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Abstract In this paper we show that themean Euler characteristic of equivariant sym-

plectic homology is an effective obstruction against the existence of displaceable exact

contact embeddings. As an application we show that certain Brieskornmanifolds do not

admit displaceable exact contact embeddings.

1. Introduction

A contact manifold (Σ, ξ) is said to admit an exact contact embedding if there

exists an embedding ι : Σ → V into an exact symplectic manifold (V,λ) and a

contact form α for (Σ, ξ) such that α− ι∗λ is exact and such that ι(Σ) ⊂ V is

bounding. In this paper we suppose, in addition, that any target manifold (V,λ)

is convex; that is, there exists an exhaustion V =
⋃

k Vk of V by compact sets

Vk ⊂ Vk+1 with smooth boundary such that λ|∂Vk
is a contact form and such that

the first Chern class of (V,λ) vanishes on π2(V ). An exact contact embedding is

called displaceable if ι(Σ) can be displaced from itself by a Hamiltonian isotopy

of V .

We refer to [4], [5], [11] for more details on exact contact embeddings, and

for examples and obstructions to such embeddings.

The mean Euler characteristic of a simply connected contact manifold was

introduced by van Koert [14] in terms of contact homology and was studied

further in [6], [9]. Here, we consider the mean Euler characteristic of equivariant

symplectic homology, which can be thought of as the mean Euler characteristic

of a filling. For the definition see Section 2. Under additional assumptions, these

notions coincide; see Corollary 2.2 and the subsequent remark.

The idea behind the mean Euler characteristic is that sometimes it can be

computed by looking at the closed Reeb orbits of a suitable contact form, without

computing the homology.
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We say that a simply connected cooriented contact manifold (Σ, α) is index-

positive if the mean index Δ(γ) of every periodic Reeb orbit γ is positive. Simi-

larly, we say that (Σ, α) is index-negative if the mean index Δ(γ) of every peri-

odic Reeb orbit γ is negative. Finally, we say that (Σ, α) is index-definite if it is

index-positive or index-negative. Recall that the mean index Δ is related to the

Conley–Zehnder index μCZ as follows: for any nondegenerate Reeb orbit γ in a

contact manifold (Σ2n−1, α), its N -fold cover γN satisfies

(1) μCZ(γ
N ) =NΔ(γ) + e(N),

where e(N) is an error term bounded by n− 1 (see [13, Lemma 3.4]).

In this note we prove the following theorem.

THEOREM A

Assume that (Σ, ξ) is a (2n− 1)-dimensional simply connected contact manifold

which admits a displaceable exact contact embedding. Suppose furthermore that

(Σ, α) is index-definite for some α defining ξ. Then the following holds.

(i) (Σ, α) is index-positive.

(ii) The mean Euler characteristic of its filling W is a half-integer:

χm(W ) =
(−1)n+1

2
χ(W,Σ).

(iii) If, in addition, Σ is a rational homology sphere, then the mean Euler

characteristic of its filling equals (−1)n+1/2.

REMARKS

(i) Yau proved in [19] that boundaries of subcritical Stein manifolds carry an

index-positive contact form.

Ritter [12] proved that the displaceability of Σ implies the vanishing of the

symplectic homology of the filling W . It is conceivable that then in fact the equi-

variant symplectic homology of W vanishes. This would imply that for asser-

tions (ii) and (iii) of Theorem A the assumption that (Σ, α) is index-definite can

be omitted (see Remark 3.1).

(ii) In the situation of (ii), assume in addition that (Σ, ξ) has a contact form α

such that all Reeb orbits are nondegenerate and such that the number of Reeb

orbits of a given index is uniformly bounded. Then the Euler characteristic χ(W )

of any filling W of Σ is determined by a dynamical and a topological invariant

of Σ (see Corollary 2.2(ii) below). This should be compared with the results by

Oancea and Viterbo [11], where many strong constraints on the topology of a

filling W are given in purely topological terms of Σ.

Brieskorn manifolds We next look at a class of examples for which the mean

Euler characteristic can indeed be computed from the closed orbits of a suitable

Reeb flow. Given positive integers a0, . . . , an one defines the Brieskorn mani-

fold Σ(a0, . . . , an) as the link of a certain singularity. The Brieskorn manifold
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Σ(a0, . . . , an) is said to be nontrivial if ai �= 1 for all i. If a0, . . . , an are pairwise

relatively prime, and if n > 2, then Σ(a0, . . . , an) is homeomorphic to S2n−1.

Brieskorn manifolds carry a natural contact structure. A trivial Brieskorn man-

ifold is a round sphere with its standard contact structure in R2n, and hence

admits a displaceable exact contact embedding.

COROLLARY B

A nontrivial Brieskorn manifold Σ(a0, . . . , an) of dimension at least 5 whose expo-

nents are pairwise relatively prime does not admit a displaceable exact contact

embedding. In particular, it does not admit an exact contact embedding into a

subcritical Stein manifold whose first Chern class vanishes.

The restriction to manifolds of dimension at least 5 comes from the following

observations.

REMARKS

(i) In dimension 3, nontrivial Brieskorn manifolds are not simply connected.

Hence Reeb orbits in these manifolds can become contractible in the filling even

if they are not contractible in the Brieskorn manifold. The mean Euler charac-

teristic of symplectic homology, on the other hand, counts Reeb orbits that are

contractible in the filling, so it cannot be determined by just considering the

contact manifold by itself.

(ii) In [11, Proposition 6.2(b)] it is shown that no Brieskorn manifold Σ(a0,

. . . , an) of dimension at least 5 with aj ≥ 2 for all j admits a contact embedding

into a subcritical Stein manifold.

It would be interesting to know whether Corollary B still holds true if we

drop the convexity assumption on the target manifold (V,λ) or the assumption

that its first Chern class vanishes.

2. The mean Euler characteristic

Assume that (W,λ) is a compact exact symplectic manifold; that is, ω = dλ is a

symplectic form on W , with convex boundary Σ = ∂W . We assume throughout

that the first Chern class c1(W ) of (W,dλ) vanishes on π2(W ) and that Σ is

simply connected. For i ∈ Z we denote by

bi(W ) = dim
(
SHS1,+

i (W ;Q)
)

the ith Betti number of the positive part of the equivariant symplectic homology

of W (as defined in [2], [17]).

For later use, we call a homology H∗(C∗, ∂) index-positive if there exists N

such that Hi(C∗, ∂) = 0 for all i < N . Note here that if (Σ, α) = ∂(W,dλ) is index-

positive in the previously defined sense, then SHS1,+
∗ (W ) is index-positive in the

homological sense. The notions index-negative and index-definite are defined on

homology level in a similar way.
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DEFINITION

W is called homologically bounded if the Betti numbers bi(W ) are uniformly

bounded.

If W is homologically bounded, we define its mean Euler characteristic as

χm(W ) =
1

2

(
lim inf
N→∞

1

N

N∑
i=−N

(−1)ibi(W ) + limsup
N→∞

1

N

N∑
i=−N

(−1)ibi(W )
)
.

The uniform bound on the Betti numbers implies that the limes inferior and the

limes superior exist.

A closed Reeb orbit of a contact form α on Σ is a (possibly multiply covered)

closed orbit of the Reeb flow on Σ defined by α. Assume that α is a contact form

on Σ with the property that all the closed Reeb orbits are nondegenerate. We

recall that a closed Reeb orbit γ is called bad if it is the m-fold cover of a Reeb

orbit γ′ and the difference of Conley–Zehnder indices μ(γ)−μ(γ′) is odd. A closed

Reeb orbit which is not bad is called good.

DEFINITION

Σ is called dynamically bounded if there exists a uniform bound for the number

of good closed Reeb orbits of Conley–Zehnder index i for every i ∈ Z.

We denote by GN the set of good closed Reeb orbits of Conley–Zehnder index

lying between −N and N . If Σ is dynamically bounded, we define its mean Euler

characteristic by

χm(Σ) =
1

2

(
lim inf
N→∞

1

N

∑
γ∈GN

(−1)μ(γ) + limsup
N→∞

1

N

∑
γ∈GN

(−1)μ(γ)
)
.

REMARK

Ginzburg and Kerman [9] define the positive and negative parts of the mean

Euler characteristic of contact homology by summing over all positive and all

negative degrees, respectively. Their mean Euler characteristic is half of the one

we define.

If W is a compact exact symplectic manifold, we say that W is dynamically

bounded if its boundary Σ = ∂W is dynamically bounded.

THEOREM 2.1

Assume that W is dynamically bounded. Then it is homologically bounded and

χm(∂W ) = χm(W ).

COROLLARY 2.2

(i) If W is dynamically bounded, then its mean Euler characteristic is inde-

pendent of the filling.
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(ii) If, in addition, Σ carries an index-definite contact form, then

χ(W ) = 2(−1)n+1χm(Σ) + χ(Σ).

For assertion (ii) we have also used Theorem A(ii) and the additivity χ(W ) =

χ(Σ) + χ(W,Σ) of the Euler characteristic.

REMARK

Since the generators of the positive part of equivariant symplectic homology

and contact homology are the same, the mean Euler characteristic can also be

expressed in terms of contact homology data. This was done in the original

definition in [14]. Note, however, that the degree of a Reeb orbit γ in contact

homology is defined as μCZ(γ) + n− 3 if the dimension of the contact manifold

is 2n− 1. This can result in a sign difference for the mean Euler characteristic.

Proof of Theorem 2.1

If Γ denotes the set of all closed Reeb orbits on Σ = ∂W , the critical manifold C

for the positive equivariant part of the action functional of classical mechanics is

then given by

C=
⋃
γ∈Γ

γ ×S1 ES1.

If γ is a k-fold cover of a simple Reeb orbit, then the isotropy group of the action

of S1 on γ is Zk. Therefore,

γ ×S1 ES1 =BZk

is the infinite-dimensional lens space. The Morse–Bott spectral sequence (see

[7, Section 7.2.2]) tells us that there exists a spectral sequence converging to

SHS1,+
∗ (W ;Q), whose second page is given by

E1
i,j =

⊕
γ∈Γ

μ(γ)=i

Hj(γ ×S1 ES1;Oγ).

The twist bundle Oγ is trivial if γ is good and equals the orientation bundle of

the lens space if γ is bad (see [1], [2], [16]); that is, Oγ is the nontrivial bundle

if k is even. The homology of an infinite-dimensional lens space with rational

coefficients equals Q in degree zero and vanishes otherwise. Its homology with

coefficients twisted by the orientation bundle is trivial. Therefore the second page

of the Morse–Bott spectral sequence simplifies to

E1
i,j =

⊕
γ∈G

μ(γ)=i

Q,

where G ⊂ Γ are the good closed Reeb orbits. We conclude that the mean

Euler characteristic of E1 coincides with χm(Σ). Since the Euler characteris-

tic is unchanged if we pass to homology, we deduce that χm(Σ) equals χm(W ).

This finishes the proof of the theorem. �
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In our application to Brieskorn manifolds, we will compute the mean Euler char-

acteristic for a contact form of Morse–Bott type. Brieskorn manifolds can be

thought of as Boothby–Wang orbibundles over symplectic orbifolds, since there

is a contact form for which all Reeb orbits are periodic. For such special contact

manifolds the mean Euler characteristic has a particularly simple form.

We start with introducing some notation to state the result. Consider a

contact manifold (Σ, α) with Morse–Bott contact form α having only finitely

many orbit spaces, so that we have an S1-action on Σ. Denote the periods by

T1 < · · · < Tk, so all Ti divide Tk. Denote the subspace consisting of points on

periodic Reeb orbits with period Ti in Σ by NTi .

LEMMA 2.3

If H1(NTi ;Z2) = 0, then H1(NTi ×S1 ES1;Z2) = 0.

Proof

Consider the Leray spectral sequence for NTi ×S1 ES1 as a fibration over CP∞.

As π1(CP
∞) = 0, the Leray spectral sequence with Z2-coefficients converges to

the cohomology of NTi ×S1 ES1. The E2-page of this spectral sequence is given

by Epq
2 = Hp(CP∞;Hq(NTi ;Z2)). Since H1(NTi ;Z2) = 0 by assumption, there

are no degree 1-terms on E2. Hence there are no degree 1-terms in E∞ either,

and H1(NTi ×S1 ES1;Z2) = 0. �

Finally we introduce the function

φTi;Ti+1,...,Tk
=#

{
a ∈N

∣∣ aTi < Tk and aTi /∈ TjN for j = i+ 1, . . . , k
}
.

PROPOSITION 2.4

Let (Σ, α) be a contact manifold as above and assume that it admits an exact

filling (W,dλ). Suppose that c1(ξ = kerα) = 0, so that the Maslov index is well

defined. Let μP := μ(Σ) be the Maslov index of a principal orbit of the Reeb

action. Assume that H1(NT ×S1 ES1;Z2) = 0 for all NT and that there are no

bad orbits.

If μP �= 0, then the following hold.

• (Σ, α) is homologically bounded.

• (Σ, α) is index-positive if μP > 0 and index-negative if μP < 0.

• The mean Euler characteristic satisfies the following formula,

χm(W ) =

∑k
i=1(−1)μ(NTi

)−1/2dim(NTi
/S1)φTi;Ti+1,...,Tk

χS1

(NTi)

|μP |
.

Here χS1

(NT ) denotes the Euler characteristic of the S1-equivariant homology

of the S1-manifold NT .
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Proof

We use the notation

HS1

p (NT ;Q) :=Hp(NT ×S1 ES1;Q).

As before, there is the Morse–Bott spectral sequence converging to

SHS1,+
∗ (W ;Q). The second page is given by

E1
pq =

⊕
NT

μ(NT )−1/2dim(NT /S1)=p

HS1

p (NT ;Q).

Indeed, the coefficient ring is not twisted as H1(NT ×S1 ES1;Z2) = 0.

The period of a principal orbit is Tk, so we have φR
Tk

= 1. Since the Robbin–

Salamon version of the Maslov index is additive under concatenations, it follows

that for any set of periodic orbits NT with return time T > Tk we have

μ(NT ) = μ(NTk
) + μ(NT−Tk

).

It follows that the E1-page is periodic in the q-direction with period |μ(NTk
)|=

|μP | (as NTk
=Σ). Since we have assumed that μP �= 0, we see that SHS1,+(W )

is homologically bounded.

Moreover, by the definition of the Maslov index μP , the sign of μP determines

whether (Σ, α) is index-positive or index-negative.

Finally, the mean Euler characteristic can be obtained by summing all con-

tributions in one period and dividing by the period. This gives

χm(W ) =

∑
T≤Tk

(−1)μ(NT )−1/2dim(NT /S1)χS1

(NT )

|μP |
.

Now observe that the definition of the functions φTi;Ti+1,...,Tk
is such that it

counts how often multiple covers of a set of periodic orbits NTi appear in one

period of the E1-page without being contained in a larger orbit space. We thus

obtain the above formula. �

REMARK

This proposition is a generalization of [6, Example 8.2], and Espina’s methods

could also be used to show the above.

3. Proof of Theorem A

In the first two paragraphs of this section we prove three general statements that

in particular imply assertions (i) and (ii) of Theorem A. In Sections 3.3 and 3.4

we then work out the situation for rational homology spheres.

3.1. Two general statements

PROPOSITION 3.1

Assume that (Σ, ξ) is a (2n− 1)-dimensional simply connected contact manifold

admitting a displaceable exact contact embedding into (V,dλ). Denote the compact
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component of V \Σ by W . Suppose furthermore that (Σ, α) is index-positive. Then

SHS1,+
∗ (W )∼=HS1

∗+n−1(W,Σ).

COROLLARY 3.2

Under the assumptions of Proposition 3.1,

χm(W ) = (−1)n+1χ(W,Σ)

2
.

Proof of Proposition 3.1

Consider the S1-equivariant version of the Viterbo long exact sequence,

· · · −→HS1

∗+n(W,Σ)−→ SHS1

∗ (W )−→ SHS1,+
∗ (W )−→HS1

∗+n−1(W,Σ)−→ · · ·

from [2], [17]. By assumption SHS1,+
∗ (W ) is index-positive. The group homology

HS1

∗ (W,Σ) is also index-positive, so we conclude that SHS1

∗ (W ) must be index-

positive as this group is sandwiched between zeros for sufficiently negative ∗.
By Ritter’s theorem [12, Theorem 97] displaceability of Σ implies

SH∗(W ) = 0. The Gysin sequence for equivariant and nonequivariant symplectic

homology from [2] reads

· · · −→ SH∗(W )−→ SHS1

∗ (W )
D∗−→ SHS1

∗−2(W )−→ SH∗−1(W )−→ · · ·

so all maps D∗ are isomorphisms. Since we just showed that SHS1

∗ (W ) is index-

positive, it must vanish in all degrees.

Finally consider the equivariant version of the Viterbo sequence once again.

Since SHS1

∗ (W ) vanishes, it follows that

HS1

∗+n(W,Σ)∼= SHS1,+
∗+1 (W ). �

Corollary 3.2 follows from Proposition 3.1 by observing that HS1

∗ (W,Σ)∼=H∗(W,

Σ) ⊗ H∗(CP
∞), since the S1-action on (W,Σ) is trivial (by construction of

Viterbo’s long exact sequence). In other words, HS1

∗ (W,Σ) consists of infinitely

many copies of H∗(W,Σ) which are degree-shifted by 0,2,4, . . . .

REMARK

It is conceivable that the displaceability of W implies that SHS1

∗ (W ) vanishes.

(This is known if W is a subcritical Stein domain; see [3] and [2, p. 5].) The con-

clusion of Proposition 3.1, without the assumption that (Σ, α) is index-positive,

would then follow at once from Viterbo’s S1-equivariant long exact sequence.

Assertions (ii) and (iii) of Theorem A would then hold without the assumption

that (Σ, α) is index-definite.

3.2. Index-positivity

LEMMA 3.3

Assume that (Σ, ξ) is a (2n− 1)-dimensional simply connected contact manifold
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admitting a displaceable exact contact embedding into (V,dλ). Denote the compact

component of V \ Σ by W . Suppose furthermore that (Σ, ξ = kerα) is index-

definite. Then (Σ, α) is index-positive.

Proof

Again by Ritter’s theorem [12, Theorem 97] we conclude that SH∗(W ) = 0. Hence

the Viterbo long exact sequence from [2], [17] reduces to

· · · −→ 0−→ SH+
∗ (W )

∼=−→H∗+n−1(W,Σ)−→ 0−→ · · · ,

so we see that SH+
n+1(W )∼=H2n(W,Σ)∼=H0(W ) �= 0.

Now suppose that (Σ, α) is index-negative. On one hand, our previous obser-

vation shows that there is a generator of degree n+ 1. On the other hand, if α

is a nondegenerate contact form, then the iteration formula (1) tells us that an

N -fold cover of a Reeb orbit γ satisfies

|μCZ(γ
N )−NΔ(γ)| ≤ n− 1,

where Δ(γ) denotes the mean index of the Reeb orbit γ. Since (Σ, α) is index-

negative, Δ(γ)< 0, so μCZ(γ
N )< n−1. In particular, no generator of SH+

n+1(W )

can be realized by a Reeb orbit. This contradiction shows that (Σ, α) must be

index-positive. �

3.3. Displaceability and splitting the sequence of the pair
In the following lemma, (V,Ω) is a connected manifold endowed with a volume

form, and W ⊂ V is a compact connected submanifold with connected boundary

of the same dimension as V with the property that the volume of the complement

of W in V is infinite. We say that the hypersurface Σ = ∂W ⊂ V is volume-

preserving displaceable if there exists a compactly supported smooth family of

volume-preserving vector fields Xt, t ∈ [0,1], on V such that the time-1 map φ

of its flow satisfies φ(Σ)∩Σ= ∅.

LEMMA 3.4

Assume that Σ= ∂W is volume-preserving displaceable in V . Then the projection

homomorphism p∗ : H∗(W ;Q)→H∗(W,Σ;Q) vanishes.

Proof

We prove the lemma in two steps. For the first step we need the assumption

about volume preservation.

STEP 1

The volume-preserving diffeomorphism φ displacing Σ displaces the whole filling;

that is, φ(W )∩W = ∅.

We divide the proof of Step 1 into three substeps.
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STEP 1a

There exists a point x ∈W such that φ(x) /∈W .

We argue by contradiction and assume that φ(W )⊂W . In particular, the restric-

tion of φ to W gives a diffeomorphism between the two manifolds with bound-

ary W and φ(W )⊂W . Therefore, if y ∈W satisfies φ(y) ∈ ∂W , it follows that

y ∈ ∂W . We conclude

φ(W )∩ ∂W ⊂ φ(∂W ).

Since φ displaces the boundary from itself, we obtain

φ(W )∩ ∂W = ∅.

Denoting by int the interior of a set, we can write this equivalently as

φ(W )⊂ int(W ).

Hence φ(W ) is a strict subset of W . Since W is compact, its volume is finite.

Therefore, the volume of φ(W ) is strictly less than the volume of W . This con-

tradicts the fact that φ is volume preserving. Therefore the assertion of Step 1a

has to hold true.

STEP 1b

We have φ(∂W )⊂W c.

Since φ displaces ∂W from itself, we have ∂W ⊂ int(W ) ∪ W c. Since ∂W is

connected by assumption, we either have φ(∂W ) ⊂ int(W ) or φ(∂W ) ⊂ W c.

Therefore it suffices to show that φ(∂W ) ∩W c is not empty. Since W c has infi-

nite volume but φ(W ) has finite volume by assumption, we conclude that there

exists a point y0 ∈ W c such that y0 /∈ φ(W ). Step 1a implies the existence of

a point y1 ∈ W c satisfying y1 ∈ φ(W ). Since V,W , and ∂W are connected by

assumption, we obtain from the Mayer–Vietoris long exact sequence that W c

is connected as well. Therefore there exists a path y ∈ C0([0,1],W c) satisfying

y(0) = y0 and y(1) = y1. Since W c is Hausdorff, there exists t ∈ (0,1) such that

y(t) ∈ ∂(φ(W )) = φ(∂W ). Therefore φ(∂W ) ∩W c is not empty, which finishes

the proof of Step 1b.

STEP 1c

We prove Step 1.

We assume by contradiction that there exists a point x0 ∈W ∩φ(W ). By Step 1a

and the fact that φ is volume preserving, we conclude that W cannot be a subset

of φ(W ). Therefore there has to exist a point x1 ∈W ∩ (φ(W ))c as well. Since

W is connected by assumption, there exists a path x ∈ C0([0,1],W ) satisfying

x(0) = x0 and x(1) = x1. As in Step 1b there has to exist t ∈ (0,1) such that

x(t) ∈ φ(∂W ). But this contradicts the assertion of Step 1b. The proof of Step 1

is complete.
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STEP 2

If a diffeomorphism φ isotopic to the identity satisfies φ(W ) ∩W = ∅, then the

projection homomorphism p∗ : H∗(W ;Q)→H∗(W,∂W ;Q) vanishes.

We prove the dual version in de Rham cohomology; that is, we show that the

inclusion homomorphism from the compactly supported de Rham cohomology

of W to the de Rham cohomology of W vanishes. To see this, pick ω ∈ Ωk(W ),

which is compactly supported and closed. We show that there exists η ∈Ωk−1(W )

not necessarily compactly supported such that ω = dη. Since ω is compactly

supported, we can extend it trivially to a closed k-form on V which we refer to

as ω̃. Since φ is isotopic to the identity, we have φ = φ1 for a flow {φt}t∈[0,1]

generated by a time-dependent vector field Xt. By the Cartan formula and the

fact that ω̃ is closed we obtain

d

dt
(φt)∗ω̃ = LXt(φ

t)∗ω̃

= (diXt + iXtd)(φ
t)∗ω̃

= diXt(φ
t)∗ω̃.

We define a (k− 1)-form on V by the formula

η̃ =−
∫ 1

0

iXt(φ
t)∗ω̃.

By the previous computation we get

ω̃− φ∗ω̃ = dη̃.

Now set

η = η̃|W ∈Ωk−1(W ).

Since φ displaces W we obtain

ω = dη.

This finishes the proof of Step 2 and hence of Lemma 3.4. �

3.4. Rational homology spheres and completion of the proof of Theorem A(iii)
In the case of rational homology spheres, the homology of the filling is completely

determined.

LEMMA 3.5

Suppose (Σ, ξ) is a (2n − 1)-dimensional simply connected rational homology

sphere admitting a displaceable exact contact embedding into (V,dλ). Let W

denote the compact component of V \Σ. Then

H∗(W,Σ;Q) =

{
Q if ∗= 2n,

{0} else.
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Proof

We can assume that V has infinite volume. Indeed, if V has finite volume, we

choose a compact convex manifold Vk in the exhaustion of V such that W ⊂ Vk,

and we replace V by the manifold V̂ obtained by attaching cylindrical ends to

the boundary of Vk. Notice that V̂ is also an exact convex manifold whose first

Chern class vanishes on π2(V̂ ).

In view of Lemma 3.4 the long exact homology sequence for the pair (W,Σ)

splits for every k ∈ Z into short exact sequences

0−→Hk(W,Σ;Q)
∂−→Hk−1(Σ;Q)

i∗−→Hk−1(W ;Q)−→ 0.

By using the fact that Σ is a rational homology sphere as well as H0(W ;Q) =Q

we conclude that H∗(W,Σ;Q) = {0} for ∗ �= 2n. Since H2n(W,Σ;Q) is Poincaré

dual to H0(W ;Q), the result for ∗= 2n also follows. �

REMARK

If (Σ, ξ), as above, admits an exact contact embedding into a subcritical Stein

manifold, then much more is known: any symplectically aspherical filling W of Σ

is a rational homology ball (see [11, Corollary 2.14]).

Lemma 3.5 shows that the Euler characteristic of the relative homology is given

by

χ(W,Σ) = 1.

Assertion (iii) of Theorem A follows from this and Corollary 3.2.

4. Brieskorn manifolds

Choose positive integers a0, . . . , an. The Brieskorn variety V (a0, . . . , an) is defined

as the following subvariety of Cn+1,

Vε(a0, . . . , an) =
{
(z0, . . . , zn) ∈Cn+1

∣∣∣ n∑
i=0

zai
i = ε

}
.

For ε= 0, this variety is singular unless one of the exponents ai is equal to 1. For

ε �= 0, we have a complex submanifold of Cn+1.

Given a Brieskorn variety V0(a0, . . . , an) we define the Brieskorn manifold as

Σ(a0, . . . , an) := V0(a0, . . . , an)∩ S2n+1
R ,

where S2n+1
R is the sphere of radius R > 0 in Cn+1. For the diffeomorphism

type, the precise value of R does not matter. Brieskorn manifolds carry a natural

contact structure, which comes from the following construction.

LEMMA 4.1

Let (W,i) be a complex variety together with a function f that is plurisubharmonic

away from singular points. Then regular level sets M = f−1(c) carry a contact

structure ξ = TM ∩ iTM = ker(−df ◦ i)|M .
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Applying this lemma with the plurisubharmonic function f =
∑

j
aj

8 |zj |2 we

obtain the particularly nice contact form

α=
i

8

∑
j

aj(zj dz̄j − z̄j dzj)

for this natural contact structure. Its Reeb vector field at radius R= 1 is given

by

Rα = 4i
∑
j

1

aj
(zj∂zj − z̄j∂z̄j ).

The Reeb flow therefore is

φRα
t (z0, . . . , zn) = (e4it/a0z0, . . . , e

4it/anzn).

We thus see that all Reeb orbits are periodic. This allows us to interpret Brieskorn

manifolds as Boothby–Wang bundles over symplectic orbifolds.

PROPOSITION 4.2

Brieskorn manifolds admit a Stein filling, and their contactomorphism type does

not depend on the radius R of the sphere used to define them.

Indeed, by definition, Brieskorn manifolds are singularly fillable. One can smooth

this filling by taking ε �= 0, and consider Vε rather than V0. The resulting contact

structure is contactomorphic by Gray stability. Furthermore, Vε gives then the

Stein filling. Gray stability can also be used to show independence of the radius R

(see [8, Theorem 7.1.2]).

4.1. Brieskorn manifolds and homology spheres
Let us start by citing some theorems from [10]. This book gives precise condi-

tions for Brieskorn manifolds to be integral homology spheres. However, we shall

restrict ourselves to the following case.

PROPOSITION 4.3

If a0, . . . , an are pairwise relatively prime, then Σ(a0, . . . , an) is an integral homol-

ogy sphere.

Furthermore, higher-dimensional Brieskorn manifolds, that is, dimΣ > 3, are

always simply connected, so we in fact find the following.

THEOREM 4.4

If a0, . . . , an are pairwise relatively prime and if n > 2, then Σ(a0, . . . , an) is

homeomorphic to S2n−1.

REMARK

If one of the exponents aj is equal to 1, then the resulting Brieskorn manifold

(Σ(a0, . . . , an), α) is contactomorphic to the standard sphere (S2n−1, α0). Indeed,
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in this case the Brieskorn variety Vε(a0, . . . , an) is biholomorphic to Cn, as we

can regard the variety as a graph.

4.2. Formula for the mean Euler characteristic for Brieskorn manifolds
We can think of Brieskorn manifolds as Boothby–Wang orbibundles over symplec-

tic orbifolds. However, all the essential data are contained in the S1-equivariant

homology groups associated with the Reeb action. The following lemma will

hence be useful.

LEMMA 4.5

Let N be a rational homology sphere of dimension 2n− 1 with a fixed-point free

S1-action N × S1 →N . Then

HS1

∗ (N ;Q)∼=H∗(CP
n−1;Q).

In particular,

χS1

(N) = n.

Proof

Note that N ×ES1 carries a free S1-action, so we can think of N ×ES1 as an

S1-bundle over N ×S1 ES1. We consider the Gysin sequence for this space with

Q-coefficients. Since N is a rational homology sphere of dimension 2n− 1 and

ES1 is contractible, all homology groups of N ×ES1 except in dimension 0 and

2n− 1 vanish. Hence the Gysin sequence reduces to

H∗(N)
∼=0

π∗−→H∗(N ×S1 ES1)
=HS1

∗ (N)

∩e−→H∗−2(N ×S1 ES1)
=HS1

∗−2(N)

−→H∗−1(N)
∼=0

for 1< ∗< 2n− 1. This shows that HS1

∗ (N ;Q)∼=H∗(CP
n−1;Q) for ∗< 2n− 1.

To see that there are no other terms, we shall argue that HS1

∗ (N ;Q) is bounded.

For this, choose an S1-equivariant Morse–Bott function f : N → R (see [18,

Lemma 4.8] for the existence of such a function). Define a Morse–Bott function

f̃ : N ×S1 ES1 −→R,

[x, v] �−→ f(x).

Consider the Morse–Bott spectral sequence for H∗(N ×S1 ES1;Q) with respect

to the Morse–Bott function f̃ . Its E1-page is given by E1
pq =Hq(Rp;Q), where

Rp are the critical manifolds of f̃ with index p. Again, by [7, Section 7.2.2] this

sequence converges to H∗(N ×S1 ES1;Q). Note that the critical manifolds form

infinite-dimensional lens spaces, so Hq(Rp;Q)∼=Q if q = 0 and 0 otherwise. Since

there are only finitely many critical manifolds (because N is compact), it follows

that HS1

∗ (N ;Q) is bounded.

With this in mind, we reexamine the Gysin sequence. Assume thatHS1

k (N ;Q)

is nonzero for some k ≥ 2n− 1. Then HS1

k+2(N ;Q) is nonzero either, and so forth.

Hence HS1

∗ (N ;Q) is not bounded, which contradicts our previous term. The

lemma follows. �
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REMARK

Strictly speaking, N ×S1 ES1 has no manifold structure. Recalling ES1 = S∞,

we can, however, approximate this space by N ×S1 S2M+1 for large M . For the

latter space, the above argument works and can be adapted to show triviality of

Hi(N ×S1 S2M+1;Q) for i≥ 2n− 1 and i < 2M .

PROPOSITION 4.6

The Brieskorn manifold Σ(a0, . . . , an) with its natural contact form α is index-

positive if
∑

j
1
aj

> 1, and index-negative if
∑

j
1
aj

< 1. Furthermore, if the expo-

nents a0, . . . , an are pairwise relatively prime, then the mean Euler characteristic

of Σ(a0, . . . , an) is given by

χm

(
Σ(a0, . . . , an), α

)
= (−1)n+1

(2)

×
n+ (n− 1)

∑
i0
(ai0 − 1) + · · ·+ 1

∑
i0<···<in−2

(ai0 − 1) · · · (ain−2 − 1)

2
∣∣(∑

j a0 · · · âj · · ·an
)
− a0 · · ·an

∣∣ .

Proof

The proof is a direct application of Proposition 2.4. The principal orbits have

period a0 · · ·an. Exceptional orbits have periods a0, . . . , an, a0a1, . . . , an−1an,

. . . , a1 · · ·an. Given a collection of exponents I = {ai1 , . . . , aik} ⊂ {a0, . . . , an} we

denote the associated subset of periodic orbits with period ai1 · · ·aik by NI .

In [14] the Maslov index of all periodic Reeb orbits is computed. For the

principal orbit, the result is

μP := 2 lcmi ai

(∑
j

1

aj
− 1

)
= 2

∑
j

a0 · · · âj · · ·an − a0 · · ·an.

We check that the conditions of Proposition 2.4 are satisfied. By Proposition 4.3

it follows that H1(NI ;Z2) = 0 if the index set I has more than 2 elements

(i.e. dimNT > 1), so Lemma 2.3 applies. Furthermore, the index computations

in [14] show that there are no bad orbits.

Hence Proposition 2.4 applies, so Σ(a0, . . . , an) is index-positive if
∑

j
1
aj

> 1

and index-negative if
∑

j
1
aj

< 1. Furthermore, the S1-equivariant Euler charac-

teristics needed in Proposition 2.4 are obtained from Lemma 4.5.

The formula for the Maslov index of the exceptional orbits is slightly more

complicated (see [15, (3.1)]), but we only need to observe that the parity of

μ(NTi)− 1/2dim(NTi/S
1) is the same as the one of n+ 1.

We conclude the proof by determining the coefficients φTi;Ti+1,...,Tn . We do

this by counting how often multiple covers of an orbit space appear in one period.

The full orbit space N{a0,...,an} appears once. The orbit space N{a0,...,an−1}
appears an times, but the last time it contributes, it is part of N{a0,...,an},

which we already considered. Therefore N{a0,...,an−1} contributes an − 1 times.

By downward induction on the cardinality of I , we conclude that NI appears∏
j(aj − 1)/

∏
a∈I(a− 1) times in one period. �
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REMARK

The mean Euler characteristic of S1-equivariant symplectic homology coincides

with the mean Euler characteristic of contact homology. This means that the

above computation amounts to an application of the algorithm in [15]. However,

there are still many issues with the foundations of contact homology, so we do

not pursue this line of thought.

5. Proof of Corollary B

We start by some general observations that will be needed in the proof.

For n ∈N we define

f(n) =

n∑
j=0

(−1)j(n− j)

(
n+ 1

j

)
.

We claim the following identity

(3) f(n) = (−1)n+1.

We prove (3) by induction. It holds that f(1) = 1, and for the induction step

we compute

f(n+ 1) =

n+1∑
j=0

(−1)j(n+ 1− j)

(
n+ 2

j

)

=

n∑
j=0

(−1)j(n+ 1− j)

(
n+ 2

j

)

=

n∑
j=0

(−1)j(n+ 1− j)

((
n+ 1

j

)
+

(
n+ 1

j − 1

))

=

n∑
j=0

(−1)j(n+ 1− j)

(
n+ 1

j

)
+

n∑
j=0

(−1)j(n+ 1− j)

(
n+ 1

j − 1

)

=

n∑
j=0

(−1)j(n− j)

(
n+ 1

j

)
+

n∑
j=0

(−1)j
(
n+ 1

j

)

+

n∑
j=1

(−1)j
(
n− (j − 1)

)(n+ 1

j − 1

)

= (−1)n+1 +

n+1∑
j=0

(−1)j
(
n+ 1

j

)
− (−1)n+1

+
n−1∑
j=0

(−1)j+1(n− j)

(
n+ 1

j

)
= (−1)n+1 + (1− 1)n+1 − (−1)n+1 − (−1)n+1

= −(−1)n+1

= (−1)n+2.
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This proves the induction step and hence (3) follows.

Alternatively, we can compute

0 =
d

dx
(−1 + x)n+1

∣∣∣
x=1

=

n∑
j=0

(−1)j(n+ 1− j)xn−j

(
n+ 1

j

) ∣∣∣
x=1

= f(n) +
n∑

j=0

(−1)j
(
n+ 1

j

)
+ (−1)n+1

(
n+ 1

n+ 1

)
− (−1)n+1

= f(n) + (−1 + 1)n+1 − (−1)n+1 = f(n)− (−1)n+1.

PROPOSITION 5.1

Let Σ(a0, . . . , an) be a Brieskorn manifold whose exponents are pairwise relatively

prime. Suppose that
∑

j
1
aj

> 1. Then χm(Σ(a0, . . . , an), α) = (−1)n+1/2 if and

only if one of the exponents is equal to 1.

Proof

The condition
∑

j
1
aj

> 1 implies that the denominator of (2) (without | |) is

positive, so

χm

(
Σ(a0, . . . , an), α

)
= (−1)n+1

×
n+ (n− 1)

∑
i0
(ai0 − 1) + · · ·+

∑
i0<...<in−2

(ai0 − 1) · · · (ain−2 − 1)

2
((∑

j a0 · · · âj · · ·an
)
− a0 · · ·an

) .

Let us now try to solve the equation χm = (−1)n+1/2. We obtain

n+ (n− 1)
∑
i0

(ai0 − 1) + · · ·+
∑

i0<···<in−2

(ai0 − 1) · · · (ain−2 − 1)

=
(∑

j

a0 · · · âj · · ·an
)
− a0 · · ·an.

We multiply out all terms on the left-hand side and organize them as linear

combinations of elementary symmetric polynomials ed(a0, . . . , an) of degree d,

for d= 0, . . . , n− 2. Using (3) repeatedly we obtain

n−1∑
k=0

(−1)n−1−kek(a0, . . . , an) = en(a0, . . . , an)− en+1(a0, . . . , an).

Moving all terms to the left-hand side and collecting them yields the equation

n∏
j=0

(aj − 1) = 0,

which can only hold if one of the exponents is equal to 1. �
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Observe that the remark after Theorem 4.4 implies that the mean Euler charac-

teristic has to be equal to (−1)n+1/2 if one of the exponents equals 1.

Proof of Corollary B

Let Σ(a0, . . . , an) be a Brieskorn manifold with pairwise relatively prime expo-

nents a0, . . . , an. If the exponents a0, . . . , an satisfy
∑

j
1
aj

< 1, then Proposi-

tion 4.6 tells us that (Σ(a0, . . . , an), α) is index-negative. Theorem A(i) implies

that such manifolds do not admit a displaceable exact contact embedding.

If the exponents a0, . . . , an are pairwise relatively prime, then
∑

j
1
aj

�= 1.

Indeed, suppose that
∑

j
1
aj

= 1. Then

1

a0
= 1−

n∑
j=1

1

aj
=

a1 · · ·an −
∑n

j=1 a1 · · · âj · · ·an
a1 · · ·an

.

If we invert the left- and right-hand side, we see that a0 divides a1 · · ·an, which
shows that a0, . . . , an are not pairwise relatively prime. This leaves the case that∑

j
1
aj

> 1. For this case, Proposition 5.1 applies, so together with Theorem A(iii)

we conclude that nontrivial Brieskorn manifolds with pairwise relatively prime

exponents do not admit exact displaceable contact embeddings.
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kups.ub.uni-koeln.de/1540/ (accessed 22 June 2012).

[15] , Contact homology of Brieskorn manifolds, Forum Math. 20 (2008),

317–339.

[16] C. Viterbo, Equivariant Morse theory for starshaped Hamiltonian systems,

Trans. Amer. Math. Soc. 311 (1989), 621–655.

[17] , Functors and computations in Floer homology with applications, I,

Geom. Funct. Analysis 9 (1999), 985–1033.

[18] A. Wasserman, Equivariant differential topology, Topology 8 (1969), 127–150.

[19] M.-L. Yau, Cylindrical contact homology of subcritical Stein-fillable contact

manifolds, Geom. Topol. 8 (2004), 1243–1280.

Frauenfelder: Department of Mathematics and Research Institute of Mathematics,

Seoul National University, Seoul, South Korea; frauenf@snu.ac.kr
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