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Abstract We show that some Gieseker stable sheaves on a projective K3 surfaceX are

stable with respect to a stability condition of Bridgeland on the derived category ofX if

the stability condition is in explicit subsets of the space of stability conditions depend-

ing on the sheaves. Furthermore we shall give two applications of the result. As a part

of these applications, we show that the fine moduli space of Gieseker stable torsion-free

sheaves on a K3 surface with Picard number one is the moduli space of μ-stable locally

free sheaves if the rank of the sheaves is not a square number.

1. Introduction

In [1], Bridgeland introduced the notion of stability conditions on arbitrary tri-

angulated categories D. Let Stab(D) be the space of stability conditions on D. If

Stab(D) is not empty, then Stab(D) is a complex manifold by [1]. Furthermore

we can define the notion of σ-stability for objects E ∈D.

Suppose that D is the bounded derived category D(X) of coherent sheaves

on a smooth projective variety X over C. In this paper we study the case where X

is a projective K3 surface. Then as is well known, the space Stab(X) of stability

conditions on D(X) is not empty by virtue of [2]. Then for coherent sheaves on X

we have the notion of σ-stability in addition to Gieseker stability and μ-stability.

It is natural to ask how these three different notions of stability are related for

sheaves. The aim of this paper is to give some answers (see Theorems 4.4, 4.9)

with applications (see Theorems 5.4, 6.7).

In this article we have two goals. The first goal is to show the σ-stability of

Gieseker stable (or μ-stable) sheaves on X if σ is in explicit subsets of Stab(X)

depending on the sheaves. This result will be proved in Theorems 4.4 and 4.9.

The second goal is to give two applications of these two theorems.

Now we explain the background of our theorem. We first recall that the space

Stab(X) has the subset U(X). The set U(X) is very roughly the set of stability

conditions σ such that for all x ∈X , the skyscraper sheaf Ox is σ-stable. This

subset U(X) is also a trivial G̃L
+
(2,R) bundle over a set V (X), where G̃L

+
(2,R)

Kyoto Journal of Mathematics, Vol. 53, No. 3 (2013), 597–627

DOI 10.1215/21562261-2265905, © 2013 by Kyoto University

Received August 11, 2011. Revised May 10, 2012. Accepted June 8, 2012.

2010 Mathematics Subject Classification: Primary 14F05, 14J28; Secondary 14J60, 14J10.

http://dx.doi.org/10.1215/21562261-2265905
http://www.ams.org/msc/


598 Kotaro Kawatani

is the universal cover of GL+(2,R) (see also Section 3). In addition V (X) is

roughly parameterized by R-divisors β and R-ample divisors ω. Hence we can

write σ ∈ U(X) as σ = σ(β,ω) · g̃ where σ(β,ω) ∈ V (X) and g̃ ∈ G̃L
+
(2,R).

In [2], it is written that for a fixed R-divisor β, if we take a limit ω→∞ (so-

called large volume limits), the notion of σ(β,ω)-stability is expected to coincide

with the notion of twisted stability.∗ Furthermore it is shown in [2] that this

conjecture holds for some objects. In some sense we strengthen this result in

Theorems 4.4 and 4.9. As an consequence of this, we show that in large-volume

limits, we can distinguish the notion of μ-stability of coherent sheaves on X with

Picard rank one and the notion of Gieseker stability (see Proposition 5.2).† What

does this sentence mean?

For a given sheaf E and β ∈NS(X)R we have μω(E)> βω or μω(E)≤ βω. If

E is Gieseker stable and μω(E)> βω, then E is σ(β,ω)-stable in the large-volume

limit by [2]. In Proposition 5.2, we show that if a Gieseker stable sheaf E with

μω(E)≤ βω is σ(β,ω)-stable in large volume limit, then E is μ-stable.

We also apply Proposition 5.2 to the classification of the fine moduli space

of Gieseker stable sheaves on X , which is the first application in Theorem 5.4.

More precisely we show that the fine moduli space of Gieseker stable, torsion-free

sheaves is the fine moduli space of μ-stable locally free sheaves if the rank of the

sheaves is not a square number. We also show that if the rank is a square number,

then the fine moduli space is either the moduli space of μ-stable locally free

sheaves or the moduli space of properly Gieseker stable, torsion-free sheaves‡.

Furthermore we show that if the latter case occurs, then the moduli space is

isomorphic to X itself. Hence these results show us that any nontrivial Fourier–

Mukai partners of X with Picard rank one are isomorphic to the fine moduli

space of μ-stable locally free sheaves (see Remark 5.5). The key idea of the

proof of Theorem 5.4 is to compare two Jordan–Hölder filtrations of a Gieseker

stable sheaf with respect to μ-stability and σ-stability for some σ ∈ Stab(X).

This comparison is enabled by Proposition 5.2. We have to remark that a similar

result was proved by [11, Lemma 1.2].

The second application is Theorem 6.7, which is a generalization of [7, Theo-

rem 1.1]. Let Φ :D(Y )→D(X) be an equivalence where X and Y are projective

K3 surfaces, and let Φ∗ : Stab(Y )→ Stab(X) be a natural map induced by Φ.

We show that, if Φ satisfies the condition Φ∗U(Y ) = U(X), then the equivalence

Φ is given by M ⊗ f∗(−)[n] where M is a line bundle on X , f is an isomorphism

from Y to X , and n ∈ Z. This is a complete generalization of [7, Theorem 1.1],

which shows the same statement under the additional condition that the Picard

number is 1.

∗Namely, for any sufficiently large λ � 0, if E ∈ D(X) is σ(β,λω) · g̃-stable, then E is a

(β,ω)-twisted stable sheaf, and vice versa.
†Note that if the Picard number is one, then twisted stability is just Gieseker stability.
‡Namely, the sheaf is neither μ-stable nor locally free.
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We proceed as follows. For an equivalence Φ :D(Y )→D(X) satisfying the

assumption Φ∗U(Y ) = U(X), one can see that it is enough to prove that Φ(Oy) =

Ox[n] where x ∈X and n ∈ Z. In [7], this was proved by using [7, Theorem 6.6].

Hence the crucial part of the proof of [7, Theorem 1.1] is [7, Theorem 6.6].

A necessary generalization of this result of [7] will be done in Corollary 6.6 by

applying Theorem 4.5.

2. Review of classical stability for sheaves

In this section we recall the μ-stability, Gieseker stability, and twisted stability

for coherent sheaves on a projective K3 surface.

We first introduce some notation. Throughout this section X is a projective

K3 surface over C. Let A and B be in D(X). If the ith cohomology Hi(A)

is concentrated only at degree i= 0, we call A a sheaf. We put Homn
X(A,B) :=

HomD(X)(A,B[n]) and homn
X(A,B) := dimCHomn

X(A,B) where [n] means n ∈ Z

times shifts. We remark that

Homn
X(A,B) = Hom2−n

X (B,A)∗

by the Serre duality. Then the Euler pairing χ(E,F ) =
∑

i(−1)i homi
X(E,F ) is

a Z-bilinear symmetric form on the Grothendieck group K(X) of D(X).

Let N (X) be the quotient of K(X) by numerical equivalence with respect

to the Euler pairing χ. Then N (X) is isomorphic to

H0(X,Z)⊕NS(X)⊕H4(X,Z)

where NS(X) is the Néron–Severi lattice of X . For E ∈ D(X), we define the

Mukai vector v(E) of E by ch(E)
√
t dX . Then v(E) = rE ⊕ δE ⊕ sE is in

H0(X,Z)⊕NS(X)⊕H4(X,Z), and we have rE = rankE, δE = c1(E) and sE =

χ(OX ,E)− rE .

Let 〈−,−〉 be the Mukai pairing on N (X):

〈r⊕ δ⊕s, r′⊕ δ′⊕ s′〉= δδ′ − rs′ − r′s,

where r⊕ δ⊕ s, r′⊕ δ′⊕ s′ ∈N (X). Then, by the Riemann–Roch formula, we see

χ(E,F ) =−
〈
v(E), v(F )

〉
.

We secondly recall the notion of μ-stability. For a torsion-free sheaf F and an

ample divisor ω, the slope μω(F ) is defined by (c1(F ) ·ω)/ rankF . If the inequality

μω(A) ≤ μω(F ) holds for any nontrivial subsheaf A of F , then F is said to be

μω-semistable. Moreover if the strict inequality μω(A) < μω(F ) holds for any

nontrivial subsheaf A with rankA < rankF , then F is said to be μω-stable. If

NS(X) = ZL, we write μ-(semi)stable instead of μL-(semi)stable. The notion of

the μω-stability admits the Harder–Narasimhan filtration of F (details in [5]).

We define μ+
ω (F ) by the maximal slope of semistable factors of F , and we define

μ−
ω (F ) by the minimal slope of semistable factors of F .
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Let β be an R-divisor, and let ω be an R-ample divisor on X .∗ For a pair

(β,ω) we recall the notion of (β,ω)-twisted stability introduced in [8]. For a

torsion-free sheaf E with v(E) = rE ⊕ δE ⊕ sE , we define a polynomial p(β,ω)(E)

by

p(β,ω)(E) :=
ω2

2
· n2 +

(δE
rE

− β
)
ω · n

+
sE
rE

− δEβ

rE
+

β2

2
+ 1 ∈R[n].

Suppose that ω is an integral class, and put ω =OX(1). Then p(β,ω)(n) is simply

given by

p(β,ω)(E) =−〈v(OX(−n)), exp(−β)v(E)〉
rE

.

DEFINITION 2.1

Let E be a torsion-free sheaf on a projective K3 surface X ; E is said to be (β,ω)-

twisted stable (resp., semistable) if p(β,ω)(F ) < p(β,ω)(E) (resp., p(β,ω)(F ) <

p(β,ω)(E)) for any nontrivial subsheaf F of E.

Moreover if β = 0, then E is said to be Gieseker (semi)stable with respect

to ω. For a torsion-free sheaf E, we write pω(E) instead of p(0,ω)(E).

REMARK 2.2

For a torsion-free sheaf E, we can easily check the following relation between

μω-stability and (β,ω)-twisted stability:

μω-stable⇒ (β,ω)-twisted stable⇒ (β,ω)-twisted semistable⇒ μω-semistable.

We also see the following relation between the μω-stability and the Gieseker

stability:

μω-stable⇒Gieseker stable⇒Gieseker semistable⇒ μω-semistable.

Finally we cite the following lemma, which plays an important role when we

study the space of stability conditions on abelian or K3 surfaces. A prototype of

Lemma 2.3 was first proved by Mukai and Bridgeland. Finally [6] refined it.

LEMMA 2.3 ([6, LEMMA 2.7])

Let X be an abelian surface or a K3 surface. Suppose that A → B → C →
A[1] is a distinguished triangle in D(X). If homi

X(A,C) = 0 for any i ≤ 0 and

homj
X(C,C) = 0 for any j < 0, then we have the following inequality:

0≤ hom1
X(A,A) + hom1

X(C,C)≤ hom1
X(B,B).

∗Originally the notion of twisted stability is defined on projective surfaces. To avoid the

complexity we add the assumption that X is a projective K3 surface.
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3. Review of Bridgeland’s work

In this section we briefly recall the theory of stability conditions. The details

are in the original articles [1] and [2]. For a projective K3 surface X we put

NS(X)R =NS(X)⊗Z R and Amp(X) by the set of R-ample divisors.

Let A be the heart of a bounded t-structure on the derived category D(X) of

X , and let Z be a group homomorphism from K(X) to C. Notice that K(X) is

isomorphic to the Grothendieck group of the heart A. The morphism Z is called

a stability function on A if Z satisfies the following:

0 �=E ∈A⇒ Z(E) =m exp(
√
−1πφE),

where m ∈R>0 and φE is in the interval (0,1]. Then we put argZ(E) = φE and

call the pair (A,Z) a stability pair on D(X). If we take a stability pair (A,Z),

we can define the notion of Z-stability for objects in A as follows.

DEFINITION 3.1

Let (A,Z) be a stability pair on D(X), and let E be in A. The object E is

said to be Z-(semi)stable if E satisfies argZ(F )< (≤) arg(E) for any nontrivial

subobject.

By using the notion of Z-stability, we define a stability condition on D(X) as

follows.

DEFINITION 3.2

A stability pair (A,Z) is said to be a stability condition on D(X) if any E ∈A
has the filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ En = E such that Ai := Ei/Ei−1

(i= 1,2, . . . , n) is Z-semistable with argZ(A1)> · · ·> argZ(An). We call such a

filtration the Harder–Narasimhan filtration of E. Moreover if Z factors through

N (X), σ is said to be numerical.

Let σ = (A,Z) be a stability condition on D(X). Then we can define the notion of

σ-stability for any object in D(X).∗ An object E ∈ D(X) is said to be

σ-(semi)stable if there is an integer n ∈ Z such that E[n] is in A and E[n] is

Z-(semi)stable. We define argZ(E) by argZ(E[n]) − n and call it the phase

of E.

We put P(φ) = {E ∈ D(X) | E is Z-semistable with phase φ} ∪ {0}. Then
P(φ) is an abelian category. For an interval I ⊂ R, we define P(I) by the

extension-closed full subcategory generated by P(φ) for all φ ∈ I . If for any

φ ∈ R there is a positive number ε such that P((φ − ε, φ + ε)) is Artinian and

Noetherian, then the stability condition σ = (A,Z) is said to be locally finite.

∗For a stability pair (A,Z), we can logically define the notion of σ-stability for objects in
D(X). However in the original article [1], the notion of stability of arbitrary objects in D(X)

is defined by a stability condition. Thus we follow the original style.
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In general we cannot define the argument of Z(E) for E ∈D(X). However

if E is in A (or A[−1]), then we can define the argument of Z(E) uniquely since

the argument argZ(E) is in (0,1] (resp., in (−1,0]).

Take a stability condition σ = (A,Z) on D(X). Then we can easily check

that there exists the following sequence of distinguished triangles for an arbitrary

object E ∈D(X):

0 E1 E2 · · · En−1 En =E

A1

[1]

A2

[1]

An

[1]

where each Ai is σ-semistable with argZ(A1)> · · ·> argZ(An). One can easily

check that the above sequence is unique up to isomorphism. We also call this

sequence the Harder–Narasimhan filtration (for short HN filtration). If E is in

A, then the above filtration is nothing but the filtration defined in Definition 3.2.

In addition assume that σ is locally finite. Then for a σ-semistable object F with

phase φ we have the following sequence of distinguished triangles:

0 F1 F2 · · · Fm−1 Fm = F

S1

[1]

S2

[1]

Sm

[1]

where each Sj is σ-stable with argZ(Sj) = φ. We call this filtration a Jordan–

Hölder filtration (for short JH filtration). We remark that a JH filtration of F is

not unique but the direct sum
⊕m

i=1 Si of all stable factors of F is unique up to

isomorphism.

Now we put

Stab(X) =
{
σ
∣∣ σ is a numerical locally finite stability condition on D(X)

}
.

Bridgeland [2] describes a subset U(X) of Stab(X). We shall recall its definition.

We put

Δ+(X) :=
{
v = r⊕ δ⊕s ∈N (X)

∣∣ v2 =−2, r > 0
}

and define a subset V (X) of NS(X)R ×Amp(X) by

V (X) :=
{
(β,ω) ∈NS(X)R ×Amp(X)

∣∣
〈
exp(β +

√
−1ω), v

〉
/∈R≤0

(
∀v ∈Δ+(X)

)}
.

Let (β,ω) ∈ V (X). Then (β,ω) gives a numerical locally finite stability condition

σ(β,ω) = (A(β,ω),Z(β,ω)) in the following way. We put A(β,ω) by

A(β,ω) :=

⎧⎪⎪⎨
⎪⎪⎩
E• ∈D(X)

∣∣∣∣∣∣∣∣
Hi(E•)

⎧⎪⎪⎨
⎪⎪⎩

∈ T(β,ω) (i= 0),

∈ F(β,ω) (i=−1),

= 0 (i �= 0,−1)

⎫⎪⎪⎬
⎪⎪⎭

,
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where

T(β,ω) :=
{
E ∈Coh(X)

∣∣E is a torsion sheaf or μ−
ω (E/torsion)> βω

}

and

F(β,ω) :=
{
E ∈Coh(X)

∣∣E is torsion-free and μ+
ω (E)≤ βω

}
.

We define a stability function Z(β,ω) by Z(β,ω)(E) := 〈exp(β +
√
−1ω), v(E)〉.

Then the pair σ(β,ω) = (A(β,ω),Z(β,ω)) gives a numerical locally finite stability

condition by [2].

Then we put V (X) := {σ(β,ω) | (β,ω) ∈ V(X)}. If σ is in V (X), then for any

closed point x ∈X , Ox is σ-stable with phase 1 by [2, Lemma 6.3]. Let G̃L
+
(2,R)

be the universal cover of GL+(2,R). Then Stab(X) has the right group action

of G̃L
+
(2,R) by [1, Lemma 8.2]. We put U(X) := V (X) · G̃L

+
(2,R). We remark

that U(X) is isomorphic to V (X)× G̃L
+
(2,R).

Let σ be in Stab(X). Since σ is numerical and the Euler paring is nondegen-

erate on N (X), we have a natural map

π : Stab(X)→N (X), π(A,Z)→ Z∨,

where Z(E) = 〈Z∨, v(E)〉. The map π gives a complex structure on Stab(X). In

particular each connected component of Stab(X) is a complex manifold by [1]. If

π(σ) spans a positive real 2-plane and is orthogonal to all (−2) vectors in N (X)

then σ is said to be good.

PROPOSITION 3.3 ([2, PROPOSITION 10.3])

The special locus U(X) is written by

U(X) =
{
σ ∈ Stab(X)

∣∣Ox is σ-stable with a common phase and σ is good
}
.

Let us consider the boundary ∂U(X) := U(X)\U(X) where U(X) is the closure

of U(X). Then ∂U(X) consists of a locally finite union of real codimension 1

submanifolds by [2, Proposition 9.2]. If σ ∈ ∂U(X) lies on only one of these

submanifolds, then σ is said to be general.

THEOREM 3.4 ([2, THEOREM 12.1])

Let σ ∈ ∂U(X) be general. Then exactly one of the following holds.

(A+) There is a spherical locally free sheaf A such that both A and TA(Ox)

are stable factors of Ox for any x ∈ X, where TA is the spherical twist by A.

Moreover a JH filtration of Ox is given by

A⊕ rankA −−−−→ Ox −−−−→ TA(Ox) −−−−→ A⊕ rankA[1].

In particular Ox is properly σ-semistable∗ for all x ∈X, and A does not depend

on x ∈X.

∗Namely, Ox is not σ-stable but is σ-semistable.
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(A−) There is a spherical locally free sheaf A such that both A and T−1
A (Ox)

are stable factors of Ox for any x ∈ X, where TA is the spherical twist by A.

Moreover a JH filtration of Ox is given by

T−1
A (Ox) −−−−→ Ox −−−−→ A⊕ rankA[2] −−−−→ T−1

A (Ox)[1].

In particular Ox is properly σ-semistable for all x ∈X, and A does not depend

on x ∈X.

(Ck) There are a (−2)-curve C and an integer k such that Ox is σ-stable if

x /∈ C and Ox is properly σ-semistable if x ∈ C. Moreover a JH filtration of Ox

for x ∈C is given by

OC(k+ 1) −−−−→ Ox −−−−→ OC(k)[1] −−−−→ OC(k+ 1)[1].

We recall the map Φ∗ : Stab(Y )→ Stab(X) induced by an equivalence Φ :D(Y )→
D(X). Let X and Y be projective K3 surfaces, and let Φ : D(Y ) → D(X) be

an equivalence. Then Φ induces a natural morphism Φ∗ : Stab(Y )→ Stab(X) as

follows:

Φ∗ : Stab(Y )→ Stab(X), Φ∗
(
(AY ,ZY )

)
= (AX ,ZX),

where ZX(E) = ZY

(
Φ−1(E)

)
and AX =Φ(AY ).

Then the following proposition is almost obvious.

PROPOSITION 3.5 ([7, PROPOSITION 6.1])

Let X and Y be projective K3 surfaces, and let Φ :D(Y )→D(X) be an equiva-

lence. For σ ∈ U(X), σ is in Φ∗(U(Y )) if and only if Φ(Oy) is σ-stable with the

same phase for all closed points y ∈ Y .

4. Stability of classically stable sheaves

The goal of this section is to show the σ-stability of Gieseker stable (or μ-stable)

sheaves on a projective K3 surface X for some σ ∈ Stab(X).

We first prepare a function (4.1), which plays an important role in this sec-

tion. Let L0 be an ample line bundle on X with L2
0 = 2d. We define a subset

V (X)L0 of V (X) by

V (X)L0 :=
{
σ(β,ω) ∈ V (X)

∣∣ (β,ω) = (xL0, yL0) where (x, y) ∈R×R>0

}
.

Take an element σ(β,ω) ∈ V (X)L0 . For an arbitrary object F ∈D(X) we put the

Mukai vector v(F ) by v(F ) = rF ⊕ δF ⊕ sF . We have the orthogonal decomposi-

tion of δF with respect to L0 in NS(X)R:

δF = nFL0 + νF ,

where νF is in NS(X)R with νFL0 = 0. Then we have

Z(F ) =
v(F )2

2rF
+

rF
2

(
ω+

√
−1

(δF
rF

− β
))2
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=
v(F )2

2rF
+

rF
2

(
ω+

√
−1

(nFL0

rF
− β

))2

− ν2F
2rF

.

We see that the imaginary part ImZ(F ) of Z(F ) is given by 2
√
−1y dλF where

λF = nF − rFx. Put

ZL0(F ) := Z(F ) +
ν2F
2rF

.

We define a function NA,E(x, y) for objects A and E ∈D(X) and for σ(β,ω) ∈
V (X)L0 by

(4.1) NA,E(x, y) := λEReZL0(A)− λAReZL0(E),

where Re means taking the real part of a complex number.

Now suppose that E is a μω-semistable torsion-free sheaf where ω ∈Amp(X).

For a stability condition σ(β,ω) = (A,Z) ∈ V (X) we see the following:

• μω(E)> βω ⇐⇒ E ∈A,

• μω(E)≤ βω ⇐⇒ E ∈A[−1].

We consider the following three cases: μω(E)> βω, μω(E) = βω, and μω(E)<

βω. We first treat the case when μω(E)> βω.

LEMMA 4.1

Let X be a projective K3 surface, and let σ(β,ω) = (A,Z) ∈ V (X). Assume that

A→ E → F is a nontrivial distinguished triangle in A. Namely, A, E, and F

are in A. (This means that the triangle gives a short exact sequence in A.)

(1) If E is a torsion-free sheaf, then A is also a torsion-free sheaf.

(2) In addition to (1), if E is Gieseker stable with respect to ω, then we have

pω(A)< pω(E).

(3) Let L0 be an ample line bundle. In addition to (2), assume σ(β,ω) ∈
V (X)L0 and μω(A) = μω(E). Then we have argZ(A)< argZ(E).

Proof

Let Hi(F ) be the ith cohomology of F . Since F is in A, Hi(F ) is zero unless i

is zero or −1. Then one can easily check the first assertion by taking cohomolo-

gies to the given distinguished triangle. Hence we start the proof of the second

assertion (2).

We have the following exact sequence of sheaves:

0 −−−−→ H−1(F ) −−−−→ A
f−−−−→ E −−−−→ H0(F ) −−−−→ 0.

Suppose that H−1(F ) is not zero. One can easily see that

μω

(
H−1(F )

)
≤ μ+

ω

(
H−1(F )

)
≤ βω < μ−

ω (A)≤ μω(A).

Thus we have μω(H
−1(F )) < μω(A) < μω(Imf) where Imf is the image of

the morphism f : A → E. Thus we have pω(A) < pω(Imf) ≤ pω(E) since E is

Gieseker stable with respect to ω.
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Suppose that H−1(F ) = 0. Then A is a subsheaf of E. Since E is Gieseker

stable, the assertion is obvious.

Let us prove the third assertion. We put L2
0 = 2d. For E and A in D(X) we

put v(E) = rE ⊕ δE ⊕sE and v(A) = rA⊕ δA⊕sA. We decompose δE and δA by

δE = nEL0 + νE and δA = nAL0 + νA,

where νE and νA are in NS(X)R with νEL0 = νAL0 = 0. We remark that both

ν2E and ν2A are less than or equal to zero and that the number mA = δAL0 (resp.,

mE = δEL0) is an integer. Then we have nA =mA/2d (resp., nE =mE/2d) and

Z(A)

rA
=

v(A)2

2r2A
+

1

2

(
ω+

√
−1

(nAL0

rA
− β

))2

− ν2A
2r2A

.

Now we put J(A) = (1/2r2A)(v(A)
2 − ν2A) and J(E) = (1/2r2E)(v(E)2 − ν2E).

Then we see

J(A) =
1

2

(n2
AL

2
0

r2A
− sA

rA

)
and J(E) =

1

2

(n2
EL

2
0

r2E
− sE

rE

)
.

Since μω(E) = μω(A) we see (Z(E)/rE)− J(E) = (Z(A)/rA)− J(A). Thus we

see that argZ(A) < argZ(E) if and only if J(E) < J(A). Since pω(A) < pω(E)

and μω(A) = μω(E), we see that

(4.2)
nA

rA
=

nE

rE
and

sA
rA

<
sE
rE

.

Then the inequality J(E)< J(A) follows from the inequality (4.2). Thus we have

finished the proof. �

LEMMA 4.2

Let X be a projective K3 surface, let L0 be an ample line bundle on X, and let

σ(β,ω) = (A,Z) ∈ V (X)L0 . Assume that A→ E → F is a distinguished triangle

in A with hom0
X(A,A) = 1 and that E is a torsion-free sheaf with δE = nEL0 for

an integer nE where we put v(E) = rE ⊕ δE ⊕ sE .

(1) If v(E)2 = −2, μω(A) < μω(E), and (δEL0 − rEβL0) ≤ ω2/2, then

argZ(A)< argZ(E).

(2) If v(E)2 ≥ 0, μω(A)< μω(E), and

(δEL0 − rEβL0)
(v(E)2

2rE
+ 1

)
≤ ω2

2
,

then argZ(A)< argZ(E).

Proof

We first note that A is a torsion-free sheaf by Lemma 4.1. Since there is no σ(β,ω)-

stable torsion-free sheaf with phase 1 (see [7, Remark 3.5(1)] or [2, Lemma 10.1]),

we see μω(A)> βω. For the Mukai vector v(A) = rA⊕ δA⊕sA of A we put

δA = nAL0 + νA,
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where νA is in NS(X)R with νAL0 = 0. Then we have

Z(A) =
v(A)2

2rA
+

rA
2

(
ω+

√
−1

(nA

rA
L0 − rAβ

))2

− ν2A
2rA

= ZL0(A)− ν2A
2rA

.

We note that both λA = nA − rAx and λE = nE − rEx are positive. Since F

is in A, we have ImZ(F )≥ 0. Thus we see that λA ≤ λE . Since ν2A ≤ 0, we see

argZ(A)≤ argZL0(A). Thus to prove (1), it is enough to show that argZL0(A)<

argZ(E). Since ImZ(A) = ImZL0(A) = 2ydλA > 0 and ImZ(E) = 2ydλE > 0,

we see

argZL0(A)< argZ(E) ⇐⇒ 0<NA,E(x, y).

Note that ZL0(E) = Z(E).

Now we have

NA,E(x, y) = λEReZL0(A)− λAReZ(E)

= λE

(v(A)2
2rA

+ drAy
2 − dλ2

A

rA

)
− λA

(v(E)2

2rE
+ drEy

2 − dλ2
E

rE

)

= dy2(rAnE − rEnA) + λE
v(A)2

2rA
− λA

v(E)2

2rE
+ dλAλE

(nE

rE
− nA

rA

)
.

Since μω(A) < μω(E) we have (nE/rE) − (nA/rA) > 0 and rAnE − rEnA > 0.

Since the last term dλAλE((nE/rE)− (nA/rA)) is positive, we have

NA,E(x, y)>N ′
A,E(x, y) := dy2(rAnE − rEnA) + λE

v(A)2

2rA
− λA

v(E)2

2rE
.

Since hom0
X(A,A) = 1 we have v(A)2 ≥−2. Thus we see

N ′
A,E(x, y)≥N ′′

A,E(x, y) := dy2(rAnE − rEnA)−
λE

rA
− λA

v(E)2

2rE
.

Hence it is enough to prove that N ′′
A,E(x, y)≥ 0.

Let us prove the first assertion (1). Since v(E)2 =−2 we have

N ′′
A,E(x, y) = dy2(rAnE − rEnA)−

λE

rA
+

λA

rE

> dy2(rAnE − rEnA)−
λE

rA
.

We shall show

dy2(rAnE − rEnA)−
λE

rA
> 0.

Since both 2dnA and 2dnE are integers, using the condition in (1), we see

ω2

2
= dy2 > (δEL0 − rEβL0) = 2dλE

≥ 2dλE

rA · 2d(rAnE − rEnA)
=

λE

rA(rAnE − rEnA)
.
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Hence we have

dy2(rAnE − rEnA)−
λE

rA
≥ 0

by rAnE − rEnA > 0. Thus we have proved the assertion.

Let us prove the second assertion. Essentially the proof is the same as the

one of the first assertion. Assume that v(E)2 ≥ 0. It is enough to show that

N ′′
A,E(x, y)≥ 0. Since 0< λA ≤ λE we have

N ′′
A,E(x, y) = dy2(rAnE − rEnA)−

λE

rA
− μA

v(E)2

2rE
(4.3)

≥ dy2(rAnE − rEnA)− λE − μE
v(E)2

2rE
.

Hence it is enough to show that dy2(rAnE −rEnA)−λE −μE
v(E)2

2rE
≥ 0. Similarly

to the first assertion, one can easily prove this inequality by using the assumption

ω2

2
≥ (δEL0 − rEβL0)

(v(E)2

2rE
+ 1

)
.

Thus we have proved the second assertion. �

COROLLARY 4.3

Notation and assumptions are as in Lemma 4.2. Furthermore we assume that

NS(X) = ZL0.

(1) If v(E)2 =−2, μω(A)< μω(E), and (1/L2
0)(δEL0−rEβL0)≤ ω2/2, then

argZ(A)< argZ(E).

(2) If v(E)2 ≥ 0, μω(A)< μω(E), and

1

L2
0

(δEL0 − rEβL0)
(v(E)2

2rE
+ 1

)
≤ ω2

2
,

then argZ(A)< argZ(E).

Proof

We use the same notation as in the proof of Lemma 4.2.

Let us prove the first assertion. Suppose that v(E)2 =−2. By using the same

argument in the proof of Lemma 4.2, one can see that it is enough to show that

(4.4) 0≤ dy2(rAnE − rEnA)−
λE

rA
.

Since NS(X) = ZL0, we see nA ∈ Z. Thus the inequality (4.4) follows from the

assumption (1/L2
0)(δEL0 − rEβL0)≤ ω2/2.

One can easily prove the second assertion since the proof is essentially the

same as the first assertion. In fact one can easily see that it is enough to show

(4.5) 0≤ dy2(rAnE − rEnA)−
λE

rA

(v(E)2

2rE
+ 1

)
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instead of (4.4) as above. This inequality follows from the assumption (1/L2
0)×

(δEL0 − rEβL0)((v(E)2/2rE) + 1)≤ ω2/2. �

THEOREM 4.4

Let X be a projective K3 surface, let L0 be an ample line bundle, and let σ(β,ω) =

(A,Z) ∈ V (X)L0 . We assume that E is a Gieseker stable, torsion-free sheaf with

respect to L0 with μω(E)> βω and that the Mukai vector v(E) is rE ⊕ δE ⊕ sE
with δE = nEL0 for some nE ∈ Z.

(1) Assume that v(E)2 = −2. If δEL0 − rEβL0 ≤ ω2/2, then E is σ(β,ω)-

stable.

(2) Assume that v(E)2 ≥ 0. If (δEL0 − rEβL0)((v(E)2/2rE) + 1) ≤ ω2/2,

then E is σ(β,ω)-stable.

(3) Assume that NS(X) = ZL0 and that v(E)2 = −2. If (1/L2
0)(δEL0 −

rEβL0)≤ ω2/2, then E is σ(β,ω)-stable.

(4) Assume that NS(X) = ZL0 and that v(E)2 ≥ 0. If (1/L2
0)(δEL0 −

rEβL0)((v(E)2/2rE) + 1)≤ ω2/2, then E is σ(β,ω)-stable.

Proof

Suppose to the contrary that E is not σ(β,ω)-stable. Then there is a σ(β,ω)-stable

subobject A of E in A with argZ(A) ≥ argZ(E) and we have the following

distinguished triangle in A:

A −−−−→ E −−−−→ F −−−−→ A[1].

Since E is Gieseker stable with respect to ω = yL0, we see that A is a torsion-free

sheaf with pω(A)< pω(E) by Lemma 4.1. Since pω(A)< pω(E) we see μω(A)≤
μω(E). If μω(A) = μω(E), then argZ(A)< argZ(E) by Lemma 4.1. Thus μω(A)

should be strictly smaller than μω(E). Then whether v(E)2 =−2 or v(E)2 ≥ 0,

we see argZ(A)< argZ(E) by Lemma 4.2. Hence E is σ(β,ω)-stable.

The proofs of the third and fourth assertions are essentially the same as the

proof of Theorem 4.4. The difference is to use Corollary 4.3 instead of Lemma 4.2.

�

Next we consider the case μω(E) = βω.

PROPOSITION 4.5

Let X be a projective K3 surface, and let σ(β,ω) = (A,Z) ∈ V (X). Assume that the

Mukai vector of an object E ∈D(X) is rE ⊕ δE ⊕sE with rE �= 0 and δEω/rE =

βω.

(1) If E is a μω-semistable torsion-free sheaf, then E is σ(β,ω)-semistable

with phase zero.

(2) The object E is a μω-stable locally free sheaf if and only if E is σ(β,ω)-

stable with phase zero.
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Proof

Let us prove the first assertion. Since E is μω-semistable, E is in A[−1]. Since

μω(E) = βω, the imaginary part ImZ(E) of Z(E) is zero. Thus the argument of

Z(E) is zero.

Assume that E is not σ(β,ω)-semistable. Then there is a σ(β,ω)-semistable

object A ∈A[−1] such that

A⊂E in A[−1] with argZ(A)> argZ(E) = 0.

This contradicts the fact that A is in A[−1]. Hence E is σ(β,ω)-semistable.

Let us prove the second assertion. We assume that E is a μω-stable locally

free sheaf. Then E is minimal in A[−1]∗ by [4, Theorem 0.2]. Thus E is σ(β,ω)-

stable with phase zero.

Conversely we assume that E is σ(β,ω)-stable with phase zero. Since the rank

of E is not zero, E is a locally free sheaf by [2, Lemma 10.1(b)]. Since E is in

A[−1], we see E ∈ F(β,ω). Thus we have

μω(E)≤ μ+
ω (E)≤ βω.

Thus equalities should hold. Hence E is μω-semistable.

Suppose that E is not μω-stable. Then there is a μω-stable subsheaf A

of E such that μω(A) = μω(E). If necessary, by taking a saturation, we may

assume that the quotient E/A is a torsion-free sheaf. We remark that E/A is

μω-semistable. Then A is locally free since E is locally free and dimX = 2. Since

A is a μω-stable locally free sheaf, A is σ(β,ω)-stable with phase zero. Thus the

short exact sequence A→E →E/A defines a distinguished triangle in A[−1]. In

particular A is a subobject of E in A[−1] with phase zero. This contradicts the

fact that E is σ(β,ω)-stable. �

Finally we treat the case μω(E)< βω.

LEMMA 4.6

Let X be a projective K3 surface, and let σ(β,ω) = (A,Z) ∈ V (X). Assume that

F →E →A is a distinguished triangle in A[−1].

(1) If E is a torsion-free sheaf, then A is a torsion-free sheaf.

(2) If E is a μω-stable locally free sheaf, then μω(E)< μω(A).

We remark that the proof of [7, Lemma 4.4] completely works.

Proof

One can easily prove the first assertion by taking cohomologies to the triangle

F → E → A. Thus let us prove the second assertion. Since F , E, and A are in

A[−1], we have an exact sequence of sheaves

∗Namely, E has no nontrivial subobject in A[−1].
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0 −−−−→ H0(F ) −−−−→ E
f−−−−→ A −−−−→ H1(F ) −−−−→ 0,

where Hi(F ) is the ith cohomology of F .

Assume that H0(F ) �= 0. Since H0(F ) is torsion-free, rank Imf < rankE,

where Imf is the image of the morphism f :E →A. Thus μω(E)< μω(Imf). By

using the fact that H1(F ) ∈ T(β,ω), one can prove that μω(Imf)≤ μω(A). Thus

we have μω(E)< μω(A).

Assume that H0(F ) = 0. Thus F =H1(F ). Then E is a subsheaf of A. If

rankF is not zero, then we have μω(A) ≤ βω < μω(F ). Thus we have μω(E) <

μω(A). Suppose that rankF = 0. If the dimension of the support of F is 1, then

c1(F )ω > 0. Hence we see that μω(E)< μω(A). Thus suppose that F is a torsion

sheaf with dimSupp(F ) = 0. Take a closed point x ∈ Supp(F ). By taking the

right derived functor RHomX(Ox,−) to the triangle E → A→ F , we have the

following exact sequence of C-vector spaces:

Hom0
X(Ox,E)→Hom0

X(Ox,A)→Hom0
X(Ox, F )→Hom1

X(Ox,E).

Since E is locally free we see Hom0
X(Ox,E) = Hom1

X(Ox,E) = 0. Since x is in

the support of F , Hom0
X(Ox, F ) should not be zero. This contradicts the torsion

freeness of A. Hence we have proved the assertion. �

LEMMA 4.7

Let X be a projective K3 surface, let L0 be an ample line bundle, let σ(β,ω) =

(A,Z) ∈ V (X)L0 , and let F → E →A be a distinguished triangle in A[−1]. We

put v(E) = rE ⊕ δE ⊕sE . Assume that hom0
X(A,A) = 1, both rankE and rankA

are positive, and δE = nEL0 for some integer nE .

(1) If v(E)2 = −2, μω(E) < μω(A) < βω and rEβL0 − δEL0 ≤ ω2/2, then

argZ(E)< argZ(A).

(2) If v(E)2 ≥ 0, μω(E)< μω(A)< βω, and

(rEβL0 − δEL0)
(v(E)2

2rE
+ 1

)
≤ ω2

2
,

then argZ(E)< argZ(A).

Proof

The proof is essentially the same as that of Lemma 4.2. We put L2
0 = 2d and

v(A) = rA⊕ δA⊕sA with δA = nAL0 + νA, where νA ∈ NS(X)R with νAL0 = 0.

If we put mA = δAL0 ∈ Z, then we have nA =mA/2d.

Now we have

Z(A) =
v(A)2

2rA
+

rA
2

(
ω+

√
−1

(nAL0

rA
− β

))2

− ν2A
2rA

= ZL0(A)− ν2A
2rA

.

Since ν2A ≤ 0 we have argZL0(A) ≤ argZ(A). Thus it is enough to show that

argZ(E)< argZL0(A). We put λE = nE − rEx and λA = nA − rAx. We remark
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that both λE and λA are negative and λE ≤ λA < 0 by the fact F ∈A[−1]. Hence

we see

argZ(E)< argZL0(A) ⇐⇒ NA,E(x, y)< 0.

Now we have

NA,E(x, y) = dy2(rAnE − rEnA) + dλAλE

(nE

rE
− nA

rA

)
+

v(A)2

2rA
λE − v(E)2

2rE
λA.

Since μω(E)< μω(A) we see rAnE − rEnA < 0. Thus we have

NA,E(x, y)<N ′
A,E(x, y) := dy2(rAnE − rEnA) +

v(A)2

2rA
λE − v(E)2

2rE
λA.

Since hom0
X(A,A) = 1 we have v(A)2 ≥−2. Thus we see

N ′
A,E(x, y)≤N ′′

A,E(x, y) := dy2(rAnE − rEnA)−
λE

rA
− v(E)2

2rE
λA.

Hence it is enough to show N ′′
A,E(x, y)≤ 0.

Let us show (1). Assume that v(E)2 =−2, then

N ′′
A,E(x, y) = dy2(rAnE − rEnA)−

λE

rA
+

λA

rE

≤ dy2(rAnE − rEnA)−
λE

rA
.

Hence it is enough to show that

(4.6) dy2(rAnE − rEnA)−
λE

rA
≤ 0.

Recall that nA =mA/2d for some integer mA and d ∈ Z. Then the inequality

(4.6) follows from the assumption

rEβL0 − δEL0 ≤
ω2

2
.

Thus we have finished the proof.

Next we shall show (2). Assume that v(E)2 ≥ 0. Then we have

N ′′
A,E(x, y) = dy2(rAnE − rEnA)−

λE

rA
− v(E)2

2rE
λA

≤ dy2(rAnE − rEnA)− λE − v(E)2

2rE
λE .

Hence it is enough to show that

(4.7) dy2(rAnE − rEnA)− λE − v(E)2

2rE
λE ≤ 0.

The inequality (4.7) is equivalent to the inequality

(4.8)
−λE

rA(rEnA − rAnE)

(v(E)2

2rE
+ 1

)
≤ dy2.
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The last inequality (4.8) follows from the assumption

(rEβL0 − δEL0)
(v(E)2

2rE
+ 1

)
≤ ω2

2
.

Thus we have proved the assertion. �

Similarly to the case of Corollary 4.3, we have the following corollary. We omit

the proof since the proof is as the same as the proof of Lemma 4.7.

COROLLARY 4.8

Notation and assumptions are as in Lemma 4.7. Furthermore we assume that

NS(X) = ZL0.

(1) Assume that v(E)2 = −2, μω(E) < μω(A) < βω, and (1/L2
0)(rEβL0 −

δEL0)≤ ω2/2. Then we have argZ(E)< argZ(A).

(2) Assume that v(E)2 ≥ 0, μω(E)< μω(A)< βω, and

1

L2
0

(rEβL0 − δEL0)
(v(E)2

2rE
+ 1

)
≤ ω2

2
.

Then we have argZ(E)< argZ(A).

THEOREM 4.9

Let X be a projective K3 surface, let L0 be an ample line bundle, and let σ(β,ω) =

(A,Z) ∈ V (X)L0 . Assume that E is a μL0 -stable locally free sheaf. We put v(E) =

rE ⊕ δE ⊕sE . Assume that δE = nEL0 and μω(E)< βω where nE ∈ Z.

(1) Assume that v(E)2 =−2. If (rEβL0 − δEL0)< ω2/2, then E is σ(β,ω)-

stable.

(2) Assume that v(E)2 ≥ 0. If (rEβL0 − δEL0)((v(E)2/2rE) + 1) < ω2/2,

then E is σ(β,ω)-stable.

(3) Assume that NS(X) = ZL0, and assume that v(E)2 =−2. If

1

L2
0

(rEβL0 − δEL0)<
ω2

2
,

then E is σ(β,ω)-stable.

(4) Assume that NS(X) = ZL0, and assume that v(E)2 ≥ 0. If

1

L2
0

(rEβL0 − δEL0)
(v(E)2

2rE
+ 1

)
<

ω2

2
,

then E is σ(β,ω)-stable.

Proof

Since μω(E)< βω, E is in A[−1] and argZ(E)< 0. Suppose to the contrary that

E is not σ(β,ω)-stable. Then there is a σ(β,ω)-stable object A such that A is a

quotient of E in A[−1] with argZ(A)≤ argZ(E). Thus we have a distinguished
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triangle in A[−1]:

F −−−−→ E −−−−→ A −−−−→ F [1].

By Lemma 4.6, A is a torsion-free sheaf with μω(E)< μω(A). Since A is in A[−1],

we see that μω(A)≤ βω. If μω(A) = βω, then the imaginary part of Z(A) is zero.

Thus A is σ(β,ω)-stable with phase zero. This contradicts argZ(A)< argZ(E)<

0. Hence μω(A) < βω. Then we see that argZ(E) < argZ(A) by Lemma 4.7

whether v(E)2 = −2 or v(E)2 ≥ 0. This is a contradiction. Thus E is σ(β,ω)-

stable.

The proofs of (3) and (4) are essentially the same as that of Theorem 4.9. One

can easily show these assertions by using Corollary 4.8 instead of Lemma 4.7. �

5. First application

The goal of this section is to prove Theorem 5.4 as an application of Corollaries

4.4 and 4.9. We shall give a classification of fine moduli spaces of Gieseker stable,

torsion-free sheaves on a projective K3 surface with Picard number one. In this

section the pair (X,L) is called a generic K3 if X is a projective K3 surface and

NS(X) is generated by an ample line bundle.

We shall start this section with an easy observation. Suppose that E is a

Gieseker stable, torsion-free sheaf on a generic K3 (X,L). Since E is Gieseker

stable we have v(E)2 ≥ −2. Assume that v(E)2 = −2. Then hom1
X(E,E) = 0.

Thus E is a spherical sheaf. It is known that E is a μ-stable locally free sheaf

(for instance, see [7, Proposition 5.2]). Thus the notion of μ-stability is equivalent

to the notion of Gieseker stability if v(E)2 =−2.

Next we consider the case v(E)2 ≥ 0. The following proposition plays a key

role in this section.

PROPOSITION 5.1

Let X be a projective K3 surface, and let L be an ample line bundle. Assume that

E is a Gieseker stable, torsion-free sheaf with respect to L with v(E)2 = 0.

(1) Assume that rankE > 1. If E is μ-stable with respect to L, then E is

locally free.

(2) Assume that NS(X) = ZL. If E is locally free, then E is μ-stable with

respect to L.

In particular if NS(X) = ZL and rankE > 1, then the following holds: If E

is not μ-stable locally free, then E is neither μ-stable nor locally free.

Proof

The first assertion was proved in step (vii) in the proof of [4, Proposition 4.1].

Hence, let us prove the second assertion. For any F ∈D(X) we put v(F ) =

rF ⊕ δF ⊕sF . Assume that E is not μ-stable. Then there is a μ-stable subsheaf

A of E such that μL(A) = μL(E) and the quotient E/A is torsion-free. Since E

is locally free, A is also locally free. We remark that pL(A)< pL(E) since E is
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Gieseker stable. We remark that sA/rA < sE/rE by μL(A) = μL(E). Hence we

have

0 =
v(E)2

r2E
=

δ2E
r2E

− 2
sE
rE

<
δ2A
r2A

− 2
sA
rA

=
v(A)2

r2A
.

Thus v(A)2 > 0.

We choose σ(β,ω) ∈ V (X) such that μω(E) = μω(A) = βω. Then E is σ(β,ω)-

semistable with phase zero, and A is σ(β,ω)-stable with phase zero by Proposi-

tion 4.5. Since σ(β,ω) is locally finite we have a distinguished triangle

A′ −−−−→ E −−−−→ E/A′,

where all stable factors of A′ are A and hom0
X(A′,E/A′) = 0. Then by Lemma 2.3,

we see hom1
X(A′,A′)≤ 2. Thus v(A′)2 ≤ 0. However, since A′ is an extension of

A, we have v(A′) = 
v(A) for some 
 ∈ N. Thus v(A′)2 = 
2v(A)2 > 0. This is a

contradiction. Hence E is μ-stable. �

Suppose that (X,L) is a generic K3, and take an element v = r⊕ δ⊕s ∈ N (X)

with r > 0 and v2 ≥−2. We define subsets of V (X) depending on v.

Case 1: v2 =−2. We have

V +
v :=

{
σ(β,ω) ∈ V (X)

∣∣∣ βω <
δω

r
,
1

L2
(δL− rβL)≤ ω2

2

}
,

V 0
v :=

{
σ(β,ω) ∈ V (X)

∣∣∣ βω =
δω

r

}
,

V −
v :=

{
σ(β,ω) ∈ V (X)

∣∣∣ βω >
δω

r
,
−1

L2
(δL− rβL)≤ ω2

2

}
.

Case 2: v2 ≥ 0. We have

V +
v :=

{
σ(β,ω) ∈ V (X)

∣∣∣ βω <
δω

r
,
1

L2
(δL− rβL)

(v2
2r

+ 1
)
≤ ω2

2

}
,

V 0
v :=

{
σ(β,ω) ∈ V (X)

∣∣∣ βω =
δω

r

}
,

V −
v :=

{
σ(β,ω) ∈ V (X)

∣∣∣ βω >
δω

r
,
−1

L2
(δL− rβL)

(v2
2r

+ 1
)
≤ ω2

2

}
.

For instance, take a Gieseker stable, torsion-free sheaf E on (X,L) with

v(E)2 = 0, and put v = v(E) = r⊕ δ⊕s. Then the picture of the sets V +
v , V 0

v ,

and V −
v is given by Figure 1. In Proposition 5.2 (below), we show that the set

V 0
v is a wall if and only if E is not μ-stable locally free but Gieseker stable

torsion-free.

PROPOSITION 5.2

Let (X,L) be a generic K3, and let E be a Gieseker stable, torsion-free sheaf with

v(E)2 ≥ 0.

(1) If the sheaf E is not locally free, then E is not σ-semistable for any

σ ∈ V −
v(E).
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Figure 1

(2) If the sheaf E is not μ-stable, then E is not σ-semistable for any σ ∈
V −
v(E).

(3) Take an arbitrary σ ∈ V −
v(E). For the sheaf E, the following three condi-

tions are equivalent:

(i) E is σ-stable,

(ii) E is σ-semistable, and

(iii) E is μ-stable and locally free.

Proof

For an object F ∈D(X) we put v(F ) = rF ⊕ δF ⊕ sF . Take an arbitrary element

σ0 = (A,Z) ∈ V −
v(E).

Let us prove assertion (1). Suppose to the contrary that E is σ0-semistable.

Since E is not locally free, we have the following distinguished triangle by taking

double dual of E:

S[−1] −−−−→ E −−−−→ E∨∨,

where S =E∨∨/E. Note that S is a torsion sheaf with dimSupp(S) = 0. Hence

S[−1] is σ0-semistable with phase zero. Since σ0 ∈ V −
v(E) we see that ImZ(E)< 0.

Hence E is σ-semistable with phase φ ∈ (−1,0). Thus argZ(E)< argZ(S[−1]),

and HomX(S[−1],E) should be zero. This contradicts the above triangle. Hence

E is not σ0-semistable.

Let us prove assertion (2). Suppose to the contrary that E is σ0-semistable.

Since E is not μ-stable, there is a torsion-free quotient A of E such that A is μ-

stable with μL(A) = μL(E). Since E is Gieseker stable we have pL(E)< pL(A).

Thus we see that sE/rE < sA/rA. Moreover we can assume that A is locally

free. In fact, if necessary it is enough to take the double dual of A. Then we see

that μL(A
∨∨) = μL(E), sE/rE < sA∨∨/rA∨∨ , and A∨∨ is μ-stable. Thus we can

assume that A is a μ-stable locally free sheaf. Note that Hom0
X(E,A) �= 0.
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We show V −
v(E) ⊂ V −

v(A). Note that

rAβL− δAL = rA

(
βL− δA

rA
L
)
= rA

(
βL− δE

rE
L
)

(5.1)

< rE

(
βL− δE

rE
L
)
= rEβL− δEL.

Here by the fact that NS(X) = ZL, we have βL− (δE/rE)L> 0, from which the

inequality above holds.

Since A is μ-stable we have v(A)2 ≥−2. By the definition of V −
v(A), we have

to consider two cases. We first assume that v(A)2 =−2. Since v(E)2 ≥ 0, we have

1≤ v(E)2

2rE
+ 1.

Then we see

rAβL− δAL< (rEβL− δEL)
(v(E)2

2rE
+ 1

)
.

Hence we see V −
v(E) ⊂ V −

v(A) by the definition of V −
v(E).

Next suppose that v(A)2 ≥ 0. Then by using the fact that NS(X) = ZL we

have

v(A)2

rA
=

(δ2A
r2A

− 2
sA
rA

)
rA

<
(δ2E
r2E

− 2
sE
rE

)
rA(5.2)

<
(δ2E
r2E

− 2
sE
rE

)
rE =

v(E)2

rE
.

By two inequalities (5.1) and (5.2) we see

(rAβL− δAL)
(v(A)2

2rA
+ 1

)
< (rEβL− δEL)

(v(E)2

2rE
+ 1

)
.

Thus we have proved V −
v(E) ⊂ V −

v(A).

Recall that A is a μ-stable locally free sheaf. Since the stability condition σ0

is in V −
v(A), A is σ0-stable by Theorem 4.9. Now we have

Z(A)

rA
=

v(A)2

2r2A
+

1

2

(
ω+

√
−1

(δA
rA

− β
))2

=
v(A)2

2r2A
− v(E)2

2r2E
+

v(E)2

2r2E
+

1

2

(
ω+

√
−1

(δE
rE

− β
))2

=
Z(E)

rE
+

v(A)2

2r2A
− v(E)2

2r2E
.

Here we used the fact NS(X) = ZL in the second equality. Since μL(A) = μL(E),

sE/rE < sA/rA, and NS(X) = ZL, we see that (v(A)2/2r2A)− (v(E)2/2r2E) is a
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negative number. Hence we see that

arg
Z(A)

rA
< arg

Z(E)

rE
.

This contradicts Hom0
X(E,A) �= 0 since both A and E are σ0-semistable. Thus

E is not σ0-semistable.

Let us prove the third assertion. We claim that (a) ⇒ (b) ⇒ (c) ⇒ (a).

The first claim (a) ⇒ (b) is trivial. The second claim (b) ⇒ (c) follows from the

contrapositions of Propositions 5.2(1) and 5.2(2). The third claim (c) ⇒ (a) is

nothing but Theorem 4.9. Thus we have finished the proof. �

Take a stability condition σ(β,ω) ∈ V (X) and a μ-semistable torsion-free sheaf E

with μω(E) = βω. By Proposition 4.5, if E is not a μ-stable locally free sheaf, then

E is properly σ-semistable. Hence it makes sense to consider a Jordan–Hölder

filtration of E with respect to σ(β,ω).

LEMMA 5.3

Let X be a projective K3 surface. Take a σ(β,ω) ∈ V (X). Assume that E is a

μω-semistable, torsion-free sheaf with μω(E) = βω and that the filtration

0 =E0 ⊂E1 ⊂E2 ⊂ · · · ⊂En−1 ⊂En =E

is a Jordan–Hölder filtration of E with respect to μω-stability. Namely, Ai =

Ei/Ei−1 (i= 1,2, . . . , n) is a μω-stable, torsion-free sheaf with μω(Ai) = μω(E).

Then σ-stable factors of E consist of all A∨∨
i and σ-stable factors of A∨∨

i /Ai[−1]

(i= 1,2, . . . , n).

Proof

We put σ = σ(β,ω). All Ai (i= 1,2, . . . , k) are σ-semistable by Proposition 4.5. If

we obtain JH filtrations of Ai, we can construct a JH filtration of E by combining

JH filtrations of Ai. Hence it is enough to prove the assertion for μ-stable, torsion-

free sheaves.

Suppose that A is a μω-stable, torsion-free sheaf with μω(A) = βω, and put

SA =A∨∨/A. Then we have a distinguished triangle:

SA[−1] −−−−→ A −−−−→ A∨∨ −−−−→ SA.

Since the dimension of the support of SA is zero, there are finite closed points

{x1, x2, . . . , xk}∗ such that

0 Ox1 F2 · · · Fk−1 Fk = SA

Ox1

[1]

Ox2

[1]

Oxk

[1]

∗There may be i and j in {1,2, . . . , k}, so that xi = xj .
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Since Oxi (i= 1,2, . . . , k) and A∨∨ are σ-stable, these are σ-stable factors of A,

and the JH filtration of A with respect to σ is given by

0 Ox1 [−1] F2[−1] · · · Fk−1[−1] SA[−1] A

Ox1 [−1]

[1]

Ox2 [−1]

[1]

Oxk
[−1]

[1]

A∨∨

[1]

Thus we have finished the proof. �

In the next theorem, we give a classification of moduli spaces of Gieseker stable,

torsion-free sheaves on a generic K3 (X,L). Let Y be the fine moduli space of

Gieseker-stable, torsion-free sheaves with Mukai vector v = r⊕ δ⊕s and with

v2 = 0, and let E be a universal family of the moduli Y . We define an equivalence

ΦE :D(Y )→D(X) by

ΦE(−) =RπX∗
(
E

L

⊗ π∗
Y (−)

)
,

where πX (resp., πY ) is the projection X×Y →X (resp., X×Y → Y ). To avoid

the complexity in notation, we write V + (resp., V 0 and V −) instead of V +
v(Φ(Oy))

(resp., V 0
v(Φ(Oy))

and V −
v(Φ(Oy))

) for the given equivalence ΦE :D(Y )→D(X).

THEOREM 5.4

Let Y be the fine moduli space of Gieseker-stable, torsion-free sheaves on X with

Mukai vector v = r⊕ δ⊕s and v2 = 0. Suppose that E is the universal family of

Y and that ΦE is the equivalence induced by E .

(1) If r is not a square number, then Y is the fine moduli space of a μ-stable

locally free sheaf.

(2) Assume that r is a square number. Then one of the following two cases

occurs:

(a) Y is the fine moduli space of μ-stable locally free sheaves.

(b) Y is the fine moduli space of properly Gieseker stable, torsion-free sheaves

and Y is isomorphic to X. Moreover ΦE is the spherical twist by a spherical locally

free sheaf up to an isomorphism Y →X.

Proof

We note that Y is either the fine moduli space of properly Gieseker stable, torsion-

free sheaves or the moduli stable of a μ-stable locally free sheaf by Proposition 5.1.

Let ΦE∗ be a natural map ΦE∗ : Stab(Y ) → Stab(X) induced by ΦE . We put

Ey = ΦE(Oy). Then for any σ ∈ V +, Ey is σ-stable by Theorem 4.4, and the

phase of Ey does not depend on y ∈ Y . Hence we see that V + ⊂ΦE∗U(Y ).

If V 0 ∩ ΦE∗U(Y ) �= ∅, by using Proposition 5.2 we see that any Ey is a μ-

stable locally free sheaf as follows. Since ΦE∗U(Y ) is open, there exist σ ∈ V 0

and an open neighborhood Nσ of σ in V 0 such that Nσ ⊂ ΦE∗U(Y ). And then

Nσ intersects the set V −. Thus we see that ΦE∗U(Y ) ∩ V − is not empty. Then

by Proposition 5.2, we see that Ey is a μ-stable locally free sheaf for all y ∈ Y .
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Suppose to the contrary that V 0 ∩ ΦE∗U(Y ) = ∅. We first show that V 0 is

contained in the boundary ∂ΦE∗U(Y ) under the assumption V 0 ∩ΦE∗U(Y ) = ∅.
Since V 0 is in the closure of V +, V 0 is also in the closure of ΦE∗U(Y ). Then

we claim that V − ∩ ΦE∗U(Y ) = ∅. In fact, if V − ∩ ΦE∗U(Y ) �= ∅, then Ey is a

μ-stable locally free sheaf for all y ∈ Y by Proposition 5.2. Moreover V 0 is in

ΦE∗U(Y ) by Proposition 4.5. This contradicts V 0 ∩ΦE∗U(Y ) = ∅. Hence we see

that V − ∩ ΦE∗U(Y ) = ∅. Thus V 0 is contained in the boundary ∂(ΦE∗U(Y )).

Moreover any σ ∈ V 0 is general in ∂(ΦE∗U(Y )) since there are no walls in V (X).

Take a stability condition σ0 ∈ V 0. Recall that the Picard number of X is 1.

Since Y is a Fourier–Mukai partner of X , the Picard number of Y is also 1. Since

there is no (−2)-curve in Y , Oy is properly Φ−1
E∗ σ0-semistable for all y ∈ Y by

Theorem 3.4. Hence Ey is not σ0-stable but σ0-semistable. Moreover we see that

Ey is not a locally free sheaf by Propositions 5.1 and 5.2. Hence we have the

following distinguished triangle by taking the double dual of Ey :
Sy[−1] −−−−→ Ey −−−−→ E∨∨

y −−−−→ Sy,

where Sy = E∨∨
y /Ey �= 0. By Lemma 2.3, we see that

hom1
X(Sy, Sy) = 2 and hom1

X(E∨∨
y ,E∨∨

y ) = 0.

Thus there is a closed point x ∈X such that Sy =Ox. Since σ0 is in V (X), Ox

is a σ0-stable factor of Ey . By Theorem 3.4, E∨∨
y is a direct sum of a spherical

object S. Since E∨∨
y is a locally free sheaf, S is also a locally free sheaf with

μL(S) = μL(E∨∨
y ). Thus we can put E∨∨

y = S⊕�.

Since v(Ey) = v(E∨∨
y )− 0⊕0⊕1, we have

(5.3) 0 = v(Ey)2 = v(E∨∨
y )2 − 2

〈
v(E∨∨

y ), v(Ox)
〉
.

Furthermore we have v(E∨∨
y )2 =−2
2 and

〈
v(E∨∨

y ), v(Ox)
〉
=− rankE∨∨

y =− rankEy =−r.

Thus we have

2
2 = 2r.

Hence if r is not a square number, then we have V 0 ∩ΦE∗U(Y ) �= ∅. Thus Ey is

a μ-stable locally free sheaf for all y ∈ Y by Proposition 4.5. This gives the proof

of assertion (1).

Suppose that rankEy is a square number. Then a JH filtration of Ey is given

by the following triangle:

Ox[−1] −−−−→ Ey −−−−→ S⊕r −−−−→ Ox.

Since Ox[−1] is the unique stable factor of Ey with an isotropic Mukai vector,

one of the following two cases will occur by Theorem 3.4 and by the uniqueness

of stable factors up to permutations.

(i) For any y ∈ Y , there is a closed point x ∈X such that ΦE ◦ TB(Oy) =

Ox[−1] where B is a spherical locally free sheaf on Y and TB is the spherical

twist by B.
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(ii) For any y ∈ Y , there is a closed point x ∈X such that ΦE ◦ T−1
B (Oy) =

Ox[−1] where B is a spherical locally free sheaf on Y .

We remark that B does not depend on y by Theorem 3.4.

Assume that case (i) occurs. Then, as is well known, there is a line bundle M

on X and an isomorphism f : Y →X such that ΦE ◦ TB(−) =M ⊗ f∗(−)[−1].∗

Thus we have

(5.4) ΦE(Oy) =M ⊗ f∗
(
T−1
B (Oy)

)
[−1].

Then the right-hand side of (5.4) is properly complex and the left-hand side is a

sheaf. This is contradiction. Hence case (ii) should occur. Then ΦE(−) is given

by M ⊗ f∗(TB(−))[−1]. This gives the proof of assertion (2). �

REMARK 5.5

As is well known, any Fourier–Mukai partner of K3 surfaces is isomorphic to fine

moduli spaces of Gieseker stable sheaves by [9], and the equivalence between them

can be chosen as the Fourier–Mukai transformation by the universal sheaf. Then,

by Theorem 5.4, we see that any nontrivial Fourier–Mukai partners of projective

K3 surfaces with Picard number one are isomorphic to fine moduli spaces of

μ-stable locally free sheaves. This gives another proof of [4, Proposition 4.1].

Remarkably, we do not use the lattice theory except Orlov’s theorem.

EXAMPLE 5.6

Let (X,L) be a generic K3, and let E be a Gieseker stable, torsion-free sheaf

with v(E) = r⊕nL⊕s. Since NS(X) = ZL, E is μ-stable if gcd{r,n} = 1 by

[5, Lemma 1.2.14]. Then E is a μ-stable locally free sheaf by Proposition 5.1.

Moreover if gcd{r,nL2, s} = 1, then the moduli space containing E is a fine

moduli space.

Let (X,L) be a generic K3 with L2 = 6. Take v ∈N (X) as v = 12⊕10L⊕25.

Then by [5, Corollary 4.6.7] the moduli space ML(v) of Gieseker stable, torsion-

free sheaves with Mukai vector v is the fine moduli space since gcd{12,10L2,25}=
1. By Theorem 5.4, ML(v) is the moduli space of μL-stable locally free sheaves,

although gcd{12,10}= 2.

6. Second application

The goal of this section is to generalize [7, Theorem 1.1] to arbitrary projective

K3 surfaces.

In [7] the author describes a picture of (TL)∗U(X)∩V (X) by using [7, The-

orem 1.2] where TL is a spherical twist by an ample line bundle L. Instead of the

theorem we use Lemma 6.1 (below). Before we state the lemma we prepare the

notation. Let X be a projective K3 surface, and take an ample line bundle L.

For the line bundle L we define the subset V >0
L of V (X) by

∗For instance see [3, Corollary 5.23].
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V >0
L :=

{
σ(β,ω) ∈ V (X)L

∣∣∣ L2 − βL≤ ω2

2

}
.

The following lemma, a special case of Lemma 4.4, is frequently used in this

section.

LEMMA 6.1

Notation is as above. The set V >0
L is contained in TL∗U(X).

Proof

Recall that TL(Ox) = L ⊗ Ix[1] where Ix is the kernel of the evaluation map

OX →Ox. If σ is in V >0
L , then L⊗Ix is σ-stable for all x ∈X by Theorem 4.4.

Furthermore the phase of L⊗Ix does not depend on x ∈X . Thus we have proved

the assertion. �

The following lemma is also used in [7]. By using Lemma 6.2, we can see that

Φ(Oy) is a sheaf up to shifts if an equivalence Φ : D(Y ) → D(X) satisfies the

condition Φ∗U(Y ) = U(X).

LEMMA 6.2 ([2, PROPOSITION 14.2], [10, PROPOSITION 6.4])

Let X be a projective K3 surface, let E be in D(X), and let σ(β,ω) = (A,Z) ∈
V (X). We put v(E) = rE ⊕ δE ⊕sE .

(1) Assume that rE > 0 and E ∈A. If there exists a positive real number 
0
such that E is σ(β,�ω)-stable for all 
 > 
0, then E is a torsion-free sheaf and is

(β,ω)-twisted stable.

(2) Assume that rE = 0 and E ∈A. If there exists a positive real number 
0
such that E is σ(β,�ω)-stable for all 
 > 
0, then E is a pure torsion sheaf.

In [7] the author proves that some spherical twists send sheaves to complexes in

some special cases. In the following lemma we generalize this result to arbitrary

projective K3 surfaces.

LEMMA 6.3

Let X be a projective K3 surface, and let E and A be coherent sheaves with posi-

tive rank.We assume that v(E)2 = 0 and v(A)2 =−2 and put v(E) = rE ⊕ δE ⊕ sE
and v(A) = rA⊕ δA⊕sA.

(1) If ((δE/rE)− (δA/rA))
2 ≥ 0, then χ(A,E)> 0.

(2) In addition to (1), assume that A is spherical and hom0
X(A,E) = 0.

Then the spherical twist TA(E) of E by A is a complex H0(TA(E)) �= 0 and

H1(TA(E)) �= 0.

Proof

We first show the first assertion. Since rE and rA are positive, it is enough to

show that (χ(A,E))/(rArE) is positive. We have
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χ(A,E)

rArE
= −

〈
1⊕ δA

rA
⊕ sA

rA
,1⊕ δE

rE
⊕ sE

rE

〉

=
sA
rA

+
sE
rE

− δAδE
rArE

.

Since v(A)2 =−2 and v(E)2 = 0 we have

sA
rA

=
1

2

δ2A
r2A

+
1

r2A
and

sE
rE

=
1

2

δ2E
r2E

.

Thus we have

χ(A,E)

rArE
=

1

2

δ2A
r2A

+
1

r2A
+

1

2

δ2E
r2E

− δAδE
rArE

=
1

2

(δA
rA

− δE
rE

)2

+
1

r2A
> 0.

Thus we have proved the first assertion.

We show the second assertion. By the assumption and Lemma 6.3(1) we have

χ(A,E) =−hom1
X(A,E) + hom2

X(A,E)> 0. Hence hom2
X(A,E) is not zero. By

the computing of the ith cohomology Hi of TA(E), we can prove the assertion.

In fact we have the following exact sequence of sheaves:

Hom0
X(A,E)⊗A −−−−→ E −−−−→ H0

−−−−→ Hom1
X(A,E)⊗A −−−−→ 0 −−−−→ H1

−−−−→ Hom2
X(A,E)⊗A −−−−→ 0.

Since hom2
X(A,E) is not zero, we see that H1 �= 0. Since hom0

X(A,E) is zero, the

sheaf H0 contains E. Thus H0 is not zero. �

For an equivalence Φ satisfying the condition ΦE∗U(Y ) = U(X) and for a closed

point y ∈ Y , it is enough to prove Φ(Oy) = Ox[n] for some x ∈ X and n ∈ Z.

By Lemma 6.2, if Φ∗U(Y ) = U(X), then Φ(Oy) should be a sheaf up to shifts.

Thus we have to exclude the case in which Φ(Oy) is a torsion-free sheaf F or pure

torsion sheaf T with dimSupp(T ) = 1 (up to shifts). If the Picard number of X is

one, then it is not necessary to consider the case Φ(Oy) = T with dimSupp(T ) = 1

since v(Φ(Oy))
2 = 0. We need the following lemma to exclude the case Φ(Oy) = T

with dimSupp(T ) = 1.

LEMMA 6.4

Let X be a projective K3 surface, let E be a pure torsion sheaf with dimSupp(E) =

1, and let L be a line bundle on X. If χ(L,E)< 0, then the spherical twist TL(E)

of E is a sheaf containing a torsion sheaf or is properly complex. In particular

TL(E) is not a torsion-free sheaf.

Proof

We have hom1
X(L,E) �= 0 by χ(L,E)< 0. We can compute the ith cohomology

Hi of TL(E) in the following way:
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0 −−−−→ H−1

−−−−→ Hom0
X(L,E)⊗L −−−−→ E −−−−→ H0

−−−−→ Hom1
X(L,E)⊗L −−−−→ 0.

Since hom1
X(L,E) �= 0 we see H0 �= 0.

Suppose that Hom0
X(L,E) = 0. Then H−1 = 0. We can easily see that Hi = 0

if i �= 0. Hence TL(E) is a sheaf containing the torsion sheaf E.

Suppose that Hom0
X(L,E) �= 0. Since E is torsion, H−1 is not zero. Thus

TL(E) is a complex. �

In Proposition 6.5 and Corollary 6.6, we generalize [7, Theorem 6.6].

PROPOSITION 6.5

Let X be a projective K3 surface, and let E be in D(X) with v(E)2 = 0. We put

v(E) = rE ⊕ δE ⊕sE .

(1) Suppose that rE �= 0. Then there is a σ ∈ V (X) such that E is not

σ-stable.

(2) Suppose that rE = 0 and E is σ-stable for all σ ∈ V (X). Then E is Ox[n]

for some closed points x ∈X and n ∈ Z.

Proof

Let us prove assertion (1). Suppose to the contrary that E is σ-stable for all

σ ∈ V (X). Since rE �= 0 we can assume that rE > 0 by a shift if necessary. We

choose a stability condition σ(β0,ω0) = (A0,Z0) ∈ V (X) so that (δEω0)/rE > β0ω0

and ω0 is an integral class. Since (δEω0)/rE > β0ω0, the imaginary part ImZ0(E)

of Z0(E) is positive. Hence there is an even integer 2m such that E[2m] is in A0.

By replacing E with E[2m], we may assume that E is in A0 and rE is positive.

We consider the following one-parameter family of stability conditions
{
σ� := σ(β0,�ω0) ∈ V (X)

∣∣ 
 ∈R�0

}
.

We put σ� = (A�,Z�). By Lemma 6.2(1), E is a (β0, ω0)-twisted stable torsion-free

sheaf.

We choose am ample line bundle L satisfying the following conditions:

(1) c1(L) = nω0 where n is a positive integer,

(2) μω0(L)> μω0(E),

(3) ((δE/rE)−L)2 > 0,

(4) rE − χ(L,E)< 0.

This choice is possible if we take a sufficiently large n. Since E is twisted stable,

E is μ-semistable with respect to ω0. Thus hom0
X(L,E) = 0 by the second con-

dition for L. Hence TL(E) is a complex H0(TL(E)) �= 0 and H1(TL(E)) �= 0 by

Lemma 6.3.
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Now we put E′ = TL(E)[1] and v(E′) = r′⊕ δ′⊕s′. Since r′ = χ(L,E)− rE ,

r′ is positive. We choose a divisor β so that

β = bL (b ∈R) and βω0 <min
{
Lω0,

δ′ω0

r′

}
.

We consider the following family of stability conditions:

{
σy := σ(β,yL0) ∈ V >0

L

∣∣ L2
0 − βL0 ≤

(yL0)
2

2

}
.

We put σy = (Zy,Py). By Lemma 6.1, a stability condition σy is in (TL)∗U(X).

Since E is τ -stable for all τ ∈ U(X), the object E′ is (TL)∗τ -stable. Thus E′ is

σy-stable since σy is in (TL)∗U(X). By the choice of β we have ImZy(E
′)> 0.

Hence E′ should be a torsion-free sheaf up to shifts by Lemma 6.2(1). This

contradicts the fact that two cohomologies of E′ survive.

Let us prove assertion (2). We choose an arbitrary stability condition

σ(β0,ω0) = (A0,Z0) ∈ V (X) and fix it. Since E is σ(β0,ω0)-stable we can assume

that E is in A0 by shifts if necessary. By taking a limit ω0 →∞ we see that E

is a pure torsion sheaf by Lemma 6.2(2).

We shall show δE = 0. Suppose to the contrary that δE �= 0. Then δEL is

positive for any ample line bundle L. Thus there is a sufficiently ample line

bundle L0 such that χ(L0,E)< 0. Here we put v(TL0(E)) = r⊕ δ⊕s. Since r =

−χ(L0,E), we see r > 0. Similarly to (1) we consider the following family of

stability conditions:

{
σy := σ(0,yL0) = (Ay,Zy)

∣∣∣ L2
0 ≤

(yL0)
2

2

}
.

Since μL0(L0) = L2
0 > 0, σy is in (TL0)∗U(X) by Lemma 6.1. Moreover we have

δL0

r
=

δE − χ(L0,E)L0

r
L0 > 0.

Thus ImZy(TL0(E))> 0. Hence we can assume that TL0(E) is in Ay up to even

shifts. By Lemma 6.2(1), TL0(E) should be a torsion-free sheaf. This contradicts

Lemma 6.4. Thus we have δE = 0.

Since δE = 0, E is a pure torsion sheaf with dimSupp(E) = 0. Since E is

σ-stable we have hom0
X(E,E) = 1. Thus E is a length 1 torsion sheaf up to

shifts. We have proved the assertions. �

COROLLARY 6.6

Let X be a projective K3 surface, and let E be in D(X) with v(E)2 = 0. If E is

σ-stable for all σ ∈ V (X), then E is Ox[n] for some x ∈X and n ∈ Z.

Proof

We put v(E) = rE ⊕ δE ⊕sE . If rE �= 0, then this contradicts Proposition 6.5(1).

Hence rE = 0. The assertion follows from Proposition 6.5(2). �
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THEOREM 6.7

Let X and Y be projective K3 surfaces, and let Φ :D(Y )→D(X) be an equiva-

lence. If Φ∗U(Y ) = U(X), then Φ can be written as

Φ(−) = L⊗ f∗(−)[n]

where L is a line bundle on X, f is an isomorphism f : Y →X, and n ∈ Z.

Proof

Take an element σ ∈ Stab(X). By the definition of G̃L
+
(2,R)-action we see that

an object E is σ-stable if and only if E is σg̃-stable for all g̃ ∈ G̃L
+
(2,R). Hence

if Φ∗U(Y ) = U(X), then Φ(Oy) is written by Ox[n] for some x ∈X and n ∈ Z

by Corollary 6.6. Then the assertion follows from [3, Corollary 5.23]. �

Then we immediately obtain the following corollary.

COROLLARY 6.8

We put

Aut
(
D(X),U(X)

)
:=

{
Φ ∈Aut

(
D(X)

) ∣∣Φ∗U(X) = U(X)
}
.

Then Aut(D(X),U(X)) = (Aut(X)�Pic(X))×Z[1].
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