K O-theory of exceptional flag manifolds

Daisuke Kishimoto and Akihiro Ohsita

Abstract The KO-theory of the flag manifold G/T is determined by calculating the
Atiyah—Hirzebruch spectral sequence when G is one of the exceptional Lie groups Ga,
Fy4, Eg, where T is a maximal torus of G.

1. Introduction

This work is a continuation of the work of [KH1]|, [KH2], [KKO], and [K] in which
the KO-theory of various homogeneous spaces are calculated by the Atiyah—
Hirzebruch spectral sequence. In [KKO], Kono and the authors calculated the
K O-theory of the classical flag manifolds. Here, we mean by the classical (resp.,
exceptional) flag manifold the compact classical (resp., exceptional) group divided
by its maximal torus. We will denote a maximal torus of a compact, connected
Lie group G by T. We will calculate the KO-theory of the exceptional flag man-
ifold G/T for G = Go, Fy, Eg. Recently, a connection between Witt groups and
KO-theory of homogeneous spaces such as Grassmannians and flag manifolds
was found (see [Z], [Y1], [Y2]), and so our calculation has applications not only
in topology but also in this direction. Our main result is the following.

THEOREM 1.1
The KO-theory of G/T for G =Gs, Fy, Eg is given as

KO*™ YG/T)=(Z/2)*  and  KO?™(G)T)=(Z/2)*+ & Z!

forn € Z/4, where t, s, are as in the following table:

G t So S_1 S_9 S_3
Go 6 1 2 1 0
Fy 576 2 4 6 4
Eg | 25920 | 2 4 6 4

The organization of the paper is as follows. In Section 2, we recall from [KHI]
and [KH2] useful lemmas in calculating the Atiyah—Hirzebruch spectral sequence
converging to the K O-theory. We also recall some basic facts on the self-conjugate
K-theory. In Section 3, we consider the homotopy fiber of a certain cohomology
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class BT studied in [KI1] and related spaces. Results in this section will be used
in calculating the K O-theory of Fy/T and Eg/T. In Section 4, we determine the
K O-theory of Go/T. In Section 5, we first calculate the K O-theory of Fy/U for
some maximal rank subgroup U of Fy. After this, we determine the K O-theory
of Fy/T. In Section 6, we calculate the KO-theory of Eg/T by using a method
similar to that for Fy/T.

2. Atiyah-Hirzebruch spectral sequence

2.1. KO-theory
Recall that the coefficient of K O-theory is given as
KO*=Z[n, A, 8,871/(2n,0°, A\, \> — 45)
for |n| = -1, |\| = —4, |8] = —8. Let (E.(X),d,) be the Atiyah—Hirzebruch spec-
tral sequence
EP(X) = HP(X; KO7) = KO*(X).

It is shown in [F] that the second differential ds is given as

Sq®ms, ¢=0 mod 8,
(2.1) d5>? =< Sq?, g=-1 modS§,
0, otherwise,

where 75 is the modulo 2 reduction. We now suppose the following condition of
a space X.

. ; 1s a Iree abelian group, an ; =0{forn>0.
2.2 H™(X:Z)is af beli d H(X:7)=0 f 0

Then for Sq®Sq? = Sq®*Sq' = 0, (H*(X;7Z/2),Sq%) is a chain complex. We
denote the cohomology of (H*(X;Z/2),Sq?) by H*(X;Sq?) and call it the
Sq?-cohomology of X. It follows from (2.1) that there is an isomorphism

(2.3) L EPTHX) S HP(X;Sq%).
The following useful lemma is proved in [KH1] and [KH2].

LEMMA 2.1

Let X be a CW-complex satisfying (2.2). Suppose that r is the smallest integer
such that d. #0 for r > 3. Then the following hold.

(1) We have r=2 mod 8.

(2) If p is the smallest integer such that d?*? 0, there exists x € EP?(X)
satisfying d,(nx) # 0, and v(nz) is indecomposable in HP(X;Sq?).

(3) Let x be as in (2). Suppose that there is a map X x X — X by which
H*(X;SqZ) becomes a Hopf algebra. Then d,x is primitive in H*(X; qu).

Let us consider an extension of E(X) to KO*(X).
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LEMMA 2.2
Let X be a finite CW-complex satisfying (2.2). Then there exist integers sy, ty,
forne€Z/4 and isomorphisms

KOZn—l(X> ~ (Z/Q)sn and KOQ”(X) >~ (Z/Q)S"Jrl (&) Ztn.

Proof

By assumption, the complex K-theory satisfies K~1(X) =0, and by the Atiyah—
Hirzebruch spectral sequence (E,.(X),d,.), one sees that KO**~1(X) is a torsion
group. Then since the composite KO*(X) % K*(X) & KO*(X) is the 2-power

map for the complexification ¢ and the realization r, it follows that KO?*"~1(X) =
(Z/2)* for some integer s,. There is the Bott exact sequence

s KHX) 5 KOTHYX) B KO (X) S K (X) = --- .

Since K°(X) is a free abelian group and K~!(X) =0 by assumption, 7 :
KO* 1(X)— KO?>"(X) is an isomorphism on the torsion part. Thus the proof
is completed. O

We calculate integers sy, t, in Lemma 2.2. Define formal series fx(t) and gx (%)
as

(24) fx(t)=> dimgHP(X;Q)*  and  gx(t)= Y dimg B (X)t.
p=>0 p>0

By [MT], the polynomial fx(t) for G =Gs/T,Fy/T, Es/T is given as

_ 44 412
%7 X = GQ/T7
_ 44 _ 412 _ 416 _ 424
(25)  fx(t) = RO, X=FyT,
_ 4 _ 410 412 _ 416 _ 418 424
(1—tH)(1—-¢t)(1 t(ll(tlz)ﬁt )(1—t°)(1—¢t )7 X:Eﬁ/T.

LEMMA 2.3

Let X be a finite CW-complex satisfying (2.2), and let sp,t, be as in Lemma
2.2. Then it holds that

:fx(l)-l-fx(\/—_l) _fx() = fx(V-1)

to=t_2 9 ; to1=t_3= 9 )
and
S0 1 1 2 0 g9x(1)
] o1t -1 o0 -2 gx(V=1)
L] Talt 1 =2 0 || Regx(*25)
_3 1 -1 0 2 Imgx( 1+\>/§?1)
Proof

Since the Atiyah—Hirzebruch spectral sequences for rationalized cohomology the-
ories are trivial, we have
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to=t_p=Y dimgH"(X;Q) and t_;=t_g=)» dimgH""(X;Q),

n>0 n>0
and then the first two equalities follow. Notice that Lemma 2.2 implies that
the extension of € EP4(X) to KO* 1(X) is trivial. Then by Bott

p+q=2n—1"o0
periodicity and E2:%(X) =0 for odd ¢ with ¢ £ —1 mod 8, we have

Ko '(X)= @ ExX)= @ EEPU(X).
p+q=2n—1 4k+n>0
On the other hand, we have
3

gx(t) = Z Z dimg o ESF2m 1 (X) 3R F2n,

n=0k>0
Then for w= 1+\\//§j17 a primitive 8th root of unity, we get
3 So+S—1+S_9+S5_3, {=0,
AN 24n _
gx (w )—Zw Spn=19480—vV—15_1—5_9++/—1s_3, £=1,
n=0 S0 —8_1+8_9—5_3, (=2,
and thus the last equality follows. O

2.2. Self-conjugate K -theory
Let us next consider self-conjugate K-theory. Our basic reference is [A]. We
denote the self-conjugate K-theory of a space X by KSC*(X). The coefficient of
self conjugate K-theory is periodic by multiplication by a generator of KSC ™.
Moreover, there is an exact sequence
2
o KOP2(X) D KO*(X) S KSCH(X) - KO3 (X) — - -
where c is the complexification. Then it follows that
Z, *=0,—3 mod 4,
KSC*=37/2, *=-1 mod 4,
0, =—2 mod/4,
and c¢: KO* — KSC™ is an isomorphism for * =0,—1 mod 8. Let ('E,,d,) be
the Atiyah—Hirzebruch spectral sequence
'EP1>~ HP(X; KSCY) = KSC*(X).
LEMMA 2.4
Let X be a CW-complex satisfying (2.2).
(1) The complexification
c: BYY(X)—'EYYX)

is an isomorphism for =0 mod 8 and a monomorphism for ¢q=—1 mod 8.
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(2) If r is the least integer such that 'd,. #0 for r >3, then
r=2 mod8 and 'd"°#0.
Proof
(1) This follows from the above observation on c¢: KO* — KSC*. (2) Quite

similarly to the proof of Lemma 2.1, we see that r =2 mod 4 and 'd*" # 0. By
(1), we further see that =2 mod 8, completing the proof. a

REMARK 2.5
All results in this section hold if we localize at the prime 2 and will be used in
the proof of Theorem 3.7 below.

3. KO-theory of a space related with a torus

In [KI1], the cohomology of BT in connection with the Weyl group action of
FEg is given as

H*(BT®;Z) = Z[t,t1,... te)/(t1 + - +te — 3t), |t|=t:| =2.
Generalizing, we may put
H*(BTN;Z) =Z[t,t1,...,t§]/(t1+ - +txy = 31), |t|=|t:i| =2,

for N > 6, which respects the above case of N = 6. Let ¢; be the elementary
symmetric function in t1,...,tx, and let ys = ¢y — 412 € H*(BTN;7Z). Define
BTV as the homotopy fiber of

ys: BTN — K(Z,4),

where BT is the 4-connective cover of BT® in the sense of [KI1]. Let us calculate
the mod 2 cohomology of BT following [KI1]. Define ¢yi | € Z/2[t1,...,ty] for
1 > 0 inductively as

Co =Co and Coiyg = SquEQi—l+1.
PROPOSITION 3.1
The mod 2 cohomology of BTN is given as
H*(BTN;Z)2) = 7)2[t1,. .. ,tn,Yai41 | i > 1]/ (E9i41 | i > 0)
for « <2N, where |y9i 1| =2(2" +1).

Proof
Let us consider the Serre spectral sequence of a homotopy fiber sequence

K(Z,3) — BTN — BTV,
Recall that the mod 2 cohomology of K(Z,3) is given as
H*(K(Z,3);2/2) = 7/2[ugi4q | i > 1],
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where uz is the modulo 2 reduction of the fundamental class and wusiy; =
Sq2171u27:—1+1 for ¢ > 2. By the definition of BTN, the transgression 7 satis-
fies 7(u3) = co (=¢2), and then 7(ugiy1) = Coiyq for i > 0. Inductively, one sees
that @y, includes the term coi iy, implying that {¢yiy; [2<2'+1<n} is a
regular sequence in Z/2[t1,...,tx]. On the other hand, since u3 is a permanent

cycle, there exists v3 € HS(BTN;Z/2) which restricts to u2. Put

2i
Yoit1 =59 Y2i-141
for ¢ > 2. By the Cartan formula, we have that v,iy; restricts to ugiﬂ. Sum-
marizing the above calculation, we obtain the desired result, where we need the

condition * < N for regularity of {¢si11 |7 >0}. |
There is a sequence of natural maps

BTN — BTN+ 5 pTN+2 ...,

We denote the colimit of this sequence by BT*>. Then by Proposition 3.1, the
Milnor exact sequence shows the following. Let R be a graded algebra over Z/2

consisting of finite sums of homogeneous formal power series in t1,ts,... with
t:| = 2.

COROLLARY 3.2
The mod 2 cohomology BT is given as
H (BT, 2,/2) = R© 225141 > 1]/ (@141 1 > 0).
In particular, forn >0, H2”(Bf°°; Z3)) is a free Zay-module and H2”+1(BT°°;
Z(z)) =0.

Let us next calculate the Sq3-cohomology of BTN up to a certain dimension. To
this end, we recall from [KH1] a special cohomology calculation.

LEMMA 3.3
Let (A,d) be a differential graded algebra over a field.

(1) Suppose that for a € A", da is a nonzero divisor and a® = db for some
be A"~ Then it holds that

H*(A/(da)) = A(a) @ H*(A).

(2) Suppose that for a € A™, {a,da} is a reqular sequence and a® = db,b* = dc
or some 0 € “h,ce . en it holds that
f be A%n—1 A4=3_ Then it holds th

H* (A/(a,da)) =A(b) @ H*(A).
Proof

(1) Since da is a nonzero divisor, there is a short exact sequence

O—>Ad—a>A—>A/(da)—>O
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which induces a long exact sequence

-H*(da)
—_

o HY(A) H L (A) = H (A (da)) 2 H* P (A) = -

where A/(da) is, of course, a differential graded algebra. Obviously, H*(da) =0
and §(a) = 1. Then it follows that H*(A/(da)) is a free H*(A)-module with a
basis {1,a}. Since a? = db, we obtain the desired result.

(2) Since {a,da} is a regular sequence, there is an exact sequence

c o B (Af(da)) Y B (A (da))
— H*""(A/(a,da)) & H*(A/(da)) — -

as well as that in (1), in which §(b) = a. Since H*(A/(da)) = A(a) ® H*(A) by
(1), we see that H*(A/(a,da)) is a free H*(A)-module with a basis {1,b}. For
b? = de, the proof is completed. O

PROPOSITION 3.4
For «x <2N — 2,

H*(BTY;Sq?) = Az, 27,9 | 1> 3),  |a;] =27,

where N can be .

Proof
Put A=7Z/2[t;,...,tn] (or the above R for N = c0). Notice that since A is
acyclic under Sq?, for any = € AT, there exists y € A satisfying 2 = dy.

By Lemma 3.3, we have

H* (A/(EQ, 53)) = A(xg),

where x3 = ZKJ. tit? satisfying Sq s = c3. The Adem relation Sq28q2i =

Squ‘*'2 + Squ'HSq1 implies that
(3.1) SURCIRES EgHH
for ¢ > 2. On the other hand, as is noted in the proof of Proposition 3.1, {1 |

2 <2'4+1 < N} is aregular sequence in A. Then, applying Lemma 3.3 repeatedly,
one gets

H*(A)(€gip1 1> 0)) = Aws, 20 |1 > 2)

for * < 2N, where Sq*gi = iy mod (Giqq |0 < j <i—1). Notice here that
since H22 D (A/(G5541 | j > 0)) =0, we can apply Lemma 3.3 repeatedly.
Since Sq?cy =& mod (&, ¢3), we may take x4 = cq.

Put Fop = A/(Caiy1]1>0) and F,, = A/(Coiy1 |1 >0) @ Z/2[y9i 41 | i <n —1]
for n > 1. It is proved in [KI1] that Sq®v3 = c4. Consider the spectral sequence
associated with a filtration Fjy C F;. Then we get

H*(Fl) = A($3,$7,$2i | { 2 3) ®Z/2[’Y§]7
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where 27 = v3¢4 4+ d7 for d7 € A with Sq?d; = c2. Similarly to (3.1), we have
Sq2727:+1 =y9i-141. Then by considering the spectral sequence associated with a
filtration F,, C F, 11 for n > 1 inductively, we obtain

H*(FnJrl) = A(1'37{L‘7,£L'2i 0> 3) ® Z/2[’7§n+1]'

Thus the proof is completed. O

Let us next consider the homotopy fiber F' of the cohomology class t : BT™> —
K(Z,2). Let a: F — BT be the natural map.

PROPOSITION 3.5
Forn >0, H*(F; Zyg)) is a free Zay-module and H2"+1(F;Z(2)) =0.

Proof

By Proposition 3.1, for x« < 2N, the same claim is true for BTY and then also
for BT> by sending N to oo. Since the map t: BT>™ — K(Z,2) is injective in
the Z,)-cohomology, o* : H*(Bfoo;Z(g)) — H*(F';Z2)) is surjective, and thus
the proof is completed. O

Define a map p: BT* x BT*° — BT by the equations
,U,*(tgz) = 1®t1 and /J,*(tgi_l) :t1®1

for i > 1 in cohomology. Then by an easy inspection we see that p lifts to a map
p:EFxF—F.

PROPOSITION 3.6

The natural map o : F — BT> induces an isomorphism in the qu—cohomology.
Moreover, H*(F;Sq?) becomes a Hopf algebra by fi in which a*(x4:) is not prim-
itive for i > 4, where x; is as in Proposition 3.4.

Proof
The first assertion easily follows from a direct calculation.
Computing the Sq*-cohomology of the subring Z/2[c1,ca,c3,...]/(c1,Ea,C3,
..) of H*(F;Z/2), we see that a*(z,i) can be chosen as an element of this
subring for i > 3. Then for

(3.2) (0 (en)) = 3 0 () @ a*(ens),
i=0
we obtain

ﬂ*(a*(xw)) =a*(x:) @1+ 1®a*(1-2i)_|_... )

Choose representatives of 3, x7 as in the proof of Proposition 3.4. As in [KKO],
it is straightforward to see that f*(a*(x3)) =23 ® 1+ 1 ® x3. By definition, we
have @*(a*(y3)) = a*(y3) ® 1 + 1 ® a*(y3) + ---. Then by an easy calculation
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analogous to a*(z3), we see that @*(a*(z7)) = a*(z7) @ 1 + 1 ® a*(z7). Thus we
have obtained that H*(F;Sq?) is a Hopf algebra by the map fi.

Since €giq = Coipq + -+ as above, we have x9i = cyi + -+ for ¢ > 3. Then by
(3.2), the last assertion follows. O

We now aim at proving the following.

THEOREM 3.7
The Atiyah—Hirzebruch spectral sequence E,.(BT)y) collapses at the Ez-term.

Proof

By Corollary 3.2, BT satisfies the condition (2.2) at the prime 2. Let Z; be an
element of Ker{Sq*: H*(BTVOO;Z(Q)) — H*(BT>;7/2)} = E;:’O(Bf‘x’)(z) whose
modulo 2 reduction is z; € H* (Bfoo; Sq?) for j =3,7,2° (i > 3). Then by Lemma
2.1, our aim is to prove that z; is a permanent cycle for j = 3,7, 2t (i > 3).

Consider the natural map o : F — BT™. Then it follows from Lemma 2.1,
Proposition 3.5, and Proposition 3.6 that it is sufficient to show that o*(Z3) €
Ker{Sq” : H*(F;Z)) — H*(F;Z/2)} = E;*O(F)(g) is a permanent cycle. We
next consider the complexification c: E,.(F)) — 'E,.(F)2). Then by Lemma
2.4, we only have to prove that c(a*(Z3)) € 'E3(F)2) is a permanent cycle.

Let u be a generator of K (;)2 satisfying (1 — t)(u) =0 for the complex con-
jugation t, and let H; be the pullback of the Hopf bundle on BT! by the com-
posite F'— BT> — BT' in which the first arrow is the natural map and the
second arrow corresponds to the cohomology class t;. Put &3 =u=3 ZKj Hle €
KG(BfOC)(Q). Then for (1—1t)(&3) =0, & lies in KSC®(F)2). Obviously, &; cor-
responds to c(a*(Z3)), and thus c(a*(Z3)) is a permanent cycle, as is desired. O

4. KO-theoryof Go/T

The mod 2 cohomology of G5/T including the action of the Steenrod operations
is calculated as

H*(G2/T;72/2) = Z/2[tx,t2,73)/(p2, p3,73),  |til =2, 73| = 6,5q%y5 =0,
where
po=ti4tita+t2  and  p3 =13ty + tita.
PROPOSITION 4.1
The Sq?-cohomology of Go/T is given as
H*(G2/T;Sq%) = A(w3,73),
where x3 =13 + t1t5 +t3.

Proof
Since Sq?p; = ps, we obtain the desired result by Lemma 3.3. (]
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COROLLARY 4.2
The Atiyah—Hirzebruch spectral sequence E,.(Go/T) collapses at the Es-term. In
particular, we have

9 /r(t) = (14192,

Proof
The result follows from Lemma 2.1 and Proposition 4.1. ]

Proof of Theorem 1.1 for Gy
The result follows from (2.5), Lemma 2.2(1), and Corollary 4.2. O

5. KO-theoryof F,/T

Recall that the Dynkin diagram of F} is given as follows:

(631 Qg a3 Oy
o ————————o—©

It is shown in [IT] that the centralizer of the circle in Fy defined by ag = a3 =
ay =0 is isomorphic to T - Sp(3). Let U be the centralizer of the torus defined
by as =0. Then U = T3 x Sp(1) as a space, implying that the homology of U is
torsion-free. Note that Fy/U satisfies the condition (2.2). Then we calculate the
Atiyah—Hirzebruch spectral sequence converging to KO*(Fy/U) from which we
deduce the one converging to KO*(Fy/T).

5.1. KO-theory of F,/U
We first calculate the mod2 cohomology of Fy/U. Let w; (i =1,2,3,4) be the
fundamental weight of F, as in [TW], and put

t=uwi, Y1 =wz — ws, Y2 = W3z — Wy, Y4 = Wy.
Then it is clear that
H*(BTZ) =Z[t,y1,y2,ys].
As in [IT], the Weyl group of U is generated by a single element R satisfying
R(t) =t, R(y1) =t -y, R(y2) = yo, R(ys) = ys.

Since H*(BU;Z) is torsion-free as noted above, H*(BU;Z) is the invariant ring
of H*(BT};Z) under the action of the Weyl group of U. Then one gets

H*(BU;Z) =Z[t,y2,y3,9), a=y1(t —y1).
On the other hand, the mod 2 cohomology of F} is given as
H*(Fy;Z)2) = 7./2[as]/(a3) ® A(as, a1s,a93), |a;| =1, Bas = a3.

Then by a result of Toda [T], we can calculate the Z)-coefficient cohomology
of F4/U as follows.
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PROPOSITION 5.1
There is a regular sequence pa, pe, Ps, P12 in Z2)t,y2,y3,q] with |p;| = 2i such
that

H*<F4/U7Z(2)) = Z(?) [tayQa y37qary3]/(527567ﬁ875127 273 + ﬁ?))a
where ps is defined by the equation Sq°ps = ps.
We now determine the mod 2 cohomology of Fy/U. Define ¢; € Z[t, y2,y3,q] (|¢:| =
47) as
l+ga+@t+a=>0+q¢)(1+y2(t —y2)) (1 +ys(t—ys)).

By definition, one has

(5.1) Sq?q1 = tqi, Sq?qz =0, Sqqs = tqs.

A calculation in [IT] implies that the rational cohomology of Fy/U is given as
(5.2) H*(Fy/U;Q) = Qlt, y2,y3,4]/(02,06,08,012),

where

o9 = —t* +q1, o6 = —t5 + 4ty — 83,
(5.3)
os =3tz —q5,  o12=—q5 +27q3.

Let p; (1 =2,6,8,12) be as in Proposition 5.1. Then by (5.1) and (5.3), we may
put

pr=—t"+q and p3 =1tq1.
Put

R= Z(Z) [t7y27y37Q773]/([)2’ﬁ37 _7?% + t2q2 - 2q3a087012)'

Since g = 4(—72 + t2q2 — 2g3) mod (pa,p3) and the natural map H*(Fy/U;
Z2y) — H*(F4/U;Q) is injective, there is a surjection R — H*(Fy/U;Z2y) which
induces a surjection

¢:R/2— H*(Fy/U;Z/2).
We now put

pr=t"+q, ps=tq,  ps=7:+tq,
(5.4)
ps =t’q3+ a5,  pr2=¢ + a3

Then since the Poincaré series of Fy/U over Q and Z/2 are the same, we have

R/2=17/2[t,y2,y3,q,73]/(P2: P3, P, P3; P12),

here in the Poincaré series, and <3 is cancelled by ps. One can easily verify
that pa, ps, ps, Ps, P12 18 a regular sequence in Z/2[t,y2,ys,q,v3], implying that
the Poincaré series of R/2 is ((1 —#12)(1 —¢16)(1 —#24))/(1 —t?)3. On the other
hand, the Poincaré series of H*(F,/U;Z/2) is equal to that of H*(F/U;Q)
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which is ((1 —#1%)(1 — #1)(1 — #24))/(1 — ¢?)3 by (5.2). Then we conclude that
Poincaré series of R/2 and H*(F4/U;Z/2) are the same, and thus the map ¢ is
an isomorphism. Summarizing, we obtain the following.

PROPOSITION 5.2
The mod 2 cohomology of Fy/U is given as

H*(F4/UaZ/2) = Z/Q[t>y27y37Q»’YS]/(P%P&PG’P&PH),

where |t| = |y2| = lys| =2, |q| =4,|v3| =6, and p; is as in (5.4).

COROLLARY 5.3
The Sq?-cohomology of Fy/U is given as
H*(F/U;Sq%) = Aar, 211,73), || = 24, |73 = 6,

where Sq”x7 = ps mod (pa, p3), Sq°T11 = p12, T3 =3 + 03, and Sq°03 = g2 for
53 € Z/2[tay2,y3»(I]

Proof
Considering the projection F,/T — Fy/U, one sees from [KI2| that
Sa®3 = g.

Let A be a differential graded algebra Z/2[t,y2,ys,q] with [t| = |y;| =2,|q| =4,
and dt =2, dy; = y?,dq = tq, where the degree of the differential is 2. Then by
Proposition 5.2, our aim is to determine the cohomology of a differential graded
algebra

A®Z[2[vs]/(p2,p3; p6s pss p12),
where |y3] = 6,dv3 = g2, and p; is as in (5.4). By definition, we have
A/ (p2:p3) = Z/2[y2,ys] @ (1,1, )
as a Z/2[ys,ys]-module, and then H*(A/(p2,p3)) = 0. Hence for dps =
0 mod (p2,p3) and dpi2 =0, it follows from (3.3) that
H*(A/(p2. p3,ps, p12)) = Mxz,211), || = 2i.

Since dga = 0 and H*(A) = 0, there exists d3 € H°(A) satisfying ddz = go. Put
3 =3 + d3. Then one has

A®Z/[2[vs]/(p2: p3, ps, p12) = AR Z/2[73]/ (p2, p3, ps, p12)
and pg =72 + d(t283 + J5) mod (p2, p3), where d5 € H'0(A) is given by dés = 63.
Thus for d7ys =0, we obtain

H* (A 3y 2/2[73]/(P27937967P87;012)) = A((E7,.’L’11,’$’3),

completing the proof. O

THEOREM 5.4
The Atiyah—Hirzebruch spectral sequence E,.(Fy/U) collapses at the Es-term. In
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particular, we have

gryu(t) = (1+)(1+ ") (14 t3).

Proof
The result follows from Lemma 2.1(1), (2) and Corollary 5.3. O

THEOREM 5.5
The KO-theory of Fy/U is given as

KO* Y (F,JU)=(2/2)%" and KO (Fy)U)=(Z)2)*+ & 7t
forn € Z/4, where

t:144, 5028_321, S—1 :8_2:3.

Proof
As is noted above, we have fr, /() = ((1—'2)(1—t'9)(1—t2*)) /(1 —¢)®. Then
the proof is completed by Lemma 2.2, 2.3, and Theorem 5.4. (]

5.2. KO-theoryof Fy/T
Let p; € Z/2[t, y1,y2,y3,73] be as in (5.4), where ¢ = y1(t — y1). In [KI2], the
mod 2 cohomology of Fy/T is calculated as

H*(Fy/T;7/2) = Z/2[t, y1, Y2, Y3, V3)/ (P2, P3: P6» P35 P12)

and Sq*y3 = ¢a2. Then the induced map from the projection 7 : F,/T — Fy/U in
the mod 2 cohomology satisfies

(5.5) ()=t and ™(yi)=vy; (i=1,2,3).

Define amap \: Fy/T — BT® by \*(t;) =t —y4_; and \*(t;43) =y; fori=1,2,3.
Then \*(co — 4t?) = —t? + ¢; = 0, implying that there is a lift A : Fy/T — BT®
satisfying

(5.6) A(ti)=t—yai,  AN(tys)=w (i=1,2,3), and  X(y3) =13,
where the last equality is shown in [KI2].

PROPOSITION 5.6
The Sq*-cohomology of Fy/T is given as
H*(Fy/T;Sq%) = Mws, w7, 211,93), || = 20, |53| = 6,

where 5\*(.%'3) =ux3, ™ (x7) =27, 7 (211) =211, and T (F3) = 3.

Proof
Let A be a differential graded algebra Z/2[t,y1,y2,ys] with |¢| = |y;| =2 and
dt =2, dy; = y?. Then the desired Sq2—cohomology is equal to the cohomology of

A® 2/2[’73]/(027p37p67p8,,012),

where dvys = g2. Since H*(A) =0, dps = p3, dps =0 mod (p2, p3), and dp12 =0,
it follows from Lemma 3.3 that
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H*(A/(p2,p3,ps:p12)) = Azs, x7,211),

where drs = g2 and x7,r1; are as in Proposition 5.3. Then by defining 73 as
in the proof of Proposition 5.3, the first assertion follows. The second assertion
follows from (5.5) and (5.6). O

REMARK 5.7

Since H*(Fy/T; Sq2) is an exterior algebra generated by four generators of degree
—2 mod 8 as in Proposition 5.6, we cannot directly see that E,.(Fy/T) collapses
at the Es-term by Lemma 2.1. On the other hand, H*(F,/U;Sq?) can be thought
of as a subalgebra of H*(Fy/T;Sq?) generated by three of its four generators,
and then we can apply Lemma 2.1 to see that F,.(Fy/U) collapses at the F3-term
as above.

THEOREM 5.8
The Atiyah—Hirzebruch spectral sequence E.(Fy/T) collapses at the Es-term. In
particular, we have

gryr(t) =1+ 10?1+t (1+ 7).

Proof

By Theorem 3.7 and Proposition 5.6, :~1(z3) in the 2-localized spectral sequence
Eg’_l(F4/T)(2) is a permanent cycle. Then since the 2-localization EY?(F,/T) —
EY9(Fy/T) (9 is injective, .71 (z3) in the integral spectral sequence Eg’fl(F4/T)
is also a permanent cycle. By Theorem 5.4 and Proposition 5.6, t = (z7), ™ (211),
171 (53) € By (F4/T) are also permanent cycles. Thus the proof is completed
by Lemma 2.1(2). O

Proof of Theorem 1.1 for F,
The result follows from (2.5), Lemma 2.2, and Corollary 5.8. O

6. KO-theoryof Fg/T

Our method of computing the Atiyah—Hirzebruch spectral sequence E,.(FEg/T)
is similar to the case of Fy/T. Namely, we first calculate the Atiyah—Hirzebruch
spectral sequence converging to KO*(Eg/U) for an appropriate maximal rank
subgroup U and then deduce that of KO*(Es/T).

We know that the Dynkin diagram of Fg is given as follows:

(6%)

[ L g L g @
aq as Qy Qs (673

In [IT], it is proved that the centralizer of the circle in Eg defined by a3 = az =
a4 = a5 = ag = 0 is isomorphic to T - SU(6). Then the identity component of the
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centralizer of the torus defined by as = ag =0 is isomorphic to 7" - (T2 x U(3))
which we denote by U. It is clear that the homology of U is torsion-free and
Es/U satisfies the condition (2.2).

6.1. KO-theory of Eg/U
Let us calculate the Zy)-coefficient cohomology of Fy/U. We set some notation.
Let w; (i=1,...,6) be the fundamental weight of Es as in [TW]. Put

l1 = —w1 +wo, lg = w1 + w2 —ws, I3 = wy + w3 — wy,
ty = wy — ws, t5 = ws — weg, tg = weg.

Then as in Section 2, we have

H*(BT;Z) = Z)[t, t1,...,ts]/(c1 — 3t).

As in [TW], the Weyl group of U is generated by two elements Ry, Ro satisfying
Ri(t;)=t; (1=1,2,3,6), Ry (tsy) =ts, Ry(t5) =ty,
Ro(t;)=t; (i=1,2,3,4), Rs(ts) = tg, Rs(tg) =ts.

Then it follows that

H*(BU; Z3)) = L2)[t1, ta, 3,61, E2, 3],

where él =14+ t5 + t6, éz = t4t5 + t5t6 + t6t4, and 63 = t4t5t6.
As in [MT], the mod 2 cohomology of Fjg is given as

H*(E(;; Z/Q) = Z/Z[(Lg]/(ag) ® A(a5, ag, 15,017, azg), |CL1| = 7;7 ﬁa5 = ag.
Then by [T], we obtain the following.

PROPOSITION 6.1
There is a regular sequence pa,ps, P, Ps; P9, P12 in ZLz)[ti,t2,t3,¢1,C0,C3] with
|pi| = 2i satisfying

H*(Es/U; Z2)) = Z2)[t1,t2,t3,¢1,C2,¢3,73] / (P2, P5, D6, P8, P9, P12, 273 + P3),
where ps is defined by the equation Sq>ps = ps.
Let us compute the mod 2 cohomology of Eg/U. Let ¢; be the ith symmetric func-

tion in ¢q,...,t¢ for i =1,...,6. Obviously, ¢; is a polynomial in t1,ts,t3,¢1, C2, C3.
A calculation in [TW] implies that the rational cohomology of Eg/U is given as

(6.1) H*(Es/U;Q) = Q[t1,t2,t3,¢1,¢62,83)/(02,05,06,08,09,012),

where

— 4 5 _ 1 L 2 25
09 = Cy — 3—201, 05—05—50401—1—?0301 —3—501,
4 4
06 = 8cg + ¢35 — 3—204cf — 3—60?,
19 5 31
og = —30(50% + ci — cyc3c1 + §C4c‘11 — §030§ + ﬁciﬂ.
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By Proposition 6.1, we may put

_ 4 _
p2=cCa — 3—20% and  p3=cg+cacy.

Put
Ry = Zg)[t1,t2,t3,¢1,C2,E3,73]/ (P2, P5, 273 + P3).

Then since the natural map H*(Es/U;Z2y) — H*(Eg/U;Q) is injective, there
is a surjection Ry — H*(Eg/U;Z3)) which reduces to a surjection

¢1:R1/2— H*(Es/U;Z/2).
Put
(6.2) p2 = Ca, p3s = c3 + cac1, Ps = C5 + cqc1.
Then po, p3, p5 is a regular sequence in Z/2[t1,ts,t3,¢1,¢2,¢3] and
R1/2=17/2[t1,ta,t3,¢1,C2,¢3,73]/ (P2, P35 P5)5

implying that the Poincaré series of R;/2 is (1 —t19)/((1—#2)*(1 —%)). On the
other hand, the Poincaré series of H*(Eg/U;7/2) and H*(Eg/U; Q) are the same,

(1=t (—e?)(1—) ') 1) |

which is =) (=15 y (6.1). Then ¢; is an isomorphism in

dimension < 11.
Note that o6 = 4(2c6 +73 + 25 73¢5 — 2z caci+ 32¢8) mod (p2, 273+ p3). Then
since H*(Eg/U; Z)) — H*(Es/U;Q) is injective, if we put

Ry = Rl/(206 +7; + %’730? - i040? + ?;*20?,08),
¢1 induces a surjection
¢2:Ro/2— H*(Eg/U;Z/2).
Put
(6.3) po="3 +eact +¢f,  ps=cect + i+ caci + .
Then one sees that
Ry /2=17/2[t1,ta,13,¢1,¢2,¢3,73]/ (P2, P3: P35, P65 P8)-

Since pa, p3, Ps5, Pe, Ps is a regular sequence in Z/2[t1, s, t3,¢1, 2, 3,3, one can
calculate the Poincaré series of Ry/2. Then comparing the Poincaré series as
above, we obtain that ¢4 is an isomorphism in dimension < 35.

Put

(6.4) po = coct, P12 = g + coCaci + ci] + cady.

Since Sq¢2(ps) = d2(py) and Sq®2(ps) = P2 (p12), there is also a surjection
¢3: Ry — H" (Eg/U; Z/2),

where

R3 = Ry/(2,ps,p12)-
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Since pa, p3, P5, P6, P8, P9, P12 1S a regular sequence in Z/2[ty,ts,ts,¢1, Co, é3,73],
one can calculate the Poincaré series of R3. Comparing it with the Poincaré
series of H*(Eg/U;Z/2), we conclude that ¢3 is an isomorphism. Summarizing,
we obtain the following.

PROPOSITION 6.2
The mod 2 cohomology of Eg/U is given as

H*(Es/U;Z/2) = Z/2[t1, b2, 13, ¢1, 2, C3,73] / (P2, 3, P55 p6, P8 po, p12))
where |t;] =2,|¢| = 2i,|v3| =6 and p; is as in (6.2), (6.3), and (6.4).

COROLLARY 6.3
The Sq?-cohomology of Eg/U is given as

H*(Es/U;Sq%) = Awr, 211, 215),  |2i| = 2,

where Sq*z11 = p12 mod (p2, p3, ps5, po), SA15 = p2, 27 = Y3¢4+067, and Sq*67 =
0421 fO’F 67 S Z/Q[tl,tg,tg,él,ég,ég].

Proof
As in the proof of Corollary 5.3, we see that Sqys = c4. Put A = Z/2[t1,t,t3,¢1,
¢2,¢3]. Then our aim is to calculate the cohomology of a differential graded
algebra

A ®Z/Q[’YSV(p%PSaP57P67P8n0971)12)-

Obviously, A/(pg,pg) = Z/2[t1,t2,t3] X <1,61,6%> as a Z/2[t1,t2,t3]—module,
implying H*(A/(p2, p3)) =0. Then since dey = ps and dpg = po, it follows from
Lemma 3.3 that

H*(A/(p2,p3,p5,p8,p9)) = Mca, 15),  |ai] =20,

where Sq*x15 = p§. For dp12 =0 mod (ps, po) and H**(A/(p2, p3, ps, ps, po)) =0,
we get

H*(A/(p2,p3:ps: pss po, p12)) = Mea, 211, w15), || = 24,

where Sq?z1; = p12 mod (pa, p3, ps, p9). By the spectral sequence associated with
a filtration

A/(p2;p3, 5, ps, p12) C AR ZL/2[3]/(p2; p3, P55 P85 P95 P12);5
we get

H* (A ®Z/Q[’YSV(P%/13705,,087/39,/712)) =Ax7,211,715) ® Z/Q[’YP%L

where x7 = y3c4 + 07 and 67 € Z/2[ty, b2, t3,¢1,62,¢3) is given by ddr = c3. Since
p6 =73 +d(y3¢3 + ¢3), we obtain

H*(A®Z/2[v3]/(p2, p3, p5, P6, Ps: P9, p12)) = M7, 311, 215),
completing the proof. O
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THEOREM 6.4
The Atiyah—Hirzebruch spectral sequence E,.(Eg/U) collapses at the Es-term. In
particular, we have

9Eeu(t) = (L+ ") (1+12)(1+6%).

Proof
From Lemma 2.1 and Proposition 6.3, the result follows. ]

THEOREM 6.5
The KO-theory of Eg/U is given as

KO*™ YEs/U)=(Z/2)*  and  KO®"(Es/U)=(Z/2)*+ & 7!
forne€Z/4, where
t:4320, 8018_3:1, 8_1:.9_2:3.

Proof

10 12 16 18 24
By (6.1), we have fg,/u(t) = - xl_t(ll(tlg)_f(lz(tls;t A=) Then the proof is
completed by Lemma 2.2 and Theorem 6.4. |

6.2. KO-theoryof Eg/T
Let p; € Z/2[ty,...,ts,v3] be as in (6.2), (6.3), and (6.4). The mod 2 cohomology
of Fg/T is calculated in [KI2] as

H*(E6/T5Z/2) = Z/Q[tlv s atﬁv73]/(p27p3ap57p6ap85p97p12)7

where Sq?v3 = ¢4. For the projection 7 : Eg/T — Eg/U, we have

F*(ti):ti (i:1,2,3>, W*(él):t4+t5+t6,
(6.5)

’/T>k (62) = t4t5 + t5t6 + t6t4, 7T* (63) = t4t5t6.
Define a map A : (Eg/T)2) — BT(62) by \*(t; =t;) for i=1,...,6. Then there is
a lift \: (E6/T)2) — BT(GQ) satisfying

(66) 5‘*(ti):ti (izlv"'76)v >‘*(73) =73

where the second equality is shown in [KI1].

PROPOSITION 6.6
The Sq?-cohomology of Es/T is given as
H*(Es/T;8q%) = Mws, w7, 11, 215),  |7:] = 2i,

where N*(x3) = x5, 7 (x7) = 27, 7 (211) = 211, and 7 (x15) = T15.
Proof

Define a differential graded algebra A as A =7Z/2[ty,...,tg] with |¢;] =2 and
dt; =t7. Then we calculate the cohomology of a differential graded algebra A ®
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Z/2[v3]/(p2, p3, P5s P65 s, Pa; P12), Where dyz = cy. This is done quite similarly to
the proof of Proposition 6.3. The second assertion follows from (6.5) and (6.6).
(|

THEOREM 6.7
The spectral sequence E,.(Eg/T) collapses at the Es-term. In particular, we have

9reyr(t) = (L+ ) (1 + M) (1 +22) (1 +£%0).

Proof

By Theorem 3.7 and Proposition 6.6, t =1 (x3) in the 2-localized spectral sequence
Eg’il(Eﬁ/T)(g) is a permanent cycle, implying that :~!(x3) in the integral spec-
tral sequence Eg’_l(E(; /T) is also a permanent cycle since the 2-localization
EYY(Eg/T) — EY9(Eg/T) is injective. By Theorem 6.4 and Proposition 6.6,
1Y) € B3~ (Eg/T) is also a permanent cycle for i =7,11,15. Thus the result
follows from Lemma 2.1. |

Proof of Theorem 1.1 for Fg
The result follows from (2.5), Lemma 2.2, and Corollary 6.7. O

REMARK 6.8
We cannot apply the same calculation method to E;/T and Eg/T for which there
is no control on elements 75,y in their mod 2 cohomology (see [KI2]).
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