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Abstract Recently a notion of support and a construction of local cohomology func-
tors for [TR5] compactly generated triangulated categories were introduced and stud-
ied by Benson, Iyengar, and Krause. Following their idea, we assign to any object of the
category a new subset of Spec(R), again called the (big) support. We study this support
and show that it satisfies axioms such as exactness, orthogonality, and separation. Using
this support,we study the behavior of the local cohomology functors and show that these
triangulated functors respect boundedness. Then we restrict our study to the categories
generatedby only one compact object.This condition enables us to get somenice results.
Our results show that one can get a satisfactory version of the local cohomology theory
in the setting of triangulated categories, compatible with the known results for the local
cohomology for complexes of modules.

1. Introduction

Let T be a triangulated category. We say that T satisfies [TR5] if it has arbitrary
small coproducts. An object C of T is compact if the functor HomT (C, ) preserves
small coproducts. We let T c denote the class of all compact objects of T . A set G
of objects of T is called a generating set for T if for each nonzero object X ∈ T ,
there exists an object G in G such that HomT (G,X) �= 0. T is called compactly
generated if it has a generating set of compact objects. Throughout the paper,
we assume that T is a [TR5] compactly generated triangulated category with
the graded center Z(T ).

Let R be a graded commutative Noetherian ring, and let φ : R −→ Z(T ) be
a homomorphism of graded rings. This, in particular, implies that for any objects
X and Y of T , the abelian group Hom∗

T (X,Y ) has a structure of a graded R-
module. If X = C is a compact object, then the R-module Hom∗

T (C,Y ) is denoted
by H∗

C(Y ) and is called the cohomology of Y with respect to C.
In [1] a notion of (small) support is assigned to any object X of T . By [1, The-

orem 5.2], the support of X , denoted suppR X , is equal to the set⋃
C∈T c minsuppR H∗

C(X), where for an R-module M , suppR M denotes the small
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(or cohomological) support of M . In this paper, we introduce a (big) support for
X and show that the construction of local cohomology functors, introduced in
[1], can be studied well by using this new notion of support. We study some
properties of local cohomology functors and get some results that, in special
cases, recover and generalize the known results about the usual local cohomology
functors.

Let us be more precise. A subset ϑ of Spec(R), where Spec(R) denotes the set
of graded prime ideals of R, is called specialization closed if any prime of Spec(R)
containing an element of ϑ is itself contained in ϑ. For any specialization closed
subset ϑ of Spec(R), set

Tϑ =
{
X ∈ T

∣∣ suppR H∗
C(X) ⊆ ϑ for all C ∈ T c

}
.

By [1, Lemma 3.4], Tϑ is a localization subcategory of T , and there exists a
localization sequence

Tϑ

i

T

Γϑ

Lϑ

T /Tϑ

e

in which Γϑ is the right adjoint of the inclusion functor i, and the inclusion
functor e is the right adjoint of the localization functor Lϑ on T . So, for any X

in T , we have an exact triangle

ΓϑX X LϑX

in T . ΓϑX is called the local cohomology of X with support in ϑ.
Section 3 is devoted to the study of the quotient triangulated category T /Tϑ.

We use the localization functor L to assign to each object X of T a new subset of
Spec(R) called the (big) support, denoted SuppR(X). In fact, for any prime ideal
p of R we consider the specialization closed subset Z(p) = {q ∈ Spec(R) | q � p}
of Spec(R), and the localization functor LZ(p) : T → T . Then, for any X ∈ T , we
let Xp denote the object LZ(p)X . Finally, we define the (big) support of X to be
the set of all p ∈ Spec(R) for Xp �= 0. We study the behavior of this support in
different situations. In particular, we show that we have axioms such as exactness,
orthogonality, and separation for this notion of support (see Proposition 3.4).
Moreover, our definition relates the vanishing of objects of T to the vanishing
of their cohomology modules, in the sense that, for any object X of T we have
X = 0 if and only if SuppR X = ∅. Finally, we show that for any object X , the
cohomology of X with respect to a compact object C commutes with localization;
that is, for any prime ideal p of R, we have an isomorphism H∗

C(X)
p

∼= H∗
Cp

(Xp)
of Rp-modules.

Then we study the properties of local cohomology functor Γϑ in the case
where R =

⊕
n∈N0

Rn is an N0-graded ring. In Section 4, we show that the right
adjoint functor Γϑ preserves boundedness. To show this, we assign invariants, say,
cohomological dimension and cohomological grade, to any object X with respect
to any graded ideal a of R. We also get some results related to the vanishing of
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the local cohomology objects. Our results show that one can get a satisfactory
version of the known results about the usual local cohomology modules in this
new setting.

In Section 5, we restrict ourselves to triangulated categories that are gener-
ated by one compact object, say, C. Based on our main result in this section,
for an ideal a of R, a cohomologically finite object X ∈ T , and for any integer i,
we have dimR Hi

C(ΓV(a)X)+ i ≤ dimR X +supC X . Specializing this result to the
case where T is the derived category of a commutative Noetherian ring gives a
nice formula for local cohomology of a complex X with finite cohomology, that
is,

dimR

(
Hi(RΓa(X))

)
+ i ≤ dimR X + supR X

or, more specially, for a finitely generated module M over a Noetherian ring R,

dimR Hi
a(M) + i ≤ dimR M.

Although these results are well known and can be found in the literature (see, e.g.,
[3, Section 3]), the approach here is completely different and somehow interesting.

2. Preliminaries

Throughout the paper, R denotes a graded commutative Noetherian ring, and
Spec(R) denotes the set of graded prime ideals of R. For a point p in Spec(R),
Rp denotes the homogeneous localization of R, which is a graded local ring.

Let M be a graded R-module. We let M [n], for any integer n, denote the
graded module with M [n]i = Mn+i. For any homogeneous ideal a of R the variety
of a is denoted by V (a) and is the set {p ∈ Spec(R) | p ⊇ a}.

2.1. The cohomological support of a module
Let M be an R-module. The cohomological support (or small support) of M ,
denoted suppR M , is defined to be the set of all primes p of R that appear in
a minimal injective resolution of M , that is, those primes p for which there exist
integers i, n such that the ith term of the minimal injective resolution of M

contains a direct summand isomorphic to E(R/p)[n]. It is clear that suppR M is
contained in the usual support of M , SuppR M = {p ∈ Spec(R) | Mp �= 0}.

2.2. Localization sequence of functors
The sequence

(2.1) T ′
F

T
G

T ′ ′

of triangulated functors is called a localization sequence if it satisfies the follow-
ing.

(i) F is fully faithful and has a right adjoint Fρ.
(ii) G has a fully faithful right adjoint Gρ.
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(iii) For any object X of T , G(X) = 0 if and only if X ∼= F (X ′) for some
X ′ ∈ T ′.

The reader can consult [9, Section II.2] to study the properties of a localiza-
tion sequence (see also [5]). We just mention that in the above situation, for any
object X of T there exists a triangle

FFρ(X) X GρG(X)

in T , which is functorial in X .

2.3. Localization functor
Let T be a compactly generated triangulated category, and let T c denote the
full subcategory formed by all compact objects. For any objects X and Y of T ,
let HomT (X,Y ) denote the abelian group of morphisms, and let Hom∗

T (X,Y )
denote the graded abelian group Hom∗

T (X,Y ) =
⊕

i∈Z
HomT (X,ΣiY ). It clearly

has a right End∗
T (X)-module and a left End∗

T (Y )-module, where for any object
X of T , End∗

T (X) = Hom∗
T (X,X).

Let Z(T ) denote the graded center of T with Z(T )n = {η : IdT → Σn | ηΣ =
(−1)nΣη} for any integer n. Z(T ) is a graded commutative ring.

Throughout the paper, we fix a graded commutative Noetherian ring R and
a homomorphism of graded rings φ : R → Z(T ). This implies that any graded
abelian group Hom∗

T (X,Y ) is an R-module with the action induced by φ (for
details, see [1, Section 4]). Therefore T becomes an R-linear triangulated cate-
gory.

For any objects C and X of T , set H∗
C(X) := Hom∗

T (C,X), and call this
R-module the cohomology of X with respect to C.

Let U be a subset of Spec(R). The specialization closure of U , denoted cl U ,
is defined by

cl U =
{
p ∈ Spec(R)

∣∣ p ⊇ q for some q ∈ U
}
.

A subset U of Spec(R) is called specialization closed if cl U = U .
Let ϑ be a specialization closed subset of Spec(R). Set

Tϑ =
{
X ∈ T

∣∣ suppR H∗
C(X) ⊆ ϑ for any C ∈ T c

}
.

By [1, Lemma 4.3], Tϑ is a localizing subcategory of T ; that is, it is closed
under direct summands and small coproducts. So we have the localization functor
Lϑ : T → T . It induces an equivalence of categories T /KerLϑ

∼= ImLϑ, where
T /KerLϑ denotes the Verdier quotient of T with respect to KerLϑ and ImLϑ

is the essential image of Lϑ. Moreover, LϑX = 0 if and only if X ∈ Tϑ. Hence we
get a localization sequence of triangulated functors

Tϑ

i

T
Lϑ

T /Tϑ.
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In particular, for any object X of T , there exists a triangle

ΓϑX X LϑX

in which Γϑ is the right adjoint of the inclusion functor Tϑ ↪→ T . ΓϑX is then
called the local cohomology of X supported on ϑ (see [1, Section 4]).

2.4. Neeman-Ravenel-Thomason localization theorem (see [8])
Let T be a [TR5] triangulated category, and let S be a localizing subcategory of
T . We say that S is compactly generated in T if S admits a compact generating
set consisting of objects that are compact in T . In this case, S c = S ∩ T c and
T /S is compactly generated. Note that the Verdier quotient T −→ T /S preserves
compactness (see [7, Chapter 4]).

2.5. Koszul object
Let r be a homogeneous element of R of degree d, and let C be an object of T . By
[1, Definition 5.10], C//r denotes any object that appears in the exact triangle

C
r

ΣdC C//r .

(C//r) is called the Koszul object of r on C. This, for any object X of T , gives
an exact sequence of R-modules

· · · −→ H∗
C(X)[−d − 1] ∓r−→ H∗

C(X)[−1]

−→ H∗
C//r(X) −→ H∗

C(X)[−d] ±r−→ H∗
C(X) −→ · · · .

Let r = r1, . . . , rn be a sequence of homogeneous elements in R. The Koszul
object of r on C, denoted C//r, is defined inductively by setting C//r = Cn,
where C0 = C and Ci = Ci−1//ri for i ≥ 1.

When a is an ideal of R, the Koszul object of a on C, denoted C//a, is
defined to be any Koszul object on C, with respect to some finite sequence of
generators for a. Of course, this object depends on the choice of the minimal
generating sequence for a.

2.6. The (small) support of an object
Let p ∈ Spec(R). Set Z(p) = {q ∈ Spec(R) | q � p}, and denote the composite
functor LZ(p)ΓV(p) by Γp. The support of an object X in T is defined in [1,
Section 5] by

suppR X =
{
p ∈ Spec(R)

∣∣ ΓpX �= 0
}
.

It is shown that suppR X =
⋃

C∈T c minR H∗
C(X), where for an R-module M ,

minR M denotes the set of minimal primes in its cohomological support. For
more details and properties of this support, see [1, Section 5].
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3. Big support

Let T be a compactly generated triangulated category which is R-linear, where
as before R is a graded commutative Noetherian ring.

Let p be a prime ideal of R. Since Z(p) = {q ∈ Spec(R) | q � p} is a special-
ization closed subset of Spec(R), there is a localization functor LZ(p) : T → T .
For any X ∈ T , let Xp denote the object LZ(p)X , and let Tp denote the essen-
tial image of LZ(p). So Tp is the full subcategory of T formed by all objects
isomorphic to an object of the form LZ(p)X for some X ∈ T . Note that Tp is
the Verdier quotient T /TZ(p). Moreover, by [1, Theorem 6.4], TZ(p) is compactly
generated in T , and so by the Neeman-Ravenel-Thomason localization theorem,
Tp is compactly generated (see Section 2.4).

Our first result shows that LZ(p), for any prime p, is a localization. It is,
in fact, contained in [1, Proposition 6.1(2)]. Here we present a slightly different
proof.

PROPOSITION 3.1

Let q ⊆ p be prime ideals of R. Then LZ(q)LZ(p)X ∼= LZ(q)X or, in our notation,
(Xp)q

∼= Xq.

Proof
Since q ⊆ p, Z(q) ∩ Z(p) = Z(p). So by [1, Proposition 1.6(1)], ΓZ(q)ΓZ(p)X ∼=
ΓZ(p)X . This implies that LZ(q)ΓZ(p)X = 0. Now the result follows by applying
the triangulated functor LZ(q) on exact triangle

ΓZ(p)X X LZ(p)X . �

DEFINITION 3.2

Let X be an object of T . We define the (big) support of X , denoted SuppR X ,
to be the set

SuppR X =
{
p ∈ Spec(R)

∣∣ Xp �= 0
}
.

This definition of support for an object is completely related to the usual support
of the cohomology of objects. The following theorem establishes this fact.

THEOREM 3.3

Let X be an object of T . Then

SuppR X =
⋃

C∈T c

SuppR H∗
C(X).

In particular, for any object X of T we have X = 0 if and only if SuppR X = ∅.

Proof
Let p ∈ Spec(R) be such that Xp �= 0. So X /∈ TZ(p). This means that there exists
a compact object C ∈ T c such that suppR H∗

C(X) � Z(p). This, in turn, implies
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that there exists a prime ideal q contained in p such that H∗
C(X)q �= 0. Hence

H∗
C(X)p �= 0.

Conversely, let p ∈ Spec(R) be such that H∗
C(X)p �= 0 for some compact

object C of T c. Assume to the contrary that Xp = 0. So X ∈ TZ(p). Therefore,
by definition, suppR H∗

C(X) ⊆ Z(p) for any compact object C. Hence H∗
C(X)p

should vanish for all C ∈ T c, which contradicts the assumption. �

Some properties of support are listed below.

PROPOSITION 3.4

Let T be a triangulated category.

(1) For any object X of T , SuppR X = SuppR ΣX.
(2) For any object X of T , suppR X ⊆ SuppR X.

(3) For any exact triangle X Y Z in T , we have

SuppR Y ⊆ SuppR X ∪ SuppR Z.

(4) For any exact triangle ΓϑX X LϑX in T , we have

SuppR X = SuppR ΓϑX ∪ SuppR LϑX,

where ϑ is a specialization closed subset of Spec(R).
(5) For any objects X and Y of T , HomT (X,Y ) = 0 if SuppR X ∩ SuppR Y = ∅.

Proof
Parts (1)–(3) are easy to see.

(4) By part (3), we should show only that SuppR ΓϑX ∪ SuppR LϑX ⊆
SuppR X. This follows if we show that SuppR ΓϑX ⊆ SuppR X , and this is clear
because, in view of [1, Proposition 6.1(3)], we have SuppR ΓϑX = SuppR X ∩ ϑ.

(5) Set ϑ = SuppR X and ω = SuppR Y . By definition, HomT (X,LϑY ) = 0.
So it follows from the triangle ΓϑY Y LϑY that
HomT (X,Y ) = HomT (X,ΓϑY ). But ΓϑY = 0 because, by [1, Proposition 6.1(1)],
ΓϑY = ΓϑΓωY = Γϑ∩ωY , and by assumption, ϑ ∩ ω = ∅. So the result follows. �

DEFINITION 3.5

Let C ∈ T c. We say that an object X of T is cohomologically finite with respect
to C if H∗

C(X) is finitely generated as a graded R-module. X is called cohomo-
logically finite if it is cohomologically finite with respect to C for any C ∈ T c.

3.6
Let X be a cohomologically finite object of T . Then it is easy to see that ΣX ;
X//r for any homogeneous element r of R and Xp as an object of Tp are coho-
mologically finite.
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LEMMA 3.7

Let X be an object of T , and let r be a homogeneous element of R. Then

SuppR X//r ⊆ SuppR X ∩ V
(
(r)

)
.

The equality holds when X is cohomologically finite and r is of degree zero.

Proof
Let r be of degree d, and let C be a compact object of T . Applying the functor
Hom∗

T (C, ) on the triangle

X
r

ΣdX X//r

induces exact sequence

· · · −→ H∗
C(X) r−→ H∗

C(ΣdX) −→ H∗
C(X//r) −→ H∗

C(X)[1] −→ · · ·

of cohomology modules. We note that

SuppR H∗
C(X//r) = SuppR H∗

C(X)[d]/rH∗
C(X) ∪ SuppR(0 :H∗

C(X)[1] r).

Assume that p ∈ SuppR H∗
C(X//r). So p ∈ SuppR H∗

C(X), and it is straightfor-
ward to check that r ∈ p. This implies the result.

Now assume that X is cohomologically finite and r is of degree zero. Let
p ∈ SuppR X ∩ V ((r)). There exists a compact object C ∈ T c such that p ∈
SuppR H∗

C(X). By localizing the above exact sequence at p, we get the exact
sequence

H∗
C(X)p

r/1−→ H∗
C(X)p −→ H∗

C(X//r)p −→ H∗
C(X)p[1].

If H∗
C(X//r)p = 0, then H∗

C(X)p = r/1H∗
C(X)p and, since X is cohomologically

finite, the Nakayama lemma implies that H∗
C(X)p = 0, which contradicts the fact

that p ∈ SuppR X . Hence p ∈ SuppR H∗
C(X//r), and so we have the equality. �

The above lemma implies that for any prime ideal p of R and any homogeneous
element r ∈ R \ p, SuppR X//r ⊆ Z(p). This, in particular, implies that X//r ∈
TZ(p). So for any exact triangle

X
r

ΣdX X//r ,

the induced morphism LZ(p)X
r−→ LZ(p)ΣdX is an isomorphism in Tp. Therefore

any homomorphism φ : R −→ Z(T ) of graded rings induces a homomorphism
φp : Rp −→ Z(Tp) such that the diagram

R
φ

Z(T )

Rp

φp

Z(Tp)



Local cohomology and support for triangulated categories 819

with natural vertical maps, is commutative.
Ignoring our notation, which always denote φ(r) by r itself, we may write

φp(r/s) = φ(r)/1φ(s)−1/1, where r and s are homogeneous elements of R with
s /∈ p.

PROPOSITION 3.8

Let C be a compact object of T . Then for any object X of C and any prime ideal
p of R, there exists an isomorphism

H∗
C(X)

p
∼= H∗

Cp
(Xp)

of Rp-modules.

Proof
By [1, Theorem 4.7], there exists an isomorphism H∗

C(X)
p

∼= H∗
C(Xp) of R-

modules. On the other hand, since the localization functor LZ(p) is a left adjoint
of the inclusion functor, the adjoint duality gives us the isomorphism H∗

C(Xp) ∼=
H∗

Cp
(Xp) of R-modules. So to complete the proof, we should check that the com-

posite isomorphism H∗
C(X)

p
∼= H∗

Cp
(Xp) is an isomorphism of Rp-modules. The

easy argument is left to the reader. �

4. Local cohomology functor and boundedness

Our results in this section show that the local cohomology functor ΓV preserves
a certain kind of boundedness in the case where R is a ring of finite Krull dimen-
sion. This, in case we are working in a derived category of a module category,
simply means that the local cohomology of a bounded complex supported on a
variety is again a bounded complex. In this section we assume that R =

⊕
n∈N0

Rn

is a Noetherian N0-graded ring.
Let us begin with some notation and definitions. Let X be an object of T ,

and let C be a compact object. Since H∗
C(X) is a graded R-module, we may

consider two invariants

infC X = inf
(
H∗

C(X)
)

= inf
{
n ∈ Z

∣∣ Hn
C(X) �= 0

}
,

supC X = sup
(
H∗

C(X)
)

= sup
{
n ∈ Z

∣∣ Hn
C(X) �= 0

}
.

We say that an object X of T is cohomologically bounded above (resp., bounded
below) if, for any compact object C, there exists a positive integer n(C) such that
supC X ≤ n(C) (resp., infC X ≥ −n(C)). X is called cohomologically bounded if
it is both cohomologically bounded above and cohomologically bounded below.
Let T − (resp., T +, T b) denote the full subcategory of T , consisting of all coho-
mologically bounded above (resp., bounded below, bounded) objects. Our results
in this section, in fact, show that the local cohomology functor is a functor from
T b to itself.
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DEFINITION 4.1

Let X be an object of T . We define the dimension of X to be

dimR X = sup
{
dimR H∗

C(X)
∣∣ C ∈ T c

}
.

Obviously, for any object X of T , we have dimR X = dimR ΣX .

DEFINITION 4.2

(1) Let X �= 0 be an object of T −, and let a be a graded ideal of R. We define
the cohomological dimension of X with respect to a, denoted cd(a,X), to be

cd(a,X) = sup{supC ΓV(a)X − supC X | C is a compact object of T }.

(2) Let X �= 0 be an object of T +, and let a be a graded ideal of R. We define
the cohomological grade of X with respect to a, denoted cg(a,X), to be

cg(a,X) = inf{infC ΓV(a)X − infC X | C is a compact object of T }.

Note that, for any nonzero object X of T − (resp., T +), cd(a,ΣX) = cd(a,X)
(resp., cg(a,ΣX) = cg(a,X)).

4.3
Let {ϑi}i∈I be a nonempty family of pairwise disjoint specially closed subsets of
Spec(R). Set ϑ =

⋃
i∈I ϑi. Then one can apply [1, Theorem 7.1.] to ΓϑX to get

ΓϑX ∼=
∐

i∈I
ΓϑiX.

Throughout we use this fact.
As a corollary of this fact, we have the following.

COROLLARY 4.4

Let a be a graded ideal of R, and let X �= 0 be an object of T . If dimR X = 0,
then ΓV(a)X is a summand of X. In particular, if X ∈ T −, then cd(a,X) ≤ 0.

Proof
As dimR X = 0, the support of X contains only maximal graded ideals of R. Let
ϑ = SuppR X . So, by Section 4.3, ΓϑX ∼=

∐
m∈ϑ ΓV(m)X ∼= X . Therefore

ΓV(a)X ∼= ΓV(a)ΓϑX ∼= ΓV(a)∩ϑX ∼=
∐

m∈V(a)∩ϑ

ΓV(m)X.

Hence the result follows. �

LEMMA 4.5

(1) Let r ∈ R be a homogeneous element of degree d, and let C be a compact
object of T . Then for any X ∈ T ,

supC X//r ≤ supC X.

If, moreover, we know that d > 0, then supC X//r = supC X − 1.
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(2) Let a be a graded ideal of R, let r ∈ a be a homogeneous element of a,
and let C be a compact object of T . Then for any X ∈ T ,

supC ΓV(a)X//r ≥ supC ΓV(a)X − 1.

Proof
(1) Both assertions follow immediately from the long exact sequence

Hi−1
C (X//r) −→ Hi

C(X) r−→ Hi+d
C (X) −→ Hi

C(X//r) −→ Hi+1
C (X)

of R0-modules, induced from the exact triangle

X
r

ΣdX X//r .

(2) By part (1) we should consider only the case deg(r) = 0. Consider the
exact triangle

ΓV(a)X
r

ΓV(a)X ΓV(a)X//r .

This induces the exact sequence

Hi−1
C (ΓV(a)X//r) −→ Hi

C(ΓV(a)X) r−→ Hi
C(ΓV(a)X)

of cohomology modules. Let supC ΓV(a)(X) = t. If Ht−1
C (ΓV(a)X//r) = 0, then the

morphism Ht
C(ΓV(a)X) r−→ Ht

C(ΓV(a)X) has to be injective, which is impossible
as any element of Ht

C(ΓV(a)X) is annihilated by a power of r. So in this case also
Ht−1

C (ΓV(a)X//r) �= 0. The proof is hence complete.
�

Let a be a graded ideal of R. The arithmetic rank of a, denoted ara(a), is defined
by

ara(a) = min
{
n ∈ N : ∃ homogeneous elements

b1, . . . , bn ∈ R with
√

(b1, . . . , bn) =
√

a
}
.

Note that ara(0R) = 0.

THEOREM 4.6

Let a be a graded ideal of R, and let X �= 0 be an object of T −. Then cd(a,X) ≤
ara(a).

Proof
Let ara(a) = n. We proceed by induction on n. Case n = 0 is trivial. Assume that
n = 1 and a = (r), with deg(r) = d. Clearly, ΓV(a)X//r = X//r. So we have the
triangle

ΓV(a)X
r

ΣdΓV(a)X X//r .
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Consider the induced long exact sequence of R0-modules

Hi
C(X//r) −→ Hi+1

C (ΓV(a)X) r−→ Hd+i+1
C (ΓV(a)X).

Let t = supC X . Since, by Lemma 4.5, Hi
C(X//r) = 0 for all i ≥ t + 1, the homo-

morphism Hi+1
C (ΓV(a)X) r−→ Hd+i+1

C (ΓV(a)X) is injective for all i ≥ t + 1. This
implies that Hi

C(ΓV(a)X) = 0 for all i > t+1, because any element of Hi
C(ΓV(a)X)

is annihilated by some power of r. The result hence follows in this case.
Suppose inductively that n > 1 and the result has been proved for all ideals

with arithmetic rank less than n. Assume that a = (r1, . . . , rn), where r1, . . . , rn

are homogeneous elements of R, and consider the ideal b = (r2, . . . , rn). Now the
result follows from the Mayer-Vietoris triangle

ΓV(b)∩V(r1)X ΓV(b)X
∐

ΓV(r1)X ΓV(b)∪V(r1)X

in view of the facts that V (b) ∪ V (r1) = V (br1) and ara(br1) ≤ ara(b). �

THEOREM 4.7

Let a be a graded ideal of R, and let X �= 0 be an object of T −. Then cd(a,X) ≤
dimR.

Proof
Clearly, we may assume that dimR < ∞. If dimR = 0, the result is clear because
then dimR X = 0 for any object X of T , and so the result follows from Corol-
lary 4.4. So assume that dimR = d > 0. Assume that there exists p ∈ minR such
that a ⊆ p. Rearrange the ideals in minR in a way that a ⊆ pi for i = 1, . . . , n

and a � pi for i = n+1, . . . , t. Choose r ∈
⋂t

i=n+1 pi \
⋃n

i=1 pi. Set b = a ∩ Rr and
c = a + Rr. Clearly b ⊆

⋂
p∈minR p and c �

⋃
p∈minR p. But ΓV(b)X = X , so it

follows from the Mayer-Vietoris triangle that we should consider the case only
for ΓV(c)X . Therefore, we may assume that a �

⋃
p∈minR p. This we do.

Let r1 ∈ a \
⋃

p∈minR p be a homogeneous element. So dimR/r1R < dimR.
If a ⊆

⋂
p∈min(R/r1R) p, then since r1 ∈ a, we get

√
a =

√
r1R, and so ara(a) =

1. Hence the result follows from Theorem 4.6. Otherwise, we may find r2 ∈ a

such that dimR/(r1, r2) < dimR/r1R. Continuing in this way, after d steps, we
may deduce that dimR/(r1, . . . , rd) = 0. So dimR X/(r1, . . . , rd)X = 0. Hence, by
Corollary 4.4 and Lemma 4.5, for any compact object C of T , we have

supC ΓV(a)X/(r1, . . . , rd)X ≤ supC X/(r1, . . . , rd)X

≤ supC X = s.

This means that Hs+1
C (ΓV(a)X/(r1, . . . , rd)X) = 0. Now the long exact se-

quence of cohomology modules arising from the exact triangle

ΓV(a)X/(r1, . . . , rd−1)X
rd

ΓV(a)X/(r1, . . . , rd−1)X

ΓV(a)X/(r1, . . . , rd)X
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implies that Hs+2
C (ΓV(a)X/(r1, . . . , rd−1)X) = 0. This follows because rd ∈ a and

any element of H∗
C(ΓV(a)X/(r1, . . . , rd−1)X) vanishes by a power of rd. Following

back from this argument gives us Hs+d+1
C (ΓV(a)X) = 0. That is, supC ΓV(a)X ≤

supC X + dimR. The proof is complete because C was arbitrary. �

LEMMA 4.8

Let X ∈ T , let C ∈ T c be a compact object, and let r ∈ R be a homogeneous
element of degree d. Then

infC X//r ≥ infC X − 1 if d = 0

and

infC X//r = infC X − d if d > 0.

Proof
This can be proved easily using the long exact sequence of cohomology modules
arising from the exact triangle

X
r

ΣdX X//r . �

PROPOSITION 4.9

Let a be a graded ideal of R, and let X �= 0 be an object of T +. Then cg(a,X) ≥ 0.

Proof
The result trivially holds, if X//a = 0. So we may assume that X//a �= 0. Let C

be a compact object of T . We use induction on the number of generators of a to
show that infC ΓV(a)X ≥ infC X . To begin, assume that a = (r) and deg(r) = d.
The triangle

X
r

ΣdX X//r

induces the triangle

ΓV(a)X
r

ΣdΓV(a)X ΓV(a)X//r .

If d > 0, then in view of Lemma 4.8, we have the following equalities:

infC X − d = infC X//r = infC ΓV(a)X//r = infC ΓV(a)X − d.

Therefore infC ΓV(a)X = infC X . Now, assume that d = 0. The latter exact tri-
angle induces the following exact sequence of R0-modules:

Hi
C(ΓV(a)X) r−→ Hi

C(ΓV(a)X) −→ Hi
C(X//r).

Assume that infC ΓV(a)X = t. So this exact sequence implies that Ht−1
C (X//r) �=

0. Otherwise, we get the monomorphism Ht
C(ΓV(a)X) r−→ Ht

C(ΓV(a)X), and since
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any element of Ht
C(ΓV(a)X) is annihilated by a power of r, we deduce that

Ht
C(ΓV(a)X) = 0, which is a contradiction. Furthermore, Hi

C(X//r) = 0 for all
i < t − 1. Thus infC X//r = infC ΓV(a)X − 1. Lastly, in view of Lemma 4.8, we
get infC X ≤ infC ΓV(a)X . Thus the result follows in this case. Now, assume
inductively that the result has been proved for all values smaller than n. Let
a = (r1, . . . , rn). Set b = (r2, . . . , rn). In view of the induction step, we have the
following inequalities:

infC X ≤ infC ΓV(b)X ≤ infC ΓV(r1)ΓV(b)X = infC ΓV(a)X.

Therefore the result follows. �

4.10. Artinianness of the local cohomology functors
An object X of T is said to be Artinian with respect to the compact object
C ∈ T c if H∗

C(X) is a graded Artinian R-module. X is called Artinian if it is
Artinian with respect to any compact object C of T . Let (R,m) be a graded
local ring, and let X be a cohomologically finite object of T . Then using the
same techniques as we used above, and following the same arguments as in [2,
Chapter 7], one can show that ΓV(m)X is Artinian. Let us just outline the proof.
We proceed by induction on dimR X = n to show that ΓV(m)X is Artinian. If
n = 0, then SuppR X = {m}, and so ΓV(m)X = X . Now, since the graded R-
module H∗

C(ΓV(m)X) = H∗
C(X) is cohomologically finite, it has finite length, and

so we are done in this case. Now, assume that n > 0 and the result has been
proved for all integers smaller than n. As n > 0, m �

⋃
p∈min(R) p, and hence

there exists a homogeneous element r ∈ m \
⋃

p∈min(R) p. Let deg(r) = d, and
consider the exact triangle

X
r

ΣdX X//r

in T . If dimR X//r < n, then we apply the functor ΓV(m) to the above exact
triangle and then apply the functor H∗

C( ) to the new exact triangle to get the
following exact sequence of graded R-modules:

H∗
C(ΓV(m)X//r)[1] −→ H∗

C(ΓV(m)X) r−→ H∗
C(ΓV(m)X)[d] −→ H∗

C(ΓV(m)X//r).

So by using the induction hypothesis, we deduce that H∗
C(ΓV(m)X//r) is Artinian.

Thus the graded module (0 :H∗
C(ΓV(m)X//r) r) is Artinian. Now, since ΓV(m)X//r is

r-torsion, Melkersson’s lemma (cf. [2, Theorem 7.1.2]) implies the result. If oth-
erwise, dimR X//r = n, we may find r2 ∈ m \

⋃
p∈min(R/r1R) p, and so on. Finally,

we get r1, . . . , rt in R such that dimR X//(r1, . . . , rt) < n. Therefore the procedure
can be continued as in the previous case.

5. Triangulated categories generated by a compact object

In this section we assume that T is generated by one compact object C. As in
the Section 4, R =

⊕
n∈N0

Rn is a Noetherian N0-graded ring. One of the main
results of this section, Theorem 5.6, provides us with a formula connecting the
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dimension and the end of local cohomology objects. This, in particular, reduces
to a nice result in the local cohomology theory over a commutative Noetherian
ring.

THEOREM 5.1

Let a be an ideal of R, and let X �= 0 be a cohomologically finite object of T −.
Then cd(a,X) ≤ dimR X.

Proof
Clearly, we may assume that dimR X < ∞. If dimR X = 0, the result follows from
Corollary 4.4. So assume that dimR X > 0 and the result has been proved for all
objects of dimension less than dimR X . Similarly to the proof of Theorem 4.7,
we may assume that a �

⋃
p∈minH∗

C(X) p.
We should show that supC ΓV(a)X ≤ dimR X + supC X . By the induction

assumption, we have supC ΓV(a)X//r ≤ dimR X//r + supC X//r, where r ∈ a \⋃
p∈minH∗

C(X) p. But by Lemma 4.5, we have the inequalities supC ΓV(a)X −
1 ≤ supC ΓV(a)X//r and supC X//r ≤ supC X . Hence the result follows because
dimR X//r = dimR X − 1. �

LEMMA 5.2

Let R be a commutative graded ring with local base ring (R0,m0), and let X be
a cohomologically finite object of T . Let r ∈ m0. Then

supC X//r = supC X.

Proof
For each i ∈ Z, consider the induced exact sequence

Hi
C(X) r−→ Hi

C(X) −→ Hi
C(X//r) −→ Hi+1

C (X)

of R0-modules. Since X is cohomologically finite, Hi
C(X) is finitely generated

for each i. So if Hi
C(X//r) = 0, the Nakayama lemma implies that Hi

C(X) = 0.
Therefore supC X ≤ supC X//r. The reverse inequality follows from Lemma 4.5.

�

LEMMA 5.3

Let a be a graded ideal of R, and let r ∈ a be a homogeneous element of degree
zero. Then for any X ∈ T and C ∈ T c,

infC ΓV(a)X//r = infC ΓV(a)X − 1.

Proof
By Lemma 4.8, we have infC ΓV(a)X//r ≥ infC ΓV(a)X − 1. For the converse
assume that infC ΓV(a)X//r = t. Then Ht−1

C (ΓV(a)X//r) = 0, and so the homo-
morphism

Ht
C(ΓV(a)X) r−→ Ht

C(ΓV(a)X)
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is injective. But any element of Ht
C(ΓV(a)X) is annihilated by some powers of a,

and so Ht
C(ΓV(a)X) = 0. Furthermore, Hi

C(ΓV(a)X) = 0 for all i < t. Hence we
have the result. �

DEFINITION 5.4

Let a be a graded ideal of R, and let X be a cohomologically finite object of T .
We define the grade of X relative to a, denoted grade(a,X), by

grade(a,X) = grade
(
a,H∗

C(X)
)
.

In the rest of this section we assume that R is a trivially graded (concentrated
in degree zero) commutative Noetherian ring.

THEOREM 5.5

Let (R,m) be a local ring, and let a ⊆ m be an ideal of R. Then for any cohomo-
logically finite object 0 �= X ∈ T +, we do have

grade(a,X) ≤ cg(a,X).

Proof
We use induction on grade(a,X) = g. When g = 0, the result follows from Propo-
sition 4.9. Now suppose that g > 0 and that the result has been proved for any
cohomologically finite object Y with grade(a, Y ) < g. Since g > 0, a � ZR(H∗

C(X)),
and so there exists a homogeneous element r ∈ a \ ZR(H∗

C(X)). This induces the
exact triangle

X
r

X X//r

in T which, in turn, induces an exact sequence

0 −→ H∗
C(X) r−→ H∗

C(X) −→ H∗
C(X//r) −→ 0

of graded modules. So

grade(a,X//r) = grade
(
a,H∗

C(X//r)
)

= grade
(
a,H∗

C(X)/rH∗
C(X)

)

= grade(a,X) − 1 = g − 1.

Hence the induction hypothesis for X//r implies that

infC X//r + grade(a,X//r) ≤ infC ΓV(a)X//r.

By Lemma 5.3, infC ΓV(a)X//r = infC ΓV(a)X − 1. On the other hand, assume
that infC X = t. But if Ht

C(X//r) = 0, from the above exact sequence of graded
R-modules we get the exact sequence Ht

C(X) r−→ Ht
C(X) −→ 0, which, in view

of the Nakayama lemma, is impossible. So infC X//r = infC X . Therefore we get
the desired formula. �

THEOREM 5.6

Let a be an ideal of R, and let X ∈ T be cohomologically finite. Then for any
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integer i we have

dimR Hi
C(ΓV(a)X) + i ≤ dimR X + supC X.

Proof
Set dimR X = t and supC X = s. Since SuppR Hi

C(ΓV(a)X) ⊆ SuppR X , the result
is clear for i ≤ s. Moreover, by Theorem 5.1, we have supC ΓV(a)X ≤ t+ s. So for
i > t + s, Hi

C(ΓV(a)X) = 0, and the result holds in this case. On the other hand,
the result follows if t = 0 because in this case we deduce from Corollary 4.4 that
ΓV(a)X is a direct summand of X , and hence supC ΓV(a)X ≤ supC X .

So assume that s < i ≤ s + t and t > 0. Let t = 1. Let p be a minimal ele-
ment of SuppR X . So SuppR Xp = V (p), and hence for any ideal a ⊆ p with
AnnR H∗

C(X) ⊆ a, we have V (a) = V (p). Therefore ΓV(a)(Xp) = Xp. But by Prop-
osition 3.8, supCp

Xp ≤ supC X , and so

Hs+1
C (ΓV(a)X)

p
∼= Hs+1

Cp
(ΓV(a)Xp) = Hs+1

Cp
(Xp) = 0.

Therefore p /∈ SuppR Hs+1
C (ΓV(a)X), and hence dimR Hs+1

C (ΓV(a)X) ≤ 0. So we
have the result in this case.

Now suppose inductively that t > 1. We should show that for 0 < i ≤ t,
dimR Hs+i

C (ΓV(a)X) ≤ t − i. To this end, consider p ∈ SuppR H∗
C(X) with

htH∗
C(X) p < i. We claim that p /∈ SuppR Hs+i

C (ΓV(a)X). If a � p, the result is
clear. So assume that a ⊆ p. Using the same technique as in the proof of Theo-
rem 4.7, we may assume that a �

⋃
q∈minX q. So there exists r ∈ a \

⋃
q∈minX q.

Consider the exact triangle

ΓV(a)X
r

ΓV(a)X ΓV(a)X//r ,

and localize it at p to get the triangle

(ΓV(a)X)
p

r
(ΓV(a)X)

p
(ΓV(a)X//r)

p .

By the induction assumption, for 0 < i ≤ t − 1, dimR Hs+i
C (ΓV(a)X//r) ≤ t − 1 − i.

So since htH∗
C(X//r) p < i − 1, p /∈ SuppR Hs+i

C (ΓV(a)X//r). So the first term of the
induced exact sequence

Hs+i−1
C

(
(ΓV(a)X//r)

p

)
−→ Hs+i

C

(
(ΓV(a)X)

p

) r−→ Hs+i
C

(
(ΓV(a)X)

p

)

of cohomology modules vanishes. But since r ∈ a ⊆ p and any element of
Hs+i

C ((ΓV(a)X)
p
) vanishes by a power of a, we deduce that Hs+i

C ((ΓV(a)X)
p
) = 0.

This completes the induction step and hence the proof. �

Local cohomology in D(R)
Let R be a commutative Noetherian ring, and let T = D(R) be the derived cat-
egory of complexes of R-modules. It is known that T is a compactly generated
triangulated category with compact object R, considered as a complex concen-
trated in degree zero.
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It is shown in [1, Theorem 9.1] that for any specialization closed subset ϑ

of Spec(R), the local cohomology functor Γϑ is equivalent to the right derived
functor RFϑ : T −→ T of Fϑ, where for any R-module M , FϑM is the kernel of
the morphism M −→

∏
q/∈ϑ Mq (for details on local cohomology in this case, see

[4], [6]). Using this, the above theorem interprets to the following result related
to the usual local cohomology functors. These two results have been known for
a while (see, e.g., [3]).

COROLLARY 5.7

For any cohomologically finite complex X in D(R) and any integer i, there is an
inequality

dimR Hi
(
RFV(a)(X)

)
) + i ≤ dimR X + supR X.

In the special case when we consider the R-module M as a complex concentrated
in degree zero, we have the following.

COROLLARY 5.8

Let M be a finitely generated R-module. Then for each i ≥ 0, there is an inequality

dimR Hi
a(M) + i ≤ dimR M.
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