ is homologous to an element∑

j αj ⊗ cj , where αj is in Hp(O2p+1,Z
t) and cj is an On+1-orbit of an (n− 2p−

1)-simplex. Since max{dim(cj)}= n−2p, we have that max{dim(cj#en−2p+1)}=
n− 2p+1. The map Hp(O2p,Z

t)→Hp(O2p+1,Z
t) is surjective by the induction

hypothesis (2.1:p), so we can find βj ∈Hp(O2p,Z
t) such that Hp(ι2p,Z

t)(βj) = αj

for each j. Using these βj ’s, we obtain that

d1p,n−2p

(∑
j

βj ⊗ (cj#en−2p+1)
)

=±
∑
j

αj ⊗ (∂cj)#en−2p+1 + (−1)n−2p
∑
j

αj ⊗ cj

=
(
d1p,n−2p−1(γ)

)
#e+ (−1)n−2pγ

= (−1)n−2pγ,

and therefore we have proved that γ is a boundary, which implies (2.6:p).

2.6
On the spectral sequence E1

p,q =Hp(On+1,C
t
q)⇒Hp+q(On+1,Z

t), we know that,

under the inductive assumption, E2
p,0

∼=Hp(On,Z
t) (see (2.4)) and E2

p,q = 0 for

0< q ≤ n− 2p− 1 (see (2.6)). Therefore, the edge homomorphism coincides with

the (ιn)∗:

(ιn)∗ : Hi(On,Z
t)→Hi(On+1,Z

t),

which is bijective for 2i < n and surjective for 2i ≤ n. This ends the proof of

Theorem 1.2.

2.7. Bockstein exact sequences
The group ring Z[Z/2] of Z/2 = {ε, σ | σ2 = ε} admits the action of On through

the determinant:

g · ε = ε, g · σ = σ if det(g) = 1,

g · ε = σ, g · σ = ε if det(g) =−1,

for g ∈On. There exist an inclusion

Zt → Z[Z/2], 1 �→ ε− σ

and a projection

Z[Z/2]→ Z[Z/2]/(ε− σ)∼= Z

of (left) ZOn-modules for n≥ 0. It makes a short exact sequence of ZOn-modules

(2.7) 0→ Zt → Z[Z/2]→ Z→ 0,
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and we see that Hi(On,Z[Z/2])∼=Hi(SOn). (Use Shapiro’s lemma and the fact

that the stabilizer of On on Z[Z/2] is SOn.) We get a homology Bockstein exact

sequence

· · · →Hi+1(On)→Hi(On,Z
t)→Hi(SOn)→Hi(On)→Hi−1(On,Z

t)→ · · · .
(2.8)

The inclusion ιn : On → On+1 induces a homomorphism between exact

sequences:

· · · Hi+1(On) Hi(On,Z
t) Hi(SOn) Hi(On) · · ·

· · · Hi+1(On+1) Hi(On+1,Z
t) Hi(SOn+1) Hi(On+1) · · · ,

where columns are exact and maps in the vertical maps are induced from group

inclusions ιn : SOn → SOn+1 and ιn : On → On+1. If we adapt Theorem 1.3(a)

and (2.1:n) in the above diagram, then, using the five lemma, we obtain Theo-

rem 1.1.

REMARK 2.1

We have another short exact sequence

(2.9) 0→ Z→ Z[Z/2]→ Zt → 0

consisting of

Z→ Z[Z/2], 1 �→ ε+ σ

and

Z[Z/2]→ Z[Z/2]/(ε+ σ)∼= Zt.

REMARK 2.2

If we use the unmodified complex (C∗, ∂∗) used in [2, Proposition 2.5] (this

may contain antipodal pairs but not contain simplices which have vi−1 = vi for

some i), then

E2
p,0 =Hp(On+1,Ct

0)
∼=Hp(On,Z

t)⊗Z/2.

This is because C1 admits the simplex (v,−v) and the reflection that maps v to

−v has determinant −1. The spectral sequence defined by E1
p,q =Hp(On+1,Ct

q)

is also strongly convergent to Hp+q(On+1,Z
t). Thus we can see that

Hi(ιn,Z
t) : Hi(On,Z

t)→Hi(On+1,Z
t)

factors through Hi(On,Z
t)⊗Z/2 for all n and i. This implies that, though it is

contained in an unstable range, ImHi(ιn,Z
t) is annihilated by 2.
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2.8. Z/2-coefficients
We can improve the range of homological stability of special orthogonal groups

with coefficients in Z/2. We use only Theorem 1.3 and the Bockstein exact

sequence.

We have (Z/2)t ∼= Z/2 as On-modules. Thus we have the same short exact

sequence of On-modules

0→ Z/2→ Z/2[Z/2]→ Z/2→ 0.

In the same way if we construct the Bockstein exact sequence from (2.8), then

we get a long exact sequence

· · · →Hi+1(On,Z/2)→Hi(On,Z/2)→Hi(SOn,Z/2)→Hi(On,Z/2)→ · · · .

From the universal coefficient theorem, Theorem 1.3(a) means that

Hi(On,Z/2)→Hi(On+1,Z/2) is bijective for i < n and surjective for i≤ n.

Thus as in Section 2.7 we get the following result.

PROPOSITION 2.3

The map Hi(SOn,Z/2) → Hi(SOn+1,Z/2) is bijective for i < n and surjective

for i≤ n.

3. Variants

We consider a semidirect product of groups

(3.1) 1→ SOn →On
det−−→ Z/2→ 1 for n≥ 1

with a section

(3.2) sn : Z/2→On

as sn(−1) = diag(−1,1,1, . . . ,1).

In the case n= 2m+ 1, it becomes the direct product of groups

O2m+1
∼= SO2m+1 ×Z/2.

Thus there is the Künneth short exact sequence

⊕Hp(SO2m+1)⊗Hq(Z/2) Hi(O2m+1) ⊕TorZ1
(
Hp(SO2m+1),Hq(Z/2)

)
,

(3.3)

and it is comparable with ι2m+1. It is true that

Hi(O2m+1)→Hi(O2m+3)
(3.4)

is bijective for i < 2m+ 1 and surjective for i≤ 2m+ 1.

When i≤ 2m+1, ι2m+1 induces an isomorphism on the Tor terms by Section 1.1.

We obtain the following result.
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PROPOSITION 3.1

We have that Hi(SO2m+1)→Hi(SO2m+3) is bijective for i < 2m+1 and surjec-

tive for i≤ 2m+ 1.

On the other hand, (2.9) implies that

· · · Hi+1(O2m+1,Z
t) Hi(O2m+1) Hi(SO2m+1) Hi(O2m+1,Z

t) · · ·

· · · Hi+1(O2m+3,Z
t) Hi(O2m+3) Hi(SO2m+3) Hi(O2m+3,Z

t) · · ·

(3.5)

Thus we obtain that

Hi(O2m+1,Z
t)→Hi(O2m+3,Z

t)
(3.6)

is bijective for i < 2m+ 1 and surjective for i≤ 2m+ 1.

Notice that, using (2.1:n) and (3.6), we have that the sequence

Hi(O2m−1,Z
t)→Hi(O2m,Zt)→Hi(O2m+1,Z

t)

splits as

Hi(O2m,Zt)∼=Hi(O2m−1,Z
t)⊕Km,i

for i < 2m, where Km,i =Ker{Hi(O2m,Zt)→Hi(O2m+1,Z
t)}.

As we mentioned in (2.2), we have that Hi(O2m+1,Z
t) ∼=Hi(O2m+1,Z

t)⊗
Z/2. Thus we get that, for m≤ i < 2m,

Hi(O2m,Zt) ∼= colim
n

Hi(On,Z
t)⊕Km,i

∼=Hi(O∞,Zt)⊗Z/2⊕Km,i.

4. (Z/2)-action on H∗(SOn)

There is a (Z/2)-action on Hi(SOn) induced from the group extension (3.1).

Let σ denote the involution induced by σ ∈ Z/2 = {ε, σ}. The structure of this

involution is important to apply the homological result to the problem of scissors

congruence.

4.1. Involution σ

PROPOSITION 4.1

The involution σ on Hi(SOn) is trivial if 2i < n.

We can write the action of the involution σ on the bar resolution of Hi(SOn)

(see [1, Chapter I, Section 5]) as

[g1 | · · · | gi] �→
[
sn(−1)g1sn(−1)−1

∣∣ · · · ∣∣ sn(−1)gisn(−1)−1
]
.
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For convenience, we write ιn(g) = (1, g) for ιn : SOn → SOn+1, and let gσ

denote the image sn(−1)gsn(−1)−1. We get that(
−1, sn(−1)

)
ιn(g

σ)
(
−1, sn(−1)

)−1

=
(
−1, sn(−1)

)(
1, sn(−1)gsn(−1)−1

)(
−1, sn(−1)

)−1

= (−1,1n)(1, g)(−1,1n)
−1 = (1, g).

Since (−1, sn(−1)) = diag(−1,−1,1, . . . ,1) is contained in SOn+1, Hi(ιn) ◦ σ =

Hi(ιn). We obtain the following lemma.

LEMMA 4.2

We have that Hi(ιn) : Hi(SOn)→Hi(SOn+1) factors through the σ-coinvariant

part Hi(SOn)σ:

Hi(SOn)
Hi(ιn)

Hi(SOn+1)

Hi(SOn)σ

ρn

where the vertical map in the above diagram is the projection

Hi(SOn)→Hi(SOn)/(1− σ) =Hi(SOn)σ.

On the other hand, Theorem 1.1 claims that if 2i < n, then Hi(ιn) must be an

isomorphism; thus we have that

Hi(SOn)
σ ∼=Hi(SOn)∼=Hi(SOn)σ,

and this implies Proposition 4.1.

4.2. The edge homomorphism of the Lyndon–Hochschild–Serre spectral
sequence

The group extension (3.1) induces the Lyndon–Hochschild–Serre spectral

sequence (see [1, Chapter VII, Theorem 6.8] or [6, Section 6.8])

(4.1) E2
p,q =Hp

(
Z/2,Hq(SOn)

)
⇒Hp+q(On)

for n≥ 0. We will study the edge homomorphism

eq : Hq(SOn)σ =E2
0,q →E∞

0,q →Hq(On).

PROPOSITION 4.3

We have that eq : Hq(SOn)σ →Hq(On) is injective for q ≥ 0.

REMARK 4.4

As we can see in [6, Section 6.8], eq is compatible with the map

Hi(u) : Hi(SOn)→Hi(On)
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induced by the natural inclusion u : SOn →On. We know that Hi(u)◦σ =Hi(u);

thus, Hi(u) factors through the σ-coinvariant part Hi(SOn)σ , which is the edge

homomorphism eq .

The compositions with transfer maps

Hi(SOn)
Hi(u)−−−−→Hi(On)

tr−→Hi(SOn)

and

Hi(SOn)
Hi(u,Z

t)−−−−−→Hi(On,Z
t)

trt−−→Hi(SOn)

are the norm maps (1+ σ) and (1− σ), respectively (see [1, Chapter III, Propo-

sition 9.5]). Thus we have that

(4.2) Im(tr)⊇ (1 + σ)Hi(SOn)

and

Im(trt)⊇ (1− σ)Hi(SOn),

where the maps tr and trt are identified as

(4.3) Hi(On)→Hi

(
On,Z[Z/2]

) ∼=−→Hi(SOn)

and

(4.4) Hi(On,Z
t)→Hi

(
On,Z[Z/2]

) ∼=−→Hi(SOn)

in the Bockstein exact sequences (2.9) and (2.7), respectively. The map tr coin-

cides with the trace map, and so does trt (see [1, Chapter III, Section 9]). Notice

that the later map in (4.3) and (4.4) is an inverse of the map in Shapiro’s lemma.

It is induced from a map of chain complexes; namely,

ρ : [g1 | g2 | · · · | gi]⊗ g⊗ x �→ [ĝ−1g1ẑ1 | ẑ1−1g2ẑ2 | · · · | ẑi−1
−1

giẑi]⊗ (ĝ−1g)x,

where ĥ = diag(det(h),1, . . . ,1) and zj = g−1
j · · ·g−1

1 g, gives an isomorphism

Hi(On,Z[On] ⊗Z[SOn] Z)
∼= Hi(On,Z[Z/2]) ∼= Hi(SOn) (see [3, Remark after

Lemma 5.5]). We can write the inverse direction

Hi(On)→Hi

(
On,Z[Z/2]

)∼=Hi(On,ZOn ⊗ZSOn Z)

as

[g1 | · · · | gi] �→ [g1 | · · · | gi]⊗ ε+ [g1 | · · · | gi]⊗ σ

�→ [g1 | · · · | gi]⊗ 1n ⊗ 1 + [g1 | · · · | gi]⊗ sn(−1)⊗ 1;

hence, the composition with ρ is

[1̂n
−1

g1ẑ1 | ẑ1−1g2ẑ2 | · · · | ẑi−1
−1

giẑi]⊗ (1̂n
−1

1n) · 1

+
[
ŝn(−1)

−1
g1ẑ′1

∣∣ ẑ′1−1
g2ẑ′2

∣∣ · · · ∣∣ ẑ′i−1

−1
giẑ′i

]
⊗
(
ŝn(−1)

−1
sn(−1)

)
· 1

= [1̂n
−1

g1ẑ1 | ẑ1−1g2ẑ2 | · · · | ẑi−1
−1

giẑi]⊗ 1
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+
[
sn(−1)−1g1ẑ1

∣∣ sn(−1)−1ẑ1
−1g2ẑ2sn(−1)

∣∣
· · ·

∣∣ sn(−1)−1ẑi−1
−1

giẑisn(−1)
]
⊗ 1,

where we set zj = g−1
j · · ·g−1

1 1n and z′j = g−1
j · · ·g−1

1 sn(−1). Now there is a chain

homotopy (see [3, Lemma 5.4]) between[
sn(−1)−1g1ẑ1

∣∣ sn(−1)−1ẑ1
−1g2ẑ2sn(−1)

∣∣ · · · ∣∣ sn(−1)−1ẑi−1
−1

giẑisn(−1)
]
⊗ 1

and

σ
(
[1̂n

−1
g1ẑ1 | ẑ1−1g2ẑ2 | · · · | ẑi−1

−1
giẑi]⊗ 1

)
.

Thus, from the above calculation, we get that

(4.5) Im(tr)⊆ (1 + σ)Hi(SOn).

We can prove Proposition 4.3 by the diagram

· · · Hi(On,Z
t)

trt
Hi(SOn) Hi(On) · · ·

Hi(SOn)

(1− σ)Hi(SOn)
Hi(SOn)σ

obtained by combining the exact sequence

Hi(On,Z
t)

trt−−→Hi(SOn)→Hi(SOn)/(1− σ)Hi(SOn)→ 0

and the Bockstein exact sequence (2.8).

In the same way, we can see that, in the Lyndon–Hochschild–Serre spectral

sequence

tE2
p,q =Hp

(
Z/2,Hq(SOn)

t
)
⇒Hp+q(On,Z

t),

the edge homomorphism

teq : Hq(SOn)−σ →Hq(On,Z
t)

is an injection.

COROLLARY 4.5

If 2i < n, then σ on Hi(SOn) is trivial as we saw in Proposition 4.1. Hence we

obtain that trt : Hi(On,Z
t)→Hi(SOn) is a zero map in this range.
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