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Abstract LetH be a numerical semigroup. We give effective bounds for the multiplic-

ity e(H) when the associated graded ring grmK[H] is defined by quadrics. We classify

Koszul complete intersection semigroups in terms of gluings. Furthermore, for several

classes of numerical semigroups considered in the literature (arithmetic, compound, spe-

cial almost-complete intersections, 3-semigroups, symmetric or pseudosymmetric

4-semigroups) we classify those which are Koszul.

Introduction

Let K be a field. A standard graded K-algebra R with graded maximal ideal

m is called Koszul if the R-module K ∼= R/m has an R-linear resolution. It is

known that if I , the defining ideal of R, has a Gröbner basis of quadrics, then R

is Koszul, and also that if R is Koszul, then I is generated by quadrics. Although

it is in general difficult to certify that an algebra is Koszul, the properties of this

class of rings make it an interesting endeavor. We refer to the survey articles [15]

and [9] for more details.

Due to the promise of a rich theory, it is of interest to study the Koszul

property for a larger class of rings. Inspired by an idea of Fröberg [14], the first

author, Reiner, and Welker [19] consider the Koszul property for the associated

graded ring of an affine semigroup ring with respect to the maximal multigraded

ideal. For instance, it is proved that for a 2-dimensional normal affine semigroup

ring its associated graded ring is Koszul (see [19, Proposition 5.3]).

In this article we focus on the case of 1-dimensional affine semigroup rings,

that is, those coming from numerical semigroups. Recall that a numerical semi-

group H is a subset of the nonnegative integers that is closed under addition and

contains 0, and N\H is finite or, equivalently, the greatest common divisor of all

elements in H equals 1. We denote by G(H) the unique minimal system of gener-

Kyoto Journal of Mathematics, Vol. 57, No. 3 (2017), 585–612

First published online 22, April 2017.

DOI 10.1215/21562261-2017-0007, © 2017 by Kyoto University

Received October 30, 2015. Accepted April 25, 2016.
2010 Mathematics Subject Classification: Primary 13A30; Secondary 16S37, 16S36, 13C40,

13H10, 13P10.

Stamate’s work supported by a grant of the Romanian Ministry of Education, National Research

Council–Executive Agency for Higher Education, Research, Development, and Innovation Funding

(CNCS–UEFISCDI), project number PN-II-RU-PD-2012-3–0656.

http://dx.doi.org/10.1215/21562261-2017-0007
http://www.ams.org/msc/


586 Jürgen Herzog and Dumitru I. Stamate

ators for H . The multiplicity and the embedding dimension of H are defined as

e(H) = minG(H) and embdim(H) = |G(H)|, respectively. If n = embdim(H),

we say that H is an n-semigroup. We denote K[H] =
⊕

h∈H Kth ⊂ K[t] as

the semigroup ring associated to H . The tangent cone of K[H] is the associ-

ated graded ring grmK[H] =
⊕

i≥0m
i/mi+1 with respect to the maximal ideal

m= (th : h ∈H,h �= 0)K[H].

If G(H) = {a1, . . . , an}, then the toric ideal IH is defined as the kernel of the

K-algebra map φ : K[x1, . . . , xn] → K[H] letting φ(xi) = tai for i = 1, . . . , n. It

is known that IH is generated by the binomials f =
∏n

i=1 x
αi

i −
∏n

i=1 x
βi

i , where

αi, βi ≥ 0 for all i= 1, . . . , n and
∑n

i=1αiai =
∑n

i=1 βiai. It is enough to use only

such binomials where αiβi = 0 for all i= 1, . . . , n.

For a nonzero polynomial f its initial form f∗ is the homogeneous component

of f of least degree and the initial degree of f is defined as deg f∗. For an ideal

I we let I∗ = (f∗ : f ∈ I, f �= 0). A standard basis for I is a set of polynomials in

I whose initial forms generate I∗. It is known and easy to see that a standard

basis is also a generating set for I .

With this notation, one can check that grmK[H]∼=K[x1, . . . , xn]/I
∗
H . From

the algorithms that may be used to compute I∗H (see [12] or [13]) one gets that

I∗H is generated by monomials and possibly homogeneous binomials.

We are interested in numerical semigroups H such that grmK[H] is Koszul.

In general, even if I∗H is quadratic, the tangent cone R= grmK[H] may not be

Koszul. For instance, one can check with Singular [10] that, forH = 〈12,14,15,16,
18,19〉, I∗H is generated in degree 2 and βR

4,5(K) = 1; hence, the resolution of K

over R is not linear.

We say that H is a Koszul, quadratic, or G-quadratic semigroup if grmK[H]

is a Koszul ring, I∗H is generated in degree 2, or (possibly after a suitable change

of coordinates) it has a Gröbner basis of quadrics with respect to some term

order, respectively. Note that, by [25], the quadratic property depends only on

the generators of the semigroup and it does not depend on the field K. When

discussing the Koszul property of H we work over a fixed field K, although we

do not know of any semigroup H where the Koszul property depends on the field

of coefficients.

For some of our arguments to work we need to assume that the field K is

infinite.

The ideal I is called a complete intersection ideal (CI ideal for short) if it is

minimally generated by height I elements. In case μ(I) = 1 + height I , one says

that I is an almost-CI ideal. We say that a numerical semigroup H is an (almost)

CI if IH has that property. Note that, in general, if IH is an (almost) CI ideal,

that property may no longer hold for I∗H . However, if I∗H is generated in degree

2, we prove in Lemma 1.5 that IH is almost-CI if and only if I∗H is of the same

kind.

Let n= embdim(H). It is easy to see that n≤ e(H). In Section 1 we show

that if H is quadratic, then there is also an upper bound; namely, e(H)≤ 2n−1.

It is shown that if either one of these bounds is reached, then H is a Koszul
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semigroup. The upper bound is reached if and only if I∗H is generated by a regular

sequence of quadrics. These results are valid more generally for 1-dimensional

Cohen–Macaulay local rings with infinite residue field, and our proofs are given

in this generality.

Numerical experiments with Singular [10] make us believe that not all the

values in the interval [n,2n−1] are possible for the multiplicity of a quadratic

semigroup H . If grmK[H] is not a CI, under the extra assumption that grmK[H]

is Cohen–Macaulay, in Theorem 1.9 we prove that e(H) ≤ 2n−1 − 2n−3, and if

equality holds, then H is G-quadratic and it is an almost-CI semigroup.

Interesting classes of semigroups arise from semigroups of smaller embed-

ding dimension by the so-called gluing construction. If H1,H2 are numerical

semigroups and c1, c2 are coprime integers such that c1 ∈H2 \G(H2) and c2 ∈
H1 \ G(H1), we say that H = 〈c1H1, c2H2〉 is obtained by gluing H1 and H2.

The most prominent result in this direction is Delorme’s characterization of CI

numerical semigroups (see [11]). Namely, any such semigroup is obtained by a

sequence of gluings starting from N (see Theorem 2.13).

If c1 = 2 and H2 = N, we say that H = 〈2H1, c2〉 is obtained from H1 by a

quadratic gluing. As a main result of Section 2 we complement Delorme’s the-

orem by showing that any quadratic CI numerical semigroup is obtained by a

sequence of quadratic gluings (see Theorem 2.14). This result is a consequence of

Theorem 2.3 and Corollary 2.7, where we show that the semigroup H = 〈2L, �〉
is quadratic, Koszul, or G-quadratic if and only if L has the respective property.

In Section 3 we apply the methods described so far to study the occurrence

of quadratic or Koszul members in several important families of numerical semi-

groups for which the defining equations of the toric ring are better understood.

In Propositions 3.2 and 3.4, respectively, we show that the multiplicity of a qua-

dratic semigroup generated by an arithmetic sequence and a geometric sequence

is either very small, compared with the embedding dimension, or as large as is

allowed by Theorem 1.1.

This extremal property resembles another extremal behavior for these classes

of semigroups. When H is generated by a geometric sequence, the Betti numbers

in the resolution of the tangent cone grmK[H] are the smallest possible fixing

the embedding dimension (because now grmK[H] is a CI; see Proposition 3.4).

In previous joint work we conjectured that, for a given width of H , the largest

Betti numbers for grmK[H] are obtained by some arithmetic sequences (see [20,

Conjecture 2.1]).

In the rest of Section 3 we describe completely the quadratic 3-generated

and the quadratic symmetric or pseudosymmetric 4-semigroups. We refer to Sec-

tion 3.4 for the exact definitions. It is worth mentioning that these quadratic

semigroups are also G-quadratic.

1. Bounds for the multiplicity

In this section we present some restrictions for the multiplicity of a quadratic

numerical semigroup.
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THEOREM 1.1

Let H be a quadratic numerical semigroup minimally generated by n > 1 elements,

and let K[H] be its semigroup ring. Then,

(a) n≤ e(H)≤ 2n−1;

(b) e(H) = n⇐⇒ I∗H has a linear resolution;

(c) e(H) = 2n−1 ⇐⇒ I∗H is a CI ideal⇐⇒ IH is a CI ideal.

More generally, this theorem, formulated for semigroup rings, is true for any

1-dimensional local Cohen–Macaulay ring (A,m) with a presentation A= B/I ,

where (B,n) is a regular local ring with infinite residue field S/n and where

I ⊆ n2. The next sequence of propositions shows this result in this generality.

Let K̂[H] be the local ring obtained as the m-adic completion of K[H].

Theorem 1.1 follows from the fact that grmK[H]∼= grm K̂[H] and e(H) coincides

with the multiplicity of K̂[H].

Let R= grmA. Then R∼= S/I∗, where S = grnB is a polynomial ring and I∗

is the ideal of initial forms of I . We say that A is quadratic if I∗ is generated by

quadrics.

PROPOSITION 1.2

If A is quadratic, then

embdimA≤ e(A)≤ 2embdimA−1.

If e(A) = embdim(A), we say that A has minimal multiplicity.

Proof

Since A is Cohen–Macaulay and its residue field K =A/m is infinite, a classical

result of Abhyankar [2] gives that e(A)≥ embdim(A)−dimA+1= embdim(A).

Let n= embdim(R). Since K is infinite, there exists x ∈R1 such that �(0 :

x)<∞ (see [18, Lemma 4.3.1]). Denote R̄=R/(x). Then HR(t) =Q(t)/(1− t)

with Q(1) = e(R). From the exact sequence

0→ (0 :R x)→R(−d)
x→R→ R̄→ 0

we obtain that

HR̄(t) = (1− t)HR(t) +HL(t) =Q(t) +HL(t).

This yields

(1) e(R) =Q(1)≤Q(1) +HL(1) =HR̄(1) = e(R̄).

Since R is quadratic, we get that R̄∼= S̄/J , where S̄ is a polynomial ring in

n−1 variables and where J is generated by quadrics. As K is infinite, J contains

a regular sequence q1, . . . , qn−1 of quadrics. It follows that

(2) e(R)≤ e(R̄)≤ e
(
S̄/(q1, . . . , qn−1)

)
= 2n−1. �
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PROPOSITION 1.3

The local ring A has minimal multiplicity if and only if I∗ has a 2-linear S-

resolution.

Proof

As in the proof of Proposition 1.2 we denote R̄ = R/(x) for some x ∈ R1 with

�(0 : x)<∞, and we write R̄= S̄/J . We use the fact that an m̄-primary ideal in

S̄ has a linear resolution if and only if it is a power of the graded maximal ideal

m̄ of S̄ (see [6, Exercise 4.1.17(b)]).

We denote n = embdim(A). Suppose that e(A) = n. Then R is Cohen–

Macaulay by a result of J. Sally (see [28, Theorem 2]). This implies that x is

regular on R; hence, e(R̄) = e(R). This is only possible if J = m̄2, which has a

2-linear resolution over S̄ by the remark before. Since x is regular on R, it follows

that I∗ itself is quadratic and it has a linear resolution over S.

Conversely, assume that I∗ has a 2-linear S-resolution. Therefore, I∗ and J

are generated by quadrics. If e(R) > n, by (1) we get e(R̄) > n, which implies

that J � m̄2. Therefore, reg R̄ > 1. By [12, Proposition 20.20],

regR=max
{
reg(0 :R x), reg R̄

}
> 1;

hence, I∗ does not have a linear resolution over S, which is a contradiction. �

PROPOSITION 1.4

Assume that A is quadratic. The following statements are equivalent:

(a) e(A) = 2embdimA−1;

(b) I∗ is a CI ideal;

(c) I is a CI ideal.

Proof

(a) ⇒ (b) Since e(A) = 2embdimA−1, by (2) it follows that J is generated by a

regular sequence of quadrics and e(R) = e(R̄). The latter implies that x is regular

on R; therefore, I∗ is generated by a regular sequence.

(b)⇒ (a) This follows from the fact that I is generated by a regular sequence

of n− 1 quadrics.

The equivalence of (b) and (c) is a consequence of Lemma 1.5. �

LEMMA 1.5

Let (B,n) be a regular local ring, and let I ⊆ n2 be any ideal such that I∗ is

generated in degree 2.

(a) Let F ⊂ I be a finite set. Then F is a (minimal) standard basis for I if

and only if it is a (minimal) generating set for I.

(b) The ideal I is an (almost) CI ideal if and only if I∗ is an (almost) CI

ideal.
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Proof

(a) Let F = {f1, . . . , fr} be a minimal standard basis for I . As a general fact,

F is also a generating set for I . Assume that F is not a minimal generating

set. Without loss of generality we may write f1 =
∑r

i=2 gifi with gi ∈ B, for

i= 2, . . . , n. Then,

(3) f∗
1 =

r∑
i=2

gifi /∈n3

g∗i f
∗
i ,

contradicting the fact that F is a minimal generating set for I∗.

Conversely, assume that F = {f1, . . . , fr} is a minimal generating system

for I . Since I∗ is generated in degree 2, it suffices to show that f∗ ∈ (f∗
1 , . . . , f

∗
r )

for f ∈ I with deg f∗ = 2. We may write f =
∑r

i=1 gifi with gi ∈B, i= 1, . . . , r.

Then,

f∗ =
r∑

i=1
gifi /∈n3

g∗i f
∗
i ,

because deg f∗ = 2.

Part (b) follows from part (a) and the fact that height I = height I∗. �

There are further restrictions for the multiplicity of a quadratic semigroup H if

we assume that grmK[H] is Cohen–Macaulay. Before proving them, we list in the

next lemma some useful arithmetic properties of the generators of a quadratic

numerical semigroup.

LEMMA 1.6

Let H be a numerical semigroup minimally generated by a1 < a2 < · · ·< an with

n > 1. If H is quadratic, then

(a) there exist k, �≥ 2 such that a1 | ak + a�;

(b) 2ai ∈ 〈a1, . . . ai−1, ai+1, . . . an〉, for all 2≤ i≤ n.

Proof

We may pick B = {f1, . . . , fr}, a minimal standard basis of IH consisting of

binomials. Since H is quadratic, deg f∗
j = 2 for j = 1, . . . , r.

For all i = 1, . . . , n, let ci be the smallest positive integer such that ciai is

a sum of the other generators. Then for any i there exists 1≤ ni ≤ r such that

fni = xci
i − · · · .

Assume that fn1 = xc1
1 −

∏
j �=1 x

rj
j ∈ B, which gives the relation

c1a1 =
∑
j �=1

rjaj with the rj ’s nonnegative integers.(4)

Since a1 = e(H) we get c1 >
∑

j �=1 rj and f∗
n1

=
∏

j �=1 x
rj
j . As deg f∗

n1
= 2, using

(4) we conclude that there exist k, � > 1 such that c1a1 = ak + a�.

Let i > 1. Then gi = xai
1 − xa1

i is in IH and g∗i = xa1

i ∈ I∗H . Therefore, there

exists a pure power of xi, namely, x2
i , among the terms of f∗

1 , . . . , f
∗
r . On the
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other hand, xci
i is the smallest pure power of xi occurring in any binomial in IH .

We get that 1< ci ≤ 2; hence, ci = 2. This concludes the proof. �

EXAMPLE 1.7

A Singular [10] computation and also Propositions 3.6 and 3.2 show that the

semigroups H1 = 〈3,4,5〉 and H2 = 〈4,5,6〉 are quadratic. With notation as in

Lemma 1.6 we notice that a1 | a2 + a3 and a1 | 2a3, respectively. Therefore, the
indices k and � in Lemma 1.6(a) may be distinct or the same.

REMARK 1.8

Lemma 1.6(a) appeared as [31, Proposition 5.11]. There, it was derived using the

topological properties of the intervals in a quadratic semigroup, as described in

[25].

THEOREM 1.9

Let H be a quadratic numerical semigroup minimally generated by a1 < · · ·< an
such that grmK[H] is Cohen–Macaulay. The following hold.

(a) Either n≤ e(H)≤ 2n−1 − 2n−3 or e(H) = 2n−1.

(b) If e(H) = 2n−1 − 2n−3, then I∗H is an almost-CI ideal.

In the situation of (b), I∗H has a quadratic Gröbner basis with respect to the

degree reverse lexicographic order induced by xn > · · ·> x1.

Proof

(a) Assume that e(H) < 2n−1. Let S = K[x1, . . . , xn]. Since S/I∗H is Cohen–

Macaulay, we get that x1 is regular on S/I∗H . Going modulo x1 we have

e(H) = e(S/I∗H) = e
(
S/(x1, I

∗
H)

)
= e

(
K[x2, . . . , xn]/J

)
,

where J denotes the image of the ideal I∗H through the K-algebra map sending

x1 to 0 and keeping the other variables unchanged.

By Lemma 1.6, for j = 2, . . . , n there exist distinct polynomials gj = x2
j −mj

in J , where mj = 0 or mj = xixk with i < j < k. Therefore, with respect to

the degree reverse lexicographic order induced by x1 < x2 < · · · we have that

in<(gj) = x2
j , for 2≤ j ≤ n.

By Theorem 1.1 we get that I∗H is not a CI; hence, μ(I∗H) = μ(J) ≥ n. So

in addition to g2, . . . , gn there is at least one more generator f in J , deg f =

2, and without loss of generality we may assume that f is either a mono-

mial or a homogeneous binomial whose terms are not pure powers. We let T =

K[x2, . . . , xn]/(x
2
2, . . . , x

2
n) and let g be the residue class of in<(f) in T . Hence,

e(H) = �
(
K[x2, . . . , xn]/J

)
= �

(
K[x2, . . . , xn]/ in<(J)

)
≤ �

(
K[x2, . . . , xn]/

(
x2
2, . . . , x

2
n, in<(f)

))
= �

(
T/(g)

)
= �

(
(0 :T g)

)
.

Let us denote xU =
∏

k∈U xk, for all U ⊂ [2, n], where x∅ = 1.
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If g = xixj , with i �= j, a K-basis for (0 :T g) is given by the monomials{
xixU : U ⊂ [2, n] \ {i, j}

}
∪
{
xjxV : V ⊂ [2, n] \ {i, j}

}
∪
{
xixjxW :W ⊂ [2, n] \ {i, j}

}
.

Hence, e(H)≤ dimK(0 :T g) = 3 · 2n−3 = 2n−1 − 2n−3.

(b) From the above arguments we note that the equality e(H) = 2n−1 −
2n−3 holds if and only if in<(J) = (x2

2, . . . , x
2
n, in<(f)); that is, {g2, . . . , gn, f} is

a (clearly reduced) Gröbner basis of J . Therefore, μ(J) = n, which reads as I∗H
being an almost-CI ideal.

Clearly, g1, . . . , gn−1 and f may be lifted to S to quadratic polynomials

f1, . . . , fn in I∗H , respectively, such that in<(fi) = in<(gi) for 1 ≤ i ≤ n− 1 and

in<(fn) = in<(f). Let F = {f1, . . . , fn}.
We claim that F is a Gröbner basis for I∗H . Clearly, (in<(f1), . . . , in<(fn))⊆

in<(I
∗
H). For the reverse inclusion it is enough to show that these two ideals have

the same Hilbert series.

Indeed, since x1 is regular on S/I∗H and on S/(in<(f1), . . . , in<(fn)) we may

write

HS/ in<(I∗
H)(t) =HS/I∗

H
(t) =

1

1− t
HS/(x1,I∗

H)(t)

=
1

1− t
HK[x2,...,xn]/J(t),

HS/(in<(f1),...,in<(fn))(t) =
1

1− t
HK[x2,...,xn]/ in<(J)(t)

=
1

1− t
HK[x2,...,xn]/J(t).

This ends the proof. �

In Example 2.15 we present a family of semigroups satisfying the hypotheses of

Theorem 1.9(b).

REMARK 1.10

Note that the converse to the implication in Theorem 1.9(b) is not true. One may

check with Singular [10] that H = 〈11,13,14,15,19〉 is quadratic and almost-CI,

but it is not a Koszul semigroup.

It is natural to ask the following.

QUESTION 1.11

Do the conclusions of Theorem 1.9 stay true for any quadratic numerical semi-

group H , without assuming that grmK[H] is Cohen–Macaulay?

The answer is positive if embdim(H)≤ 5, as shown by the second author in [32,

Proposition 1.5, Theorem 1.8]. Moreover, for embdim(H) ≤ 7, it follows from
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Rossi and Valla’s work [27, Theorem 5.9] that if H is quadratic and not a CI,

then e(H)≤ 2n−1 − 2n−3.

PROPOSITION 1.12

Let H be a quadratic semigroup with embdim(H) = n. Assume that e(H) attains

one of the extremal values, namely, e(H) ∈ {n,2n−1}, or that grmK[H] is Cohen–

Macaulay and e(H) = 2n−1 − 2n−3. Then H is G-quadratic, and in particular, it

is a Koszul semigroup.

Proof

In the case in which e(H) = n, as noted in the proof of Proposition 1.3 we

have that R= grmK[H] is Cohen–Macaulay, x1 is regular on R, and (x1, I
∗
H) =

(x1, (x2, . . . , xn)
2), which is a monomial ideal. Therefore, R/(x1) is G-quadratic,

and by using the work of Conca [8, Lemma 4.(2)], we conclude that grmK[H] is

G-quadratic, too.

In the case in which e(H) = 2n−1, by Proposition 1.4 we have that I∗H is

a CI. On the other hand, by Lemma 1.6, for j = 2, . . . , n there exist distinct

n − 1 quadratic polynomials fj = x2
j −mj in I∗H , where mj = 0 or mj = xixk

with i < j < k. Therefore, I∗H = (f2, . . . , fn). With respect to the degree reverse

lexicographic order induced by x1 > x2 > · · · we have that gcd(in<(fi), in<(fj)) =
gcd(x2

i , x
2
j ) = 1 for all 2 ≤ i < j ≤ n; hence, {f2, . . . , fn} is a quadratic Gröbner

basis for I∗H .

The case e(H) = 2n−1 − 2n−3 was discussed in Theorem 1.9(b). �

REMARK 1.13

It was proven in [19, Theorem 5.2] that if Λ is any affine semigroup such thatK[Λ]

is Cohen–Macaulay and of minimal multiplicity, then grmK[Λ] is Koszul. With

essentially the same argument as in the proof of Proposition 1.12 one obtains

that grmK[Λ] is G-quadratic.

REMARK 1.14

The fact from Proposition 1.12 that “if e(H) = n, then grmK[H] is Koszul” is

folklore, and it is also mentioned in the survey [9].

By applying [9, Section 6, Proposition 8] it follows that if e(H) = n+ 1 and

the Cohen–Macaulay type τ of K[H] satisfies τ < n−1, then grmK[H] is Koszul.

The proof can be easily continued to conclude that H is G-quadratic.

REMARK 1.15

Let H be a numerical semigroup with e(H) = 2embdim(H)−1. It is easy to see that

if I∗H is CI, then I∗H is generated in degree 2. However, if we assume that IH is

a CI, can we also derive that I∗H is CI and, hence, quadratic?
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2. Quadratic semigroups and gluings

The following construction on numerical semigroups was introduced byWatanabe

[33] and extended later by Delorme [11] and Rosales [26], who seems to have

coined the name gluing.

DEFINITION 2.1

Given the numerical semigroups H1 and H2 and the integers c1, c2 > 1, the semi-

group H = 〈c1H1, c2H2〉 is called a gluing of H1 and H2 if c1 ∈H2, c2 ∈H1, and

gcd(c1, c2) = 1.

We are interested in the situation when one of the glued semigroups is N itself.

DEFINITION 2.2

Given the numerical semigroup L and the integers c > 1 and � such that � ∈
L \ G(L) and gcd(c, �) = 1, the numerical semigroup H = 〈cL, �N〉 is called a

simple gluing of L.

If moreover c= 2, we call 〈2L, �〉 a quadratic gluing.

For the rest of the article, when we describe a semigroup as 〈cL, �〉 we assume

that it is obtained from a simple gluing as in Definition 2.2. If in Definition 2.2

we allow � ∈G(L), then (exactly) one of the generators of H is superfluous and

embdim(H) = embdim(L) (cf. [11, Proposition 10.(ii)]). We want to avoid this

case to have embdim(H) = embdim(L) + 1.

Consider the simple gluing H = 〈cL, �〉. Assume that embdim(L) = n − 1.

We may write

(5) �=

n−1∑
i=1

λiai

as a sum of the minimal generators a1, . . . , an−1 for L and such that
∑n−1

i=1 λi ≥ 2

is maximal. This gives a so-called gluing relation

(6) f = xc
n −

n−1∏
i=1

xλi
i ∈ IH .

The largest value of
∑n−1

i=1 λi such that (5) holds is called the order of � in L,

and it is denoted ordL(�).

By convention, unless it is otherwise specified, when we work with the toric

ideal of H we assume that � corresponds to the last variable xn and the rest of

the generators of H are ordered as in L. If we denote S =K[x1, . . . , xn], it is easy

to see (e.g., in the proof of [33, Lemma 1]) that

(7) IH = (ILS, f).

The next result describes the transfer of quadraticity (and of the Koszul

property) via gluings.
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THEOREM 2.3

Consider the numerical semigroup H = 〈cL, �〉, where gcd(c, �) = 1, c > 1, and

� ∈ L \G(L). Let f be a gluing relation as in (6).

If c≤ ordL(�), then the following hold:

(a) I∗H = (I∗LS, f
∗);

(b) H is quadratic⇐⇒ c= 2 and L is quadratic;

(c) H is Koszul⇐⇒ c= 2 and L is Koszul;

(d) I∗H has a quadratic Gröbner basis ⇐⇒ c = 2 and I∗L has a quadratic

Gröbner basis.

With notation as above, the condition c ≤ ordL(�) implies, using (5), that c ·
e(L)≤ ordL(�) · e(L)≤ �. Since gcd(c, �) = 1 and c > 1 we obtain

(8) e
(
〈cL, �〉

)
= c · e(L)< �.

For the proof of Theorem 2.3 and later results, we need the following technical

lemmas. The first one follows from [17, p. 185, Lemma, part (a)].

LEMMA 2.4

Let I be an ideal in the polynomial ring S = K[x1, . . . , xn] such that I ⊂ m =

(x1, . . . , xn). If f ∈ S is such that deg f∗ > 0 and f∗ is regular on S/I∗, then

(I, f)∗ = (I∗, f∗).

As an immediate corollary of Lemma 2.4 we obtain the next statement.

LEMMA 2.5

Let f1, . . . , fr be a regular sequence in S =K[x1, . . . , xn] such that f∗
1 , . . . , f

∗
r is a

regular sequence, too. Then

(fi1 , . . . , fis)
∗ = (f∗

i1 , . . . , f
∗
is),

for s= 1, . . . , r and 1≤ i1 < · · ·< is ≤ r.

LEMMA 2.6

Consider the ideal I ⊂ K[x1, . . . , xn−1] ⊂ S = K[x1, . . . , xn] and the polynomial

f = xc
n −m with c > 0 and m ∈K[x1, . . . , xn−1]. Then

(a) f is regular on S/IS, and

(b) if degm≥ c, then f∗ is regular on S/I∗S and (IS, f)∗ = (I∗S, f∗).

Proof

Let < be the lexicographic term order on S induced by xn > xn−1 > · · · > x1.

Then in<(f) = xc
n, and under the extra requirement from (b), we also have

in<(f
∗) = xc

n. Since the variable xn does not appear in the monomial genera-

tors for in<(IS) and in<(IS
∗) we get that xc

n is regular on S/ in<(I) and on
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S/ in<(IS
∗). By [12, Proposition 15.15] we obtain part (a) and the first half

of (b).

The second part of (b) results from Lemma 2.4. �

We may now go back to the proof of Theorem 2.3.

Proof of Theorem 2.3

We apply Lemma 2.6 to IL and the gluing relation (6) to conclude that (a) holds.

For (b), if G = {f1, . . . , fr} is any minimal standard basis for IL, by (a) we

get that G′ = G ∪ {f} is a standard basis for IH .

We claim that G′ is minimal. Indeed, since the variable xn appears in G′ only

in f∗, we cannot remove f from G′. If we could remove some fj , say, fr, then

f∗
r =

∑r−1
i=1 hif

∗
i + hf∗ for h,hi ∈ S, i= 1, . . . , r. By Lemma 2.6, f∗ is regular on

S/I∗S and we get h ∈ I∗S, which contradicts the minimality of G.
Therefore, I∗H is generated in degree 2 if and only if I∗L is generated in degree

2 and deg f∗ = 2. This gives (b).

For part (c) we remark that by (b) for any of the two implications that need

to be checked we have deg f∗ = c = 2. According to [3, Lemma 2], since f∗ is

regular on S/I∗S and of degree 2, the ring S/I∗LS is Koszul if and only if

S/I∗LS

(f∗)S/I∗LS
∼= S/(I∗LS, f

∗) = S/I∗H
∼= grmK[H]

is Koszul. Clearly, S/I∗LS is Koszul if and only if K[x1, . . . , xn−1]/I
∗
L (which is

isomorphic to grmK[L]) is Koszul; hence, (c) holds.

For part (d) we first assume that I∗H has a quadratic Gröbner basis G with

respect to some term order <. Without loss of generality we may assume that

G is reduced, and because I∗H is generated by binomials and/or monomials, it is

well known that G consists of monomials and/or binomials of degree 2.

Note that the variable xn may not appear with exponent different from 2 in

any monomial term of any polynomial in G. For an exponent 3 or larger, that

is clear by the quadraticity of G. Also, if we assume that there exists a relation

xnxk−
∏n−1

i=1 xμi

i ∈ IH with k < n and
∑n−1

i=1 μi ≥ 2, we get �+cak = c
∑n−1

i=1 μiai,

which is false since � and c are coprime.

By (8), arguing as in the proof of Lemma 1.6 we obtain xca1
n ∈ I∗H , and also

xca1
n ∈ in<(I

∗
H). Therefore, there exists g = x2

n−m in G such that in<(g) = x2
n and

m is a monomial or 0. If g1 = x2
n −m1 were another element in G containing x2

n,

we could reduce it further with g, but this contradicts the fact that G is a reduced

Gröbner basis. Consequently, the variable xn does not divide any monomial term

of any element of G′ = G \ {g}.
Let J = (G′). Clearly J ⊂ I∗LS. It is easy to see, by the Buchberger criterion,

that G′ is a reduced Gröbner basis for J . Hence,

in<(I
∗
H) = in<(J) + (x2

n).
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Since f∗ is regular on S/I∗LS and x2
n is regular on S/ in(J), using part (a) we

obtain that

HilbS/I∗
H
(t) = (1− t2)HilbS/I∗

LS(t),

HilbS/ in<(I∗
H)(t) = (1− t2)HilbS/ in<(J)(t).

According to Macaulay’s theorem (see [13, Theorem 2.6]) we have HilbS/I∗
H
(t) =

HilbS/ in<(I∗
H)(t) and HilbS/J(t) = HilbS/ in<(J)(t). Hence, S/I∗LS and S/J have

the same Hilbert series, which together with J ⊆ I∗LS gives J = I∗LS.

Consequently, G′ is the reduced Gröbner basis for I∗LS and also for I∗L, and

we are done. Indeed, if q ∈ I∗LS, then in<(q) is not divisible by x2
n, and hence, it

is divisible by in<(g
′) for some g′ ∈ G′.

For the converse, assume that c = 2 and that I∗L has a quadratic Gröbner

basis G′ with respect to some term order <′ on K[x1, . . . , xn−1]. Let < be the

block order (lex,<′) where we first apply the lexicographic term order on the

variable xn and for ties we apply <′ on the rest of the monomial in the variables

x1, . . . , xn−1. Then in<(f
∗) = x2

n.

We claim that G = G′ ∪{f∗} is a Gröbner basis for I∗H . Indeed, G′ is already

a Gröbner basis; hence, the only S-pairs to be checked involve f∗ and g ∈ G′.

Since their leading terms are coprime, S(f∗, g)
G→ 0. This finishes the proof. �

Since the hypothesis of Theorem 2.3 implies that ordL(�) ≥ 2, we obtain the

following corollary.

COROLLARY 2.7

Let L be any numerical semigroup, and let � ∈ L \G(L) be an odd integer. Then

the semigroup 〈2L, �〉 is quadratic (Koszul) if and only if L is quadratic (Koszul).

We will also need the following consequence.

COROLLARY 2.8

Let L be a quadratic numerical semigroup, and let � ∈ L\G(L) be an odd integer.

Denote H = 〈2L, �〉. The following hold:

(a) H is a CI semigroup⇐⇒ L is a CI semigroup;

(b) if I∗L is an almost-CI, then I∗H is an almost-CI, too.

Proof

By Corollary 2.7, H is quadratic. Since e(H) = 2e(L), part (a) follows from

Theorem 1.1(c). For part (b), denote embdim(L) = n− 1. Hence, μ(I∗L) = n− 1,

and by Theorem 2.3(a) we obtain μ(I∗H) ≤ n. If μ(I∗H) = n− 1, by part (a) we

get that L is CI, which is false. Therefore, μ(I∗H) = n. �

REMARK 2.9

In general, if grmK[L] is a CI, then it it not always true that for H = 〈cL, �〉
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its tangent cone grmK[H] is CI, too. If we let H = 〈4〈2,5〉,7〉= 〈7,8,20〉, map-

ping the variables to the generators taken in increasing order, we have I∗H =

(x2
3, x2x3, x

4
1x3, x

7
2), which is not even a Cohen–Macaulay ideal.

REMARK 2.10

If c > ord(�), we have less control over the output of the gluing, even if deg f∗ =

ordL(�) = 2. Let L = 〈4,6,7,9〉. Clearly, ordL(8) = ordL(10) = 2. It is easy to

compute (e.g., using Singular [10] or CoCoa [1])

I∗L = (x2
2, x2x3 − x1x4, x

2
3, x2x4, x3x4, x

2
4)

and check that the listed generators are a quadratic Gröbner basis with respect

to the degree reverse lexicographic order on x1 > x2 > x3 > x4.

We may also check that, for the gluing H1 = 〈3L,8〉= 〈12,18,21,27,8〉, the
ideal

I∗H1
= (x2

1, x
2
2, x2x3 − x1x4, x

2
3, x2x4, x3x4, x

2
4)

has a quadratic Gröbner basis with respect to the same term order as above.

However, for the gluing H2 = 〈3L,10〉= 〈12,18,21,27,10〉 the ideal

I∗H2
= (x1x2, x

2
2, x2x3 − x1x4, x

2
3, x2x4, x3x4, x

2
4, x

3
1x3 − x4x

3
5, x

4
1 − x2x

3
5)

is not generated in degree 2.

REMARK 2.11

Arbitrary gluings of quadratic numerical semigroups may not be quadratic any-

more. If we consider the Koszul semigroups H1 = 〈2,3〉, H2 = 〈2,5〉, and the

gluing H = 〈7H1,5H2〉 = 〈14,21,10,15〉, we have that e(H) > 8, and according

to our Theorem 1.1, H is not quadratic. Note that by Delorme’s Theorem 2.13,

H is a CI semigroup.

EXAMPLE 2.12

Watanabe [33, Lemma 3] shows that for any odd integer a > 0 the semigroup

Wn(a) = 〈2n,2n + a,2n + 2a,2n + 4a, . . . ,2n + 2ia, . . . ,2n + 2n−1a〉

is a CI of embdim(Wn(a)) = n+ 1. We prove that it is a Koszul semigroup.

It is easy to see by induction on n that Wn(a) may be obtained by sim-

ple gluings by the rule Wn(a) = 〈2Wn−1(a),2
n + a〉 for any n > 1, starting from

W1(a) = 〈2,2 + a〉. Clearly, W1(a) is Koszul; hence, by induction using Theo-

rem 2.3(c) we get that Wn(a) is a Koszul semigroup for any n.

Our next result shows that the quadratic (and Koszul) semigroups H for which

K[H] is a CI are obtained from N by a sequence of quadratic gluings. We first

recall Delorme’s structure theorem for CI semigroup rings.

THEOREM 2.13 (DELORME [11, PROPOSITION 9])

Let H be a numerical semigroup. Then K[H] is a CI if and only if either H =N
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or there exist numerical semigroups H1, H2 and coprime integers c1, c2 such that

H = 〈c1H1, c2H2〉, c1 ∈H2 \G(H2), c2 ∈H1 \G(H1), and K[H1], K[H2] are CIs.

THEOREM 2.14

Let H be a numerical semigroup such that K[H] is a CI. The following are

equivalent:

(a) H is obtained uniquely from N by a series of quadratic gluings H0 =

N, H1 = 〈2H0, �1〉, . . . ,Hn−1 = 〈2Hn−2, �n−1〉=H , where �i is an odd integer in

Hi−1 \G(Hi−1) for i= 1, . . . , n− 1;

(b) H is Koszul;

(c) H is quadratic.

Proof

For (a) ⇒ (b) we start with H0, which is Koszul, and we repeatedly use The-

orem 2.3 to derive that H1, . . . ,Hn−1 =H are Koszul, as well. The implication

(b) ⇒ (c) is clear.

For (c) ⇒ (a) we assume that H is quadratic. We prove the existence of a

chain of quadratic gluings by induction on n= embdim(H). For n= 1 we have

H =N, and there is nothing to prove. If n= 2, then H = 〈a, b〉 with a < b coprime.

This gives IH = (xb
1 − xa

2) and I∗H = (xa
2). Since H is quadratic we get a= 2 and

b is odd. Hence, H = 〈2N, b〉 is a simple gluing as desired.

Assume that all CI quadratic semigroups of embedding dimension smaller

than n may be obtained as in (a). Let H be a quadratic CI semigroup with

embdim(H) = n. By Delorme’s Theorem 2.13, H = 〈c1U, c2V 〉, where U and V

are CI with embdim(U) = r and embdim(V ) = n− r.

If r = 1, then by Theorem 2.3(b) c2 = 2 and V must be quadratic; that is,

H = 〈c1,2V 〉. By the induction hypothesis, we may obtain V from N via quadratic

gluings, and we are done. The case n− r = 1 is treated similarly.

Assume that r > 1 and n − r > 1. If IU = (f1, . . . , fr−1) and IV = (fr, . . . ,

fn−2), then from the proof of Delorme’s Theorem 2.13, IH = IU + IV + (fn−1),

where the gluing relation fn−1 is obtained in a similar way as in (6). Since

H is quadratic, by Lemma 1.5 we get that f1, . . . , fn−1 is a minimal standard

basis of IH , and since height IH = height I∗H = n− 1 we get that f1, . . . , fn−1 and

f∗
1 , . . . , f

∗
n−1 are regular sequences. By Lemma 2.5 we obtain that f1, . . . , fr−1

and fr, . . . , fn−2 form a standard basis for IU and IV , respectively. This gives

that U and V are quadratic CI semigroups.

By Theorem 1.1, e(U) = 2r−1 and e(V ) = 2n−r−1. Without loss of generality

we may assume that e(H) = c1e(U). Then c1 = 2n−r and c2 ∈ U is odd. By the

induction hypothesis we may obtain V from a quadratic gluing: V = 〈2W,�〉,
where W is quadratic and CI, and � ∈W \G(W ) is odd. Hence, e(W ) = 2n−r−2.

By Delorme’s Theorem 2.13 the numerical semigroup Z = 〈2n−r−1U, c2W 〉 is CI,
obtained by gluing the CI semigroups U and W . Note that we may write

H = 〈c1U, c2V 〉=
〈
2n−rU, c2〈2W,�〉

〉
= 〈2n−rU,2c2W,c2 · �〉= 〈2Z, c2 · �〉.
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Since c2 · � is odd and c2 · � ∈ Z \G(Z) (because � ∈W \G(W )) we may apply

Corollary 2.7 to obtain that Z is a quadratic numerical semigroup. Since Z is CI

and embdim(Z) = n− 2, by the induction hypothesis it may be obtained from N
by quadratic gluings, so the same is true for H .

The uniqueness of the decomposition follows from the fact that there is

exactly one odd minimal generator for H . Hence, it must be chosen as �n−1. �

As an application of the gluing construction we present an infinite family of

quadratic almost-CI semigroups satisfying the upper bound in Theorem 1.9(b).

EXAMPLE 2.15

Let H4 = 〈6,7,8,9〉. We may read the defining equations of grmK[H4] from the

proof of Proposition 3.1, and we have that H4 is Koszul and μ(I∗H4
) = 4. Hence,

I∗H4
is an almost-CI ideal. We recursively construct the semigroups

Hn+4 = 〈2Hn+3,3
n+2〉, for all n > 0.

It is easy to check by induction and by using Theorem 2.3 that for all n > 0:

(a) 3n+2 ∈ Hn+3; hence, Hn+4 is obtained by a simple gluing from Hn+3

and embdim(Hn+4) = n+ 4;

(b) Hn+4 = 〈2n · 6,2n · 7,2n · 8,2n · 9,2n−1 · 33,2n−2 · 34, . . . ,2 · 3n+1,3n+2〉;
hence, e(Hn+4) = 2n+3 − 2n+1;

(c) IHn+4 = (x2
2−x1x3, x

2
3−x2x4, x2x3−x1x4, x

3
1−x2

4)+(x3
i −x2

i+1 : 4≤ i≤
n+ 3);

(d) I∗Hn+4
= (x2

2 − x1x3, x
2
3 − x2x4, x2x3 − x1x4) + (x2

i : 4≤ i≤ n+4); hence,

it is an almost-CI ideal.

More generally than Question 1.11 we may ask the following.

QUESTION 2.16

For a given n > 1 what is the possible multiplicity of any quadratic (or Koszul)

semigroup H with embdim(H) = n?

The results presented so far and in the next section show that there are exam-

ples of Koszul semigroups whenever n≤ e(H)≤ 2n− 2, e(H) = 2n−1 − 2n−3, or

e(H) = 2n−1. We remark that the gluing construction described in Corollary 2.7

allows us to construct new quadratic (or Koszul) semigroups with double multi-

plicity and of embedding dimension increased by 1.

3. Quadraticity in some families of semigroups

Let H be a quadratic numerical semigroup of embedding dimension n. By the

results described so far we have that

n≤ e(H)≤ 2n−1.(9)
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These bounds are tight. Indeed, if e(H) = n, then H is quadratic by Proposi-

tion 1.3 and even G-quadratic by Proposition 1.12. The upper bound is reached,

for example, in Example 2.12.

In this section we study the quadratic property in some families of numerical

semigroups that have been considered in the literature.

3.1. Koszul arithmetic and geometric sequences
A sequence a1 < a2 < · · · < an of nonnegative integers is called an arithmetic

sequence or a geometric sequence if there exists a d such that ai+1 = d+ ai or

ai+1 = dai, respectively, for i= 1, . . . , n− 1.

We show that the multiplicity of quadratic semigroups generated by an arith-

metic sequence is in the lower part of the interval in (9), while for geometric

sequences the multiplicity is maximal.

The next statement about the tangent cone of a numerical semigroup gen-

erated by an arithmetic sequence is of interest by itself. We could not locate

this result in the literature, so for the convenience of the reader we give a proof,

including the references on which our proof is based.

PROPOSITION 3.1

If the numerical semigroup H is generated by an arithmetic sequence a1 < · · ·<
an, then I∗H is minimally generated by its reduced Gröbner basis with respect to

the degree reverse lexicographic order induced by x1 > x2 > · · ·> xn.

Proof

Let S = K[x1, . . . , xn]. Patil [24] proved that, under our hypothesis on H , the

generators of the toric ideal IH depend on the unique positive integers a and b

with 1≤ b≤ n− 1 such that a1 = a(n− 1) + b. Namely,

IH = (xixj+1 − xi+1xj : 1≤ i < j ≤ n− 1) + (xa
nxb+i − xa+d

1 xi : 1≤ i≤ n− b).

It is shown in the proof of [20, Proposition 2.5] that these generators of IH are

also a standard basis of I∗H (alternatively see [29, Corollary 2.4(iii)]). Hence,

I∗H = (xixj+1 − xi+1xj : 1≤ i < j ≤ n− 1) + (xa
nxb+i : 1≤ i≤ n− b).

Denote fij = xixj+1 − xi+1xj for 1 ≤ i < j ≤ n− 1 and gi = xa
nxb+i for 1 ≤ i ≤

n− b.

We verify Buchberger’s criterion (see [13, Theorem 2.14]) for

G = {fij : 1≤ i < j ≤ n− 1} ∪ {gi : 1≤ i≤ n− b}.

We first note that the ideal J generated by the fij ’s is the ideal of 2-minors of

the matrix of indeterminates(
x1 x2 · · · xn−1

x2 x3 · · · xn

)
,

and it is the defining ideal of the rational normal scroll. We may also view J as

the binomial edge ideal attached to the complete graph Kn. Since Kn is a closed
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graph, by [7, Theorem 1.1] we obtain that the fij ’s form a Gröbner basis for J

with respect to our term order. We refer to [7] for the unexplained terminology.

Since the S-pair of two monomials is zero, all that is left to show is that

S(fij , gk)
G→ 0. For 1 ≤ i < j ≤ n − 1 the leading monomial in<(fij) = xi+1xj

is coprime to xn. If gcd(in<(fij), gk) = 1, then S(fij , gk)
G→ 0 (see [13, Proposi-

tion 2.15]). Otherwise, if gcd(xi+1xj , gk) �= 1 or, equivalently, xb+k | xi+1xj , then

we get that b+k ∈ {i+1, j} and b+k < j+1. Therefore, S(fij , gk) = xa
nxixj+1 =

xi(x
a
nxj+1) is a multiple of an element in G and S(fij , gk)

G→ 0 in this case, as

well. �

The next statement describes the Koszul arithmetic sequences.

PROPOSITION 3.2

Fix n≥ 3. Let a1 and d be positive integers such that n≤ a1 and gcd(a1, d) = 1.

If we let

H =
〈
a1, a1 + d, . . . , a1 + (n− 1)d

〉
,

then the following are equivalent:

(a) I∗H has a quadratic Gröbner basis;

(b) grmK[H] is Koszul;

(c) I∗H is generated by quadrics;

(d) n≤ a1 ≤ 2n− 2.

Proof

With notation as in the proof of Proposition 3.1 we observe that I∗H is generated

by quadrics if and only if a= 1; that is, n≤ a1 ≤ 2n− 2. Hence, (c) ⇒ (d). By

Proposition 3.1 in these cases I∗H has a quadratic Gröbner basis. Hence, (d) ⇒
(a). The rest of the implications are known to hold in general. �

The class of compound semigroups was recently introduced by Kiers, O’Neill,

and Ponomarenko [21].

DEFINITION 3.3 ([21])

Consider the integers 2 ≤ ai < bi such that gcd(ai, bi · · · bn) = 1 for i = 1, . . . , n.

Let qi = b1 · · · bi−1ai · · ·an, for i= 1, . . . , n+1. The sequence q1, . . . , qn+1 is called

a compound sequence, and the semigroup H = 〈q1, . . . , qn〉 is called a compound

semigroup.

With notation as above, if a1 = · · ·= an and b1 = · · ·= bn, then q1, . . . , qn+1 is a

geometric sequence. In what follows we show that for any compound semigroup

H we have that I∗H is CI and this allows us to identify the quadratic (equivalently,

Koszul) compound semigroups.
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PROPOSITION 3.4

Let 2< ai < bi be positive integers such that gcd(ai, bi · · · bn) = 1 for i= 1, . . . , n.

Let

H = 〈a1a2 · · ·an, b1a2 · · ·an, b1b2a3 · · ·an, . . . , b2 · · · bn〉.

The following hold:

(a) the ideal I∗H is a CI;

(b) I∗H is quadratic⇐⇒H is Koszul⇐⇒ ai = 2 for i= 1, . . . , n.

Proof

For part (a) we observe that H is obtained from another compound semigroup

by a simple gluing:

H =
〈
a1a2 · · ·an, b1〈a2 · · ·an, b2a3 · · ·an, . . . , b2 · · · bn〉

〉
,

which gives a first (gluing) relation f1 = xb1
1 −xa1

2 in IH . We continue decompos-

ing into compound semigroups of smaller embedding dimension, and in the end

we get

(10) IH = (xb1
1 − xa1

2 , xb2
2 − xa2

3 , . . . , xbn
n − xan

n+1).

By Delorme’s Theorem 2.13 we get that IH is a CI.

If for any f ∈ S =K[x1, . . . , xn+1] we denote by f̄ the polynomial f(0, x2, . . . ,

xn+1) in K[x2, . . . , xn+1], then one has ĪH = (xa1
2 , xa2

3 , . . . , x
an+1

n+1 ). These gener-

ators form a standard basis for the homogeneous ideal ĪH , and each of these

generators can be lifted to an element in IH with the same initial degree. There-

fore, by the criterion in [17, Theorem 1] (see also [20, Lemma 1.2]) we conclude

that the generators in (10) are a standard basis. Hence, I∗H = (xa1
2 , xa2

3 , . . . , x
an+1
n )

and I∗H is a CI.

From this it follows that I∗H is quadratic if and only if a1 = · · ·= an = 2. The

remaining equivalence from (b) is given by Theorem 2.14. �

The next result shows a family of CIs that are never quadratic.

PROPOSITION 3.5

Let a1, . . . , an be pairwise coprime positive integers, n > 2. Let P =
∏n

i=1 ai. The

numerical semigroup H = 〈P/a1, . . . , P/an〉 is a CI semigroup that is never qua-

dratic.

Proof

Without loss of generality assume that a1 > · · · > an. We prove the CI prop-

erty by induction on n, and we identify a decomposition satisfying Delorme’s

Theorem 2.13. Letting Q= P/a1, we may write

H =
〈
P/a1, a1〈Q/a2, . . . ,Q/an〉

〉
.
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Hence, H is obtained via a simple gluing from the semigroup L = 〈Q/a2, . . . ,

Q/an〉, which is CI by the induction hypothesis. This gluing gives IH = (xa1
1 −

xa2
2 , IL), and after iterating this ungluing several times we obtain

IH = (xa1
1 − xa2

2 , xa2
2 − xa3

3 , . . . , x
an−1

n−1 − xan
n ).

We argue as in the proof of Proposition 3.4(b). Modulo x1, ĪH = (xa2
2 , xa3

3 , . . . ,

xan
n ), whose (monomial) generators are a standard basis, and they may be nat-

urally lifted to polynomials in IH with the same initial degree. By the same

criterion in [20, Lemma 1.2], IH is generated by a standard basis and I∗H =

(xa2
2 , xa3

3 , . . . , xan
n ). Since n > 2 and the ai’s are coprime, it is clear that I∗H is not

generated in degree 2.

Second (partial) proof of the nonquadraticity. Given that H is CI, if it were

also quadratic, by Theorem 1.1 we would have P/a1 = 2n−1. Since the ai’s are

coprime, P/a1 = 2n−1 has at least n−1 distinct prime divisors, which is false for

n > 2. �

3.2. Koszul 3-semigroups
We next describe the Koszul numerical semigroups of embedding dimension 3.

Let H be a quadratic numerical semigroup minimally generated by a1 <

a2 < a3. By Theorem 1.1, e(H) ∈ {3,4}. For any of these two values, by Propo-

sition 1.12 we get that H is Koszul.

Assume that e(H) = 4. By Theorem 1.1(c), H is a quadratic CI. Hence, by

Theorem 2.14 it is obtained from N via quadratic gluings: H = 〈2〈2, c〉, �〉, where
c and � are odd integers, c > 1, � ∈ 〈2, c〉 \ {2, c}, that is, �= 2α+ cβ, β = 2γ +1

is odd, and α and γ are not simultaneously equal to 0. Equivalently,

H = 〈4,2c, �〉= 〈4,2c,2α+ cβ〉=
〈
4,2c,2(α+ cγ) + c

〉
= 〈4,2c,2a+ c〉,

where a, c are positive integers with c > 1 odd. Here we denoted a = α + cγ.

Clearly, a > 0; otherwise, H = 〈4, c〉 and embdim(H)< 3, a contradiction.

We group these findings into the next result.

PROPOSITION 3.6

Let H be a numerical semigroup with embdim(H) = 3. The following are equiv-

alent:

(a) H is a Koszul semigroup;

(b) H is a quadratic semigroup;

(c) e(H) = 3 or e(H) = 4 and H = 〈4,2c,2a + c〉, where a, c are positive

integers with c > 1 odd.

T. Shibuta [30] has communicated to the second author that he could prove

Proposition 3.6 by using [16] and [17].
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3.3. Special almost-complete intersections
Let H be a numerical semigroup minimally generated by a1 < · · · < an, where

n > 2. For i= 1, . . . , n, let ci be the smallest positive integer such that ciai is a

sum of the other generators. This produces a binomial fi = xci
i −mi in IH , where

mi is not divisible by xi.

It is clear that xci
i is the least pure power of xi that occurs as a term of any

polynomial in IH . If we are able to choose mi that is not a pure power for any

i, then the fi’s are distinct. If moreover they generate IH , we say that H is a

special almost-CI semigroup. By [16], any 3-generated numerical semigroup that

is not a CI is a special almost-CI.

We note that, by Lemma 1.5, if H is quadratic and a special almost-CI

numerical semigroup, then I∗H is an almost-CI ideal.

PROPOSITION 3.7

Assume H is a quadratic and special almost-CI semigroup. Then I∗H has a qua-

dratic Gröbner basis with respect to the degree reverse lexicographic order if

and only if e(H) = 2n−1 − 2n−3. In particular, grmK[H] is Koszul if e(H) =

2n−1 − 2n−3.

Proof

With notation as above, if H is quadratic, by Lemma 1.6 we get that c1 > 2 and

ci = 2 for all i > 1. By Lemma 1.5 we obtain that I∗H = (f∗
1 , . . . , f

∗
n) and that

it is a minimal generating set. Clearly, we have in<(f
∗
i ) = x2

i for 1 < i ≤ n and

in<(f
∗
1 ) = xjxk for some 2≤ j < k < n. We note that x1 does not occur in any

of the in<(f
∗
i )’s. Hence,

e(H) = e(S/I∗H) = e
(
S/ in<(I

∗
H)

)
≤ �

(
K[x2, . . . , xn]/

(
in<(f

∗
1 ), . . . , in<(f

∗
n)
))

= �
(
K[x2, . . . , xn]/(x

2
2, . . . , x

2
n, xjxk)

)
= 2n−1 − 2n−3,

after a computation similar to the one in the proof of Theorem 1.5(b). We con-

clude that e(H) = 2n−1 − 2n−3 if and only if f∗
1 , . . . , f

∗
n form a Gröbner basis for

I∗H . �

EXAMPLE 3.8

A quadratic special almost-CI of embedding dimension n need not be Koszul if

e(H)< 2n−1 − 2n−3. Indeed, let H = 〈11,13,14,15,19〉. Then
IH = (x3

1 − x3x5, x
2
2 − x1x4, x

2
3 − x2x4, x

2
4 − x1x5, x

2
5 − x1x2x3).

As noticed in Remark 1.10, H is quadratic, but it is not a Koszul semigroup.

As an extension of Corollary 2.8 we have the following.

COROLLARY 3.9

Let L be a special almost-CI numerical semigroup that is quadratic, and let � ∈
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L \G(L) be an odd integer that is not a multiple of e(L). Then H = 〈2L, �〉 is a

special almost-CI semigroup, too.

Proof

By Corollary 2.8 together with Lemma 1.5 we get that H is quadratic and that

IH is an almost-CI ideal. Let n = embdim(H). If we denote by f the gluing

relation, then using the convention that xn corresponds to the new generator

�, we have that IH = (IL, f), and the gluing relation f from (6) is of the form

x2
n −m, where m is a monomial in the variables x1, . . . , xn−1.

We claim that we may choose f such that m is not a pure power. Indeed, if

m= xc
1 with c > 1, then � is a multiple of e(L), which contradicts our assumption.

Assume that m= xc
i with 1< i≤ n− 1 and c > 1. By our assumption on L and

Lemma 1.6, there exists an equation fi = x2
i − u, where u is a monomial which

is not a pure power. Then we can replace f by x2
n − xc−2

i u. Since L is special

almost-CI, we conclude that the same is true about H . �

REMARK 3.10

As a consequence of Corollary 3.9, starting from any quadratic special almost-CI

semigroup, by gluing we can construct semigroups with these properties of any

larger embedding dimension.

3.4. Symmetric and pseudosymmetric Koszul 4-semigroups
The pseudo-Frobenius numbers of the numerical semigroup H are the elements

of the finite set

PF (H) =
{
n ∈ Z \H : n+ h ∈H, for all h ∈H \ {0}

}
.

The Frobenius number of H , usually defined as g(H) =maxN \H , also satisfies

g(H) =maxPF (H).

The semigroup H is called symmetric if for any integer n exactly one of n or

g(H)− n is in H . Algebraically, by a celebrated theorem of Kunz [23, Theorem,

p. 749], H is symmetric if and only if K[H] is a Gorenstein ring. One can check

that H is symmetric if and only if PF (H) = {g(H)}. The semigroup H is called

pseudosymmetric if PF (H) = {g(H)/2, g(H)}.
In the remainder of Section 3.4 we describe the 4-generated symmetric or

pseudosymmetric numerical semigroups that are also Koszul.

3.4.1. The symmetric case

Let H be a symmetric numerical semigroup such that embdim(H) = 4. If H

is CI and Koszul, then by Theorem 2.14 we have that H is obtained from N
by a sequence of quadratic simple gluings. Using also Proposition 3.6 we have

that H = 〈2〈4,2c,2a+ c〉, �〉= 〈8,4c,4a+2c, �〉, where a, c, � are positive integers,
c, � > 1 are odd, and � ∈ 〈4,2c,2a+ c〉 \ {2a+ c}.

If H is not CI, we employ the following characterization found by Bresinsky

[5], as given by Barucci, Fröberg, and Şahin [4, Theorem 3].
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THEOREM 3.11 (BRESINSKY [5, THEOREMS 5, 3])

The numerical semigroup H = 〈a1, a2, a3, a4〉 is 4-generated symmetric, not a CI,

if and only if there are integers ci, 1≤ i≤ 4, and αij , ij ∈ {21,31,32,42,13,43,
14,24}, such that for 0<αij < ci, for all i,j,

c1 = α21 + α31, c2 = α32 + α42, c3 = α13 + α43, c4 = α14 + α24,

a1 = c2c3α14 + α32α13α24, a2 = c3c4α21 + α31α43α24,

a3 = c1c4α32 + α14α42α31, a4 = c1c2α43 + α42α21α13.

Then K[H]∼= S/(f1, f2, f3, f4, f5), where

f1 = xc1
1 − xα13

3 xα14
4 , f2 = xc2

2 − xα21
1 xα24

4 , f3 = xc3
3 − xα31

1 xα32
2 ,

f4 = xc4
4 − xα42

2 xα43
3 , f5 = xα43

3 xα21
1 − xα32

2 xα14
4 .

For quadratic, symmetric, and not CI semigroups we obtain the following classi-

fication result.

THEOREM 3.12

Let H be a 4-generated semigroup that is symmetric and not a CI. The following

are equivalent:

(a) H is Koszul;

(b) H is quadratic;

(c) e(H) = 5;

(d) H = 〈5,4a+ b,2a+ 3b,3a+ 2b〉 for some positive integers a, b such that

a− b is not divisible by 5.

Moreover, the integers a and b in (d) are uniquely determined by H .

Proof

The implication (a)⇒ (b) is clear. For (b)⇒ (c) assume that H = 〈a1, a2, a3, a4〉
is quadratic. Using Lemma 1.6 and Bresinsky’s Theorem 3.11, without loss of

generality we may assume that c1 > 2 (i.e., e(H) = a1) and c2 = c3 = c4 = 2.

The conditions 0 < αij < ci give αij = 1 for ij ∈ {32,42,13,43,14,24}; hence,
a1 = c2c3α14 + α32α13α24 = 5.

For (c)⇒ (d), taking into account the restrictions in Theorem 3.11 we note

that the equation

5 = c2c3α14 + α32α13α24

holds only if αij = 1 for ij ∈ {14,32,13,24} and if c2 = c3 = 2. The latter set of

equalities yields α42 = α43 = 1. For brevity we denote a= α21 and b= α31. We

plug these values into Bresinsky’s theorem, and we get a2 = 4a+ b, a3 = 2a+3b,

and a4 = 3a+ 2b.
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We show that this parameterization is one-to-one. Let a, b, a′, b′ > 0 and 5 �
a− b, 5 � a′ − b′ such that

〈5,4a+ b,2a+ 3b,3a+ 2b〉= 〈5,4a′ + b,2a′ + 3b′,3a′ + 2b′〉.

Note that 4a+ b,3a+ 2b,2a+ 3b and 4a′ + b′,3a′ + 2b′,2a′ + 3b′ are arithmetic

sequences with common difference b− a, and b′ − a′, respectively.

If (b−a)(b′−a′)< 0, then b−a= a′−b′ and 5a+(b−a) = 4a+b= 2a′+3b′ =

5b′ + 2(a′ − b′). Hence, 5 | b− a, which is false.

If (b−a)(b′−a′)> 0, then b−a= b′−a′ and 5a+(b−a) = 4a+b= 4a′+b′ =

5a′ + (b′ − a′). Hence, (a, b) = (a′, b′), and we are done.

For (d)⇒ (a) we first note by using Bresinsky’s theorem that H is indeed

symmetric and all the ci’s and the αij ’s can be read from the proof of the impli-

cation (c)⇒ (d).

Consequently, IH = (f1, f2, f3, f4, f5), where

f1 = xa+b
1 − x3x4, f2 = x2

2 − xa
1x4, f3 = x2

3 − xb
1x2,

f4 = x2
4 − x2x3, f5 = x3x

a
1 − x2x4.

Modulo x1 we get

(11) ĪH = (x3x4, x
2
2, x

2
3, x

2
4 − x2x3, x2x4),

a monomial ideal whose generators (at the same time, a standard basis) may be

lifted to the fi’s in IH and keep the same initial degree. We apply the criterion

in [20, Lemma 1.2] to conclude that x1 is regular on S/I∗H and f1, . . . , f5 form a

standard basis for IH . Hence,

(12) I∗H =

⎧⎪⎪⎨
⎪⎪⎩
(x3x4, x

2
2, x

2
3, x

2
4 − x2x3, x2x4) if a �= 1 and b �= 1,

(x3x4, x
2
2 − x1x4, x

2
3, x

2
4 − x2x3, x3x1 − x2x4) if a= 1 and b �= 1,

(x3x4, x
2
2, x

2
3 − x1x2, x

2
4 − x2x3, x2x4) if a �= 1 and b= 1.

It is easy to check that in each of these situations I∗H has a quadratic Gröbner

basis with respect to the degree reverse lexicographic order induced by x4 > x3 >

x2 > x1. In particular, S/I∗H is a Koszul ring. �

We verified with Singular [10] that in any of the three cases from (12) the ring

S/I∗H is Gorenstein. Together with Theorem 1.1(c) we obtain the following.

COROLLARY 3.13

Let H be a 4-generated symmetric and quadratic numerical semigroup. Then

grmK[H] is Gorenstein.

3.4.2. The pseudosymmetric case

Four-generated pseudosymmetric semigroups were characterized by Komeda [22],

where these were studied under the name almost-symmetric. In the formulation

from [4], the following holds.
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THEOREM 3.14 (KOMEDA [22, THEOREMS 6.4, 6.5])

The semigroup H = 〈a1, a2, a3, a4〉 is pseudosymmetric if and only if there are

positive integers ci > 1, 1≤ i≤ 4, and 0<α21 < c1 − 1 such that

a1 = c2c3(c4 − 1) + 1, a2 = α21c3c4 + (c1 − α21 − 1)(c3 − 1) + c3,

a3 = c1c4 + (c1 − α21 − 1)(c2 − 1)(c4 − 1)− c4 + 1,

a4 = c1c2(c3 − 1) + α21(c2 − 1) + c2,

and gcd(a1, a2, a3, a4) = 1. Then K[H]∼= S/(f1, f2, f3, f4, f5), where

f1 = xc1
1 − x3x

c4−1
4 , f2 = xc2

2 − xα21
1 x4, f3 = xc3

3 − xc1−α21−1
1 x2,

f4 = xc4
4 − x1x

c2−1
2 xc3−1

3 , f5 = xc3−1
3 xα21+1

1 − x2x
c4−1
4 .

The quadratic pseudosymmetric 4-semigroups are described by the following

result.

PROPOSITION 3.15

Let H = 〈a1, a2, a3, a4〉 be a pseudosymmetric numerical semigroup. The following

are equivalent:

(a) H is Koszul;

(b) H is quadratic;

(c) H = 〈5,3a+ b+ 1,3b− a− 2, a+ 2b+ 2〉 for some integers 0< a< b− 1

such that 3a+ b+ 1 is not a multiple of 5.

Proof

For (b)⇒ (c), by Lemma 1.6 and the restriction 0 < α21 < c1 − 1 in Komeda’s

Theorem 3.14, we get that e(H) = a1 and c2 = c3 = c4 = 2. This gives a1 = 5,

a2 = 3α21 + c1 + 1, a3 = 3c1 − α21 − 2, and a4 = 2c1 + α21 + 2. Letting a = α21

and b= c1 we obtain the desired description.

Note that 3a2 ≡ a3mod5 and 2a2 ≡ a4mod5. Therefore, gcd(a1, a2, a3, a4) =

1 precisely when 3a+ b+ 1 is not a multiple of 5.

For (c)⇒ (a), by Komeda’s theorem we have

IH = (xb
1 − x3x4, x

2
2 − xa

1x4, x
2
3 − xb−a−1

1 x2, x
2
4 − x1x2x3, x3x

a+1
1 − x2x4).

Modulo x1 it becomes ĪH = (x3x4, x
2
2, x

2
3, x

2
4, x2x4). These monomials can be

lifted to polynomials in IH with the same initial degree. Hence, by using the

criterion in [20, Lemma 1.2], IH is generated by a standard basis, and x1 is a

regular element (of degree 1) on S/I∗H . From here we notice that I∗H is gener-

ated in degree 2. Since (S/I∗H)/x1(S/I
∗
H)∼=K[x2, x3, x4]/(x3x4, x

2
2, x

2
3, x

2
4, x2x4),

which is Koszul, by [3, Lemma 2], S/I∗H is Koszul as well. �
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