Quadratic numerical semigroups and the Koszul property

Jürgen Herzog and Dumitru I. Stamate

Abstract

Let H be a numerical semigroup. We give effective bounds for the multiplicity $e(H)$ when the associated graded ring $\operatorname{gr}_{\mathfrak{m}} K[H]$ is defined by quadrics. We classify Koszul complete intersection semigroups in terms of gluings. Furthermore, for several classes of numerical semigroups considered in the literature (arithmetic, compound, special almost-complete intersections, 3-semigroups, symmetric or pseudosymmetric 4 -semigroups) we classify those which are Koszul.

Introduction

Let K be a field. A standard graded K-algebra R with graded maximal ideal \mathfrak{m} is called Koszul if the R-module $K \cong R / \mathfrak{m}$ has an R-linear resolution. It is known that if I, the defining ideal of R, has a Gröbner basis of quadrics, then R is Koszul, and also that if R is Koszul, then I is generated by quadrics. Although it is in general difficult to certify that an algebra is Koszul, the properties of this class of rings make it an interesting endeavor. We refer to the survey articles [15] and [9] for more details.

Due to the promise of a rich theory, it is of interest to study the Koszul property for a larger class of rings. Inspired by an idea of Fröberg [14], the first author, Reiner, and Welker [19] consider the Koszul property for the associated graded ring of an affine semigroup ring with respect to the maximal multigraded ideal. For instance, it is proved that for a 2-dimensional normal affine semigroup ring its associated graded ring is Koszul (see [19, Proposition 5.3]).

In this article we focus on the case of 1-dimensional affine semigroup rings, that is, those coming from numerical semigroups. Recall that a numerical semigroup H is a subset of the nonnegative integers that is closed under addition and contains 0 , and $\mathbb{N} \backslash H$ is finite or, equivalently, the greatest common divisor of all elements in H equals 1 . We denote by $G(H)$ the unique minimal system of gener-

[^0]ators for H. The multiplicity and the embedding dimension of H are defined as $e(H)=\min G(H)$ and $\operatorname{emb} \operatorname{dim}(H)=|G(H)|$, respectively. If $n=\operatorname{emb} \operatorname{dim}(H)$, we say that H is an n-semigroup. We denote $K[H]=\bigoplus_{h \in H} K t^{h} \subset K[t]$ as the semigroup ring associated to H. The tangent cone of $K[H]$ is the associated graded ring $\operatorname{gr}_{\mathfrak{m}} K[H]=\bigoplus_{i \geq 0} \mathfrak{m}^{i} / \mathfrak{m}^{i+1}$ with respect to the maximal ideal $\mathfrak{m}=\left(t^{h}: h \in H, h \neq 0\right) K[H]$.

If $G(H)=\left\{a_{1}, \ldots, a_{n}\right\}$, then the toric ideal I_{H} is defined as the kernel of the K-algebra map $\phi: K\left[x_{1}, \ldots, x_{n}\right] \rightarrow K[H]$ letting $\phi\left(x_{i}\right)=t^{a_{i}}$ for $i=1, \ldots, n$. It is known that I_{H} is generated by the binomials $f=\prod_{i=1}^{n} x_{i}^{\alpha_{i}}-\prod_{i=1}^{n} x_{i}^{\beta_{i}}$, where $\alpha_{i}, \beta_{i} \geq 0$ for all $i=1, \ldots, n$ and $\sum_{i=1}^{n} \alpha_{i} a_{i}=\sum_{i=1}^{n} \beta_{i} a_{i}$. It is enough to use only such binomials where $\alpha_{i} \beta_{i}=0$ for all $i=1, \ldots, n$.

For a nonzero polynomial f its initial form f^{*} is the homogeneous component of f of least degree and the initial degree of f is defined as $\operatorname{deg} f^{*}$. For an ideal I we let $I^{*}=\left(f^{*}: f \in I, f \neq 0\right)$. A standard basis for I is a set of polynomials in I whose initial forms generate I^{*}. It is known and easy to see that a standard basis is also a generating set for I.

With this notation, one can check that $\operatorname{gr}_{\mathfrak{m}} K[H] \cong K\left[x_{1}, \ldots, x_{n}\right] / I_{H}^{*}$. From the algorithms that may be used to compute I_{H}^{*} (see [12] or [13]) one gets that I_{H}^{*} is generated by monomials and possibly homogeneous binomials.

We are interested in numerical semigroups H such that $\operatorname{gr}_{\mathfrak{m}} K[H]$ is Koszul. In general, even if I_{H}^{*} is quadratic, the tangent cone $R=\operatorname{gr}_{\mathfrak{m}} K[H]$ may not be Koszul. For instance, one can check with Singular [10] that, for $H=\langle 12,14,15,16$, $18,19\rangle, I_{H}^{*}$ is generated in degree 2 and $\beta_{4,5}^{R}(K)=1$; hence, the resolution of K over R is not linear.

We say that H is a Koszul, quadratic, or G-quadratic semigroup if $\operatorname{gr}_{\mathfrak{m}} K[H]$ is a Koszul ring, I_{H}^{*} is generated in degree 2, or (possibly after a suitable change of coordinates) it has a Gröbner basis of quadrics with respect to some term order, respectively. Note that, by [25], the quadratic property depends only on the generators of the semigroup and it does not depend on the field K. When discussing the Koszul property of H we work over a fixed field K, although we do not know of any semigroup H where the Koszul property depends on the field of coefficients.

For some of our arguments to work we need to assume that the field K is infinite.

The ideal I is called a complete intersection ideal (CI ideal for short) if it is minimally generated by height I elements. In case $\mu(I)=1+$ height I, one says that I is an almost-CI ideal. We say that a numerical semigroup H is an (almost) CI if I_{H} has that property. Note that, in general, if I_{H} is an (almost) CI ideal, that property may no longer hold for I_{H}^{*}. However, if I_{H}^{*} is generated in degree 2, we prove in Lemma 1.5 that I_{H} is almost-CI if and only if I_{H}^{*} is of the same kind.

Let $n=\operatorname{emb} \operatorname{dim}(H)$. It is easy to see that $n \leq e(H)$. In Section 1 we show that if H is quadratic, then there is also an upper bound; namely, $e(H) \leq 2^{n-1}$. It is shown that if either one of these bounds is reached, then H is a Koszul
semigroup. The upper bound is reached if and only if I_{H}^{*} is generated by a regular sequence of quadrics. These results are valid more generally for 1-dimensional Cohen-Macaulay local rings with infinite residue field, and our proofs are given in this generality.

Numerical experiments with Singular [10] make us believe that not all the values in the interval $\left[n, 2^{n-1}\right]$ are possible for the multiplicity of a quadratic semigroup H. If $\operatorname{gr}_{\mathfrak{m}} K[H]$ is not a CI, under the extra assumption that $\mathrm{gr}_{\mathfrak{m}} K[H]$ is Cohen-Macaulay, in Theorem 1.9 we prove that $e(H) \leq 2^{n-1}-2^{n-3}$, and if equality holds, then H is G-quadratic and it is an almost-CI semigroup.

Interesting classes of semigroups arise from semigroups of smaller embedding dimension by the so-called gluing construction. If H_{1}, H_{2} are numerical semigroups and c_{1}, c_{2} are coprime integers such that $c_{1} \in H_{2} \backslash G\left(H_{2}\right)$ and $c_{2} \in$ $H_{1} \backslash G\left(H_{1}\right)$, we say that $H=\left\langle c_{1} H_{1}, c_{2} H_{2}\right\rangle$ is obtained by gluing H_{1} and H_{2}. The most prominent result in this direction is Delorme's characterization of CI numerical semigroups (see [11]). Namely, any such semigroup is obtained by a sequence of gluings starting from \mathbb{N} (see Theorem 2.13).

If $c_{1}=2$ and $H_{2}=\mathbb{N}$, we say that $H=\left\langle 2 H_{1}, c_{2}\right\rangle$ is obtained from H_{1} by a quadratic gluing. As a main result of Section 2 we complement Delorme's theorem by showing that any quadratic CI numerical semigroup is obtained by a sequence of quadratic gluings (see Theorem 2.14). This result is a consequence of Theorem 2.3 and Corollary 2.7, where we show that the semigroup $H=\langle 2 L, \ell\rangle$ is quadratic, Koszul, or G-quadratic if and only if L has the respective property.

In Section 3 we apply the methods described so far to study the occurrence of quadratic or Koszul members in several important families of numerical semigroups for which the defining equations of the toric ring are better understood. In Propositions 3.2 and 3.4 , respectively, we show that the multiplicity of a quadratic semigroup generated by an arithmetic sequence and a geometric sequence is either very small, compared with the embedding dimension, or as large as is allowed by Theorem 1.1.

This extremal property resembles another extremal behavior for these classes of semigroups. When H is generated by a geometric sequence, the Betti numbers in the resolution of the tangent cone $\mathrm{gr}_{\mathfrak{m}} K[H]$ are the smallest possible fixing the embedding dimension (because now $\operatorname{gr}_{\mathfrak{m}} K[H]$ is a CI; see Proposition 3.4). In previous joint work we conjectured that, for a given width of H, the largest Betti numbers for $\mathrm{gr}_{\mathfrak{m}} K[H]$ are obtained by some arithmetic sequences (see [20, Conjecture 2.1]).

In the rest of Section 3 we describe completely the quadratic 3 -generated and the quadratic symmetric or pseudosymmetric 4 -semigroups. We refer to Section 3.4 for the exact definitions. It is worth mentioning that these quadratic semigroups are also G-quadratic.

1. Bounds for the multiplicity

In this section we present some restrictions for the multiplicity of a quadratic numerical semigroup.

THEOREM 1.1

Let H be a quadratic numerical semigroup minimally generated by $n>1$ elements, and let $K[H]$ be its semigroup ring. Then,
(a) $n \leq e(H) \leq 2^{n-1}$;
(b) $e(H)=n \Longleftrightarrow I_{H}^{*}$ has a linear resolution;
(c) $e(H)=2^{n-1} \Longleftrightarrow I_{H}^{*}$ is a CI ideal $\Longleftrightarrow I_{H}$ is a CI ideal.

More generally, this theorem, formulated for semigroup rings, is true for any 1-dimensional local Cohen-Macaulay ring (A, \mathfrak{m}) with a presentation $A=B / I$, where (B, \mathfrak{n}) is a regular local ring with infinite residue field S / \mathfrak{n} and where $I \subseteq \mathfrak{n}^{2}$. The next sequence of propositions shows this result in this generality.

Let $\widehat{K[H]}$ be the local ring obtained as the \mathfrak{m}-adic completion of $K[H]$. Theorem 1.1 follows from the fact that $\operatorname{gr}_{\mathfrak{m}} K[H] \cong \operatorname{gr}_{\mathfrak{m}} \widehat{K[H]}$ and $e(H)$ coincides with the multiplicity of $\widehat{K[H]}$.

Let $R=\operatorname{gr}_{\mathfrak{m}} A$. Then $R \cong S / I^{*}$, where $S=\operatorname{gr}_{\mathfrak{n}} B$ is a polynomial ring and I^{*} is the ideal of initial forms of I. We say that A is quadratic if I^{*} is generated by quadrics.

PROPOSITION 1.2
If A is quadratic, then

$$
\mathrm{emb} \operatorname{dim} A \leq e(A) \leq 2^{\mathrm{emb} \operatorname{dim} A-1}
$$

If $e(A)=\mathrm{emb} \operatorname{dim}(A)$, we say that A has minimal multiplicity.
Proof
Since A is Cohen-Macaulay and its residue field $K=A / \mathfrak{m}$ is infinite, a classical result of Abhyankar [2] gives that $e(A) \geq \mathrm{emb} \operatorname{dim}(A)-\operatorname{dim} A+1=\operatorname{emb} \operatorname{dim}(A)$.

Let $n=\operatorname{emb} \operatorname{dim}(R)$. Since K is infinite, there exists $x \in R_{1}$ such that $\ell(0$: $x)<\infty\left(\right.$ see [18, Lemma 4.3.1]). Denote $\bar{R}=R /(x)$. Then $H_{R}(t)=Q(t) /(1-t)$ with $Q(1)=e(R)$. From the exact sequence

$$
0 \rightarrow\left(0:_{R} x\right) \rightarrow R(-d) \xrightarrow{x} R \rightarrow \bar{R} \rightarrow 0
$$

we obtain that

$$
H_{\bar{R}}(t)=(1-t) H_{R}(t)+H_{L}(t)=Q(t)+H_{L}(t)
$$

This yields

$$
\begin{equation*}
e(R)=Q(1) \leq Q(1)+H_{L}(1)=H_{\bar{R}}(1)=e(\bar{R}) . \tag{1}
\end{equation*}
$$

Since R is quadratic, we get that $\bar{R} \cong \bar{S} / J$, where \bar{S} is a polynomial ring in $n-1$ variables and where J is generated by quadrics. As K is infinite, J contains a regular sequence q_{1}, \ldots, q_{n-1} of quadrics. It follows that

$$
\begin{equation*}
e(R) \leq e(\bar{R}) \leq e\left(\bar{S} /\left(q_{1}, \ldots, q_{n-1}\right)\right)=2^{n-1} . \tag{2}
\end{equation*}
$$

PROPOSITION 1.3

The local ring A has minimal multiplicity if and only if I^{*} has a 2-linear S resolution.

Proof
As in the proof of Proposition 1.2 we denote $\bar{R}=R /(x)$ for some $x \in R_{1}$ with $\ell(0: x)<\infty$, and we write $\bar{R}=\bar{S} / J$. We use the fact that an $\overline{\mathfrak{m}}$-primary ideal in \bar{S} has a linear resolution if and only if it is a power of the graded maximal ideal $\overline{\mathfrak{m}}$ of \bar{S} (see [6, Exercise 4.1.17(b)]).

We denote $n=\operatorname{emb} \operatorname{dim}(A)$. Suppose that $e(A)=n$. Then R is CohenMacaulay by a result of J. Sally (see [28, Theorem 2]). This implies that x is regular on R; hence, $e(\bar{R})=e(R)$. This is only possible if $J=\overline{\mathfrak{m}}^{2}$, which has a 2-linear resolution over \bar{S} by the remark before. Since x is regular on R, it follows that I^{*} itself is quadratic and it has a linear resolution over S.

Conversely, assume that I^{*} has a 2 -linear S-resolution. Therefore, I^{*} and J are generated by quadrics. If $e(R)>n$, by (1) we get $e(\bar{R})>n$, which implies that $J \subsetneq \overline{\mathfrak{m}}^{2}$. Therefore, reg $\bar{R}>1$. By [12, Proposition 20.20],

$$
\operatorname{reg} R=\max \left\{\operatorname{reg}\left(0:_{R} x\right), \operatorname{reg} \bar{R}\right\}>1 ;
$$

hence, I^{*} does not have a linear resolution over S, which is a contradiction.

PROPOSITION 1.4

Assume that A is quadratic. The following statements are equivalent:
(a) $e(A)=2^{\text {embdim } A-1}$;
(b) I^{*} is a CI ideal;
(c) I is a CI ideal.

Proof
(a) \Rightarrow (b) Since $e(A)=2^{\text {embdim } A-1}$, by (2) it follows that J is generated by a regular sequence of quadrics and $e(R)=e(\bar{R})$. The latter implies that x is regular on R; therefore, I^{*} is generated by a regular sequence.
$(\mathrm{b}) \Rightarrow$ (a) This follows from the fact that I is generated by a regular sequence of $n-1$ quadrics.

The equivalence of (b) and (c) is a consequence of Lemma 1.5.

LEMMA 1.5
Let (B, \mathfrak{n}) be a regular local ring, and let $I \subseteq \mathfrak{n}^{2}$ be any ideal such that I^{*} is generated in degree 2.
(a) Let $\mathcal{F} \subset I$ be a finite set. Then \mathcal{F} is a (minimal) standard basis for I if and only if it is a (minimal) generating set for I.
(b) The ideal I is an (almost) CI ideal if and only if I^{*} is an (almost) CI ideal.

Proof
(a) Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{r}\right\}$ be a minimal standard basis for I. As a general fact, \mathcal{F} is also a generating set for I. Assume that \mathcal{F} is not a minimal generating set. Without loss of generality we may write $f_{1}=\sum_{i=2}^{r} g_{i} f_{i}$ with $g_{i} \in B$, for $i=2, \ldots, n$. Then,

$$
\begin{equation*}
f_{1}^{*}=\sum_{\substack{i=2 \\ g_{i} f_{i} \not \mathrm{n}^{3}}}^{r} g_{i}^{*} f_{i}^{*}, \tag{3}
\end{equation*}
$$

contradicting the fact that \mathcal{F} is a minimal generating set for I^{*}.
Conversely, assume that $\mathcal{F}=\left\{f_{1}, \ldots, f_{r}\right\}$ is a minimal generating system for I. Since I^{*} is generated in degree 2 , it suffices to show that $f^{*} \in\left(f_{1}^{*}, \ldots, f_{r}^{*}\right)$ for $f \in I$ with $\operatorname{deg} f^{*}=2$. We may write $f=\sum_{i=1}^{r} g_{i} f_{i}$ with $g_{i} \in B, i=1, \ldots, r$. Then,

$$
f^{*}=\sum_{\substack{i=1 \\ g_{i} f_{i} \not \mathrm{n}^{3}}}^{r} g_{i}^{*} f_{i}^{*},
$$

because $\operatorname{deg} f^{*}=2$.
Part (b) follows from part (a) and the fact that height $I=$ height I^{*}.
There are further restrictions for the multiplicity of a quadratic semigroup H if we assume that $\operatorname{~gr}_{\mathfrak{m}} \mathrm{K}[\mathrm{H}]$ is Cohen-Macaulay. Before proving them, we list in the next lemma some useful arithmetic properties of the generators of a quadratic numerical semigroup.

LEMMA 1.6
Let H be a numerical semigroup minimally generated by $a_{1}<a_{2}<\cdots<a_{n}$ with $n>1$. If H is quadratic, then
(a) there exist $k, \ell \geq 2$ such that $a_{1} \mid a_{k}+a_{\ell}$;
(b) $2 a_{i} \in\left\langle a_{1}, \ldots a_{i-1}, a_{i+1}, \ldots a_{n}\right\rangle$, for all $2 \leq i \leq n$.

Proof
We may pick $\mathcal{B}=\left\{f_{1}, \ldots, f_{r}\right\}$, a minimal standard basis of I_{H} consisting of binomials. Since H is quadratic, $\operatorname{deg} f_{j}^{*}=2$ for $j=1, \ldots, r$.

For all $i=1, \ldots, n$, let c_{i} be the smallest positive integer such that $c_{i} a_{i}$ is a sum of the other generators. Then for any i there exists $1 \leq n_{i} \leq r$ such that $f_{n_{i}}=x_{i}^{c_{i}}-\cdots$.

Assume that $f_{n_{1}}=x_{1}^{c_{1}}-\prod_{j \neq 1} x_{j}^{r_{j}} \in \mathcal{B}$, which gives the relation

$$
\begin{equation*}
c_{1} a_{1}=\sum_{j \neq 1} r_{j} a_{j} \quad \text { with the } r_{j} \text { 's nonnegative integers. } \tag{4}
\end{equation*}
$$

Since $a_{1}=e(H)$ we get $c_{1}>\sum_{j \neq 1} r_{j}$ and $f_{n_{1}}^{*}=\prod_{j \neq 1} x_{j}^{r_{j}}$. As $\operatorname{deg} f_{n_{1}}^{*}=2$, using (4) we conclude that there exist $k, \ell>1$ such that $c_{1} a_{1}=a_{k}+a_{\ell}$.

Let $i>1$. Then $g_{i}=x_{1}^{a_{i}}-x_{i}^{a_{1}}$ is in I_{H} and $g_{i}^{*}=x_{i}^{a_{1}} \in I_{H}^{*}$. Therefore, there exists a pure power of x_{i}, namely, x_{i}^{2}, among the terms of $f_{1}^{*}, \ldots, f_{r}^{*}$. On the
other hand, $x_{i}^{c_{i}}$ is the smallest pure power of x_{i} occurring in any binomial in I_{H}. We get that $1<c_{i} \leq 2$; hence, $c_{i}=2$. This concludes the proof.

EXAMPLE 1.7

A Singular [10] computation and also Propositions 3.6 and 3.2 show that the semigroups $H_{1}=\langle 3,4,5\rangle$ and $H_{2}=\langle 4,5,6\rangle$ are quadratic. With notation as in Lemma 1.6 we notice that $a_{1} \mid a_{2}+a_{3}$ and $a_{1} \mid 2 a_{3}$, respectively. Therefore, the indices k and ℓ in Lemma 1.6(a) may be distinct or the same.

REMARK 1.8
Lemma 1.6(a) appeared as [31, Proposition 5.11]. There, it was derived using the topological properties of the intervals in a quadratic semigroup, as described in [25].

THEOREM 1.9

Let H be a quadratic numerical semigroup minimally generated by $a_{1}<\cdots<a_{n}$ such that $\operatorname{gr}_{\mathfrak{m}} K[H]$ is Cohen-Macaulay. The following hold.
(a) Either $n \leq e(H) \leq 2^{n-1}-2^{n-3}$ or $e(H)=2^{n-1}$.
(b) If $e(H)=2^{n-1}-2^{n-3}$, then I_{H}^{*} is an almost-CI ideal.

In the situation of (b), I_{H}^{*} has a quadratic Gröbner basis with respect to the degree reverse lexicographic order induced by $x_{n}>\cdots>x_{1}$.

Proof
(a) Assume that $e(H)<2^{n-1}$. Let $S=K\left[x_{1}, \ldots, x_{n}\right]$. Since S / I_{H}^{*} is CohenMacaulay, we get that x_{1} is regular on S / I_{H}^{*}. Going modulo x_{1} we have

$$
e(H)=e\left(S / I_{H}^{*}\right)=e\left(S /\left(x_{1}, I_{H}^{*}\right)\right)=e\left(K\left[x_{2}, \ldots, x_{n}\right] / J\right),
$$

where J denotes the image of the ideal I_{H}^{*} through the K-algebra map sending x_{1} to 0 and keeping the other variables unchanged.

By Lemma 1.6, for $j=2, \ldots, n$ there exist distinct polynomials $g_{j}=x_{j}^{2}-m_{j}$ in J, where $m_{j}=0$ or $m_{j}=x_{i} x_{k}$ with $i<j<k$. Therefore, with respect to the degree reverse lexicographic order induced by $x_{1}<x_{2}<\cdots$ we have that $\mathrm{in}_{<}\left(g_{j}\right)=x_{j}^{2}$, for $2 \leq j \leq n$.

By Theorem 1.1 we get that I_{H}^{*} is not a CI; hence, $\mu\left(I_{H}^{*}\right)=\mu(J) \geq n$. So in addition to g_{2}, \ldots, g_{n} there is at least one more generator f in $J, \operatorname{deg} f=$ 2 , and without loss of generality we may assume that f is either a monomial or a homogeneous binomial whose terms are not pure powers. We let $T=$ $K\left[x_{2}, \ldots, x_{n}\right] /\left(x_{2}^{2}, \ldots, x_{n}^{2}\right)$ and let g be the residue class of in ${ }_{<}(f)$ in T. Hence,

$$
\begin{aligned}
e(H) & =\ell\left(K\left[x_{2}, \ldots, x_{n}\right] / J\right)=\ell\left(K\left[x_{2}, \ldots, x_{n}\right] / \mathrm{in}_{<}(J)\right) \\
& \leq \ell\left(K\left[x_{2}, \ldots, x_{n}\right] /\left(x_{2}^{2}, \ldots, x_{n}^{2}, \mathrm{in}_{<}(f)\right)\right) \\
& =\ell(T /(g))=\ell\left(\left(0:_{T} g\right)\right) .
\end{aligned}
$$

Let us denote $x_{U}=\prod_{k \in U} x_{k}$, for all $U \subset[2, n]$, where $x_{\emptyset}=1$.

If $g=x_{i} x_{j}$, with $i \neq j$, a K-basis for $\left(0:_{T} g\right)$ is given by the monomials

$$
\begin{aligned}
& \left\{x_{i} x_{U}: U \subset[2, n] \backslash\{i, j\}\right\} \cup\left\{x_{j} x_{V}: V \subset[2, n] \backslash\{i, j\}\right\} \\
& \quad \cup\left\{x_{i} x_{j} x_{W}: W \subset[2, n] \backslash\{i, j\}\right\} .
\end{aligned}
$$

Hence, $e(H) \leq \operatorname{dim}_{K}\left(0:_{T} g\right)=3 \cdot 2^{n-3}=2^{n-1}-2^{n-3}$.
(b) From the above arguments we note that the equality $e(H)=2^{n-1}-$ 2^{n-3} holds if and only if $\mathrm{in}_{<}(J)=\left(x_{2}^{2}, \ldots, x_{n}^{2}, \mathrm{in}_{<}(f)\right)$; that is, $\left\{g_{2}, \ldots, g_{n}, f\right\}$ is a (clearly reduced) Gröbner basis of J. Therefore, $\mu(J)=n$, which reads as I_{H}^{*} being an almost-CI ideal.

Clearly, g_{1}, \ldots, g_{n-1} and f may be lifted to S to quadratic polynomials f_{1}, \ldots, f_{n} in I_{H}^{*}, respectively, such that $\operatorname{in}_{<}\left(f_{i}\right)=\operatorname{in}_{<}\left(g_{i}\right)$ for $1 \leq i \leq n-1$ and $\mathrm{in}_{<}\left(f_{n}\right)=\operatorname{in}_{<}(f)$. Let $\mathcal{F}=\left\{f_{1}, \ldots, f_{n}\right\}$.

We claim that \mathcal{F} is a Gröbner basis for I_{H}^{*}. Clearly, $\left(\operatorname{in}_{<}\left(f_{1}\right), \ldots, \mathrm{in}_{<}\left(f_{n}\right)\right) \subseteq$ $\mathrm{in}_{<}\left(I_{H}^{*}\right)$. For the reverse inclusion it is enough to show that these two ideals have the same Hilbert series.

Indeed, since x_{1} is regular on S / I_{H}^{*} and on $S /\left(\operatorname{in}_{<}\left(f_{1}\right), \ldots, \mathrm{in}_{<}\left(f_{n}\right)\right)$ we may write

$$
\begin{aligned}
H_{S / \mathrm{in}_{<}\left(I_{H}^{*}\right)}(t) & =H_{S / I_{H}^{*}}(t)=\frac{1}{1-t} H_{S /\left(x_{1}, I_{H}^{*}\right)}(t) \\
& =\frac{1}{1-t} H_{K\left[x_{2}, \ldots, x_{n}\right] / J}(t), \\
H_{S /\left(\mathrm{in}_{<}\left(f_{1}\right), \ldots, \mathrm{in}_{<}\left(f_{n}\right)\right)}(t) & =\frac{1}{1-t} H_{K\left[x_{2}, \ldots, x_{n}\right] / \mathrm{in}_{<}(J)}(t) \\
& =\frac{1}{1-t} H_{K\left[x_{2}, \ldots, x_{n}\right] / J}(t) .
\end{aligned}
$$

This ends the proof.
In Example 2.15 we present a family of semigroups satisfying the hypotheses of Theorem 1.9(b).

REMARK 1.10
Note that the converse to the implication in Theorem 1.9(b) is not true. One may check with Singular [10] that $H=\langle 11,13,14,15,19\rangle$ is quadratic and almost-CI, but it is not a Koszul semigroup.

It is natural to ask the following.

QUESTION 1.11
Do the conclusions of Theorem 1.9 stay true for any quadratic numerical semigroup H, without assuming that $\operatorname{gr}_{\mathfrak{m}} K[H]$ is Cohen-Macaulay?

The answer is positive if $\operatorname{emb} \operatorname{dim}(H) \leq 5$, as shown by the second author in [32, Proposition 1.5, Theorem 1.8]. Moreover, for $\operatorname{emb} \operatorname{dim}(H) \leq 7$, it follows from

Rossi and Valla's work [27, Theorem 5.9] that if H is quadratic and not a CI, then $e(H) \leq 2^{n-1}-2^{n-3}$.

PROPOSITION 1.12

Let H be a quadratic semigroup with emb $\operatorname{dim}(H)=n$. Assume that $e(H)$ attains one of the extremal values, namely, $e(H) \in\left\{n, 2^{n-1}\right\}$, or that $\mathrm{gr}_{\mathfrak{m}} K[H]$ is CohenMacaulay and $e(H)=2^{n-1}-2^{n-3}$. Then H is G-quadratic, and in particular, it is a Koszul semigroup.

Proof
In the case in which $e(H)=n$, as noted in the proof of Proposition 1.3 we have that $R=\operatorname{gr}_{\mathfrak{m}} K[H]$ is Cohen-Macaulay, x_{1} is regular on R, and $\left(x_{1}, I_{H}^{*}\right)=$ $\left(x_{1},\left(x_{2}, \ldots, x_{n}\right)^{2}\right)$, which is a monomial ideal. Therefore, $R /\left(x_{1}\right)$ is G-quadratic, and by using the work of Conca [8, Lemma 4.(2)], we conclude that $\operatorname{gr}_{\mathfrak{m}} K[H]$ is G-quadratic, too.

In the case in which $e(H)=2^{n-1}$, by Proposition 1.4 we have that I_{H}^{*} is a CI. On the other hand, by Lemma 1.6 , for $j=2, \ldots, n$ there exist distinct $n-1$ quadratic polynomials $f_{j}=x_{j}^{2}-m_{j}$ in I_{H}^{*}, where $m_{j}=0$ or $m_{j}=x_{i} x_{k}$ with $i<j<k$. Therefore, $I_{H}^{*}=\left(f_{2}, \ldots, f_{n}\right)$. With respect to the degree reverse lexicographic order induced by $x_{1}>x_{2}>\cdots$ we have that $\operatorname{gcd}\left(\mathrm{in}_{<}\left(f_{i}\right), \mathrm{in}_{<}\left(f_{j}\right)\right)=$ $\operatorname{gcd}\left(x_{i}^{2}, x_{j}^{2}\right)=1$ for all $2 \leq i<j \leq n$; hence, $\left\{f_{2}, \ldots, f_{n}\right\}$ is a quadratic Gröbner basis for I_{H}^{*}.

The case $e(H)=2^{n-1}-2^{n-3}$ was discussed in Theorem 1.9(b).

REMARK 1.13
It was proven in [19, Theorem 5.2] that if Λ is any affine semigroup such that $K[\Lambda]$ is Cohen-Macaulay and of minimal multiplicity, then $\operatorname{gr}_{\mathfrak{m}} K[\Lambda]$ is Koszul. With essentially the same argument as in the proof of Proposition 1.12 one obtains that $\operatorname{~gr}_{\mathfrak{m}} K[\Lambda]$ is G-quadratic.

REMARK 1.14

The fact from Proposition 1.12 that "if $e(H)=n$, then $\operatorname{gr}_{\mathfrak{m}} K[H]$ is Koszul" is folklore, and it is also mentioned in the survey [9].

By applying [9, Section 6, Proposition 8] it follows that if $e(H)=n+1$ and the Cohen-Macaulay type τ of $K[H]$ satisfies $\tau<n-1$, then $\operatorname{~gr}_{\mathfrak{m}} K[H]$ is Koszul. The proof can be easily continued to conclude that H is G-quadratic.

REMARK 1.15

Let H be a numerical semigroup with $e(H)=2^{\mathrm{emb} \operatorname{dim}(H)-1}$. It is easy to see that if I_{H}^{*} is CI, then I_{H}^{*} is generated in degree 2 . However, if we assume that I_{H} is a CI, can we also derive that I_{H}^{*} is CI and, hence, quadratic?

2. Quadratic semigroups and gluings

The following construction on numerical semigroups was introduced by Watanabe [33] and extended later by Delorme [11] and Rosales [26], who seems to have coined the name gluing.

DEFINITION 2.1
Given the numerical semigroups H_{1} and H_{2} and the integers $c_{1}, c_{2}>1$, the semigroup $H=\left\langle c_{1} H_{1}, c_{2} H_{2}\right\rangle$ is called a gluing of H_{1} and H_{2} if $c_{1} \in H_{2}, c_{2} \in H_{1}$, and $\operatorname{gcd}\left(c_{1}, c_{2}\right)=1$.

We are interested in the situation when one of the glued semigroups is \mathbb{N} itself.

DEFINITION 2.2

Given the numerical semigroup L and the integers $c>1$ and ℓ such that $\ell \in$ $L \backslash G(L)$ and $\operatorname{gcd}(c, \ell)=1$, the numerical semigroup $H=\langle c L, \ell \mathbb{N}\rangle$ is called a simple gluing of L.

If moreover $c=2$, we call $\langle 2 L, \ell\rangle$ a quadratic gluing.

For the rest of the article, when we describe a semigroup as $\langle c L, \ell\rangle$ we assume that it is obtained from a simple gluing as in Definition 2.2. If in Definition 2.2 we allow $\ell \in G(L)$, then (exactly) one of the generators of H is superfluous and emb $\operatorname{dim}(H)=\mathrm{emb} \operatorname{dim}(L)$ (cf. [11, Proposition 10.(ii)]). We want to avoid this case to have $\operatorname{emb} \operatorname{dim}(H)=e m b \operatorname{dim}(L)+1$.

Consider the simple gluing $H=\langle c L, \ell\rangle$. Assume that $\operatorname{emb} \operatorname{dim}(L)=n-1$. We may write

$$
\begin{equation*}
\ell=\sum_{i=1}^{n-1} \lambda_{i} a_{i} \tag{5}
\end{equation*}
$$

as a sum of the minimal generators a_{1}, \ldots, a_{n-1} for L and such that $\sum_{i=1}^{n-1} \lambda_{i} \geq 2$ is maximal. This gives a so-called gluing relation

$$
\begin{equation*}
f=x_{n}^{c}-\prod_{i=1}^{n-1} x_{i}^{\lambda_{i}} \in I_{H} \tag{6}
\end{equation*}
$$

The largest value of $\sum_{i=1}^{n-1} \lambda_{i}$ such that (5) holds is called the order of ℓ in L, and it is denoted $\operatorname{ord}_{L}(\ell)$.

By convention, unless it is otherwise specified, when we work with the toric ideal of H we assume that ℓ corresponds to the last variable x_{n} and the rest of the generators of H are ordered as in L. If we denote $S=K\left[x_{1}, \ldots, x_{n}\right]$, it is easy to see (e.g., in the proof of [33, Lemma 1]) that

$$
\begin{equation*}
I_{H}=\left(I_{L} S, f\right) \tag{7}
\end{equation*}
$$

The next result describes the transfer of quadraticity (and of the Koszul property) via gluings.

THEOREM 2.3

Consider the numerical semigroup $H=\langle c L, \ell\rangle$, where $\operatorname{gcd}(c, \ell)=1, c>1$, and $\ell \in L \backslash G(L)$. Let f be a gluing relation as in (6).

If $c \leq \operatorname{ord}_{L}(\ell)$, then the following hold:
(a) $I_{H}^{*}=\left(I_{L}^{*} S, f^{*}\right)$;
(b) H is quadratic $\Longleftrightarrow c=2$ and L is quadratic;
(c) H is Koszul $\Longleftrightarrow c=2$ and L is Koszul;
(d) I_{H}^{*} has a quadratic Gröbner basis $\Longleftrightarrow c=2$ and I_{L}^{*} has a quadratic Gröbner basis.

With notation as above, the condition $c \leq \operatorname{ord}_{L}(\ell)$ implies, using (5), that c. $e(L) \leq \operatorname{ord}_{L}(\ell) \cdot e(L) \leq \ell$. Since $\operatorname{gcd}(c, \ell)=1$ and $c>1$ we obtain

$$
\begin{equation*}
e(\langle c L, \ell\rangle)=c \cdot e(L)<\ell \tag{8}
\end{equation*}
$$

For the proof of Theorem 2.3 and later results, we need the following technical lemmas. The first one follows from [17, p. 185, Lemma, part (a)].

LEMMA 2.4

Let I be an ideal in the polynomial ring $S=K\left[x_{1}, \ldots, x_{n}\right]$ such that $I \subset \mathfrak{m}=$ $\left(x_{1}, \ldots, x_{n}\right)$. If $f \in S$ is such that $\operatorname{deg} f^{*}>0$ and f^{*} is regular on S / I^{*}, then

$$
(I, f)^{*}=\left(I^{*}, f^{*}\right)
$$

As an immediate corollary of Lemma 2.4 we obtain the next statement.

LEMMA 2.5
Let f_{1}, \ldots, f_{r} be a regular sequence in $S=K\left[x_{1}, \ldots, x_{n}\right]$ such that $f_{1}^{*}, \ldots, f_{r}^{*}$ is a regular sequence, too. Then

$$
\left(f_{i_{1}}, \ldots, f_{i_{s}}\right)^{*}=\left(f_{i_{1}}^{*}, \ldots, f_{i_{s}}^{*}\right),
$$

for $s=1, \ldots, r$ and $1 \leq i_{1}<\cdots<i_{s} \leq r$.

LEMMA 2.6

Consider the ideal $I \subset K\left[x_{1}, \ldots, x_{n-1}\right] \subset S=K\left[x_{1}, \ldots, x_{n}\right]$ and the polynomial $f=x_{n}^{c}-m$ with $c>0$ and $m \in K\left[x_{1}, \ldots, x_{n-1}\right]$. Then
(a) f is regular on $S / I S$, and
(b) if $\operatorname{deg} m \geq c$, then f^{*} is regular on $S / I^{*} S$ and $(I S, f)^{*}=\left(I^{*} S, f^{*}\right)$.

Proof
Let $<$ be the lexicographic term order on S induced by $x_{n}>x_{n-1}>\cdots>x_{1}$. Then $\operatorname{in}_{<}(f)=x_{n}^{c}$, and under the extra requirement from (b), we also have $\mathrm{in}_{<}\left(f^{*}\right)=x_{n}^{c}$. Since the variable x_{n} does not appear in the monomial generators for $\mathrm{in}_{<}(I S)$ and $\mathrm{in}_{<}\left(I S^{*}\right)$ we get that x_{n}^{c} is regular on $S / \mathrm{in}_{<}(I)$ and on
$S / \mathrm{in}_{<}\left(I S^{*}\right)$. By [12, Proposition 15.15] we obtain part (a) and the first half of (b).

The second part of (b) results from Lemma 2.4.

We may now go back to the proof of Theorem 2.3.
Proof of Theorem 2.3
We apply Lemma 2.6 to I_{L} and the gluing relation (6) to conclude that (a) holds.
For (b), if $\mathcal{G}=\left\{f_{1}, \ldots, f_{r}\right\}$ is any minimal standard basis for I_{L}, by (a) we get that $\mathcal{G}^{\prime}=\mathcal{G} \cup\{f\}$ is a standard basis for I_{H}.

We claim that \mathcal{G}^{\prime} is minimal. Indeed, since the variable x_{n} appears in \mathcal{G}^{\prime} only in f^{*}, we cannot remove f from \mathcal{G}^{\prime}. If we could remove some f_{j}, say, f_{r}, then $f_{r}^{*}=\sum_{i=1}^{r-1} h_{i} f_{i}^{*}+h f^{*}$ for $h, h_{i} \in S, i=1, \ldots, r$. By Lemma 2.6, f^{*} is regular on $S / I^{*} S$ and we get $h \in I^{*} S$, which contradicts the minimality of \mathcal{G}.

Therefore, I_{H}^{*} is generated in degree 2 if and only if I_{L}^{*} is generated in degree 2 and $\operatorname{deg} f^{*}=2$. This gives (b).

For part (c) we remark that by (b) for any of the two implications that need to be checked we have $\operatorname{deg} f^{*}=c=2$. According to [3, Lemma 2], since f^{*} is regular on $S / I^{*} S$ and of degree 2 , the ring $S / I_{L}^{*} S$ is Koszul if and only if

$$
\frac{S / I_{L}^{*} S}{\left(f^{*}\right) S / I_{L}^{*} S} \cong S /\left(I_{L}^{*} S, f^{*}\right)=S / I_{H}^{*} \cong \operatorname{gr}_{\mathfrak{m}} K[H]
$$

is Koszul. Clearly, $S / I_{L}^{*} S$ is Koszul if and only if $K\left[x_{1}, \ldots, x_{n-1}\right] / I_{L}^{*}$ (which is isomorphic to $\mathrm{gr}_{\mathfrak{m}} K[L]$) is Koszul; hence, (c) holds.

For part (d) we first assume that I_{H}^{*} has a quadratic Gröbner basis \mathcal{G} with respect to some term order $<$. Without loss of generality we may assume that \mathcal{G} is reduced, and because I_{H}^{*} is generated by binomials and/or monomials, it is well known that \mathcal{G} consists of monomials and/or binomials of degree 2 .

Note that the variable x_{n} may not appear with exponent different from 2 in any monomial term of any polynomial in \mathcal{G}. For an exponent 3 or larger, that is clear by the quadraticity of \mathcal{G}. Also, if we assume that there exists a relation $x_{n} x_{k}-\prod_{i=1}^{n-1} x_{i}^{\mu_{i}} \in I_{H}$ with $k<n$ and $\sum_{i=1}^{n-1} \mu_{i} \geq 2$, we get $\ell+c a_{k}=c \sum_{i=1}^{n-1} \mu_{i} a_{i}$, which is false since ℓ and c are coprime.

By (8), arguing as in the proof of Lemma 1.6 we obtain $x_{n}^{c a_{1}} \in I_{H}^{*}$, and also $x_{n}^{c a_{1}} \in \operatorname{in}_{<}\left(I_{H}^{*}\right)$. Therefore, there exists $g=x_{n}^{2}-m$ in \mathcal{G} such that $\mathrm{in}_{<}(g)=x_{n}^{2}$ and m is a monomial or 0 . If $g_{1}=x_{n}^{2}-m_{1}$ were another element in \mathcal{G} containing x_{n}^{2}, we could reduce it further with g, but this contradicts the fact that \mathcal{G} is a reduced Gröbner basis. Consequently, the variable x_{n} does not divide any monomial term of any element of $\mathcal{G}^{\prime}=\mathcal{G} \backslash\{g\}$.

Let $J=\left(\mathcal{G}^{\prime}\right)$. Clearly $J \subset I_{L}^{*} S$. It is easy to see, by the Buchberger criterion, that \mathcal{G}^{\prime} is a reduced Gröbner basis for J. Hence,

$$
\operatorname{in}_{<}\left(I_{H}^{*}\right)=\operatorname{in}_{<}(J)+\left(x_{n}^{2}\right) .
$$

Since f^{*} is regular on $S / I_{L}^{*} S$ and x_{n}^{2} is regular on $S / \operatorname{in}(J)$, using part (a) we obtain that

$$
\begin{aligned}
\operatorname{Hilb}_{S / I_{H}^{*}}(t) & =\left(1-t^{2}\right) \operatorname{Hilb}_{S / I_{L}^{*} S}(t) \\
\operatorname{Hilb}_{S / \operatorname{in}_{<}\left(I_{H}^{*}\right)}(t) & =\left(1-t^{2}\right) \operatorname{Hilb}_{S / \mathrm{in}_{<}(J)}(t) .
\end{aligned}
$$

According to Macaulay's theorem (see [13, Theorem 2.6]) we have $\operatorname{Hilb}_{S / I_{H}^{*}}(t)=$ $\operatorname{Hilb}_{S / \mathrm{in}_{<}\left(I_{H}^{*}\right)}(t)$ and $\operatorname{Hilb}_{S / J}(t)=\operatorname{Hilb}_{S / \mathrm{in}_{<}(J)}(t)$. Hence, $S / I_{L}^{*} S$ and S / J have the same Hilbert series, which together with $J \subseteq I_{L}^{*} S$ gives $J=I_{L}^{*} S$.

Consequently, \mathcal{G}^{\prime} is the reduced Gröbner basis for $I_{L}^{*} S$ and also for I_{L}^{*}, and we are done. Indeed, if $q \in I_{L}^{*} S$, then $\operatorname{in}_{<}(q)$ is not divisible by x_{n}^{2}, and hence, it is divisible by in $\mathrm{in}_{<}\left(g^{\prime}\right)$ for some $g^{\prime} \in \mathcal{G}^{\prime}$.

For the converse, assume that $c=2$ and that I_{L}^{*} has a quadratic Gröbner basis \mathcal{G}^{\prime} with respect to some term order $<^{\prime}$ on $K\left[x_{1}, \ldots, x_{n-1}\right]$. Let $<$ be the block order (lex, $<^{\prime}$) where we first apply the lexicographic term order on the variable x_{n} and for ties we apply $<^{\prime}$ on the rest of the monomial in the variables x_{1}, \ldots, x_{n-1}. Then $\mathrm{in}_{<}\left(f^{*}\right)=x_{n}^{2}$.

We claim that $\mathcal{G}=\mathcal{G}^{\prime} \cup\left\{f^{*}\right\}$ is a Gröbner basis for I_{H}^{*}. Indeed, \mathcal{G}^{\prime} is already a Gröbner basis; hence, the only S-pairs to be checked involve f^{*} and $g \in \mathcal{G}^{\prime}$. Since their leading terms are coprime, $S\left(f^{*}, g\right) \xrightarrow{\mathcal{G}} 0$. This finishes the proof.

Since the hypothesis of Theorem 2.3 implies that $\operatorname{ord}_{L}(\ell) \geq 2$, we obtain the following corollary.

COROLLARY 2.7
Let L be any numerical semigroup, and let $\ell \in L \backslash G(L)$ be an odd integer. Then the semigroup $\langle 2 L, \ell\rangle$ is quadratic (Koszul) if and only if L is quadratic (Koszul).

We will also need the following consequence.

COROLLARY 2.8

Let L be a quadratic numerical semigroup, and let $\ell \in L \backslash G(L)$ be an odd integer. Denote $H=\langle 2 L, \ell\rangle$. The following hold:
(a) H is a CI semigroup $\Longleftrightarrow L$ is a CI semigroup;
(b) if I_{L}^{*} is an almost-CI, then I_{H}^{*} is an almost-CI, too.

Proof

By Corollary 2.7, H is quadratic. Since $e(H)=2 e(L)$, part (a) follows from Theorem 1.1(c). For part (b), denote $\mathrm{emb} \operatorname{dim}(L)=n-1$. Hence, $\mu\left(I_{L}^{*}\right)=n-1$, and by Theorem 2.3 (a) we obtain $\mu\left(I_{H}^{*}\right) \leq n$. If $\mu\left(I_{H}^{*}\right)=n-1$, by part (a) we get that L is CI, which is false. Therefore, $\mu\left(I_{H}^{*}\right)=n$.

REMARK 2.9

In general, if $\operatorname{gr}_{\mathfrak{m}} K[L]$ is a CI, then it it not always true that for $H=\langle c L, \ell\rangle$
its tangent cone $\operatorname{gr}_{\mathfrak{m}} K[H]$ is CI, too. If we let $H=\langle 4\langle 2,5\rangle, 7\rangle=\langle 7,8,20\rangle$, mapping the variables to the generators taken in increasing order, we have $I_{H}^{*}=$ $\left(x_{3}^{2}, x_{2} x_{3}, x_{1}^{4} x_{3}, x_{2}^{7}\right)$, which is not even a Cohen-Macaulay ideal.

REMARK 2.10
If $c>\operatorname{ord}(\ell)$, we have less control over the output of the gluing, even if $\operatorname{deg} f^{*}=$ $\operatorname{ord}_{L}(\ell)=2$. Let $L=\langle 4,6,7,9\rangle$. Clearly, $\operatorname{ord}_{L}(8)=\operatorname{ord}_{L}(10)=2$. It is easy to compute (e.g., using Singular [10] or CoCoa [1])

$$
I_{L}^{*}=\left(x_{2}^{2}, x_{2} x_{3}-x_{1} x_{4}, x_{3}^{2}, x_{2} x_{4}, x_{3} x_{4}, x_{4}^{2}\right)
$$

and check that the listed generators are a quadratic Gröbner basis with respect to the degree reverse lexicographic order on $x_{1}>x_{2}>x_{3}>x_{4}$.

We may also check that, for the gluing $H_{1}=\langle 3 L, 8\rangle=\langle 12,18,21,27,8\rangle$, the ideal

$$
I_{H_{1}}^{*}=\left(x_{1}^{2}, x_{2}^{2}, x_{2} x_{3}-x_{1} x_{4}, x_{3}^{2}, x_{2} x_{4}, x_{3} x_{4}, x_{4}^{2}\right)
$$

has a quadratic Gröbner basis with respect to the same term order as above. However, for the gluing $H_{2}=\langle 3 L, 10\rangle=\langle 12,18,21,27,10\rangle$ the ideal

$$
I_{H_{2}}^{*}=\left(x_{1} x_{2}, x_{2}^{2}, x_{2} x_{3}-x_{1} x_{4}, x_{3}^{2}, x_{2} x_{4}, x_{3} x_{4}, x_{4}^{2}, x_{1}^{3} x_{3}-x_{4} x_{5}^{3}, x_{1}^{4}-x_{2} x_{5}^{3}\right)
$$

is not generated in degree 2 .

REMARK 2.11
Arbitrary gluings of quadratic numerical semigroups may not be quadratic anymore. If we consider the Koszul semigroups $H_{1}=\langle 2,3\rangle, H_{2}=\langle 2,5\rangle$, and the gluing $H=\left\langle 7 H_{1}, 5 H_{2}\right\rangle=\langle 14,21,10,15\rangle$, we have that $e(H)>8$, and according to our Theorem 1.1, H is not quadratic. Note that by Delorme's Theorem 2.13, H is a CI semigroup.

EXAMPLE 2.12
Watanabe [33, Lemma 3] shows that for any odd integer $a>0$ the semigroup

$$
W_{n}(a)=\left\langle 2^{n}, 2^{n}+a, 2^{n}+2 a, 2^{n}+4 a, \ldots, 2^{n}+2^{i} a, \ldots, 2^{n}+2^{n-1} a\right\rangle
$$

is a CI of emb $\operatorname{dim}\left(W_{n}(a)\right)=n+1$. We prove that it is a Koszul semigroup.
It is easy to see by induction on n that $W_{n}(a)$ may be obtained by simple gluings by the rule $W_{n}(a)=\left\langle 2 W_{n-1}(a), 2^{n}+a\right\rangle$ for any $n>1$, starting from $W_{1}(a)=\langle 2,2+a\rangle$. Clearly, $W_{1}(a)$ is Koszul; hence, by induction using Theorem 2.3(c) we get that $W_{n}(a)$ is a Koszul semigroup for any n.

Our next result shows that the quadratic (and Koszul) semigroups H for which $K[H]$ is a CI are obtained from \mathbb{N} by a sequence of quadratic gluings. We first recall Delorme's structure theorem for CI semigroup rings.

THEOREM 2.13 (DELORME [11, PROPOSITION 9])
Let H be a numerical semigroup. Then $K[H]$ is a CI if and only if either $H=\mathbb{N}$
or there exist numerical semigroups H_{1}, H_{2} and coprime integers c_{1}, c_{2} such that $H=\left\langle c_{1} H_{1}, c_{2} H_{2}\right\rangle, c_{1} \in H_{2} \backslash G\left(H_{2}\right), c_{2} \in H_{1} \backslash G\left(H_{1}\right)$, and $K\left[H_{1}\right], K\left[H_{2}\right]$ are CIs.

THEOREM 2.14
Let H be a numerical semigroup such that $K[H]$ is a CI. The following are equivalent:
(a) H is obtained uniquely from \mathbb{N} by a series of quadratic gluings $H_{0}=$ $\mathbb{N}, H_{1}=\left\langle 2 H_{0}, \ell_{1}\right\rangle, \ldots, H_{n-1}=\left\langle 2 H_{n-2}, \ell_{n-1}\right\rangle=H$, where ℓ_{i} is an odd integer in $H_{i-1} \backslash G\left(H_{i-1}\right)$ for $i=1, \ldots, n-1$;
(b) H is Koszul;
(c) H is quadratic.

Proof

For $(\mathrm{a}) \Rightarrow(\mathrm{b})$ we start with H_{0}, which is Koszul, and we repeatedly use Theorem 2.3 to derive that $H_{1}, \ldots, H_{n-1}=H$ are Koszul, as well. The implication $(\mathrm{b}) \Rightarrow(\mathrm{c})$ is clear.

For (c) \Rightarrow (a) we assume that H is quadratic. We prove the existence of a chain of quadratic gluings by induction on $n=\operatorname{emb} \operatorname{dim}(H)$. For $n=1$ we have $H=\mathbb{N}$, and there is nothing to prove. If $n=2$, then $H=\langle a, b\rangle$ with $a<b$ coprime. This gives $I_{H}=\left(x_{1}^{b}-x_{2}^{a}\right)$ and $I_{H}^{*}=\left(x_{2}^{a}\right)$. Since H is quadratic we get $a=2$ and b is odd. Hence, $H=\langle 2 \mathbb{N}, b\rangle$ is a simple gluing as desired.

Assume that all CI quadratic semigroups of embedding dimension smaller than n may be obtained as in (a). Let H be a quadratic CI semigroup with $\operatorname{emb} \operatorname{dim}(H)=n$. By Delorme's Theorem 2.13, $H=\left\langle c_{1} U, c_{2} V\right\rangle$, where U and V are CI with $\operatorname{emb} \operatorname{dim}(U)=r$ and $\operatorname{emb} \operatorname{dim}(V)=n-r$.

If $r=1$, then by Theorem 2.3(b) $c_{2}=2$ and V must be quadratic; that is, $H=\left\langle c_{1}, 2 V\right\rangle$. By the induction hypothesis, we may obtain V from \mathbb{N} via quadratic gluings, and we are done. The case $n-r=1$ is treated similarly.

Assume that $r>1$ and $n-r>1$. If $I_{U}=\left(f_{1}, \ldots, f_{r-1}\right)$ and $I_{V}=\left(f_{r}, \ldots\right.$, $\left.f_{n-2}\right)$, then from the proof of Delorme's Theorem 2.13, $I_{H}=I_{U}+I_{V}+\left(f_{n-1}\right)$, where the gluing relation f_{n-1} is obtained in a similar way as in (6). Since H is quadratic, by Lemma 1.5 we get that f_{1}, \ldots, f_{n-1} is a minimal standard basis of I_{H}, and since height $I_{H}=$ height $I_{H}^{*}=n-1$ we get that f_{1}, \ldots, f_{n-1} and $f_{1}^{*}, \ldots, f_{n-1}^{*}$ are regular sequences. By Lemma 2.5 we obtain that f_{1}, \ldots, f_{r-1} and f_{r}, \ldots, f_{n-2} form a standard basis for I_{U} and I_{V}, respectively. This gives that U and V are quadratic CI semigroups.

By Theorem 1.1, $e(U)=2^{r-1}$ and $e(V)=2^{n-r-1}$. Without loss of generality we may assume that $e(H)=c_{1} e(U)$. Then $c_{1}=2^{n-r}$ and $c_{2} \in U$ is odd. By the induction hypothesis we may obtain V from a quadratic gluing: $V=\langle 2 W, \ell\rangle$, where W is quadratic and CI, and $\ell \in W \backslash G(W)$ is odd. Hence, $e(W)=2^{n-r-2}$. By Delorme's Theorem 2.13 the numerical semigroup $Z=\left\langle 2^{n-r-1} U, c_{2} W\right\rangle$ is CI, obtained by gluing the CI semigroups U and W. Note that we may write

$$
H=\left\langle c_{1} U, c_{2} V\right\rangle=\left\langle 2^{n-r} U, c_{2}\langle 2 W, \ell\rangle\right\rangle=\left\langle 2^{n-r} U, 2 c_{2} W, c_{2} \cdot \ell\right\rangle=\left\langle 2 Z, c_{2} \cdot \ell\right\rangle .
$$

Since $c_{2} \cdot \ell$ is odd and $c_{2} \cdot \ell \in Z \backslash G(Z)$ (because $\ell \in W \backslash G(W)$) we may apply Corollary 2.7 to obtain that Z is a quadratic numerical semigroup. Since Z is CI and $\operatorname{emb} \operatorname{dim}(Z)=n-2$, by the induction hypothesis it may be obtained from \mathbb{N} by quadratic gluings, so the same is true for H.

The uniqueness of the decomposition follows from the fact that there is exactly one odd minimal generator for H. Hence, it must be chosen as ℓ_{n-1}.

As an application of the gluing construction we present an infinite family of quadratic almost-CI semigroups satisfying the upper bound in Theorem 1.9(b).

EXAMPLE 2.15
Let $H_{4}=\langle 6,7,8,9\rangle$. We may read the defining equations of $\mathrm{gr}_{\mathfrak{m}} K\left[H_{4}\right]$ from the proof of Proposition 3.1, and we have that H_{4} is Koszul and $\mu\left(I_{H_{4}}^{*}\right)=4$. Hence, $I_{H_{4}}^{*}$ is an almost-CI ideal. We recursively construct the semigroups

$$
H_{n+4}=\left\langle 2 H_{n+3}, 3^{n+2}\right\rangle, \quad \text { for all } n>0
$$

It is easy to check by induction and by using Theorem 2.3 that for all $n>0$:
(a) $3^{n+2} \in H_{n+3}$; hence, H_{n+4} is obtained by a simple gluing from H_{n+3} and emb $\operatorname{dim}\left(H_{n+4}\right)=n+4$;
(b) $H_{n+4}=\left\langle 2^{n} \cdot 6,2^{n} \cdot 7,2^{n} \cdot 8,2^{n} \cdot 9,2^{n-1} \cdot 3^{3}, 2^{n-2} \cdot 3^{4}, \ldots, 2 \cdot 3^{n+1}, 3^{n+2}\right\rangle$; hence, $e\left(H_{n+4}\right)=2^{n+3}-2^{n+1}$;
(c) $I_{H_{n+4}}=\left(x_{2}^{2}-x_{1} x_{3}, x_{3}^{2}-x_{2} x_{4}, x_{2} x_{3}-x_{1} x_{4}, x_{1}^{3}-x_{4}^{2}\right)+\left(x_{i}^{3}-x_{i+1}^{2}: 4 \leq i \leq\right.$ $n+3$);
(d) $I_{H_{n+4}}^{*}=\left(x_{2}^{2}-x_{1} x_{3}, x_{3}^{2}-x_{2} x_{4}, x_{2} x_{3}-x_{1} x_{4}\right)+\left(x_{i}^{2}: 4 \leq i \leq n+4\right)$; hence, it is an almost-CI ideal.

More generally than Question 1.11 we may ask the following.

QUESTION 2.16
For a given $n>1$ what is the possible multiplicity of any quadratic (or Koszul) semigroup H with $\operatorname{emb} \operatorname{dim}(H)=n$?

The results presented so far and in the next section show that there are examples of Koszul semigroups whenever $n \leq e(H) \leq 2 n-2, e(H)=2^{n-1}-2^{n-3}$, or $e(H)=2^{n-1}$. We remark that the gluing construction described in Corollary 2.7 allows us to construct new quadratic (or Koszul) semigroups with double multiplicity and of embedding dimension increased by 1 .

3. Quadraticity in some families of semigroups

Let H be a quadratic numerical semigroup of embedding dimension n. By the results described so far we have that

$$
\begin{equation*}
n \leq e(H) \leq 2^{n-1} \tag{9}
\end{equation*}
$$

These bounds are tight. Indeed, if $e(H)=n$, then H is quadratic by Proposition 1.3 and even G-quadratic by Proposition 1.12. The upper bound is reached, for example, in Example 2.12.

In this section we study the quadratic property in some families of numerical semigroups that have been considered in the literature.

3.1. Koszul arithmetic and geometric sequences

A sequence $a_{1}<a_{2}<\cdots<a_{n}$ of nonnegative integers is called an arithmetic sequence or a geometric sequence if there exists a d such that $a_{i+1}=d+a_{i}$ or $a_{i+1}=d a_{i}$, respectively, for $i=1, \ldots, n-1$.

We show that the multiplicity of quadratic semigroups generated by an arithmetic sequence is in the lower part of the interval in (9), while for geometric sequences the multiplicity is maximal.

The next statement about the tangent cone of a numerical semigroup generated by an arithmetic sequence is of interest by itself. We could not locate this result in the literature, so for the convenience of the reader we give a proof, including the references on which our proof is based.

PROPOSITION 3.1

If the numerical semigroup H is generated by an arithmetic sequence $a_{1}<\cdots<$ a_{n}, then I_{H}^{*} is minimally generated by its reduced Gröbner basis with respect to the degree reverse lexicographic order induced by $x_{1}>x_{2}>\cdots>x_{n}$.

Proof

Let $S=K\left[x_{1}, \ldots, x_{n}\right]$. Patil [24] proved that, under our hypothesis on H, the generators of the toric ideal I_{H} depend on the unique positive integers a and b with $1 \leq b \leq n-1$ such that $a_{1}=a(n-1)+b$. Namely,

$$
I_{H}=\left(x_{i} x_{j+1}-x_{i+1} x_{j}: 1 \leq i<j \leq n-1\right)+\left(x_{n}^{a} x_{b+i}-x_{1}^{a+d} x_{i}: 1 \leq i \leq n-b\right)
$$

It is shown in the proof of [20, Proposition 2.5] that these generators of I_{H} are also a standard basis of I_{H}^{*} (alternatively see [29, Corollary 2.4(iii)]). Hence,

$$
I_{H}^{*}=\left(x_{i} x_{j+1}-x_{i+1} x_{j}: 1 \leq i<j \leq n-1\right)+\left(x_{n}^{a} x_{b+i}: 1 \leq i \leq n-b\right) .
$$

Denote $f_{i j}=x_{i} x_{j+1}-x_{i+1} x_{j}$ for $1 \leq i<j \leq n-1$ and $g_{i}=x_{n}^{a} x_{b+i}$ for $1 \leq i \leq$ $n-b$.

We verify Buchberger's criterion (see [13, Theorem 2.14]) for

$$
\mathcal{G}=\left\{f_{i j}: 1 \leq i<j \leq n-1\right\} \cup\left\{g_{i}: 1 \leq i \leq n-b\right\} .
$$

We first note that the ideal J generated by the $f_{i j}$'s is the ideal of 2-minors of the matrix of indeterminates

$$
\left(\begin{array}{cccc}
x_{1} & x_{2} & \cdots & x_{n-1} \\
x_{2} & x_{3} & \cdots & x_{n}
\end{array}\right),
$$

and it is the defining ideal of the rational normal scroll. We may also view J as the binomial edge ideal attached to the complete graph K_{n}. Since K_{n} is a closed
graph, by [7, Theorem 1.1] we obtain that the $f_{i j}$'s form a Gröbner basis for J with respect to our term order. We refer to [7] for the unexplained terminology.

Since the S-pair of two monomials is zero, all that is left to show is that $S\left(f_{i j}, g_{k}\right) \xrightarrow{\mathcal{G}} 0$. For $1 \leq i<j \leq n-1$ the leading monomial $\operatorname{in}_{<}\left(f_{i j}\right)=x_{i+1} x_{j}$ is coprime to x_{n}. If $\operatorname{gcd}\left(\operatorname{in}_{<}\left(f_{i j}\right), g_{k}\right)=1$, then $S\left(f_{i j}, g_{k}\right) \xrightarrow{\mathcal{G}} 0$ (see [13, Proposition 2.15]). Otherwise, if $\operatorname{gcd}\left(x_{i+1} x_{j}, g_{k}\right) \neq 1$ or, equivalently, $x_{b+k} \mid x_{i+1} x_{j}$, then we get that $b+k \in\{i+1, j\}$ and $b+k<j+1$. Therefore, $S\left(f_{i j}, g_{k}\right)=x_{n}^{a} x_{i} x_{j+1}=$ $x_{i}\left(x_{n}^{a} x_{j+1}\right)$ is a multiple of an element in \mathcal{G} and $S\left(f_{i j}, g_{k}\right) \xrightarrow{\mathcal{G}} 0$ in this case, as well.

The next statement describes the Koszul arithmetic sequences.

PROPOSITION 3.2

Fix $n \geq 3$. Let a_{1} and d be positive integers such that $n \leq a_{1}$ and $\operatorname{gcd}\left(a_{1}, d\right)=1$. If we let

$$
H=\left\langle a_{1}, a_{1}+d, \ldots, a_{1}+(n-1) d\right\rangle,
$$

then the following are equivalent:
(a) I_{H}^{*} has a quadratic Gröbner basis;
(b) $\operatorname{gr}_{\mathfrak{m}} K[H]$ is Koszul;
(c) I_{H}^{*} is generated by quadrics;
(d) $n \leq a_{1} \leq 2 n-2$.

Proof
With notation as in the proof of Proposition 3.1 we observe that I_{H}^{*} is generated by quadrics if and only if $a=1$; that is, $n \leq a_{1} \leq 2 n-2$. Hence, (c) \Rightarrow (d). By Proposition 3.1 in these cases I_{H}^{*} has a quadratic Gröbner basis. Hence, (d) \Rightarrow (a). The rest of the implications are known to hold in general.

The class of compound semigroups was recently introduced by Kiers, O'Neill, and Ponomarenko [21].

DEFINITION 3.3 ([21])

Consider the integers $2 \leq a_{i}<b_{i}$ such that $\operatorname{gcd}\left(a_{i}, b_{i} \cdots b_{n}\right)=1$ for $i=1, \ldots, n$. Let $q_{i}=b_{1} \cdots b_{i-1} a_{i} \cdots a_{n}$, for $i=1, \ldots, n+1$. The sequence q_{1}, \ldots, q_{n+1} is called a compound sequence, and the semigroup $H=\left\langle q_{1}, \ldots, q_{n}\right\rangle$ is called a compound semigroup.

With notation as above, if $a_{1}=\cdots=a_{n}$ and $b_{1}=\cdots=b_{n}$, then q_{1}, \ldots, q_{n+1} is a geometric sequence. In what follows we show that for any compound semigroup H we have that I_{H}^{*} is CI and this allows us to identify the quadratic (equivalently, Koszul) compound semigroups.

PROPOSITION 3.4

Let $2<a_{i}<b_{i}$ be positive integers such that $\operatorname{gcd}\left(a_{i}, b_{i} \cdots b_{n}\right)=1$ for $i=1, \ldots, n$. Let

$$
H=\left\langle a_{1} a_{2} \cdots a_{n}, b_{1} a_{2} \cdots a_{n}, b_{1} b_{2} a_{3} \cdots a_{n}, \ldots, b_{2} \cdots b_{n}\right\rangle .
$$

The following hold:
(a) the ideal I_{H}^{*} is a $C I$;
(b) I_{H}^{*} is quadratic $\Longleftrightarrow H$ is Koszul $\Longleftrightarrow a_{i}=2$ for $i=1, \ldots, n$.

Proof

For part (a) we observe that H is obtained from another compound semigroup by a simple gluing:

$$
H=\left\langle a_{1} a_{2} \cdots a_{n}, b_{1}\left\langle a_{2} \cdots a_{n}, b_{2} a_{3} \cdots a_{n}, \ldots, b_{2} \cdots b_{n}\right\rangle\right\rangle
$$

which gives a first (gluing) relation $f_{1}=x_{1}^{b_{1}}-x_{2}^{a_{1}}$ in I_{H}. We continue decomposing into compound semigroups of smaller embedding dimension, and in the end we get

$$
\begin{equation*}
I_{H}=\left(x_{1}^{b_{1}}-x_{2}^{a_{1}}, x_{2}^{b_{2}}-x_{3}^{a_{2}}, \ldots, x_{n}^{b_{n}}-x_{n+1}^{a_{n}}\right) . \tag{10}
\end{equation*}
$$

By Delorme's Theorem 2.13 we get that I_{H} is a CI.
If for any $f \in S=K\left[x_{1}, \ldots, x_{n+1}\right]$ we denote by \bar{f} the polynomial $f\left(0, x_{2}, \ldots\right.$, $\left.x_{n+1}\right)$ in $K\left[x_{2}, \ldots, x_{n+1}\right]$, then one has $\bar{I}_{H}=\left(x_{2}^{a_{1}}, x_{3}^{a_{2}}, \ldots, x_{n+1}^{a_{n+1}}\right)$. These generators form a standard basis for the homogeneous ideal \bar{I}_{H}, and each of these generators can be lifted to an element in I_{H} with the same initial degree. Therefore, by the criterion in [17, Theorem 1] (see also [20, Lemma 1.2]) we conclude that the generators in (10) are a standard basis. Hence, $I_{H}^{*}=\left(x_{2}^{a_{1}}, x_{3}^{a_{2}}, \ldots, x_{n}^{a_{n+1}}\right)$ and I_{H}^{*} is a CI.

From this it follows that I_{H}^{*} is quadratic if and only if $a_{1}=\cdots=a_{n}=2$. The remaining equivalence from (b) is given by Theorem 2.14.

The next result shows a family of CIs that are never quadratic.

PROPOSITION 3.5

Let a_{1}, \ldots, a_{n} be pairwise coprime positive integers, $n>2$. Let $P=\prod_{i=1}^{n} a_{i}$. The numerical semigroup $H=\left\langle P / a_{1}, \ldots, P / a_{n}\right\rangle$ is a CI semigroup that is never quadratic.

Proof
Without loss of generality assume that $a_{1}>\cdots>a_{n}$. We prove the CI property by induction on n, and we identify a decomposition satisfying Delorme's Theorem 2.13. Letting $Q=P / a_{1}$, we may write

$$
H=\left\langle P / a_{1}, a_{1}\left\langle Q / a_{2}, \ldots, Q / a_{n}\right\rangle\right\rangle .
$$

Hence, H is obtained via a simple gluing from the semigroup $L=\left\langle Q / a_{2}, \ldots\right.$, $\left.Q / a_{n}\right\rangle$, which is CI by the induction hypothesis. This gluing gives $I_{H}=\left(x_{1}^{a_{1}}-\right.$ $x_{2}^{a_{2}}, I_{L}$), and after iterating this ungluing several times we obtain

$$
I_{H}=\left(x_{1}^{a_{1}}-x_{2}^{a_{2}}, x_{2}^{a_{2}}-x_{3}^{a_{3}}, \ldots, x_{n-1}^{a_{n-1}}-x_{n}^{a_{n}}\right) .
$$

We argue as in the proof of Proposition 3.4(b). Modulo $x_{1}, \bar{I}_{H}=\left(x_{2}^{a_{2}}, x_{3}^{a_{3}}, \ldots\right.$, $x_{n}^{a_{n}}$), whose (monomial) generators are a standard basis, and they may be naturally lifted to polynomials in I_{H} with the same initial degree. By the same criterion in [20, Lemma 1.2], I_{H} is generated by a standard basis and $I_{H}^{*}=$ $\left(x_{2}^{a_{2}}, x_{3}^{a_{3}}, \ldots, x_{n}^{a_{n}}\right)$. Since $n>2$ and the a_{i} 's are coprime, it is clear that I_{H}^{*} is not generated in degree 2 .

Second (partial) proof of the nonquadraticity. Given that H is CI, if it were also quadratic, by Theorem 1.1 we would have $P / a_{1}=2^{n-1}$. Since the a_{i} 's are coprime, $P / a_{1}=2^{n-1}$ has at least $n-1$ distinct prime divisors, which is false for $n>2$.

3.2. Koszul 3-semigroups

We next describe the Koszul numerical semigroups of embedding dimension 3.
Let H be a quadratic numerical semigroup minimally generated by $a_{1}<$ $a_{2}<a_{3}$. By Theorem 1.1, $e(H) \in\{3,4\}$. For any of these two values, by Proposition 1.12 we get that H is Koszul.

Assume that $e(H)=4$. By Theorem 1.1(c), H is a quadratic CI. Hence, by Theorem 2.14 it is obtained from \mathbb{N} via quadratic gluings: $H=\langle 2\langle 2, c\rangle, \ell\rangle$, where c and ℓ are odd integers, $c>1, \ell \in\langle 2, c\rangle \backslash\{2, c\}$, that is, $\ell=2 \alpha+c \beta, \beta=2 \gamma+1$ is odd, and α and γ are not simultaneously equal to 0 . Equivalently,

$$
H=\langle 4,2 c, \ell\rangle=\langle 4,2 c, 2 \alpha+c \beta\rangle=\langle 4,2 c, 2(\alpha+c \gamma)+c\rangle=\langle 4,2 c, 2 a+c\rangle
$$

where a, c are positive integers with $c>1$ odd. Here we denoted $a=\alpha+c \gamma$. Clearly, $a>0$; otherwise, $H=\langle 4, c\rangle$ and $\operatorname{emb} \operatorname{dim}(H)<3$, a contradiction.

We group these findings into the next result.

PROPOSITION 3.6
Let H be a numerical semigroup with $\operatorname{emb} \operatorname{dim}(H)=3$. The following are equivalent:
(a) H is a Koszul semigroup;
(b) H is a quadratic semigroup;
(c) $e(H)=3$ or $e(H)=4$ and $H=\langle 4,2 c, 2 a+c\rangle$, where a, c are positive integers with $c>1$ odd.
T. Shibuta [30] has communicated to the second author that he could prove Proposition 3.6 by using [16] and [17].

3.3. Special almost-complete intersections

Let H be a numerical semigroup minimally generated by $a_{1}<\cdots<a_{n}$, where $n>2$. For $i=1, \ldots, n$, let c_{i} be the smallest positive integer such that $c_{i} a_{i}$ is a sum of the other generators. This produces a binomial $f_{i}=x_{i}^{c_{i}}-m_{i}$ in I_{H}, where m_{i} is not divisible by x_{i}.

It is clear that $x_{i}^{c_{i}}$ is the least pure power of x_{i} that occurs as a term of any polynomial in I_{H}. If we are able to choose m_{i} that is not a pure power for any i, then the f_{i} 's are distinct. If moreover they generate I_{H}, we say that H is a special almost-CI semigroup. By [16], any 3-generated numerical semigroup that is not a CI is a special almost-CI.

We note that, by Lemma 1.5, if H is quadratic and a special almost-CI numerical semigroup, then I_{H}^{*} is an almost-CI ideal.

PROPOSITION 3.7

Assume H is a quadratic and special almost-CI semigroup. Then I_{H}^{*} has a quadratic Gröbner basis with respect to the degree reverse lexicographic order if and only if $e(H)=2^{n-1}-2^{n-3}$. In particular, $\operatorname{gr}_{\mathfrak{m}} K[H]$ is Koszul if $e(H)=$ $2^{n-1}-2^{n-3}$.

Proof

With notation as above, if H is quadratic, by Lemma 1.6 we get that $c_{1}>2$ and $c_{i}=2$ for all $i>1$. By Lemma 1.5 we obtain that $I_{H}^{*}=\left(f_{1}^{*}, \ldots, f_{n}^{*}\right)$ and that it is a minimal generating set. Clearly, we have $\operatorname{in}_{<}\left(f_{i}^{*}\right)=x_{i}^{2}$ for $1<i \leq n$ and $\operatorname{in}_{<}\left(f_{1}^{*}\right)=x_{j} x_{k}$ for some $2 \leq j<k<n$. We note that x_{1} does not occur in any of the in $\mathrm{in}_{<}\left(f_{i}^{*}\right)$'s. Hence,

$$
\begin{aligned}
e(H) & =e\left(S / I_{H}^{*}\right)=e\left(S / \operatorname{in}_{<}\left(I_{H}^{*}\right)\right) \leq \ell\left(K\left[x_{2}, \ldots, x_{n}\right] /\left(\operatorname{in}_{<}\left(f_{1}^{*}\right), \ldots, \operatorname{in}_{<}\left(f_{n}^{*}\right)\right)\right) \\
& =\ell\left(K\left[x_{2}, \ldots, x_{n}\right] /\left(x_{2}^{2}, \ldots, x_{n}^{2}, x_{j} x_{k}\right)\right) \\
& =2^{n-1}-2^{n-3},
\end{aligned}
$$

after a computation similar to the one in the proof of Theorem 1.5(b). We conclude that $e(H)=2^{n-1}-2^{n-3}$ if and only if $f_{1}^{*}, \ldots, f_{n}^{*}$ form a Gröbner basis for I_{H}^{*}.

EXAMPLE 3.8

A quadratic special almost-CI of embedding dimension n need not be Koszul if $e(H)<2^{n-1}-2^{n-3}$. Indeed, let $H=\langle 11,13,14,15,19\rangle$. Then

$$
I_{H}=\left(x_{1}^{3}-x_{3} x_{5}, x_{2}^{2}-x_{1} x_{4}, x_{3}^{2}-x_{2} x_{4}, x_{4}^{2}-x_{1} x_{5}, x_{5}^{2}-x_{1} x_{2} x_{3}\right) .
$$

As noticed in Remark 1.10, H is quadratic, but it is not a Koszul semigroup.
As an extension of Corollary 2.8 we have the following.
$L \backslash G(L)$ be an odd integer that is not a multiple of $e(L)$. Then $H=\langle 2 L, \ell\rangle$ is a special almost-CI semigroup, too.

Proof
By Corollary 2.8 together with Lemma 1.5 we get that H is quadratic and that I_{H} is an almost-CI ideal. Let $n=\operatorname{emb} \operatorname{dim}(H)$. If we denote by f the gluing relation, then using the convention that x_{n} corresponds to the new generator ℓ, we have that $I_{H}=\left(I_{L}, f\right)$, and the gluing relation f from (6) is of the form $x_{n}^{2}-m$, where m is a monomial in the variables x_{1}, \ldots, x_{n-1}.

We claim that we may choose f such that m is not a pure power. Indeed, if $m=x_{1}^{c}$ with $c>1$, then ℓ is a multiple of $e(L)$, which contradicts our assumption. Assume that $m=x_{i}^{c}$ with $1<i \leq n-1$ and $c>1$. By our assumption on L and Lemma 1.6, there exists an equation $f_{i}=x_{i}^{2}-u$, where u is a monomial which is not a pure power. Then we can replace f by $x_{n}^{2}-x_{i}^{c-2} u$. Since L is special almost-CI, we conclude that the same is true about H.

REMARK 3.10
As a consequence of Corollary 3.9, starting from any quadratic special almost-CI semigroup, by gluing we can construct semigroups with these properties of any larger embedding dimension.

3.4. Symmetric and pseudosymmetric Koszul 4-semigroups

The pseudo-Frobenius numbers of the numerical semigroup H are the elements of the finite set

$$
P F(H)=\{n \in \mathbb{Z} \backslash H: n+h \in H, \text { for all } h \in H \backslash\{0\}\} .
$$

The Frobenius number of H, usually defined as $g(H)=\max \mathbb{N} \backslash H$, also satisfies $g(H)=\max P F(H)$.

The semigroup H is called symmetric if for any integer n exactly one of n or $g(H)-n$ is in H. Algebraically, by a celebrated theorem of Kunz [23, Theorem, p. 749], H is symmetric if and only if $K[H]$ is a Gorenstein ring. One can check that H is symmetric if and only if $P F(H)=\{g(H)\}$. The semigroup H is called pseudosymmetric if $P F(H)=\{g(H) / 2, g(H)\}$.

In the remainder of Section 3.4 we describe the 4 -generated symmetric or pseudosymmetric numerical semigroups that are also Koszul.

3.4.1. The symmetric case

Let H be a symmetric numerical semigroup such that $\operatorname{emb} \operatorname{dim}(H)=4$. If H is CI and Koszul, then by Theorem 2.14 we have that H is obtained from \mathbb{N} by a sequence of quadratic simple gluings. Using also Proposition 3.6 we have that $H=\langle 2\langle 4,2 c, 2 a+c\rangle, \ell\rangle=\langle 8,4 c, 4 a+2 c, \ell\rangle$, where a, c, ℓ are positive integers, $c, \ell>1$ are odd, and $\ell \in\langle 4,2 c, 2 a+c\rangle \backslash\{2 a+c\}$.

If H is not CI, we employ the following characterization found by Bresinsky [5], as given by Barucci, Fröberg, and Şahin [4, Theorem 3].

THEOREM 3.11 (BRESINSKY [5, THEOREMS 5, 3])
The numerical semigroup $H=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ is 4-generated symmetric, not a $C I$, if and only if there are integers $c_{i}, 1 \leq i \leq 4$, and $\alpha_{i j}$, ij $\in\{21,31,32,42,13,43$, $14,24\}$, such that for $0<\alpha_{i j}<c_{i}$, for all i, j,

$$
\begin{array}{ll}
c_{1}=\alpha_{21}+\alpha_{31}, & c_{2}=\alpha_{32}+\alpha_{42}, \\
a_{1}=c_{2} c_{3} \alpha_{14}+\alpha_{32} \alpha_{13} \alpha_{24}, & c_{3}=\alpha_{13}+\alpha_{43}, \\
a_{2}=c_{3} c_{4} \alpha_{21}+\alpha_{31} \alpha_{43} \alpha_{24} \\
a_{3}=c_{1} c_{4} \alpha_{32}+\alpha_{14} \alpha_{42} \alpha_{31}, & a_{4}=c_{1} c_{2} \alpha_{43}+\alpha_{42} \alpha_{21} \alpha_{13}
\end{array}
$$

Then $K[H] \cong S /\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$, where

$$
\begin{array}{ll}
f_{1}=x_{1}^{c_{1}}-x_{3}^{\alpha_{13}} x_{4}^{\alpha_{14}}, & f_{2}=x_{2}^{c_{2}}-x_{1}^{\alpha_{21}} x_{4}^{\alpha_{24}}, \quad f_{3}=x_{3}^{c_{3}}-x_{1}^{\alpha_{31}} x_{2}^{\alpha_{32}} \\
f_{4}=x_{4}^{c_{4}}-x_{2}^{\alpha_{42}} x_{3}^{\alpha_{43}}, & f_{5}=x_{3}^{\alpha_{43}} x_{1}^{\alpha_{21}}-x_{2}^{\alpha_{32}} x_{4}^{\alpha_{14}}
\end{array}
$$

For quadratic, symmetric, and not CI semigroups we obtain the following classification result.

THEOREM 3.12
Let H be a 4-generated semigroup that is symmetric and not a CI. The following are equivalent:
(a) H is Koszul;
(b) H is quadratic;
(c) $e(H)=5$;
(d) $H=\langle 5,4 a+b, 2 a+3 b, 3 a+2 b\rangle$ for some positive integers a, b such that $a-b$ is not divisible by 5 .

Moreover, the integers a and b in (d) are uniquely determined by H.

Proof

The implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is clear. For $(\mathrm{b}) \Rightarrow(\mathrm{c})$ assume that $H=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ is quadratic. Using Lemma 1.6 and Bresinsky's Theorem 3.11, without loss of generality we may assume that $c_{1}>2$ (i.e., $e(H)=a_{1}$) and $c_{2}=c_{3}=c_{4}=2$. The conditions $0<\alpha_{i j}<c_{i}$ give $\alpha_{i j}=1$ for $i j \in\{32,42,13,43,14,24\}$; hence, $a_{1}=c_{2} c_{3} \alpha_{14}+\alpha_{32} \alpha_{13} \alpha_{24}=5$.

For $(\mathrm{c}) \Rightarrow(\mathrm{d})$, taking into account the restrictions in Theorem 3.11 we note that the equation

$$
5=c_{2} c_{3} \alpha_{14}+\alpha_{32} \alpha_{13} \alpha_{24}
$$

holds only if $\alpha_{i j}=1$ for $i j \in\{14,32,13,24\}$ and if $c_{2}=c_{3}=2$. The latter set of equalities yields $\alpha_{42}=\alpha_{43}=1$. For brevity we denote $a=\alpha_{21}$ and $b=\alpha_{31}$. We plug these values into Bresinsky's theorem, and we get $a_{2}=4 a+b, a_{3}=2 a+3 b$, and $a_{4}=3 a+2 b$.

We show that this parameterization is one-to-one. Let $a, b, a^{\prime}, b^{\prime}>0$ and $5 \nmid$ $a-b, 5 \nmid a^{\prime}-b^{\prime}$ such that

$$
\langle 5,4 a+b, 2 a+3 b, 3 a+2 b\rangle=\left\langle 5,4 a^{\prime}+b, 2 a^{\prime}+3 b^{\prime}, 3 a^{\prime}+2 b^{\prime}\right\rangle .
$$

Note that $4 a+b, 3 a+2 b, 2 a+3 b$ and $4 a^{\prime}+b^{\prime}, 3 a^{\prime}+2 b^{\prime}, 2 a^{\prime}+3 b^{\prime}$ are arithmetic sequences with common difference $b-a$, and $b^{\prime}-a^{\prime}$, respectively.

If $(b-a)\left(b^{\prime}-a^{\prime}\right)<0$, then $b-a=a^{\prime}-b^{\prime}$ and $5 a+(b-a)=4 a+b=2 a^{\prime}+3 b^{\prime}=$ $5 b^{\prime}+2\left(a^{\prime}-b^{\prime}\right)$. Hence, $5 \mid b-a$, which is false.

If $(b-a)\left(b^{\prime}-a^{\prime}\right)>0$, then $b-a=b^{\prime}-a^{\prime}$ and $5 a+(b-a)=4 a+b=4 a^{\prime}+b^{\prime}=$ $5 a^{\prime}+\left(b^{\prime}-a^{\prime}\right)$. Hence, $(a, b)=\left(a^{\prime}, b^{\prime}\right)$, and we are done.

For $(\mathrm{d}) \Rightarrow(\mathrm{a})$ we first note by using Bresinsky's theorem that H is indeed symmetric and all the c_{i} 's and the $\alpha_{i j}$'s can be read from the proof of the implication (c) \Rightarrow (d).

Consequently, $I_{H}=\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$, where

$$
\begin{aligned}
& f_{1}=x_{1}^{a+b}-x_{3} x_{4}, \quad f_{2}=x_{2}^{2}-x_{1}^{a} x_{4}, \quad f_{3}=x_{3}^{2}-x_{1}^{b} x_{2}, \\
& f_{4}=x_{4}^{2}-x_{2} x_{3}, \quad f_{5}=x_{3} x_{1}^{a}-x_{2} x_{4} .
\end{aligned}
$$

Modulo x_{1} we get

$$
\begin{equation*}
\bar{I}_{H}=\left(x_{3} x_{4}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}-x_{2} x_{3}, x_{2} x_{4}\right), \tag{11}
\end{equation*}
$$

a monomial ideal whose generators (at the same time, a standard basis) may be lifted to the f_{i} 's in I_{H} and keep the same initial degree. We apply the criterion in [20, Lemma 1.2] to conclude that x_{1} is regular on S / I_{H}^{*} and f_{1}, \ldots, f_{5} form a standard basis for I_{H}. Hence,
(12) $I_{H}^{*}= \begin{cases}\left(x_{3} x_{4}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}-x_{2} x_{3}, x_{2} x_{4}\right) & \text { if } a \neq 1 \text { and } b \neq 1, \\ \left(x_{3} x_{4}, x_{2}^{2}-x_{1} x_{4}, x_{3}^{2}, x_{4}^{2}-x_{2} x_{3}, x_{3} x_{1}-x_{2} x_{4}\right) & \text { if } a=1 \text { and } b \neq 1, \\ \left(x_{3} x_{4}, x_{2}^{2}, x_{3}^{2}-x_{1} x_{2}, x_{4}^{2}-x_{2} x_{3}, x_{2} x_{4}\right) & \text { if } a \neq 1 \text { and } b=1 .\end{cases}$

It is easy to check that in each of these situations I_{H}^{*} has a quadratic Gröbner basis with respect to the degree reverse lexicographic order induced by $x_{4}>x_{3}>$ $x_{2}>x_{1}$. In particular, S / I_{H}^{*} is a Koszul ring.

We verified with Singular [10] that in any of the three cases from (12) the ring S / I_{H}^{*} is Gorenstein. Together with Theorem 1.1(c) we obtain the following.

COROLLARY 3.13
Let H be a 4-generated symmetric and quadratic numerical semigroup. Then $\operatorname{gr}_{\mathfrak{m}} K[H]$ is Gorenstein.

3.4.2. The pseudosymmetric case

Four-generated pseudosymmetric semigroups were characterized by Komeda [22], where these were studied under the name almost-symmetric. In the formulation from [4], the following holds.

THEOREM 3.14 (KOMEDA [22, THEOREMS 6.4, 6.5])
The semigroup $H=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ is pseudosymmetric if and only if there are positive integers $c_{i}>1,1 \leq i \leq 4$, and $0<\alpha_{21}<c_{1}-1$ such that

$$
\begin{aligned}
& a_{1}=c_{2} c_{3}\left(c_{4}-1\right)+1, \quad a_{2}=\alpha_{21} c_{3} c_{4}+\left(c_{1}-\alpha_{21}-1\right)\left(c_{3}-1\right)+c_{3}, \\
& a_{3}=c_{1} c_{4}+\left(c_{1}-\alpha_{21}-1\right)\left(c_{2}-1\right)\left(c_{4}-1\right)-c_{4}+1, \\
& a_{4}=c_{1} c_{2}\left(c_{3}-1\right)+\alpha_{21}\left(c_{2}-1\right)+c_{2},
\end{aligned}
$$

and $\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=1$. Then $K[H] \cong S /\left(f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right)$, where

$$
\begin{aligned}
& f_{1}=x_{1}^{c_{1}}-x_{3} x_{4}^{c_{4}-1}, \quad f_{2}=x_{2}^{c_{2}}-x_{1}^{\alpha_{21}} x_{4}, \quad f_{3}=x_{3}^{c_{3}}-x_{1}^{c_{1}-\alpha_{21}-1} x_{2} \\
& f_{4}=x_{4}^{c_{4}}-x_{1} x_{2}^{c_{2}-1} x_{3}^{c_{3}-1}, \quad f_{5}=x_{3}^{c_{3}-1} x_{1}^{\alpha_{21}+1}-x_{2} x_{4}^{c_{4}-1}
\end{aligned}
$$

The quadratic pseudosymmetric 4-semigroups are described by the following result.

PROPOSITION 3.15

Let $H=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ be a pseudosymmetric numerical semigroup. The following are equivalent:
(a) H is Koszul;
(b) H is quadratic;
(c) $H=\langle 5,3 a+b+1,3 b-a-2, a+2 b+2\rangle$ for some integers $0<a<b-1$ such that $3 a+b+1$ is not a multiple of 5 .

Proof

For $(\mathrm{b}) \Rightarrow(\mathrm{c})$, by Lemma 1.6 and the restriction $0<\alpha_{21}<c_{1}-1$ in Komeda's Theorem 3.14, we get that $e(H)=a_{1}$ and $c_{2}=c_{3}=c_{4}=2$. This gives $a_{1}=5$, $a_{2}=3 \alpha_{21}+c_{1}+1, a_{3}=3 c_{1}-\alpha_{21}-2$, and $a_{4}=2 c_{1}+\alpha_{21}+2$. Letting $a=\alpha_{21}$ and $b=c_{1}$ we obtain the desired description.

Note that $3 a_{2} \equiv a_{3} \bmod 5$ and $2 a_{2} \equiv a_{4} \bmod 5$. Therefore, $\operatorname{gcd}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=$ 1 precisely when $3 a+b+1$ is not a multiple of 5 .

For $(\mathrm{c}) \Rightarrow(\mathrm{a})$, by Komeda's theorem we have

$$
I_{H}=\left(x_{1}^{b}-x_{3} x_{4}, x_{2}^{2}-x_{1}^{a} x_{4}, x_{3}^{2}-x_{1}^{b-a-1} x_{2}, x_{4}^{2}-x_{1} x_{2} x_{3}, x_{3} x_{1}^{a+1}-x_{2} x_{4}\right)
$$

Modulo x_{1} it becomes $\bar{I}_{H}=\left(x_{3} x_{4}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}, x_{2} x_{4}\right)$. These monomials can be lifted to polynomials in I_{H} with the same initial degree. Hence, by using the criterion in [20, Lemma 1.2], I_{H} is generated by a standard basis, and x_{1} is a regular element (of degree 1) on S / I_{H}^{*}. From here we notice that I_{H}^{*} is generated in degree 2 . Since $\left(S / I_{H}^{*}\right) / x_{1}\left(S / I_{H}^{*}\right) \cong K\left[x_{2}, x_{3}, x_{4}\right] /\left(x_{3} x_{4}, x_{2}^{2}, x_{3}^{2}, x_{4}^{2}, x_{2} x_{4}\right)$, which is Koszul, by [3, Lemma 2], S / I_{H}^{*} is Koszul as well.

Acknowledgments. The use of CoCoA [1] and Singular [10] was vital for the development of this article. We wish to thank their respective teams of developers.

We thank M. E. Rossi and G. Valla for pointing us toward their work in [27], which gives evidence to support our Question 1.11, and we also thank M. E. Rossi for suggesting Remark 1.14.

Important progress on this research took place during the authors' visits to the coauthor's home institution. We are grateful for their hospitality.

References

[1] J. Abbott, A. M. Bigatti, and G. Lagorio, CoCoA: A system for doing computations in commutative algebra, http://cocoa.dima.unige.it.
[2] S. S. Abhyankar, Local rings of high embedding dimension, Amer. J. Math. 89 (1967), 1073-1077. MR 0220723. DOI 10.2307/2373418.
[3] J. Backelin and R. Fröberg, Poincaré series of short Artinian rings, J. Algebra 96 (1985), 495-498. MR 0810542. DOI 10.1016/0021-8693(85)90023-7.
[4] V. Barucci, R. Fröberg, and M. Şahin, On free resolutions of some semigroup rings, J. Pure Appl. Algebra 218 (2014), 1107-1116. MR 3153617.
[5] H. Bresinsky, Symmetric semigroups of integers generated by 4 elements, Manuscripta Math. 17 (1975), 205-219. MR 0414559.
[6] W. Bruns and J. Herzog, Cohen-Macaulay Rings, revised ed., Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, Cambridge, 1998. MR 1251956.
[7] F. Chaudhry, A. Dokuyucu, and V. Ene, Binomial edge ideals and rational normal scrolls, Bull. Iranian Math. Soc. 41 (2015), 971-979. MR 3385371.
[8] A. Conca, Gröbner bases for spaces of quadrics of low codimension, Adv. in Appl. Math. 24 (2000), 111-124. MR 1748965.
[9] A. Conca, E. De Negri, and M. E. Rossi, "Koszul algebras and regularity" in Commutative Algebra, Springer, New York, 2013, 285-315. MR 3051376. DOI 10.1007/978-1-4614-5292-8_8.
[10] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, Singular Version 3-1-6: A computer algebra system for polynomial computations, http://www.singular.uni-kl.de.
[11] C. Delorme, Sous-monoïdes d'intersection complète de N, Ann. Sci. Éc. Norm. Supér. (4) 9 (1976), 145-154. MR 0407038.
[12] D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Grad. Texts in Math. 150, Springer, New York, 1995. MR 1322960. DOI 10.1007/978-1-4612-5350-1.
[13] V. Ene and J. Herzog, Gröbner Bases in Commutative Algebra, Grad. Stud. Math. 130, Amer. Math. Soc., Providence, 2012. MR 2850142.
[14] R. Fröberg, Connections between a local ring and its associated graded ring, J. Algebra 111 (1987), 300-305. MR 0916167.
[15] , "Koszul algebras" in Advances in Commutative Ring Theory (Fez, 1997), Lecture Notes Pure Appl. Math. 205, Dekker, New York, 1999, 337-350. MR 1767430.
[16] J. Herzog, Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math. 3 (1970), 175-193. MR 0269762.
[17] , When is a regular sequence super regular?, Nagoya Math. J. 83 (1981), 183-195. MR 0632652.
[18] J. Herzog and T. Hibi, Monomial Ideals, Grad. Texts in Math. 260, Springer, London, 2011. MR 2724673.
[19] J. Herzog, V. Reiner, and V. Welker, The Koszul property in affine semigroup rings, Pacific J. Math. 186 (1998), 39-65. MR 1665056.
DOI 10.2140/pjm.1998.186.39.
[20] J. Herzog and D. I. Stamate, On the defining equations of the tangent cone of a numerical semigroup ring, J. Algebra 418 (2014), 8-28. MR 3250438. DOI 10.1016/j.jalgebra.2014.07.008.
[21] C. Kiers, C. O'Neill, and V. Ponomarenko, Numerical semigroups on compound sequences, Comm. Algebra 44 (2016), 3842-3852. MR 3503387.
[22] J. Komeda, On the existence of Weierstrass points with a certain semigroup generated by 4 elements, Tsukuba J. Math. 6 (1982), 237-279. MR 0705117.
[23] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751. MR 0265353. DOI 10.2307/2036742.
[24] D. P. Patil, Minimal sets of generators for the relation ideals of certain monomial curves, Manuscripta Math. 80 (1993), 239-248. MR 1240646.
[25] V. Reiner and D. I. Stamate, Koszul incidence algebras, affine semigroups, and Stanley-Reisner ideals, Adv. Math. 224 (2010), 2312-2345. MR 2652208. DOI 10.1016/j.aim.2010.02.005.
[26] J. C. Rosales, On presentations of subsemigroups of \mathbb{N}^{n}, Semigroup Forum 55 (1997), 152-159. MR 1457760. DOI 10.1007/PL00005916.
[27] M. E. Rossi and G. Valla, Multiplicity and t-isomultiple ideals, Nagoya Math. J. 110 (1988), 81-111. MR 0945908.
[28] J. D. Sally, On the associated graded ring of a local Cohen-Macaulay ring, J. Math. Kyoto Univ. 17 (1977), 19-21. MR 0450259.
[29] L. Sharifan and R. Zaare-Nahandi, Minimal free resolution of the associated graded ring of monomial curves of generalized arithmetic sequences, J. Pure Appl. Algebra 213 (2009), 360-369. MR 2477055.
[30] T. Shibuta, personal communication, October 2011.
[31] D. I. Stamate, Computational algebra and combinatorics in commutative algebra, Ph.D. dissertation, University of Bucharest, Bucharest, 2009.
[32] , On the Cohen-Macaulay property for quadratic tangent cones, Electron. J. Combin. 23 (2016), no. P3.20.
[33] K. Watanabe, Some examples of one dimensional Gorenstein domains, Nagoya Math. J. 49 (1973), 101-109. MR 0318140.

Herzog: Fachbereich Mathematik, Universität Duisburg-Essen, Essen, Germany; juergen.herzog@uni-essen.de

Stamate: Faculty of Mathematics and Computer Science, University of Bucharest, Bucharest;
Research group of the project PN-II-RU-PD-2012-3-0656, Simion Stoilow Institute of Mathematics of the Romanian Academy, Bucharest, Romania;
dumitru.stamate@fmi.unibuc.ro

[^0]: Kyoto Journal of Mathematics, Vol. 57, No. 3 (2017), 585-612
 First published online 22, April 2017.
 DOI 10.1215/21562261-2017-0007, © 2017 by Kyoto University
 Received October 30, 2015. Accepted April 25, 2016.
 2010 Mathematics Subject Classification: Primary 13A30; Secondary 16S37, 16S36, 13C40, 13H10, 13P10.
 Stamate's work supported by a grant of the Romanian Ministry of Education, National Research Council-Executive Agency for Higher Education, Research, Development, and Innovation Funding (CNCS-UEFISCDI), project number PN-II-RU-PD-2012-3-0656.

