
A metric linear space is an open cone
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Abstract In this paper we show that a metrizable topological vector space over R is

topologically an open cone. This generalizes the partial results obtained by Henderson.

If X , Y are topological spaces and if A closed ⊆X , then the reduced product

of X and Y over A, which we denote by (X × Y )A, is defined by (X × Y )A =

((X\A)× Y ) ∪A with the topology given by {U × V : U open ⊆X\A, V open

⊆ Y } ∪ {((U\A)× Y )∪ (A∩U) : U open ⊆X} (see [3, p. 25]). In particular, an

open cone C(X) over a topological space X is defined as C(X) = (R+ ×X){0}.

A metric topological vector space T overR has an F -norm; that is, a function

| · | : T →R+ satisfying

(1) |x|= 0 iff x= 0,

(2) |x+ y| ≤ |x|+ |y|,
(3) |λx| ≤ |x| for all λ ∈R,−1≤ λ≤ 1,

and d0(x, y) = |x− y| is a translation invariant metric defining the topology of

T (see [6]). Replacing the F -norm by the F -norm |x|′ =
∫ 1

0
|tx|dt, we obtain

another metric defining the T -topology, and it has the Eidelheit–Mazur property;

that is, for all 0 �= x ∈ T , d(t1x,0)< d(t2x,0) for all t1, t2 ∈R with t1 < t2, and

we may assume that d < 1 (see [4], [7]). In this paper we shall always assume

that the F -norm on T and its induced metric have these properties. T is said

to admit arbitrary short lines if for all ε > 0, there exists 0 �= x ∈ T such that

supt∈R |tx|< ε.

In [8, Lemma 1.1] and [9, Lemma 2] Henderson showed that some special

classes of metric topological vector spaces over R are topologically open cones.

In particular, this result holds for infinite-dimensional locally convex metric linear

spaces (see [8, Lemma 1.1]) by virtue of a peculiar topological property of these

spaces (see [2, Proposition 1.1]). In this paper, we show that this property holds

for any metric linear space that admits arbitrary short lines (see Proposition 3).

This will enable us to establish that every metric topological vector space over

R is topologically an open cone (see Theorem 4).

Recall that if T is any Hausdorff topological vector space over R, then an

open neighborhood of 0 in T is called shrinkable if [0,1)U ⊆ U , and the Minkowski
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functional μ of U is the function μ : T →R+ defined by μ(x) = inf{t > 0 : x ∈ tU}.
It follows that

(1) μ(tx) = tμ(x) for all t ∈R+,

(2) μ−1([0,1)) = U and μ−1([0,1]) = U ,

(3) tU ⊆ t1U for 0< t < t1,

so that μ−1([0, t)) =
⋃

t1<t t1U and μ−1((t,∞)) =
⋃

t1>t(T − t1U); hence, μ is

continuous. Note that open shrinkable neighborhoods of 0 in T form a local basis

at 0 (see [10, Theorem 4]) and that shrinkability is the precise condition that

guarantees the continuity of the Minkowski functional of an open star-shaped

neighborhood of 0 (see [10, Theorem 5]).

We shall need two lemmas.

LEMMA 1

Let T be a metrizable topological vector space over R, let U be an open shrink-

able neighborhood of 0 in T , and let μ be the Minkowski functional of U . Then

T\μ−1(0)∪ {0} is topologically an open cone.

Proof

Let d be a translation-invariant metric bounded by 1 that defines the T topol-

ogy and that has the Eidelheit–Mazur property. Then d1(x, y) = max(|μ(x) −
μ(y)|, d(x, y)) is a metric that defines the T topology and again it has the

Eidelheit–Mazur property. Note that for x ∈ T\μ−1(0), we have sup{d1(tx,0) : t ∈
R+}=+∞. We have a homeomorphism g : T\μ−1(0)∪{0}→C(μ−1(1)) defined

by

g(z) =

{
(d1(z,0), z/μ(z)), z �= 0

0, z = 0

whose inverse is defined by g−1 :C(μ−1(1))→ T\μ−1(0)∪ {0},{
g−1(λ, z)

}
=R+z ∩

{
w ∈ T : d1(w,0) = λ

}
for all λ ∈R, λ > 0 and g−1(0) = 0. �

LEMMA 2

There exists a homeomorphism

h= (h1, h2) :
(
RN × (0,∞)

)
∪
{
(0,0))

}
→Rn × (0,∞)

such that h1((x, t)) − x ∈
∑

R for all x ∈ RN , h((0,0)) = (0,1) and h = id on

RN × (2,∞).

Proof

Let C0 =RN × (−∞,2), and let

Cn =
{
x ∈RN :− 1

2n
< xi <

1

2n
for 1≤ i≤ n and xn+1 >− 1

2n

}
×
(
− 1

2n
,
1

2n

)
.
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Then (Cn)n≥0 is a fundamental system of open (convex) neighborhoods of (0,0)

in RN ×R. Now [1, Lemma 1.4] provides a homeomorphism

pn =
(
(pn)1, (pn)2

)
: (Cn\Cn+1, ∂Cn, ∂Cn+1)

→ (RN × [1− n,2− n],RN × {2− n},RN × {1− n})

such that (pn)1(x, t)− x ∈
∑

R for all (x, t) ∈Cn\Cn+1, for all n≥ 0.

Define inductively the sequence of homeomorphisms p′n, n≥ 0,

p′n =
(
(p′n)1, (p

′
n)2

)
: (Cn\Cn+1, ∂Cn, ∂Cn+1)

→ (RN × [1− n,2− n],RN × {2− n},RN × {1− n})

such that p′n = p′n+1 on ∂Cn+1, (p
′
n)1(x, t)− x ∈

∑
R for all (x, t) ∈ C0\Cn+1,

and p′0 = id on ∂C0. For n = 0, let P0 be the homeomorphism of RN × [1,2]

defined by P0(x, t) = ((p−1
0 )1(x,2), t), and set p′0 = P0 ◦ p0 so that p′0 = id on

∂C0 and (p′0)1(x, t)− x ∈
∑

R for all (x, t) ∈ C0\C1. Assume that p′k has been

defined satisfying the required conditions for all 0≤ k ≤ n. Let Pn+1 be the home-

omorphism of RN × [−n,1−n] defined by Pn+1(x, t) = ((p′n ◦p−1
n+1)1(x,1−n), t),

and set p′n+1 = Pn+1 ◦ pn+1 so that p′n+1 = p′n on ∂Cn+1, and (p′n+1)1(x, t) −
x ∈

∑
R for all (x, t) ∈ Cn+1\Cn+2. The sequence of homeomorphisms p′n, n ≥

0 patch up to form a homeomorphism a = (a1, a2) : (R
N × R)\{(0,0)} →

RN × R such that a1(x, t) − x ∈
∑

R for all (x, t) ∈ RN × R and a = id on

RN × (2,∞).

Let D0 = (RN × (0,2))∪ {(0,0)}, and let

Dn =

({
x ∈RN :− 1

2n
< xi <

1

2n
for 1≤ i≤ n and xn+1 >− 1

2n

}
×
(
0,

1

2n

))

∪
{
(0,0)

}
.

Then (Dn)n≥0 is a fundamental system of open (convex) neighborhood of (0,0)

in (RN × (0,∞))∪ {(0,0)}. We have a homeomorphism, for all n≥ 0,

qn =
(
(qn)1, (qn)2

)
: (Dn\Dn+1, ∂Dn, ∂Dn+1)

→ (RN × [1− n,2− n],RN × {2− n},RN × {1− n})

defined by

(qn)1(x, t)

=

(
1

t

(
1 +

1− (μn+1((x, t)))
−1

(μn((x, t)))−1 − (μn+1((x, t)))−1

)
(x1, . . . , xn+2), xn+3, xn+4, . . .

)
,

(qn)2(x, t) = 1+
1− (μn+1((x, t)))

−1

(μn((x, t)))−1 − (μn+1((x, t)))−1
− n,

where μn is the Minkowski functional of Cn (note that μn((x, t)) depends only

on t and the first n+ 1 coordinates of x).
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Similar to the previous inductive construction of the homeomorphisms

p′n, n≥ 0, we obtain a sequence of homeomorphisms q′n, n≥ 0,

q′n =
(
(q′n)1, (q

′
n)2

)
: (Dn\Dn+1, ∂Dn, ∂Dn+1)

→ (RN × [1− n,2− n],RN × {2− n},RN × {1− n})

such that q′n = q′n+1 on ∂Dn+1, (q
′
n)1(x, t)− x ∈

∑
R for all (x, t) ∈Dn\Dn+1

and q′0 = id on ∂D0. The sequence of homeomorphisms q′n, n≥ 0 patch up to form

a homeomorphism b= (b1, b2) :R
N × (0,∞)→RN ×R such that b1(x, t)− x ∈∑

R for all (x, t) ∈ RN × (0,∞) and b = id on RN × (2,∞). Note that the

homeomorphism a−1 ◦ b :RN × (0,∞)→ (RN ×R)\{(0,0)} extends to a home-

omorphism K : (RN × (0,∞)) ∪ {(0,0)} →RN ×R, which on composing with

the homeomorphism L :RN ×R→RN × (0,∞) given by

L(x, t) =

⎧⎪⎪⎨
⎪⎪⎩
(x, et), t≤ 0,(
x,1 + t

2

)
, 0≤ t≤ 2,

(x, t), t≥ 2,

we obtain the sought homeomorphism h satisfying all the required properties.

�

The following proposition shows that the property established in [2, Proposi-

tion 1.1] for infinite-dimensional locally convex metric linear spaces holds also

for metric linear spaces that admit arbitrary short lines.

PROPOSITION 3

Let T be a metric topological vector space over R that admits arbitrary short

lines. Then (T × (0,∞))∪ {(0,0)} is homeomorphic to T × (0,∞).

Proof

Let | · | be the F -norm on T , and let T̂ be the completion of T (see [6]). By

assumption, there exists (en)n≥1 ⊆ T\{0} such that sup{|ten| : t ∈R}< 1/4n for

all n≥ 1, so that Ê =
∑

n≤1Ren is a subspace of T̂ topologically isomorphic to

RN (see [5]). We identify Ê and RN by this isomorphism. Note that Michael

selection theorem provides a continuous section s : (T + Ê)/Ê → T + Ê such that

s(0) = 0 (see [3, p. 87]) so that T is homeomorphic to {(w,z) ∈ Ê × (T + Ê)/Ê :

w+ s(z) ∈ T}.
Fixing a homeomorphism m :RN → l2 such that m(0) = 0 (see [3, p. 189])

and appealing to [9, Proposition 3.1], we obtain a homeomorphism K : RN ×
[0,1] → (RN\{0} × (0,1]) ∪ (RN × {0}) defined by K(x, t) = (ft(x), t), f0 = id.

Therefore, with the above identification of Ê andRN , we see that T is homeomor-

phic to {(w,z) ∈ Ê\{0}× (T + Ê)/Ê ∪{(0,0)} : p1 ◦K−1(w,d(z,0))+ s(z) ∈ T},
where p1 :R

N × [0,1]→RN denotes the projection onto the first factor and d is

a metric defining the topology of (T + Ê)/Ê and is bounded by 1.
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Using the homeomorphism h of Lemma 2 and the above identification of Ê

and RN , the following homeomorphism establishes our claim:

g :
{
(w,z) ∈ Ê × (T + Ê)/Ê :w+ s(z) ∈ T

}
× (0,∞)∪

{(
(0,0),0

)}
→

{
(w,z) ∈ Ê\{0} × (T + Ê)/
Ê ∪

{
(0,0)

}
: p1 ◦K−1

(
w,d(z,0)

)
+ s(z) ∈ T

}
× (0,∞)

defined by g((w,z), t) =
(
(p1 ◦K(h1(w, t), d(z,o)), z), h2(w, t)

)
whose inverse is

given by

g−1
(
(w,z), t

)
=
(
((h−1)1(p1 ◦K−1(w,d(z,o)), t), z), (h−1)2(p1 ◦K−1(w,d(z,o)), t)

)
,

where h−1 = ((h−1)1, (h
−1)2). �

Now we can establish our theorem.

THEOREM 4

A metric topological vector space over R is topologically an open cone.

Proof

Let T be a metrizable topological vector space over R.

If T admits arbitrary short lines, then by virtue of Michael selection theorem

(see [3, p. 87]) we may assume that T has the form T0 ×R, where T0 is a metric

linear space that admits arbitrary short lines. Note that if U = T0×(−∞,1) has a

Minkowski functional μ, then (T0×R)\μ−1(0)∪{(0,0)}= T0× (0,∞)∪{(0,0)},
which is homeomorphic to T0 ×R by Proposition 3, and by Lemma 1 it is an

open cone.

If T does not admit arbitrary short lines, then there exists an open shrinkable

neighborhood V of 0 in T whose Minkowski functional η has the property that

η−1(0) = {0} so that T = T\η−1(0) ∪ {0} and we are again done according to

Lemma 1. �
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