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Abstract LetG be a simply connected, compact Lie group, let P −→ S4 be a principal

G-bundle, and letG(P ) be the gauge group of this bundle.WhenG is amatrix group and

p is an odd prime, we use new methods to improve on the p-local homotopy decomposi-

tions of G(P ) appearing in separate work of the first two authors and the third author.

1. Introduction

Let G be a simply connected, simple compact Lie group. Equivalence classes

of principal G-bundles over S4 are classified by the second Chern class, which

can take any integer value. For k ∈ Z, let Pk −→ S4 be the principal G-bundle

whose second Chern class has value k. The gauge group of Pk is the group of

G-equivariant automorphisms of Pk which fix S4; we label this as Gk(G).

In this paper we give a p-local homotopy decomposition of Gk(G) when G is

a matrix group and p is an odd prime. This uses new methods to improve upon

existing decompositions in [KKT] and [T1]. To describe this, we first relate the

topology of Lie groups, gauge groups, and mapping spaces.

Let BG and BGk(G) be the classifying spaces of G and Gk(G), respectively.

Let Map(S4,BG) and Map∗(S4,BG), respectively, be the spaces of freely con-

tinuous and pointed continuous maps between S4 and BG. The components of

each space are in one-to-one correspondence with the integers, where the integer is

determined by the degree of a map S4 −→BG. By [G], there is a homotopy equiv-

alence BGk �Mapk(S
4,BG) between BGk and the component of Map(S4,BG)

consisting of maps of degree k. Evaluating a map at the basepoint of S4, we obtain

a map ev : BGk
ev−→BG whose fiber is homotopy equivalent to Map∗k(S

4,BG). It

is well known that each component of Map∗(S4,BG) is homotopy equivalent to

Ω3
0G, the component of Ω3G containing the basepoint. Putting all this together,

for each k ∈ Z, there is a homotopy fibration sequence

(1) G
∂k−→Ω3

0G−→BGk
ev−→BG

where ∂k is the fibration connecting map.

Since the homotopy fiber of ∂k is Gk(G), the key to understanding the

homotopy type of Gk(G) is to understand G, Ω3
0G, and the map ∂k relating

them. We begin with the homotopy type of G. Let p be an odd prime, and
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localize all spaces and maps at p. Unless otherwise indicated, homology will

be taken with mod-p coefficients. Recall that any simply connected finite H-

space X is rationally homotopy equivalent to a product of odd-dimensional

spheres, X �(0)

∏l
i=1 S

2ni+1. We say that the type of X is {n1, . . . , nl}. The

Lie group G is p-torsion free if there is no p-torsion in H∗(G;Z). As p is

odd, it is known that G is p-torsion free except for F4, E6, E7, E8 at p = 3

and E8 at p = 5. Mimura, Nishida, and Toda [MNT] showed that if G is p-

torsion free and of type {n1, . . . , nl}, then there is a p-local homotopy equivalence

G�
∏p−1

i=1 Bi, where the type of Bi consists of all those entries n in the type of

G satisfying n≡ i mod (p− 1). Note that if no entry n in the type of G satisfies

n≡ i mod (p− 1), then Bi is a point. For example, if G= Sp(n), then Bi � ∗ for

all even integers i.

In [KKT] it was shown that for the same Lie groups G, the gauge groups

Gk(G) also decompose into a product of p−1 factors which depend on the decom-

position of G. Specifically, there is a homotopy commutative diagram of fibrations

(2)

Ω4
0G

�

Gk(G)
Ωev

�

G

�

p−1∏
i=1

Ω4
0Bi+2

p−1∏
i=1

Xi

p−1∏
i=1

Bi

where the bottom row is a product of homotopy fibrations Ω4
0Bi+2 −→Xi −→Bi,

by Ω4
0Y we mean the component of Ω4Y containing the basepoint, and if i= p−2

or i= p− 1, then by i+2 we mean 1 or 2, respectively. In this decomposition for

Gk(G) it is not clear when the fibrations for Xi split. However, more is known

if G is a matrix group and the rank of G is low with respect to p. The cases

involved are (i) G= SU(n) and n≤ (p− 1)(p− 2) + 1, (ii) G= Sp(n) and 2n≤
(p−1)(p−2), (iii) G= Spin(2n+1) and 2n≤ (p−1)(p−2), and (iv) G= Spin(2n)

and 2(n− 1)≤ (p− 1)(p− 2). For such a G, an analysis of the map G
∂k−→Ω3

0G in

[KKT], reformulating an earlier analysis in [T1], shows that p−3 of the fibrations

Ω4
0Bi+2 −→Xi −→Bi split while the other two may or may not.

In this paper we use a factorization of ∂k arising from the study of moduli

spaces of instantons to show that if G is a matrix group of any rank, then

p− 3 of the fibrations for Xi split while the remaining two may not. To describe

the decompositions precisely we require some notation. The type of SU(n) is

{1,2, . . . , n−1}. Let Bu, Bv be the factors of SU(n)�
∏p−1

i=1 Bi with the property

that n− 2 and n− 1 appear in the type of Bu and Bv , respectively. Note that

u= v−1. The type of Sp(n) is {1,3, . . . ,2n−1}. Let Bw be the factor of Sp(n)�∏p−1
i=1 Bi with the property that 2n− 1 appears in the type of Bw. It is worth

keeping in mind throughout that in the Sp(n)-case the space Bi is contractible

if i is even.
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THEOREM 1.1

For n≥ 2 there are homotopy equivalences

Gk

(
SU(n)

)
�

p−1∏
i=1

i �=u,v

(Bi ×Ω4
0Bi+2)×Xu ×Xv,

Gk

(
Sp(n)

)
�

p−1∏
i=1
i �=w

(Bi ×Ω4
0Bi+2)×Xw,

where for t ∈ {u, v,w} there is a homotopy fibration Ω4
0Bt+2 −→Xt −→Bt.

For Spin(n), in [KK] and [T1] odd primary homotopy equivalences for Gk(Spin(n))

were established which are analogous to Harris’s [H] odd primary homotopy

equivalences Spin(2n + 1) � Sp(n) and Spin(2n) � Spin(2n − 1) × S2n−1. We

have the following: (i) for p ≥ 3 and k ∈ Z, there is a homotopy equivalence

Gk(Spin(2n+1))� Gk(Sp(n)), (ii) for p≥ 5 or p= 3 and k a multiple of 3, there

is a homotopy equivalence Gk(Spin(2n))� Gk(Spin(2n− 1))×S2n−1 ×Ω4S2n−1,

and (iii) an exceptional case proved in [KK], if p= 3 and k is not a multiple of 3,

then Gk(Spin(2n))� Gk(Spin(2n− 1))×X where X does not split as a product

of S2n−1 and Ω4S2n−1. The full decompositions of Gk(Spin(n)) can then be read

off from (i) to (iii) and the decomposition of Gk(Sp(n)) in Theorem 1.1.

2. Preliminary information on homotopy decompositions of Lie groups

In this section we give some information on how the decompositions of SU(n)

and Sp(n) into p− 1 factors behave with respect to the fibrations SU(n− 1)−→
SU(n)

π−→ S2n−1 and Sp(n− 1)−→ Sp(n)
π−→ S4n−1.

First, observe that the type of SU(n−1) is the same as that of SU(n) except

for the integer n. Therefore, in the decompositions of SU(n − 1) and SU(n)

into products of p− 1 factors, the types of p− 2 of the factors match. The one

exception is the factor Bv of SU(n) which, in the notation from the introduction,

has entry n in its type. Suppose that SU(n)� (
∏p−1

i=1,i �=v Bi)×Bv and SU(n−1)�
(
∏p−1

i=1,i �=v B
′
i)×B′

v . Then for i 	= v, the factors Bi and B′
i have the same type, and

it is easy to see that the composition B′
i ↪→ SU(n−1)−→ SU(n) � Bi induces an

isomorphism in homology and so is a homotopy equivalence. Therefore p−2 of the

factors in the homotopy decompositions for SU(n) and SU(n− 1) are equivalent,

and one is different. In the next lemma we make this concrete by proving that the

decompositions can be chosen to be compatible and that they behave well with

respect to the quotient map SU(n)
π−→ S2n−1. A similar statement also holds for

Sp(n) and Sp(n− 1) and the quotient map Sp(n)
π−→ S4n−1.

LEMMA 2.1

The homotopy decompositions for SU(n − 1) and SU(n) (resp., Sp(n − 1) and
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Sp(n)) can be chosen so that there are homotopy commutative diagrams

( p−1∏
i=1,i �=v

Bi

)
×B′

v

�
SU(n− 1)

( p−1∏
i=1,i �=w

Bi

)
×B′

w

�
Sp(n− 1)

( p−1∏
i=1,i �=v

Bi

)
×Bv

�
SU(n)

( p−1∏
i=1,i �=v

Bi

)
×Bw

�
Sp(n)

and there are homotopy commutative diagrams

p−1∏
i=1

Bi

�

proj

SU(n)

π

p−1∏
i=1

Bi

�

proj

Sp(n)

π

Bv S2n−1 Bw S4n−1

Proof

We prove the SU(n)-case, the argument for Sp(n) being similar. Start with any

choice of homotopy decompositions SU(n)� (
∏p−1

i=1,i �=v B̄i)× B̄v and SU(n−1)�
(
∏p−1

i=1,i �=v B̄
′
i)× B̄′

v . We alter the homotopy decompositions as follows. Consider

the fibration SU(n − 1) −→ SU(n)
π−→ S2n−1. Let Bv = B̄v , and let g : Bv −→

SU(n) be the composite Bv = B̄v ↪→ (
∏p−1

i=1,i �=v B̄i)×B̄v
�−→ SU(n). Define a space

B′
v and maps g′ and κ by the homotopy pullback diagram

B′
v

g′

κ

SU(n− 1)

Bv

g

π◦g

SU(n)

π

S2n−1 S2n−1

Observe that B′
v has the same type as B̄′

v , and the composite

B′
v

g′

−−→ SU(n− 1)
�−−→

( p−1∏
i=1,i �=v

B̄′
i

)
× B̄′

v
proj−−→ B̄′

v

induces an isomorphism in homology and so is a homotopy equivalence.
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For 1≤ i≤ p− 1 and i 	= v, let Bi = B̄′
i. Let f

′ be the composite

f ′ :

p−1∏
i=1,i �=v

Bi =

p−1∏
i=1,i �=v

B̄′
i ↪→

( p−1∏
i=1,i �=v

B̄′
i

)
× B̄′

v
�−→ SU(n− 1),

and let f be the composite

f :

p−1∏
i=1,i �=v

Bi
f ′

−→ SU(n− 1)−→ SU(n).

Using the loop multiplications μ on SU(n− 1) and SU(n), we therefore obtain a

homotopy commutative diagram

(3)

( p−1∏
i=1,i �=v

Bi

)
×B′

v

f ′×g′

1×κ

SU(n− 1)× SU(n− 1)
μ

SU(n− 1)

( p−1∏
i=1,i �=v

Bi

)
×Bv

f×g

SU(n)× SU(n)
μ

SU(n).

The two rows induce isomorphisms in homology and so are homotopy equiva-

lences. The outer diagram establishes the compatibility of the decompositions

of SU(n − 1) and SU(n) asserted by the first diagram in the statement of the

lemma.

For the second diagram involving π, observe in general that for a homo-

topy fibration sequence ΩB
δ−→ F −→ E −→ B, the connecting map induces a

homotopy action θ : F ×ΩB −→ F with the property that there is a homotopy

commutative square

ΩB ×ΩB
μ

δ×1

ΩB

δ

F ×ΩB
θ

F

where μ is the loop multiplication on ΩB.

For SU(n) there is a homotopy fibration sequence SU(n)
π−→ S2n−1 −→

BSU(n − 1) −→ BSU(n). Using the homotopy equivalence μ ◦ (f × g) in (3),

consider the diagram
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( p−1∏
i=1,i �=v

Bi

)
×Bv

f×g

proj

SU(n)× SU(n)
μ

π×1

SU(n)

π

Bv

∗×g

S2n−1 × SU(n)
θ

S2n−1

The right square homotopy commutes since π is a fibration connecting map

and so has a homotopy action. The left square homotopy commutes since, by

(3), the map f factors through SU(n− 1). The composition along the top row

is a homotopy equivalence. The outer perimeter of the diagram then gives the

homotopy commutative square asserted by the lemma. �

3. A factorization of the boundary map ∂k

In this section we factor the boundary map G
∂k−→ Ω3

0G for G = SU(n) or G =

Sp(n). We begin with an identification of the triple adjoint of ∂k due to Lang [L].

Let i : S3 = SU(2)−→ SU(n) be the standard group homomorphism. We also use

i to denote the standard group homomorphism i : S3 = Sp(1)−→ Sp(n).

LEMMA 3.1

The triple adjoint of ∂k is homotopic to the Samelson product S3 ∧ G
〈k·i,1〉−−→ G

where 1 is the identity map on G.

The linearity of the Samelson product immediately implies the following.

COROLLARY 3.2

There is a homotopy ∂k � k ◦ ∂1, where k is the kth-power map on Ω3
0G.

Corollary 3.2 implies that we need only be concerned about ∂1. Lemma 3.1 lets

us describe ∂1 explicitly, up to homotopy. Notice that an element of Ω3
0G is a

basepoint-preserving map S3 −→G of degree 0. Define

θ : G−→Ω3
0G

by sending g to the map θg which satisfies θg(x) = gxg−1x−1 for x ∈ S3. By

definition, θ is the triple adjoint of the Samelson product 〈i,1〉. In particular, it

is continuous. Moreover, by Lemma 3.1, ∂1 is homotopic to θ.

On the other hand, when considering moduli spaces of instantons, Boyer,

Mann, and Waggoner [BMW] give a factorization of θ through the quotient of

G by the centralizer of SU(2) in G. For G = SU(n), the centralizer consists of

matrices of the form ⎡
⎣a 0 0

0 a 0

0 0 A

⎤
⎦
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where A ∈ U(n−2) and det(A) = a−2, and for G= Sp(n) the centralizer consists

of matrices of the form [
a 0

0 aA

]

where A ∈ Sp(n − 1) and a ∈ Z/2Z is in the center of Sp(1). Note that in the

SU(n)-case the centralizer is homotopy equivalent to SU(n− 2) × U(1) and in

the Sp(n)-case the centralizer is homotopy equivalent to RP 4n−1. Boyer, Mann,

and Waggoner show that there are commutative diagrams

SU(n)
θ

γ

Ω3
0 SU(n) Sp(n)

θ

γ

Ω3
0 Sp(n)

SU(n)/
(
SU(n− 2)×U(1)

) J
Ω3

0 SU(n) RP 4n−1
J

Ω3
0 Sp(n)

where the maps labeled γ are the quotient maps induced by the inclusion of the

centralizers, and the maps labeled J have the property that if C = SU(n− 2)×
U(1) or C =RP 4n−1, respectively, then for a coset gC and x ∈ SU(2) the map J

is defined as J(gC)(x) = gxg−1x−1.

Observe that the map γ for SU(n) factors as the composite SU(n)
π−→

SU(n)/SU(n− 2) −→ SU(n)/(SU(n− 2)× U(1)) where π is the standard quo-

tient map. Similarly, the map γ for Sp(n) factors as the composite Sp(n)
π−→

Sp(n)/Sp(n− 1) ∼= S4n−1 −→ RP 4n−1. Thus, weakening the factorizations of θ

through γ to θ through π, and using the homotopies θ � ∂1 and ∂k � k ◦ ∂1, we
obtain the following.

PROPOSITION 3.3

There are homotopy commutative diagrams

SU(n)
∂k

π

Ω3
0 SU(n) Sp(n)

∂k

π

Ω3
0 Sp(n)

SU(n)/SU(n− 2)
k◦f

Ω3
0 SU(n) S4n−1

k◦h
Ω3

0 Sp(n)

for some maps f and h.

REMARK 3.4

As pointed out by the referee, the factorizations in Proposition 3.3 arising from

[BMW] were in fact obtained much earlier by Bott [B].

In Section 4 we will use the factorization in Proposition 3.3 to establish the

homotopy decompositions in Theorem 1.1. To go further and consider the homo-

topy types of the factors Xu, Xv , and Xw, it would be useful to know the

order of ∂k. This is known only for the special cases of SU(2) (see [Ko]), SU(3)
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(see [HK]), and Sp(2) (see [T2]). More is known if the prime 2 is excluded: by

[KKT] the odd primary components of the order of ∂k are known for SU(n) when

n− 1 ≤ (p − 1)(p − 2) and for Sp(n) when 2n− 1 ≤ (p − 1)(p − 2). In general,

Proposition 3.3 in the Sp(n)-case shows that the order of ∂k divides the order of

k ◦h, where h is an element of π4n+2(Sp(n)), which is isomorphic to Z/(2n+1)!Z

if n is even and to Z/2(2n+ 1)!Z if n is odd. It is likely that the order of ∂k is

much less than the order of k ◦ h. In the SU(n)-case, the order of f is unclear,

but its restriction to the bottom cell S2n−3 is an element of π2n(SU(n))∼= Z/n!Z.

Further, the second author’s analysis of the map θ in [Ki] shows that there is a

homotopy commutative diagram

SU(n)/SU(n− 2)
f

π

Ω3
0 SU(n)

S2n−1
f ′

Ω3
0 SU(n+ 1)

for some map f ′, and f ′ is an element of π2n+2(SU(n+1))∼= Z/(n+1)!Z. Again,

it is likely that the order of f is much less than (n+ 1)!.

4. Homotopy decompositions

In this section we establish the homotopy decompositions in Theorem 1.1. We

first require a lemma. A homotopy fibration F
i−→E

π−→B is said to be a homo-

topy retract of a homotopy fibration F ′ i′−→ E′ π′
−→ B′ if there is a homotopy

commutative diagram

(4)

F
i

E
π

B

F ′ i′

E′ π′

B′

F
i

E
π

B

where all three vertical composites are homotopy equivalences. As well, a homo-

topy fibration F
i−→ E

π−→ B is an H-fibration if all spaces are H-spaces and

both i and π are H-maps.

LEMMA 4.1

Suppose that a homotopy fibration F
i−→ E

π−→ B is a homotopy retract of

an H-fibration F ′ i′−→ E′ π′
−→ B′. If the map E

π−→ B has a section, then E �
B × F .
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Proof

Let s : B −→E be a section for the map E
π−→B. Let s̄ be the composite s̄ : B

s−→
E −→E′, and let ī be the composite ī : F

i−→E −→E′. Consider the diagram

B × F
s̄×ī

E′ ×E′
μE′

π′×π′

E′

π′

E

π

B × ∗ B′ ×B′
μB′

B′ B

where μE′ and μB′ are the multiplications on E′ and B′, respectively. The left-

hand square homotopy commutes since, by (4), ī factors through i′. The middle

square homotopy commutes since π′ is an H-map, and the right-hand square

homotopy commutes by (4). Let ε : B × F −→ E be the composite along the

top row. Then the homotopy commutativity of this diagram implies that π ◦ ε
is homotopic to the projection onto B, and the definition of ī implies that the

restriction of ε to F is i. Thus we obtain a homotopy fibration diagram

F
i2

B × F
π1

ε

B

F
i

E
π

B

where i2 is the inclusion of the second factor and π1 is the projection to the

first. Thus ε is a homotopy pullback of π and the identity map on B, and so is

a homotopy equivalence. �

Proof of Theorem 1.1

First consider the case of SU(n). By (2), there is a homotopy commutative square

Gk

(
SU(n)

) Ωev

Φ

SU(n)

φ

p−1∏
i=1

Xi

p−1∏
i=1

Bi

where Φ and φ are homotopy equivalences and the map along the bottom is

a product of maps Xi −→ Bi. Consider the homotopy fibration Gk(SU(n))
Ωev−→

SU(n)
∂k−→ Ω3

0 SU(n). By Proposition 3.3, ∂k factors through the quotient map

SU(n)
π−→ SU(n)/SU(n − 2). Consequently, the composition SU(n − 2) −→

SU(n)
∂k−→Ω3

0 SU(n) is null homotopic, implying that there is a lift
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SU(n− 2)

λ

Gk

(
SU(n)

) Ωev
SU(n)

for some map λ. By Lemma 2.1, there is a homotopy equivalence ϕ :
∏p−1

i=1 Bi −→
SU(n) with the property that the restriction of ϕ to

∏p−1
i=1,i/∈{u,v}Bi factors

through SU(n− 2). Thus we obtain a homotopy commutative diagram

p−1∏
i=1,i/∈{u,v}

Bi

I

p−1∏
i=1

Bi

ϕ

Gk

(
SU(n)

) Ωev

Φ

SU(n)

φ

p−1∏
i=1

Xi

p−1∏
i=1

Bi

where I is the inclusion. Note that ϕ may not be the inverse of φ, but φ ◦ ϕ
is a homotopy equivalence. Thus (φ ◦ ϕ)∗ induces an algebra isomorphism in

cohomology. Since no two algebra generators in H∗(
∏p−1

i=1 Bi) occur in the same

dimension, it therefore must be the case that for each 1≤ t≤ p− 1 the compos-

ite Bt
incl−−→

∏p−1
i=1 Bi

φ◦ϕ−−→
∏p−1

i=1 Bi
proj−−→ Bt induces an isomorphism on algebra

generators in cohomology, and therefore induces an isomorphism in cohomology,

and so is a homotopy equivalence. Consequently, for each i /∈ {u, v}, the homo-

topy fibration Ω4
0Bi+2 −→Xi −→Bi has a section Bi −→Xi. By (2), the homo-

topy fibration Ω4
0Bi+2 −→Xi −→Bi is a retract of the H-fibration Ω4

0 SU(n)−→
Gk(SU(n))

Ωev−→ SU(n). So by Lemma 4.1, the existence of a section for the map

Xi −→Bi implies that there is a homotopy equivalence Xi �Bi×Ω4
0Bi+2. Hence

Gk

(
SU(n)

)
�

p−1∏
i=1,i/∈{u,v}

(Bi ×Ω4
0Bi+2)×Xu ×Xv.
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The argument for Sp(n) is exactly the same, using the fact that from Propo-

sition 3.3 that the map Sp(n)
∂k−→ Ω3

0 Sp(n) factors through the quotient map

Sp(n)
π−→ S4n−1. �

5. An alternative proof in the Sp(n)-case

In the Sp(n)-case, there is an alternative proof of the homotopy decomposition in

Theorem 1.1 which is independent of the decomposition of Gk(Sp(n)) in [KKT].

Alternative proof of Theorem 1.1 for G= Sp(n)

Recall that the homotopy equivalence e : Sp(n)
�−→

∏p−1
i=1 Bi of Lemma 2.1 has

a distinguished factor Bw with the property that 2n − 1 appears in its type.

Now consider the map S4n−1 h−→Ω3
0 Sp(n) appearing in the diagram in Proposi-

tion 3.3. This map represents a class in π4n+2(Sp(n)). This homotopy group has

a single generator, which is inherited by a single factor Bi under the homotopy

equivalence e. The homotopy group calculations for the Bi’s in [MNT] imply

that π4n+2(Bi) = 0 unless i = w + 2. Thus h factors as a composite S4n−1 h′
−→

Ω3
0Bw+2 ↪→

∏p−1
i=1 Ω3

0Bi
Ω3e−1

−−→ Ω3
0 Sp(n).

Let gk be the composite

gk : Bw −→ S4n−1 k◦h′
−→Ω3

0Bw+2,

and let gk be the composite

gk :

p−1∏
i=1

Bi
proj−→Bw

gk−→Ω3
0Bw+2 ↪→

p−1∏
i=1

Ω3
0Bi.

Consider the diagram

p−1∏
i=1

Bi

e−1

proj

Sp(n)
∂k

π

Ω3
0 Sp(n)

Bw S4n−1
k◦h

Ω3
0 Sp(n)

Ω3e ( p−1∏
i=1,i �=w+2

Ω3
0Bi

)
×Ω3

0Bw+2.

The left-hand square homotopy commutes by Lemma 2.1, and the middle square

homotopy commutes by Proposition 3.3. The factorization of h described above

implies that the composite along the lower direction of this diagram is the defi-

nition of gk. Thus there is a homotopy commutative diagram
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(5)

Sp(n)
∂k

e

Ω3
0 Sp(n)

Ω3e

p−1∏
i=1

Bi

gk
p−1∏
i=1

Ω3
0Bi

The homotopy fiber of ∂k is Gk(Sp(n)). By definition, gk factors through a pro-

jection onto the single factor Bw and the inclusion of the one factor Ω3
0Bw+2.

So the homotopy fiber of gk is
∏p−1

i=1,i �=w(Bi × Ω4
0Bi+2) × Xw, where Xw is

the homotopy fiber of gk. The homotopy commutativity of (5) induces a map

of fibers, which is a homotopy equivalence since both e and Ω3e are. Hence

Gk(Sp(n))�
∏p−1

i=1,i �=w(Bi ×Ω4
0Bi+2)×Xw. �

It is unclear whether the same method works for the SU(n)-case. For example, it

is not clear whether there is an analogue of Lemma 2.1 that produces a homotopy

equivalence SU(n)�
∏p−1

i=1 Bi which is sufficiently well behaved with respect to

the quotient map SU(n)−→ SU(n)/SU(n− 2).
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