On the Cauchy problem for noneffectively
hyperbolic operators: The Gevrey 4
well-posedness
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Abstract For a hyperbolic second-order differential operator P, we study the relations
between the maximal Gevrey index for the strong Gevrey well-posedness and some alge-
braic and geometric properties of the principal symbol p. If the Hamilton map F, of p
(the linearization of the Hamilton field Hy, along double characteristics) has nonzero real
eigenvalues at every double characteristic (the so-called effectively hyperbolic case), then
it is well known that the Cauchy problem for P is well posed in any Gevrey class 1 < s <
+o0 for any lower-order term. In this paper we prove that if p is noneffectively hyperbolic
and, moreover, such that Ker F]? N Im Fg # {0} on a C*° double characteristic mani-
fold ¥ of codimension 3, assuming that there is no null bicharacteristic landing ¥ tan-
gentially, then the Cauchy problem for P is well posed in the Gevrey class 1 < s < 4 for
any lower-order term (strong Gevrey well-posedness with threshold 4), extending in par-
ticular via energy estimates a previous result of Hormander in a model case.

1. Introduction
Let
(1.1) P(z,D)=-Dj+ Y  au(x)D*=Py+Pi+P

la|<2,a0<2

be a second-order differential operator with real analytic or Gevrey s class a, ()
(s is close to 1) defined in an open neighborhood of the origin of R"*! with
the principal symbol p(z,&), hyperbolic with respect to the xo-direction, where
x = (20, T1,...,Zn) = (x0,2), £ =(0,&1,..-,&n) = (£0,&’). We are interested in
the Cauchy problem for P in the Gevrey classes when p has double characteristics
p € T*R" 1\ {0}, p(p) =0, dp(p) = 0. We say that f(z) € y*)(R"), the Gevrey
class s (> 1), if for any compact set K C R™, there exist C' > 0, h > 0 such that

o f(z)| < Cha|l®, z€eK, VYaeN"
0%

We set 7" (R™) = (3 (R™) N C5°(R™).
Let p be a double characteristic; then the Taylor expansion of p around p
starts with a quadratic polynomial p, called the localization of p at p, which is
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a hyperbolic polynomial (see [10]). The linearization of the Hamilton field H,
at p is called the Hamilton map F,(p) of p at p (see, e.g., [6], [10]). Note that
H,, (0) = F,0. If the Hamilton map has nonzero real eigenvalues at every double
characteristic (effectively hyperbolic case), then the Cauchy problem for P is well
posed in C*°; in particular, in any Gevrey class s, 1 < s < 400 for any lower-
order term. To check this fact it is enough to apply the energy method developed
in [13] to e=70(D")!/* pezo(D)!/* (0 < s < 1). In this paper we are thus interested
in the optimal (maximal) Gevrey index s* such that the Cauchy problem for
the noneffectively hyperbolic operator P is well posed in the Gevrey class s for
1 < s < s* for any lower-order term and how this index s* relates to the geometry
of the double characteristic manifold and null bicharacteristics.

As proved in [7], a hyperbolic quadratic form Q in R2(™*1 such that the
Hamilton map Fp of @ has no nonzero real eigenvalues can be written in a
suitable system of symplectic coordinates according to the spectral structure of
Fg; according to whether KerFCQ2 N Ime2 = {0} or Kechz2 N ImFg2 # {0}, we
have

k k+£
(12) Q) =—=&+> mEi+&)+ > &,
j=1 j=k+1
k k+¢
(13) Q&) = (=& +2m& +&)/V2+ D> i +&)+ > &,
J=2 j=k+1

respectively.
To symbols (1.2) or (1.3) there correspond (apart from harmonic oscillator
contributions) the differential operators

(14) Pne,l = _Dg + ZDJ27 r<n,
j=1
(1.5) Ppen=—D§+22:DyDy, + DY+ D}, r<n,

j=2

respectively. It is easy to see that the Cauchy problem for P, + SD,, is not
well posed in the Gevrey class s > 2 for S # 0, while it is well known that the
Cauchy problem for P is well posed in the Gevrey class s, 1 < s < 2, for any
lower-order term P;(i = 0,1) which is a special case of a general result (see [4],
[9]). On the other hand, in [7] an explicit formula of the forward fundamental
solution of P, 2+ SD), is obtained for every S € C which is a distribution on the
Gevrey class 4. Thus we see that the Cauchy problem for P, o is well posed in
the Gevrey class 1 <s <4 for any S € C and not well posed in the Gevrey class
s> 4 for S # 0 which follows from the explicit formula in [7] (for another proof
of this fact, which is available for the more general case, see [16]). Therefore, in
this paper, we consider the case (1.3) in a more general setting.
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In what follows we assume that p vanishes exactly to order 2 on a C°-
manifold ¥, which means that near every p € ¥ one can write

p=—&+ Y bi(x,¢),

j=1

where d¢; are linearly independent at p and X is given near p by
Y= {($,§) |£0 207¢j($’§/) =0,j= 17~--7T}

on which Fj,(p) has no nonzero real eigenvalues and

(1.6) KerFﬁ(p)ﬂImFﬁ(p)#{O}, pE.

In this case the spectral properties of F,(p) are not enough by themselves to
determine completely the behavior of null bicharacteristics near ¥ (see [15]),
while the behavior of null bicharacteristic,

(1.7) there is no null bicharacteristic falling on ¥ tangentially,

is crucial to the C'>° well posedness (see [3]). In this paper we prove the following.

THEOREM 1.1

Assume (1.6) and (1.7). We also assume that the codimension of ¥ is 3. Then
the Cauchy problem for P is well posed in the Gevrey class 1 < s <4 for any
lower-order term; for any f(z) € v*)(R"*) vanishing for xo <0, there is u(x)
which is C*°, vanishing for xo <0 verifying

(1.8) Pu=f

near the origin.

The Gevrey index 4 is optimal in the following sense. Consider a model operator
Proa = —D§ +2DgD; +23D2  (n>2)
which verifies (1.6) and (1.7).

THEOREM 1.2 ([7, SECTION 9], [16, PROPOSITION 1.3])
The Cauchy problem for Ppoq + SDy, with S # 0 is not locally solvable in any
Gevrey class s > 4.

This paper is organized as follows. In Section 2, we analyze our assumptions and
we rewrite the principal symbol p in a suitable form microlocally. In Section 3,
giving heuristic arguments, we explain the idea of the proof of Theorem 1.1. In
Section 4 we prepare symbol classes which are used in this paper and introduce
a weight exp(é) for an energy estimate which plays a crucial role to derive
a priori estimates. In Sections 5 and 6, we justify the heuristic arguments in
Section 3. In Section 5, we prove required properties for the transformed operator

exp (¢)Pexp (—¢). In Section 6 we derive a priori estimates for the transformed
operator, and using these a priori estimates we prove the existence of a parametrix
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of P with finite propagation speed of wave front sets which proves Theorem 1.1.
In Appendix A we collect several results about symbols without proofs which
are used in this paper, and in Appendix B we present some formulas about

exp (¢) P exp (—¢).

2. Preliminaries

Let § < 4; we prove Theorem 1.1 by proving the existence of a parametrix at any
P =1(0,2',¢") of the Cauchy problem

Pu=f, feC%[-T,Tky"(R")),
u = 0, i) S 0,

with finite propagation speed of wave front sets, abbreviated as a parametrix with
finite propagation speed in the following (see [11, Appendix]; here we define such
parametrices by just requiring (A.3), (A.5) without (A.4)), where the support of
f is contained in [0,T] x {|2'| < K} with some K = K(f) > 0.

Let % be a local homogeneous canonical transformation (y,n) +— (z,€) from
a neighborhood of (§,7) to a neighborhood of (i’,é) such that yg = xg. Since
K preserves the yg-coordinate, a generating function of this canonical transfor-
mation has the form zgng + H(z,7n’). We assume that H(z,n') = 2'n’ + ¢(x, )
with |Vg . é(z,n")| < 1 which is actually in our case (after a quadratic change
of coordinates z if necessary). Recall that

g OHaa)  OHG)
ox’ 7’ on’
Let us denote by S()(m,g,,5), 0 < < p <1, the set of all smooth a(x,&’) veri-
fying
0708 a(x,&)| < CAIH Pl gltsm(g/ymreIPl=pled

for all «, 5. Extending ¢(z,£’) so that it becomes homogeneous of degree 1 in
¢ and hence cutting off near ¢’ = 0, which is in S5 ({{'),91,0), we consider the
Fourier integral operators

OpO(eiqﬁ)u _ (27T)—n/ei(a;’—y’)n/—i-i(b(;c,n')u(y/) dy’ dn/7

Op'(e™")u= (2m) ™" / el s Oy dy' i,
where xg is regarded as a parameter. Let 0 < p <1; then we have the following.
PROPOSITION 2.1
Let p e Sy ({€')™,91,0) and ¢ € Si5y({£'),91,0) be real valued. Then we have
Op () Op°(p) Op' (e~**) = Op°(p) + Op°(r),

where p € S5 ((§')™, 91,0) and € S((Hzp)sﬂ)(e_d&l)l/s,gpﬁo) for any € >0 with
some ¢>0. Here

ﬁ(xvgl) = J($,§/)p($07 vn’H($7E/),E/) + S(s)(<£l>7n_1agl,0)7
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where Z/'(x,&") verifies Vo H(x,Z')=¢', H(z,n') =21 + ¢(z,1'), and

J(z,€') = det [%]

Proof

The proof is standard (see e.g., [5], [12]) except for the Gevrey estimates for
p and r. We only sketch how to get the Gevrey estimates for r. Let us write
0p°('?) Op”(p) = Op®(b1) + Op®(b2), where

bi = (ZW)_Q/e_iyln,Jr%(z’f,Jr",)xi(é’,n’)p(w'+y’7£’)dy' dn’

with x1 = x(7'(€/)71), xa=1— x1. Here x(2') € 7(()5) (R™) is such that x(z') =1
for |2'| < 1/4 and x(z') =0 for |z'| > 1/2. We see easily that b; = e¢*®q with
q €S, 91,0). We examine by. Let s = s+ ¢ > s. From Corollary A.3 we
have

00N Dy )Y )~V xap(a’ + €0
(2.1) < CAlHBIEN g 4 g|1s1 e ™ Vs (/) =N
< C«Ala+ﬁ|+N|a + ﬂ|!5160(n’> <£’>*p\a|N!S<n/>*N+p\al.
We choose N = [p|a| + ] such that the right-hand side of (2.1) is bounded by
C A (a4 )0 (¢) ~rlelestr ) (Aes oy ) ).
Choosing ¢ such that £ =[(A~'e~!(n’))'/*] and noting s; > s, we conclude that
(e—e(e”*

1/s7

1/s1

7gp,0)'
By standard arguments and the same type estimates as (2.1), we see
Op”(e"q) Op®(e*?) = Op° () + Op°(7),

where p € S()((§')™,91,0) verifies the assertion of Proposition 2.1 and 7 €

b2 € S(s14ps)

s

S((Hp)sﬁ)(e*c(f/)l/‘ ,9p,0). Repeating arguments similar to (2.1), we get
Op° (b2) Op°(e~*?) = Op°(c)
with c € S(SIJFQPS)(@_C(&/)I/S,gp,o), which proves the assertion. O

For any k € N there is j € Si5(1,91,0) such that Op’(J)Op°(j) — 1 €
op° (S(S)(<§’>’k,gl7o)), and hence we conclude that

Op”(e'*)POp' (e**) Op°(4)

=0p’ (p(x ™ (2,9)))
(2.2)

1
+ 00 (S0 () ™F,91008 + 3 S5 (€)', 91.0)€0)
j=0

2
—ec 1/s 1
+Op0(§ S((1+3p)s+e) (€75 ,gp,o)f(j)),
j=0
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where & : ('rOa xl + vn'¢(x7 T]l)v Mo, 77/) = (Jf(), Ily Mo + 6x0¢7 77/ + vm/¢(xa 77/))
Let us fix any p=(0,2,0,¢') € ¥; we work in a conic neighborhood of p' =
(0,2,¢£"). Since the codimension of ¥ is 3, one can write

p=—& + 7 + 5.

We set ¢ = &. Consider {¢g,¢;}(p), 7 =1,2, and suppose {¢o,¢;}(p) =0,
j=1,2. With ¢ = ¢? + ¢3 we would have Keng ﬂImFg = KerFq2 ﬁIqu2 which
contradicts (1.6) since Ker qu NIm Fq2 = {0} for ¢ is nonnegative. Thus consider-
ing (qgj)jzl’z = O(¢;);j=1,2 with a suitable smooth orthogonal O, we may assume
that {¢o,d1}(p) #0 and {¢po, P2} is a linear combination of ¢ and ¢o. We next
examine {¢1, 2} (p) # 0. If {p1, d2}(p) = 0, then p would be effectively hyperbolic
at p. Indeed, Hy, € (TX)? and

pP(H¢1) = _U(H¢0)H¢1)2 + 0(H¢27H¢1 )2 = _O(H¢07H¢1)2 <0;

hence it follows from [6, Corollary 1.4.7] that p is effectively hyperbolic at p.

LEMMA 2.1

One can write p as
p=—(& + é1)(& — ¢1) + 93,
{£0+¢17¢j}:03j:1727{¢1,¢2}?é0 on 2.

Proof
Recall that

p=—E + &% +¢5.

Let 0# X =aHy, +b0Hy, +cHy, €Im Fg N Ker sz, which exists by our assump-
tion. Since X = Fj(aHg, + BHgy, +vHy,), it follows that

a = _2ﬁ{¢07¢1}, C:2B{¢2,¢1}.
From F?(X) =0 we see that

b[{¢o, $1}° — {¢1,¢2}°] =0, Bl{o, 13> — {¢1,¢2}*] =0.

If {¢po, 1} — {p1, P2} # 0, then we would have X = 0, which is a contradiction.
Thus we have proved

{€0.01}° ={¢1,¢2}> on X
We may assume that {&o, @1} = {¢1,d2} so that {&y + ¢2,¢1} =0 on X. Writing
p=—(& + ¢2)(&o — ¢2) + &7
and exchanging ¢1 and ¢2, we get the desired assertion. (]
Since {& + ¢1,d2} =0 and {¢1,¢2} #0, it follows that {&, P2} # 0. Hence one

can write ¢2 = a(z,&)(zo — Y(x,&’)), where a(z,&’) is nonvanishing and ¢ is
independent of xg. Since {¢1,¢2} # 0 and hence dip # 0, one can take a new
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system of homogeneous symplectic coordinates (y,7) so that

Yo = Zo, 7702507 ylzuj(‘raf/)‘

Hence we may assume, for instance, that ¢2 = a(z,&")(zg — 21). Make a linear
change of coordinates

Yo = Zo, Y1 =21 — Zo-

We get

p=—(§ +& +¢1)(& + & — 1) + 63,
(2:3) ¢2 = a(x,{)ay, a(z,¢) #0,
{lot&+¢1,0;1 =0, j=1,2{d1,¢2}#0on .
Here we recall a result that characterizes when (1.7) occurs. Choose a smooth

vector field z(p) on ¥ such that z(p) € Ker F2(p) N Im F2(p) and F,(p)z(p) # 0.
Then we have the following.

PROPOSITION 2.2 ([2, THEOREM 2.1], [14, THEOREM 4.1])
Let S(z,€) be a smooth real-valued function vanishing on ¥ such that Hg(p)

is proportional to z(p) modulo Ker Fy,(p). Then there is no null bicharacteristic
falling on X if and only if H3p=0 on X.

Let us write with A =&y + & + ¢4,
p=—A*+201A+ ¢35, {A ¢z} =g+ oo

LEMMA 2.2

Assume (1.7). Then we have a =0 on X. In particular, we have

(2.4) {A, 62} = ag? + boo.

Proof

Note that F,Hg, = 2{¢2,¢1}Hy, and hence Hy, € ImF. On the other hand,
since F,Hy, = {¢1, 2} Ha, hence Hy, € Ker F? because F,, Hy = 0. Thus we may
take S = ¢ in Proposition 2.2. Then ng =0 implies that

{¢2,{¢p2,A}} =0,

which proves & =0 on X and hence the result. O

Since the existence of a parametrix with finite propagation speed (i.e., a parame-
trix verifying (A.3), (A.5) in [11]) is invariant under conjugation with Fourier
integral operator associated to a local homogeneous canonical transformation
preserving the xg-coordinate (see the proof of [11, Proposition A.5]), we can
assume that the operator we are studying has the form in the right-hand side
in (2.2), and in particular, we can assume that (2.3) and (2.4) hold near the
reference double point p.
We extend p globally outside the reference double point.



774 Enrico Bernardi and Tatsuo Nishitani

LEMMA 2.3
Assume that (2.8) and (2.4) are satisfied in a conic neighborhood of p' = (0,2,¢').
Then we can extend ¢1(x,&") such that ¢1(x,£') € S({'),91.,0),

¢2($7 gl) = CL(.’E, 5/)w<x1)7
where a € S(1,g10) with C~' < a(z,&') < C and ¢(z1) is nondecreasing,
[(z1)| <1 and (x1) =21 near x1 =0, and
(25) {¢1,1/1} >c>0

provided |(xq)| + (€)Y 72|p1(x,&')|? is small. Moreover, there erists c;(x,&') €
S((€), g1.0) which vanishes in a conic neighborhood of p' such that

{A+c1p+codr + c—103, 61}

=dod1 + djydo + di /Y% + (€) 441,
{A+ 10 + cod1 + 13,0}

=d 907 +d_1¢s +dy\/P? + (&) 7]
with some d;, dj, df € S((€')*,91,0), where A=E& + & + ¢1.

(2.6)

Proof

We may assume that {¢1, ¢2}(p’) > 0 and hence J¢, ¢1(p") > 0. Thus one can write
d1=0b(x,&) (& — P1(x, &) near p’, where 91 is independent of &;. Extending b
and 1/ so that b€ S(1,g10), C7' <b<C and ¥; € S((¢'),91,0), the assertion
(2.5) follows immediately because z1 — ) = 0 near 23 = 0. We turn to (2.6).
From (2.4) it follows that {A,¢} =d_2¢? +d_1¢2 + R with R € S(1,¢1,0) which
vanishes in a neighborhood of p’. Note that

{o1, 0} + K2+ ()11 > >0

with a large K > 0 thanks to (2.5). Hence we can write

R=a({¢1, 9} +r), r=K\[9?+ ()41,
with a € S(1,¢1,0) vanishing in a neighborhood of p’. Thus we have

{A+ o1+ co107, 9} = (d—z + {c—1,¥}) 5 + d—162

+ (a + CO){(bl?’l/}} +ar+ ({00a¢} + 2071{(15171/}})(?1-
Choose cg = —a and 2c_1 = {a,¥}({¢1,9} +r)~" so that ¢; € S({(¢')?,g1,0) van-
ishes in a neighborhood of p'; we get

{A+copr + co1¢7,9} = d_a¢i +d_142 + dor-

A similar argument proves that there is ¢;-vanishing in a neighborhood of p’ such
that {A + c1¢,¢1} = dog1 + dy2 + dir. These prove the assertion (2.6). O

Replacing A by A + 11 + cop + c_14?, the resulting symbol —A? + 241 A + ¢3
differs from the original one by

Coo + C1,
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where C; € S((¢')?, g1,0) vanishes in a neighborhood of p’. Thus it sufffices to show
the existence of a parametrix with finite propagation speed for the operator where
A is replaced by A + 11 + codp + c_14? (see the proof of [11, Lemma A.1].

3. Idea of the proof of Theorem 1.1

We prove Theorem 1.1 by deriving a priori estimates for the transformed opera-
tor. In this section we give a heuristic argument on how to do it, in which symbols
and operators are not strictly distinguished. Moreover, we write p ~ ¢ if the main
parts of p and ¢ coincide, and write p < ¢ if the main part of ¢ — p is nonnegative.

The symbol of the operator that we are studying looks like (replacing &y +

&1+ 1 by &o)

P =& +261(6)% + ¢3(€)°,
where ¢, are homogeneous of degree 0, and verifies
(3.1) {&o,¢2} = agi + bea, {€o, 1} =d'dr +Vd2,  (E){d1, 02} > (> 0).
With w = /¢ + (£)~! we introduce a weight function

o =i(¢ 1/‘L{log (g2 + iw) — log(pz —iw) } = —2<§>1/4arg(¢2 +iw).
Conjugate e(P)/*70 15 P: then e=7(P)"/*20 pev(D)*20 yields
P~ (& = iv{€)'")? + 261(6) (60 — i) + 63(6)*.
We rewrite this in the form
P~ —(& —iy(6)" + kT (€) (€0 — in(&)! — ki (€))
+201(6) (60 — iv(6) " — kei(€))
+2k¢1 (€)% + 3(6)° — k*¢1(6)°
=-—MA+2¢1()A+Q
with a positive constant k > 0. We next conjugate e® with P; that is, we study
e®Pe ™~ —ePAe® P Me™? + 2P0 (E)e P ePAe™? +ePQe
Let e®Ae® = A + A’; then the main part of A’ consists of e®{&y, e ®}/i =
{0, ®} and ie™{9}(€), e~} = —{¢3<s>,<1>}. Note that
B il )= 2O (b0t} g + 2O o) 5

and {&o,w} = 2w ¢3{&), #1}. By the assumption (3.1), we have
le®{&0. e < C) 1.

We also note

{61(6), @} ~6()"*o2(e >{¢1,¢2}¢2+w2

which shows that
‘eq){kd)?’ —<I>}’<Ck, >1/4.
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We now study e®¢;(D)e~® = ¢1(D) + $1. The main part of ¢, is
1
g€¢{¢1< P~ 5/4{¢1,¢2}¢2
and hence
L —® 14 W
m(Get (o€ 2 el
by assumption (3.1), which gives a positive contribution, crucial to the control of

not only lower-order terms but also of other terms caused by conjugation of e®.
We consider e®Qe™® =Q + iQ’. The main part of Q' is

—eP{83(6)* + ke 1(6)%, e} = {3(6)* + ko1 ()%, @}

3
~ —8<£>2+1/4{¢2,¢1} [(qﬁ%ﬁ%il%w + k;q% j_wa}

c>0

which gives
Q' = () '
because |¢1| < w'/?. Now e® Pe~? looks as follows:
P=—MA+2BA+(Q+ (D)) — (D),
where we regard @ + (D) as a new ) and —(D) as a lower-order term. Note that
A~ =iV = ket (&) +id =& —in() /A, ImA] < OO,
M ~ & — ()M + kéHE) + it =& — iV +m, |Imm| < CE)Y*,

B~ ¢1(€) +2i()*/*{¢1, p2}

w w
3+ w?’ 3+ w?’

Q+ (D) ~ ¢5(8)* + k1 (©)* + (&) +iQ', Q'] 2 (&) w2,

We recall an energy identity (see Proposition 6.1)

Im B > ¢(g)Y/4

2Im(Pu, Au) = %(HAUH2 + ((ReQ)u,u))

+ 29][( D)/ Aul|® + 2yRe((D)/*(Re Q)u, u)
+2((Im B)Au, Au) + 2((Imm)Au, Au) + 2Re(Au, (ImQ)u)
+Im([Dy — ReX,Re Qu, u) + 2Re((Re Q)u, (Im A)u).

The terms 2((Imm)Au,Au) and 2Re((Re@)u,(ImA)u) are easily estimated
because |Im A|, [Imm| < C(€)*/%. In what follows we note that the terms

1/44,
6\(;? Shudu)|, K[(©VA63(02 + 619 + (©)u, )]

with small € > 0 and any K > 0 can be controlled by 2((ImB)Au,Au) and
2vRe((D)/*4(Re Q 4 (D))u,u), taking + large if necessary.
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To estimate (Im Qu, Au) it suffices to note that

(€)!/w
¢3 + w?

+e (O 483 + wu,u) |

1/4
(g

+ (VA (B3O? + 1O + () u).
To see how any lower-order term can be controlled, it is enough to note that

2K ((&)u, Au)

2 1 2)(g)2 1/4,,
< eflKQ‘ ((%él—/‘l)ﬁu,uﬂ + 6‘ (fg>+ szu,AuN

/
< 6_1K2| ((5}2“/4@% + w2)u7u)‘ +e (;?_11_ 4@012 Au, Au) ’
2

|(<€>5/4w1/2u7Au)‘ < e‘ ( Au,Au)‘

Au, Au) ‘

1/4,
< (G + 6107 + (o) +o| (A )|

because ((£)1/4w)~1 < (£)1/4. We finally check the commutator term, [Dy — Re,
Re@Q]. Note that

[Do — ReA, Re Q] ~ —i{& — o} (), $3(€)* + ko (€)*}
~ —2iga(€)* {60, pa} — 4ik(€)? ¢ {0, P1} + 6ik(€) B da{ b1, b2}
and hence
Im[Dy — ReX,Re Q] = Car(¢3(€)* + ¢1(£)?)

because of (3.1). Thus we conclude
- d
2Im((P+ K(D))u,Au) = E(”AUW + ((ReQ)u,u))
0

+e[[{D) /5 Aul|* + cyRe((D)/* (Re Q)u, ),
and hence an a priori estimate is obtained. We justify these heuristic arguments
in Sections 4—6.
4, Symbols

In this section we precisely define our weight function and the symbols with
which we work. As observed in the end of Section 2, we can assume that P(z,£)
is globally defined and the principal symbol p(z, &),

p(x,&) = —A* + 292N+ ¢35, A =& + A1,
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verifies the conditions (2.5) and
{{A , @1} = dody + dyda + di /U2 + (€)~eT,
{A Y} = do¢? +d_1da +df /Y2 + (&) 201
We dilate the variable: 29 — pxo (small u > 0) so that we have
P(z,&p) = 1 Ppzo, 2’ n~ €0, €)
= p(pwo,x', &0, p€") + pPr (po, ' €0, n€') + p* Popo, ', €0, ')
=p(x, & p) + Pr(z,8, 1) + Polx, & ).

In what follows we often write p(z,§), ¢;(z,&’) for p(z,&, 1), ¢j(x,&, 1), drop-

ping 4.
Let us denote by S(4)(m,g) with

— 2 2 —2 g¢2
= 0jduj+ Y pydg
j=0 i=1

the set of all smooth a(z,£’; u) satisfying
(4.2) 10708 a(w,&'s )] < CA |+ Bl m(x,¢'; 1)d p~°

(4.1)

with some C > 0, A > 0 independent of i, where § = (01 (x, &', ), ..., 0n(x, & 1)),
p=(p1(z,&,p),...,pn(x,& 1)), and &;, 0; are assumed to be in S (d;,9),
S(s)(pj,g), respectively.

We also denote by S(m, g) the symbol class consisting of all smooth a(z, &', 1)
verifying (4.2) with C, 5, independent of y, instead of CAl*8l|a 4 3|!*. Note
the following.

LEMMA 4.1
Let a(z,&') € Si5)((€)*,910). Then we have with, gy = pdad + |da'|? +
() 21de 2, (€0 = p 2 + I8P = = (n€')?,

a(/mo,:c/,ugl) € S(s)(<y’gl>k790)

We rewrite p(z,&) as
— (&0 + A1+ k() 20) (S0 + M — K(ug') T207)
+201 (6o + M — k(u€') T26Y) + 85 + 2k(ug) 2o {1 — k/2(u) 747}
Taking a positive constant & to be sufficiently small, we set
Q=¢3+06% 0% =2k{ue")2o1{1 — k/2(u") *41},

and note that 0(z,&") € S((u€'), go) verifies O~ (u€’)~1¢? <0 < C{ug')~1¢? with
some C' > 0. Thus one can write

(43) b= —M(LE, ﬁ)A(LE, g) +2¢1 ($,§/)A($, 6) + Q(SL‘, 5/)’
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where M = &0 + A 4 k(ug') 72¢t, A =& + M — k(ug’) "?¢7. Let us set
w(@ ) = /(e 161 (€ + (€7
then it follows from Corollary A.4 that
w € S(o) (w, w™ (pdaf + |da’|* + (€1) 2 1d€/ ),
C Ss) (w, (§’>l1/2(,u2da?(2) + |da'|* + <€/>;2|d§’\2)).

Let
0<ﬂ<i
be fixed hereafter. Eventually we take k very close to 1/4. We introduce the
symbol
04) ¢ = i(u&')*{log (¢ (1) +iw(z,&')) —log (p(x1) —iw(z,&")) }
. _ N ¢($1) — zw(x,ﬁ’) _ I\NK .
= (g e e = ) g () i)
and set

r(@,€) = V()2 (@, €02 = /07 + () et + ().

Then from Lemma A.6 it follows that
¢($7§/) € S(s)(</~bgl>nﬂg)v T(xvgl) € S(s)(rvg)a

where
(45)  g=(r(@, &) + w2 dat + w (p2dad + [’ ) + w g de
with " = (z2,...,2,). We also use

9<§=(€)udat + (&), (udag + |da"?) + (1) /| de|?

< )uldal? + ()7 *1dg'? = 3.
We now recall conditions (2.5) and (2.6) in terms of symbol classes.

LEMMA 4.2
We have

(4.6) {o1, 0} = cn
provided r(x,&") is small. Moreover, we have

{{A,w} epS(r,g), {A,d1} € uS((r+w'/?)(ue'), g),

(47) 2 1/2y/¢r\—1
Og, A€ pS(r,g), 0 AepS((r+w?) (&) 9)

Proof
The first two assertions follow from (2.5) and (4.1) immediately. Note that

(4.8) {A, 9} = C_2¢7 + C_1¢2 + Cor
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with some C; € ,uS(S)(<,u§’>j,gO). Noting that {A, 21} = {A, 21 — ¢} + {A,¢} and
{A,z1 — 1} vanishes if x; is small, one can then write

e, A={A Y} + CY(a1)
with C' € uS(1,g), which shows O¢, A € (1S5 (r, ). From this expression it is clear
that 8, A € uS(y) ((r +w'/2) (€)1, g). =
5. Transformed symbols

Take ' so that

K+ K= =
=3
and assume that s > 1 verifies, with p=3/4, § =1/2,
(5.1) (s—Dr',(s=1)(1—p+r)<p—0—kK, sk <1-04.
Let us set

B(2,€') = —ao (U + d(,€").

We study in detail the operator Opo(e‘%) 0p°(p) Opl(e’g’), where Op’(p) is the
t-quantization of p (see Appendix B). In what follows it is assumed that |zo| <T
with some T > 0. Our goal in this section is Proposition 5.4.

In this section we apply the results in Appendices A and B with a; =1/2,
a;=1/4,j>2,b;=3/4,6=1/2, p=3/4, and

h= (€)1, k= (e,

where 0 <e<1/4 — k.
Recalling that p is a polynomial in &,

p(x,&) = =& + p1(2,&)é + p2(x,€),
we apply Proposition B.1 (p=3/4, § =1/2) to get
0p°(e?) Op° (p) = Op°(¢%q) + Op°(roko + 11),
where ;(z,£') € S(uqy(e=¢0€)*" §) with d=5/2 and
q(x,€) = |ﬁz|: %aﬁpm (w0, 2" —i®(x,€',0),€),,_y+ Ri(w,&') + Ro(w,€)éo
<5

with Ry (x,&') € p®/* S ((1€'), §), Ro(x,&') € p?/*S(5)(1,3), where

1 ~
®(x, &' n') =/0 Ved(x, &' +0n')do.

We now conjugate Op*(e~?) on the right:
0p°(e%q) Op' (e~%) + Op°(ro&o + 1) Op' (7).

If an operator T is given by T = Op°(p) with some p € S(s)(m, g), then we abbre-
viate as 7' = Op”(S(s)(m, g)). Since 1/2s > «/, it follows from Proposition B.3
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that
Op°(roo + 1) O (e™%) = 1 OP° (S(sae) (1) ™", 9)60 + Seamy ((u€') ", 7))
for any k € N. Since p;(z,£") € S(5)((1€')", go), we see by Lemma A.2 that
pi(s) (w0, @' —i®(z, &' ,1),€') € S0 ('), 9| E)

for any § because (x,&',1) € u¥/*S (o) ((u€)*~/*, g|E), where E={(z,¢,n) |
In'| <[&'|/2} (for the definition S(4)(m, g|E), see Appendix A). This proves that

00 i) (w0, 2" — (2, 1), €&") € pPUPITD/AG  ((ug!y Hr=3/4 gy =319/ g| )
for |8] > 1 by Lemma A.2 and hence
Q(xvg) :p(x(hm/ - ng/qg(x,gl),f) + R0($,§/)§0 + Rl(xvfl)

with Ro(z,&) € p®/4S4)(1,9) and Ry (z,&') € p®/4S 4 ((1€'),g). From Proposi-
tion B.2 we see that

Opo(qu(Rl +R0§0)) Opl(e_qg) 5/4 Op ( (sd?) (</’L§> )+S(sd2)(17§)§0)
Thus we conclude that
0p”(e?) Op° (p) Op' (¢=%) = O (e p(0, 2’ — iVerd(w,€),€)) Op' (e~%)
+ 2/ Op°(S((ug'), ) + 1§ 0)-
’q)0

Let us set ¢(z,€) = p(xo, 2’ —iVed(x,¢'),€) and study Qp (e® P Yem ) Since
q is a polynomial in & of order 2, we have Op’(e®q)Op'(e~?) = Op°(b) +
:u3/2 Opo (S(sd2) (<N§l>n+1/27g))7 where

b(z, &) = 2%(277)*"/efi(m’*y’)(é’*n')ﬂg(ryn’)*&(ro7y’m’)xe(y/’5/’77/)

X q(w, €0 + 05, 0(x0,y' 1), ') dy’ dif
because
Op’(e?) Op' (e~ ?8%,0) € 1*/2 Op° (S(saz) ((u€')" /2, 7))
which follows from an assertion similar to Proposition B.2 because we have 92 OQNS €
1325 (<M€ ) T1/2,g). Here we have set xc(y',&',1') = x(ey/')x(e(¢’) ;') with

x(t) € 70 (R”) such that x(t) =1 near t =0. Let =/ (z,y/,¢') =& + G'(z,y,¢)
be the solution to

1
= - 2/ Vx/qﬁ(mo,x’ +0(y — m’),E’) dg=¢
0
given by Proposition A.3 and

J(z,y', &) =det [85(:58,5/’,5’)] .
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Applying Proposition B.2 we get

1
b(xvg) = Z aa?’Dg/ [J(xayl7fl)

|| <5
% q(,& + (02, 9) (20, E' (2.9, €)),E (2.9, €)1, _,.
+ Ru(2,€) + Ro(x,€")60 + R (,£)&3,

where R;(z,&") € u®/*S((ug')?, g). We summarize by the following.

PROPOSITION 5.1

We have
p"(e?) Op°(p) Op* (™)
Op° (b(x,€)) + 1>/ * Op° (S((1€'), ) + S(1,9)é0 + S((€") ™1, 9)&),
where
b€ = 3 08Dy [y oo’ —i(Verd) (.2 (a,4/,€)), €

la|<b

+i(0200) 20,y (2,9, ), E (w9, )] -

To simplify notation we denote by Sz)(m, g) the set of a(x’,y’,£’) verifying

(07, 08a(@’,y', €], _., € So) (mOr™" + (&) /P N3 g), Va, B,

From Proposition A.3 with k(&) = (u&')*, Ay =r~ 2w +r~twl/?2 Aj =r~tw!/?
j#1, it follows that

Gj(z,y', &) € Sy ((u€) (€)% 9), T#1,
(5.2) Gi(w,y',€') € Sy (€)™ (€N}, 4),
G(w,y', &) € ST (A, (g, g),
where G'(z,y',¢') = (G, ...,Gn).

)

LEMMA 5.1
We have
w(w,Z @0, €)) € S (&))@ F @a',€) € S (r(,€).9),
w( x, = (z, 2, ¢ )= (l‘;fl)(l“‘O )
(14 Cut)r(e. ) = |r(w. 2 (oo, €)= (1 - Ot (e )
Proof

Note that w(z,£") € S¢sy(w(x, '), g) and r(x,&’) € Sioy (r(,£'), g) by Lemma A.6.
Since Z'(z,2',¢') =& + G'(z,2',¢’) taking into account (5.2), the first assertion
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follows from Lemma A.3. The second assertion follows from Corollary A.1. To
check the third assertion it is enough to remark that

|7 (2,2 (z,2,¢)) |2 = |1/J(gc1)2 + w(x,E’(w,x’7§’))2|
= [¢(21)® + w(z,&)* (1 + O(u""))]. O

The next lemma is an immediate consequence of Corollary A.1, but we give a
proof here.

LEMMA 5.2
Let a(x',£") € Sisy((u€)™, g9) and a(x’ +-iy',§' +1in') be the almost-analytic exten-
sion given by Proposition A.1 with k(&) = (u€")*(§')f,, 0 < e <1/4 — k. Let

2@y, &) € S (€)™ )u 3/47§\E( k), C(a',y,&n") € Sy ((ug) (¢ >1/2
G| E(k)); then we have

a@’ +2,8+Q) - Y ——

|a+5|<€

Eﬂe/4s(<ﬂf> (1/4—k— e)[ A

Proof
Let us denote z =& + i and ¢ =& + . With a(2/,y/, €', 0') = a(z’ + iy, & +
in'), we have from Taylor formula

a(x’ + 2,6 +¢)

= X OO 0. 0
lat+B+pt+v|<e
¢ ' —148
- _ v "
LY oz!ﬁ!,u!y!/o(l 0) " 000, 00y
|a+B+putv|=¢

xaa' +03',05' € + 0€',0f) Aoz € iy

Since (0, +10y,)a(z’,0,£',0) and (J¢; + i0d,,)a(z’,0,£',0) belong to the class

S (e fc<u§ ya/as w= /(o) ,g) by Proposition A.1, one can replace 9y, , 9y, by i0,,,
i0¢; with errors

Celue Y1/ A==/ (s=1)
S(s)(e e’y 79)'

This shows that the first term in the right-hand side is
o (e (/A=) /(s=1)
> 151 07,0z a(a’,€)27 ¢ + 5y (e 9

|a+8|<L

E(k))

because 85,3?,&($’,0,£’,0) = 85,3§‘,a(x’,§’). From Lemma A.3 it follows that

/01(---)d965(s)(<u§’>m<£>‘””'/2 Sletullt g1 E(k)).
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On the other hand, since
~B AV o K - v a ~
A e Y (7T e
for a4+ B8+ p+v| =¥, we have

E(k))

1
~BAvpan m— —K—€ ~
/O () dox"y " " € ptAS ) ((ug'ym= A9 g | B(k)),

which proves the desired assertion. O
LEMMA 5.3
Let us denote =/ =Z'(x,y/,£'). Then we have

e, (2, E )y =ar = 5§] O(,&") + P25 (r 2w (ug') 5, g) + w25 ((ug) ),

813 ¢( =4 ) '=x! = (xvgl) + M1/2S(T'72’LU<,M§/>K?1/4,Q> + ,US(Lg),

0y ¢, E )y mor = 0y (2, €) + 1S (r P (ug’) 1%, g) + uS(1, 9),

and

Duo @0,y ) = (') + uSH (w2 (€)™ + 7€) 711%), g).

Proof

Recall that Ogjé(x,f’ +1in’) is the almost-analytic extension of %é(x,f’ ) with
k(&) = (u€)™(¢')y. Since EZ(z,y.,§) = ¢ + G'(z,y',¢') it follows from
Lemma 5.2 that

06,0 2) = 0,8, )+ Y 2080, 3w )C (a4, €

1<|a|<t

+ 128 ((ug) ™ g

(k) x R™).
Since
020, 6(x,€) € S((ue)™ (€)1 g) + S(r~ L2 (ug'y= (€)1 =3101/4, g)

and G'(z,2,&") € S((r~2w + r~'w'/?)(ug’)*, g), we have the desired assertion.
To prove the last two assertions of the first group it suffices to note that

080, 0(,€") € S(A; (€)™ (€)1, g).
To prove the last assertion we note that
Dy ®(w0,y',€') € pS* (r~ 1w ?(ue')", g)
and (=) = (u&)* + pS# (r~1(ug’)~1/2, g), which follows from Lemma 5.2. [

LEMMA 5.4
We have

{A, o} (x,&") € uS((ug)"™, g),
{o1,0}(2.&) = 2r 2w (ug’) {1, 0} + nS((u")", 9),
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{¢)2,¢}($,€/) = f(x7€/) + /”'S(</’L£,>Kvg)7

&) € pS(r=tw'/2(ug)", g).

where f(z,
Proof
We first note that
(R0} = (e [0 8 o ) (B ey 5 (1),
{F.w} =203 (ug) 4{F 1}
3{F ,u§ 1}+271w71{F,<§’);1}.

+ 2w ¢ (ug’)
The first assertion follows from (4.7) immediately. For the second assertion it
suffices to note that {¢1,w} € pS((w +w™'(¢');'),9) C uS(w,g). To show the

third assertion we note that {¢2,%} ={a,¥} € uS(r,g) and
{$2,w} = 2w 63 (u) " b2, 1} + pS(w, g) € pS(w'/?, g). O

To simplify notation we set
:/)7 60 + iaroq;(x07 y/7 El)v E/) )

Az,y' &) = A(zo,2" — iVed(x, =2
q;l(xay/7€/) = ¢1 (IJ’J(),ZL'/ - iVEIQf;(‘T,:/), E,)
with &' =2/ (z,y/,¢'). We define M (z,y/,€), do(z,y,€"), 0(x,y,¢') similarly.

PROPOSITION 5.2
Let Az, y/,€), d1(z,y/,€), dala,y/, ), and O(z,y',€) be as above. Then we have
Ay, €) = Ma. &) —i(ue)™ + ps* (r~ w2 (ug')" )

+ ST ((r ey T2+ (ug) ), g),
Az, 2, €) = A(a,€) — i{ue ) + uS((ue")™ , g) + ViS(1,g),
N uE')e, g) + pS* (e g),

b1(x,y',€) = b1 (2, &) + pnS*(
$1(z,2',8) = ¢ (2, &) + i{1, o}, &) + p*/ 1S (rPw(ug)", g)
+uS((ue), g),
Ga(w,y' €)= pa(, &) + pS™ (r w2 (ue')", g) + pS* (€)™ . 9),
Ga(,2',&') = do(w, &) + {2, 8} (2, &) + p>/ 1S (r 2w (pg')* 14, g)
+uS((ue), g),
O(x,y/ &) = 0(2,8) + pS*(r~w'(ug")", g) + nS*((ug)~ . g),
O(x,2',&') = 0(,¢ )+Zf(:v &)+ p S (w2 (el g)

+uS((ng)"™ . 9),
where f € uS(r—rw/2(ue", g) is real.
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Proof
Recall that &' =& + G(z,y,&’). From Lemma 5.2 (or rather from its proof) and
(5.2), we have

A(.’E, y/7 é-) = A('T0> (E/ - Zv§'é($> E/)J 50 + iamoq;(x0> y/a EI)7 E/)
= A(l’, f) + iaxogg(an y/, E/)
(5.3) + > LA E)(=iVe (=) C @,y &)

ot Bl=1

1 . 7 —/ ’ /A AY"
Y A (Ve ) G @y )
2<|a+8|<L
+ utAS* (e, g)

taking £ large if necessary. Noting (4.7), 35/3?,/&(33,5) € S((uf’ﬂf’ﬂ‘al,g), and
Veo(x,E) € S#((1+ T_1w1/2)<u§’>”<§’);1,g), it follows from (5.2) that

i0n b0y Z) 4+ S B0EA(@. &) (~iVed(x,2)) G (a,y )
lo+B]=1
€ wS*((r~ w2 (ue') + (ue)), g).
Thanks to (4.7) similar arguments show
S e ntASE (g g).
2<|a+p3|<L

Thus we have the assertion about A(z,y’,&). We turn to the assertion for ¢ (z,
y',&"). The same arguments as above show that

> o @) (~iVe o, E) G @,y &)
la+8]=1
€ pS*((rH (ng)" + (g, g)-
We turn to the term |a + 8| > 2. It is easy to see that
1 -
> aEtn @) (Vs =) Gy €
2<]a+0|<t
€ uS* ()" +r= 1 (ug')" /), g)

and hence the result. We show the assertion for ¢o(z,y/,€"). Let |+ 3| = 1.
Noting that ¢2a)(x & e S(r{pg e e g), the same arguments as above show
that

S 6l (@,6) (-iVe e, =) ¢ (2, )

la+8|=1

e uS*((r w2 (ue") " + (ue)"), g).
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We check the term Z‘a+ﬁ‘>2 ---. It is easy to see that

1 -
> ot @) (-iVed@ =) Gy €) € psH ()" 9)

2< |t | <

and hence the result. To check the assertion about 6(z,y’,¢') it suffices to note

0(z,&") € S((u€"),g90) N S(wip’),g) and Lemma 5.2.
We prove the assertion for A(z,z’,€). Since ' (z,2',¢') =& + iV d(x,Z),
we see with =/ =E5/(z, 2/, &),

A(z,2,€)
= Ao, 2" —iVed(2,Z), &0 + 102, 0(x,E'), & + iV d(z,Z))
= A@,&) +i05,0(x, Z) + Y '15' 8,08 A(,6)(~iV e §)? (iV 1 )™

1<|a+p| <t
+ 1S ()", g)
by Lemma 5.2 taking ¢ large. From Lemma 5.3 and (4.7) it follows that
1 . 7 . « Py
> g 0e A O(-iVed) (Vue) € S (ng) g).
2<|a+8l<t 7T
Since &' =2 — iV ¢(x,E'), we see that
Onp+ Y 008N, E)(~iVed)? iV )

la+8l=1

SN Y LOASO(iVed) (iV0)" + uS(ue)" )

la+8]=1
= —i(u=)" +i{A, ¢} (z,Z)
LY %52/353?/\(%50,E’)(*iVm/cb)”(*ng/cﬁ)ﬁ(Nm)“

1<|v[<t,lat+Bl=1

+ uS((ue" ,g)

by Lemma 5.2 again. From Lemma 5.3 and (4.7) it is easy to check that the third
term in the right-hand side is in p>/4S((u&’)*, g). We now consider {A, ¢}(z,Z").
Note that

00} Z) = (A0} )+ Y (LA ) e )T r)
1<]y]<e
+ 1P S ()" g).

Thanks to {A, ¢}(z,&') € uS((ug')",g) by Lemma 5.4, one sees easily that the
second term in the right-hand side is in p®/4S((u€’)*,g), and hence we have
{A, 0} (2, Z) € pS({(pg’)*, g). These prove the assertion.
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Noting the fact

Ved(a,Z (,2',8) = Ved(z, &) + p32S (r2w(ue’) =32, g),
(5.4) Gi(w,a', &) =10, ¢(x, &) + P S (rSw(ug')> =3/, g),

Gj(w,a/,€) = 10y, ¢(x,€) + p'2S (r~2w(ug')> =112, g),
which follows from Lemma 5.2 or rather its proof because we have G'(z,2',&) =
iV ¢(zo,2",§ + G'(2,2',¢')), the assertions on ¢1(z,2",¢'), ¢2(z,2",¢') and
01(x,2’,&") are checked by similar easier arguments. O

Let us denote
. 1
i(@.8)= ) D508 (2. € )y=o-
|| <5

Let a;(z',£") € S({u€’Y™i, g); then there exists b € S((u&')™ ™2 g) such that
Op'(ay) Op'(az) = Op’(b). We denote b as

b= ai1#as.
PROPOSITION 5.3
We have
1 . -
Z JD;X’ 8?’ [M(-T7 yla g)A('T7 y/a 6)‘](3’” y/7 5/)]?/:93’
la|<5

= [M(z,2,&)A(z, 2", &)|#5 + C1(x, &) Az, 2", €) + pS((u'), g)
with O1(I,§/) € #S(<M£,>H7g);

Z iDg’ag/ [Q;l(x, ylvgl)A(xu ylv f)J((E, y/u 5/)]y'21’

|| <5
= [f1(w, 2", &) A(w, 2, )|# + Ca(w, &) A(w, 2',£) + pS((ug'), 9)
with Cy € ﬂ5/45(7°_2w<,u§l>m_1/4ag) + MS(<M£I>N/79)7 and
1 _ ~
Z aD;/ag' [¢2(x7y/7€I)2‘]($ay/a§/)]y':w’ = ¢2($,$/,€/)2#j($,§/)

la|<b

+ uS ('), 9),

> %D;agﬁ 0(z, v, &) T (2, , &)y = = Oz, 2, ) Hj (2, &)

|a| <5

+uS((ug'), g).

In what follows, in this section, to simplify notation we denote by Ci, Cs, R
symbols belonging to (or the class itself)

PAS(ueY  g), S Pw(ug ) T g), uS((ug'), 9),

respectively. To show the proposition we first prove the following.
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LEMMA 5.5
We have

0y 08 (M(,y Ay, ) (2.y.€)) , _,.
:M(sa:c’,5)A(w,x’,s)8“/8§J<x,y',s') o+ C1(2,&)A (2,2, €) + R,
03,08 (d1(x. ' €A,y . €) I (2.9/,€) .
= 1 (x,2', & )N, 2, )0508 T (2, &)y =
+C (2,8 ) A (2,2, &) + Ca(a, & )A(z,2',€) + R,
0y 08 (92(x,y',6')2 T (2,9/,€))
= do(,2',€)205,08 T (x,y, &) y=ar + R,
05,08 (0(z,y/ &) I (2,9/,€) , _,.
=0(z,2',6)20508 J(x,y &)y o + R.

Proof
From Proposition 5.2 and Lemma 5.4 one can write

A,y €)= Ma, &) —i(ue)™ + Ay, €),
M(z,y',§) = M(x,) = i{u€)* +m(x,y'€)
with
Ma,y',€), m(a,y &) € pSH* ((r w2 (e )™ + 07 (ug) 72 4+ (ug)™), ).
Recall that J(z,v',&') € S#(1,g) and, moreover,
0605 T (2, )y = € S((r 2w+~ w/2) (ug) (€)%
x (r~t + <§/>ll/4)a1 <§/>;3\5\/4+(\a|—a1)/47g)
(5.5) c S((r‘zw + T—1w1/2)<M§/>n<€/>;3(1+IBI)/4+(Ia\+a1)/47g)
CS((r + (€ ) gy ()23 UrIEN/A, )
C pMAS((ug' Y A2 )

with a = (ay,a’) for |8+ af > 1. Let us set A = A(z,€) — i(u€’)" and M =
M (z,€) —i{u&')" and consider

MAJ = MAJ +mAJ + AMJ +mAJ.
It is clear that Og 0y (mAJ), =, € R. Here we note that M(z,&) = A(z,€) +
2key (2, )3 (u€’) =2 and hence
MM J = AT + ¢ (u€') 20
Noting that ¢3(uc’)=2 € S(w3/?(ug'), g), we see easily that
00 (¢ (€' ) 2N )yr=ar € R, |a| 2 L.
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We now study mAJ (or AAJ). Since
02 0 (mJ )y —ar € pS ((r M 2(ug )" o (ug') 72
+ (g ) () lel/2=slell/A g,
hence ag,’]\ag,”aya/(mj)y,:z/ € R if |&/| > 1 where o/ + o' = a. This shows
9805 (AmJ)y— = C1A+ R, |a| > 1.
Thus we have
005 (MAT)y—gr = 0805 (MAJT )y —or + C1A(2,2',€) + R

because (C1\)y=, € R. Finally, we consider 8?,8;,(]\_41_XJ). Let || > 1. Then
from (5.5) one sees that

08 (MA)(0g 05 J)y = = C1A+ R
because M = A + S(w?/?(u&'), w=tgo) and
(5.6) e, A, 0, M = puS(r, g) + S(ug) ()", 9)
thanks to (4.7). Thus we conclude that
(0805 MAT )y —qr = MA(DE 05 ) y—ar + C1A + R.
Noting that
MA(Og 05 )y =y = MAOZ O3 T )y —ar + CiA(w,2',€) + R,

we have the desired assertion.
We next consider ¢1AJ. From Proposition 5.2 we can write

le(x,y/,fl) = 951(5675/) + Vl(zrylvgl)

with v (z,1/,€) € pS*((r(ug')" + (ug')™),9). Let d1AT = ¢1AT + Ay J +
1 AJ + 11 AJ. Tt is easy to check that ag/ag,(ulAJ)y,:w, € R for |a| > 1. Not-
ing that

(5.7) 61(2,€") € S(w'*(ug’).9) 1 S ('), go).
we have 00y (917 ] )y = € R, |af > 1. Let |a/| > 1; then from (5.6) we have
08 RO 0% (1 J)y—w €R, |o/| > 1.
Since 0g, 9y (1 d)yr=ar € pWAS(r=2 gy 34 g) +uS(<u§’>”',g) and noting that
S(r=2(ue"y =34 g) € p= 28 (r2w(ug’ )"~ 14, g), we conclude that
9805 (A1 J)yr—gr = Cr (2, € )A + Co (2, )A+ R, |a] > 1.
Thus we can write
0805 ($1AT)yr—ar = 0805 (91 AT )]y —or + C1A + C2A + R.

We check 8?,3;’,(¢1AJ). Let || > 1 and |&| > 2. Then from (5.7) and (5.5) it
follows that

g (01 M)(0g 05 T)y—er = C1A + R.
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Let |o'| = |a| =1, and consider A@g‘, $1(9yJ )yr=o and ¢1(ag,]\)(a;, J)y = From
(5.6) and (5.7), taking (5.5) into account again we see that

¢1(8?,1_X)(8§‘/J)y':zf ER, 0g¢1(0yJ)y = € C1L+Co.
Hence we conclude that
0g, 0y ($1AT )y =g = d)l[\(@? Oy )y =ar + C1(z, YA+ Co(x,&)A + R.
Noting that (Co))y =, € R and
¢1A(8§8§‘/J)y/:m/ = ¢1A(x,x’,g)(ag,a;J)y/:m/ +R
— (GRS Dymar — RO Dymar + R

we get the second assertion for (Vlﬁg‘, 8;‘/J)y/:gc/ e Cr1+ Cs.

We turn to considering $2.J and 62.J. From Proposition 5.2 one can write
(52(1:7 y/a 5/) = ¢2<$, g/) + VQ(CIJ, y/7 5/))
0,y ,&) = 0(x,¢) +va(w,y, &)

with vi(z, 4/, €) € pS# (- w2 (W) + (uE)),9). Since ¢a(a,€') € S(r{ue’),
g), writing ¢(x,y',&')? = ¢a(x,&)? +r(z,y’,£') it is clear that 9IS (r] )y = € R

for |a| > 1. Recalling (5.5) and 8?/(1)% € S(r2<ﬂ§)2<§’>;‘all7g), we have
02 ¢3(98" 05 )y—w €R
if |&/| > 1. Thus we get
080 (3T )yrmar = GO0yt + .

Since (rogi 0y, J)y = € R, || > 1, we have the third assertion. Since
(5.8) 0(z,¢") € S(wlug'), 9) N S(1g’), 90),
then writing 0(z, 1/, €)% = 0(x, &) +r(x,y, &), it is easy to see

(0810 )yr=ar, (rOg0y J )y = € R, |a| > 1.
Since 92/ 0(x,€)2 € S(w=12'D/2(ueN2(en 11 g) for [o/| < 4, it follows from
(5.5) that 3?,/92(82;//3;‘, J)y =z € R if |&/| > 1, and hence we have, for |a| > 1,

(0802 (02 T)]y —ar = 0(, )2 (0805 T )y —or + R.
Since [62 (008 )y =ar = 0(2,8)* (9050 J ) yr=a + R, we get the fourth assertion.

]
Proof of Proposition 5.3
We note that
3(@,€) =14+ S((r w+ ™ w' ) (ug) (€)1, g),

and hence

05055 € S((r=" + (€)/ e (ue')ys(g), B/ Iel =) A=3I014 g) ot ) > 1.
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Then using similar easier arguments as in the proof of Lemma 5.5, we can show
that with A = A(z,2,¢), M:M(x ', &),

AMZ (D08 J)yr—or = AM#j + C1A + R.
|a|<5 :

The proof for the other cases is similar. |
Since we can write Op®(u®/4S((ue)~1,3)€3) = AM#j5' + C1A + R with j €
p5/2S((u€Y =1, g), combining Propositions 5.1 and 5.3 we get
Op”(e”) Op° (p) Op' (¢ ™)
= Op” (B(x, )#j + CrA(w, 2", €) + Col(w,2",€) + R),
where j = j + j/, and hence Op®(e?®) Op'(e=%) = Op°(j) and
p=—M(z,a' )Nz, 2',&) + 261 (z, 2/, &) Nz, 2/, €) + Q(, 2/, ¢),
Qz,2',&) = go(a,a’ &) + 0(x,2', )2,
Ci(x,€') € pS((pg")~ . 9) + nS(1,9),
Ca(,€') € p>1S(r~2wlug’)* 14, g),
where R denotes the symbol class
S (r(u)<*, g) + pS((u€'), 9)

or, rather, a symbol itself belonging to R. Thanks to Lemma 5.4 and Proposi-
tion 5.2, one can write

&> = o (2,€) + ih(w,€) + puS ((r~ (€)M + (u€')), 9)
with h € uS(r~w'/?(ug’)*, g) which is real; then we see that
{Re Go(w,, €)% = ¢o(x,6')? + R
Im g2z, 2/, €)% = pS (w'/?(u€') ', ) + R.
From Proposition 5.2 we can write
O(z,2',&") = 0w, &) +if + p®/*S(r~ w2 (g "4, g) + uS ()", 9)
with f € uS(r— w'/?(ug’)*, g) which is real. Noting
S(w' 2 (ug)> 3, g) € S (W ug')?, g)
and (5.8), we obtain (because w <)
Red(x,a’,¢')* = 0(x,&') + ' 2S(w? (u€')?, 9) + R,
Imf(z,2',¢)* = uS(w'2(ug')" ', g) + R

Since w?(ug’)? = (u€') =291 + p(u€'y, with a(x, &) € S(1,g) such that C2 < a <
C we can write

(5.9)

(5.10) {Reéz =a(z,8)0(z,&')* + R

Im 6% = S (w!/2(ug')"+1, g) + R.
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From (5.9) and (5.10) we have
ReQ(z,2',§) = ¢ + ab” + R,
ImQ(z, 2", &) = uS(w'*(ug')**, g) + R.

Let us write j = 14 u!/4S(1,§). For small y there exists an inverse of Op°(j)
in L? which is actually given by Op°(5~') with a 5=!' € S(1,3) (see [1]) so that

op’(j)op’(j 1) = 1.

Let C;(z,&’') be as above. Then it is easy to check that

(C1R)#j ™" = Cu(@, &)A(w,a",€) + CrA + pS((u€'), 9),

(CoM)#j ™" = Co(a, &) Az, 2", €') + CLA + uS ('), 9),
where Cy(z,&') € uS((u€')* | g). With a constant K > 0, let us put
(5.11) 0= 22w {1, 0} + K (€'
Since {¢1,9} > cyp if 7 is small, then taking K large it is clear that

w > cpr*w(pg)"

with some ¢ > 0. Finally, we can conclude the following.

PROPOSITION 5.4
We have

0p®(e?) Op° (p) Op' (e=*) Op* (=) = Op” ()
with
p=—(M —i(ug)™ +m)(A —iug)* + 1)
+2(h1 +iw + C) (A —i{ug )" + N)
+Q + uS(r{ue )+, ) + uS((ug'), ),

where m(x,¢), N,&') € pS((ug)*,9) + VES(1,9), w € pS(r~2w(u)",g)
which is real, C(x,£') € ,u5/45(7“_2w<llfl>na9), and

Q=03+ab> +iQ1, Q1€ pSw*(ug)'*",g),Q1 is real,
A=&+ M —k(ue) 20, M =&+ + k() 261
Moreover, we have w > cur~2w(ué’)* with some ¢ >0 and

(5.12) {A b2} € uS(r(ne),g),  {N o1} € uS((r+w'/?)(ut'), g).

Proof
From Proposition 5.2 we have

M(.’L‘,.’L‘l7§) = M(“’Vf) - i<N§/>K/ +m,
A, a',€) = Mz, &) —i(ug)™ + X
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where A, € uS (€'Y~ , g) + VIS (1, g). From Proposition 5.2 and (5.11) we can
write

1 (z,' & )A(z,2',€) = (¢1 +iw + C + uS((ue")" , 9)) Az, 2, )

with C € p5/*(r—2w(ué’)*, g), where we move the term uS((u&’)* ,g) into 7,
which completes the proof. O

6. Energy estimate (proof of Theorem 1.1)

Let P be the operator with symbol given in Section 4, that is, the symbol which
is equal, in a conic neighborhood of the reference point, to that given by the
right-hand side of (2.2).
In this section we derive a priori estimates for the transformed operator P,
P=0p’(e”)POp* (e~%) Op°(j 1),

where the principal symbol of P is given in Proposition 5.4. Let us denote
Opl/z(a) =a", the Weyl quantization of a. By the same M, A, we denote M =
Do —i(uD')" —m, A= Dy —i(uD')" — X, where A = —(\; — k{(u&')~2¢3 + A)¥,

—(A1 + k{(u€)y 7243 + m)*. We also denote (Q + 2u{u&’))” by the same Q
and 2(¢1 +iw + C)¥ by B. Note that one can write

P=—MA+BA+Q+P,
with P, =a®A +b*, a € S(1,3), b € R. Recall the following.
PROPOSITION 6.1 ([3, PROPOSITION 4.1])
We have
- d
2Ilm((P — Py)v, Av) = d—xo(”Asz + ((ReQ)v,v))

+2[(uD"Y< 2 Av|? + 2Re((uD")*' (Re Q)v, v)

( Im B)Av, Av) +2((Imm)Av, Av) + 2Re(Av, (ImQ)v)
Im([Do — ReA,Re Qlv,v) + 2Re((Re Q)v, (ImA)v)

for any v e C*((=T,-T); S(R")).

(
(

In this energy identity, the main term that controls (any) lower-order term is
((Im B)Av, Av) + Re({(uD")* (Re Q)v,v).
We first consider ((Im B)Av,Av). Since Im C € p®/4S(r=2w(ué’)*, g), hence one

can write

w+ImC = p(vwr (") 2a)#(Vwr ™ (u)?a) + nS((ug')*, g)

with @ = \/p~Tw=1r2(u€’)~"(w +ImC) € S(1,g), where a > ¢ > 0. This shows
that

(6.1)  ((ImB)Av, Av) > g (Vaor—{(u€')"/%a)" Ao — Cul| (uD')* /w2
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We next study the terms ((Re@)v,v) and Re({(uD')* (ReQ)v,v). Note that
(€)1 (ug")? = p(ug’)),
ReQ = g#q + p{us’) + pS(r(pg'), g) + 1?2 S((p€'), 9),
0= \/ 63+ b + (e’ € S(r(ug). g).
Since ¢ > c{u€'yr with some ¢ > 0,
(6.2) ((ReQ)v,v) > (1= Cu'"?)[lq"v||* + p(1 — Cp*/?) [ (uD") /202

because one can write uS (r(ug'), g) = C#q+p>/2S((u€')*/?, g) with C € uS(1,g).
Noting that

(uD') Re@ = (€)' ¢*)" + pu(uD’y+*
+ 2 (r (uey O, g) + S () g),

ome can write S(r(ug’)" /%, g) = CH((u')™ 12q) + pS((p€')/*++',g) with C €
S((ue")1/445'/2 g), and we have

Re((nD")" (ReQ)v,v) > (1) )" v, v) + pl[ (uD')~ 121/ 2y |2

— CM| () 2q)o||” — /| (D! YA 2 2,
On the other hand, since
()™ q* = (€)™ PQ)#(ug")~ q) + nS(r(pg )", g) + 12 S ((ug')~ +1/2, g)
it follows that

(Y™ ) v,0) = (1= Cpt®)|| (€)™ 2q)o||* — CuP/? || (uD!) /44w 1202
and hence
(6.3)  Re((uD)* (ReQ)v,v) > (1— Cut/)||((ug")* 2q)"v||”
+ (1= Cpt ) [(uD Y 12 2 |12,

We estimate the terms ((Imm)Av, Av) and Re((Re Q)v, (Im A)v). Noting that
Imm e uS((ue )", g) + VIS(1,g), it is clear that

(6.4) |(Imm)Av, Av) | < Cul[{(uD')*" /2 Av||? + C /]| Av] |

With a large constant K > 0, let us write
(K(pl€')™ + Vi) ~ ImA)#(Re Q)
= (K (€)™ + i) = Im N 2q) 4 (K p(ue)™ + /i) — ImA)/2q)
+ P () P #C + P S (ug') T2, g)
with C' € S((u€’)/4+%'/2 g) which shows that
KpRe((uD") (ReQ)v,v) + K/ii((ReQ)v,v) > Re((ReQ)v, (Im \)v)
)"

’

— Ol (€)= 2y o||? — Cpd/? || (uD! )/ #H 2y)2
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and hence
(6.5)  Re((ReQ)v,(ImA\)v) < K'uRe({(uD") (ReQ)v,v) + K'\/1i((Re Q)v,v)
with some K’ > 0.
Let us consider Re(Av, (ImQ)v). Let ImQ = Q; € uS(w/?(ue' )1 4%, g). Writ-
ing
Q1= (w2 (ug ) Pa) A + P28 ((ug') /2, g)
with A € S(r(u&)'*5/2 g), we get
[(Av, Quo)l < ™| (w27~ afpug’)"/2)" Ao
4 LA+ Cp 2 (D 2
Writing A = C#((u€') /2q) 4+ p/2S((ug)1/2+5/2 g) with C € S(1,g), we have
| Al < CuP | (g 2q) || + Ot (D) 2 |
and hence by (6.1), (6.3),
|(Av, (ImQ)v)| < Cu3/4Re(<uD’>“/(ReQ)v,v)
(00 +Cu'*((Im B)Av, Av) + CuP/* (DY 12 A2
We turn to ([Do — ReA,ReQ]v,v). Note that

[Do — ReA,ReQ] = %({50 + 1 = k(ug) 7201 + Red, ¢ + a6 })”

+ S ((pg) T g).
From (5.12) it follows that
{€o+ X —k{ue) 7201, 63} € uS(r*(u')?, 9).
Recalling that 8 = 84?7 with some 8 € S({u€’)~1, go), it is clear that
{0+ 1 — k(u) 261, ab} € uS(w*(ug')?, 9) € uS(r*? (u€')?, g).
Let A€ puS(r3/2(ug’)?,g); then one can write
A= Ay P # A+ p TS () L g)
with Ay € p3/4S(r1 /2 (ugy1='/2 g, and again we can write
At Ay = P () Pg)# A + 1S (€)', g)
with Ag € uS((u€')1=3%'/2 g) € uS((u&'y/?+%'/2_g). These prove that
67)  1(Av,0)| < Cul2|| (') 2q) el + CpT A D12+ 2 2
On the other hand it is easy to see
{Red, 3 + b} = 14 (ue) ) Ay + 12 (€)' )

with As € uS((u€')/2+5/2 ¢). Hence taking (6.3) and (6.7) into account, we
have

(6.8) CyERe((uD")* (ReQ)v,v) + Im([Dy — ReX,Re Qlv,v) >0
with some C > 0.
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Finally, we consider P, = S(1,3) A+ uS(r{(ue )", g) + uS((u€'), §). We first
study the term A € uS({u€’),g) and estimate |(Av, Av)|. Write

A= 8w Pralug! )2 (B A + S ((ug)P, 9)
with A" € uS(w=/2r(ug’)1=%/2,g). Thus we have
|(Av, Av)| < Cp®/ || (w'/2r = alug'y /2) " Aw||* + Cp=5/4)|(A) 2w |
+ Cpl[(uD")¥ 2 ||+ CP || (uD') 2 22
Since 2w (ug')2 7% =12 (pug/) 2w (ug') M2 < =22 (ug') 2+ so that
PR ATHA € M AS(r2 gy g),
one can write
K4 (ue'y ¢ — oA HA = M A (D) 2 q) 4 (b(ue')" 12 q)
+ (€)Y P )#C + P S ((ug) L g)

with b= /K — pu=3/2(u&') =+ q=2(A'#A’) € S(1,g) with a large K >0 and C €
S((ug')1/2+5'/2 g, This shows that

Ot (€)™ )"0, 0) = 4| (A)
— CpM | ((ug')" P q) | = CuP | (D)2 2|2,
Thus we get, from (6.1) and (6.3),
|(Av, Av)| < Cp/*((Im B)Av, Av)

(69> ’ ’
+ Cpt*Re((uD')* (ReQ)v,v) + Cul| (uD")* /> Av||*.

In particular, this shows that one can control any lower-order term by the right-
hand side of (6.9). We next estimate |(Av, Av)|, A€ uS(r(ue )+ g). Write

A= p(pe )V PH A+ PRS((ue) 2 ), Al e S(r(ue) 2 g),
and hence
|(Av, Av)| < Cpl[(uD"y* /2 A2 + Cpl|(A")“0||? + Cp? || (uD' )< 241/ 22,
Writing A’ = (u&')" 2q#C + /2 S (€)= /*71/2, ) with C € S(1,3), we get

(610)  |(Av, Av)| < Cpll (D) 2 Ao|* + CpRe(uD')" (Re@)u,v).
For A€ 5(1,3) it is clear that
(6.11) |(AAv, Av)| < C||Av]*.

From (6.1) to (6.11) we now have
Im(Pv, Av) = Im((P - Pl)v,Av) + Im(Pyv, Av)

012) = (A0l + (ReQuve) + (1= Cu¥/ )| (D) 20

+ (1= Cu )| (D) /#1202 — Cpu((ReQ)v,v) — ClAv]*.
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Multiplying (6.12) by e~ 7% we get
eI (uD') " 2 P

> L e (Av] + (Re @), v))]

dzg
+ (1= Oy [(uD") </ A |?
+p(l — Cul/‘l)e_'m’||<uD'>“I/2+1/2v||2
+ (v = C)e 70| Av|]? + (v — Cp)e 7 ((ReQ)v,v).
Thus for 0 < p < pg and v > vo(o), taking (6.2) into account, one has
[ oDy Pl e
-7
> ce” (|| Av(®)|]* + pll(nD) 2o (1))

(6.13) )
e [ e D) Rl (D) 0 da
-T

t
ey [ e AP 4 plluD) 20 e
=T

for ve C?((—T,T); S(R™)) vanishing in z¢ < 0.
Let h(2',£") € S(5)(1,90), and assume {A,zo+ h} > ¢ >0 with some ¢ > 0.
Then it is easy to see that the a priori estimates (6.13) holds with phase function

Sn = —(z0 + h)(€)~ — 2(ug’)" arg (¢2 + iw)
since (u¢')¥'h € i (€)', g0), and hence {A, (u€")*'h} € uSs)((H€")~', go)-
Starting with P* instead of P, we get Op°(e®")P* Op' (e=») Op®(ji), where
Op°(e?") Op' (e=#") Op°(j;) = I. Taking its adjoint we have
T}, PSy, = Py,
where
Th=0p'(ja) OP(e ™), Sp=0p' (™)

because Op’(p)* = Op* (7). Recall that T}, S;, = S, T}, = I. We prove the existence
of a parametrix of finite propagation speed of P by using the a priori estimates
for P,. Recall that P can be assumed to be of the form (2.2).

As for the fourth term in the right-hand side of (2.2), assuming that s verifies
(14 3p)sk’ < 1, we apply the following (p=3/4,6 =1/2).

LEMMA 6.1
Let 51> s and 1> 814/, and assume R € S, (e 00" g,) with g, = |da]? +
(€),2P|de'|?. Then we have

0p’(e?") Op°(R) Op* (=) = Op°(¢),
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where

ce S((1+p)sl+ps/(1_5))(6_°"“<g 1.9

with s =min{1/sy, (1 —8)/s}. In particular, c € S((u&')¢,g) for any L € 7.

Proof

We sketch the proof. To simplify notations we write ¢ for ¢,. Let Op°(e?) x
Op’(R) = Op”(b). Then repeating arguments similar to those in the proof of
Proposition 2.1, we see that

b€ S((14p)s1) (emetkeN ™ g).
We next consider Op°(b) Op* (e“z’) = 0p°(c1) + Op°(c2), where
¢ = (27T)_”/6_“"’7/_5("/”"5'*"'))(1‘6(56',6’ +1') dy’ dif
with x1 = x((n" —&){€)."), x2a=1—x1. It is easy to check that
€€ S(g)(e—(:(pf,)l/sl ,9)
with § = (14 p)s;. We consider cz. Note that
02,08 (Dy )N ()~ N e PR E Do b(al € o)
< C A0l 4 B|13 (59181 +plel <§/>;pla\€c<un'>“’ANN!s<n/>—(1—6>N_

Choose N so that N = [(p|a|+6|8]+€)/(1—0)], £ €N, and hence the right-hand
side is bounded by

’ s/(1—6
CAHPja 4 glItes/ =0 gy plelectun’)” (%)5-

Taking ¢ such that £ = [(A~ e~ (1/))(1=9)/%] and noting (1 — )/s > &, we con-
clude that

(e =8 /s
2 € S(s1ps/(1-8)) (€ € 1 9p)-

These prove the desired assertion. O

Let us fix a small T'> 0 and h = e. Since the energy estimates (6.13) hold for
]55, then from the standard arguments on functional analysis we conclude that
for any given F € C°([-T,T]; H*(R")) vanishing in x¢ < 0, there is a unique
U € C?([-T, T); H®(R™)) vanishing in ¢ < 0 such that P.U = F. Let 1 <5< 4,
and let f € CO([-T, T];v(()g) (R™)) be such that f(z) =0 for zo <0. We choose '
and « such that

| =

1
— <4, K +r=
K

§<

Since —d. < C(u€’)*, it is easy to see that Op®(e~%<)f € CO([-T,T); H*(R™))
because 1/5 > «/, and hence F =T, f € C°([-T,T); H*°(R™)). Then as remarked



800 Enrico Bernardi and Tatsuo Nishitani

above, there exists a unique U € C?([-T,T]; H*(R")) such that

(6.14) T.PS.U=PU=F=T.f,
where U =0 in 29 < 0. This implies that P(S.U) = f. Let us denote
u=SU=Gf

and prove that G is a parametrix of P with finite propagation speed.

We first examine u = S.U € C?([-T,T); H®(R™)). Since ¢, < —e(ué’)" for
g >0, it is easy to see from Corollary A.3 that b € S(s)(1,9), and this proves
the assertion. We now prove that G is a parametrix with finite propagation speed.
Let hi(z',&') € S(5)(1,90) be such that

(6.15) supphi N{0 <zo <7} C {zo + h <0}

LEMMA 6.2
Assume (6.15) and p > sk’. Then we have

Op®(e= ") Op°(hy) = Op” (S((140)5) (€)1, 7)), 0<mo<T,
for any £ € 7.

Proof
We sketch the proof. Write Op®(e=%") Op°(hy) = Op°(by) + Op°(by), where
O (b= (27) 7 [ BTG (s 4 € ()

with x1 = x(Mn'(¢);'), x2 =1 — x1. We consider only Op°(by). Let us write
Op”(b1) = Op°(b11) + Op°(b12), where

Op° (bri)u = (2”)%/efiyln%h(z’&"')ii(y’)xl(f’m’)hl(x' +y & uly) dy dnf
with x1(y") = x(Ky’) and xo =1 — x1. Choose K > 0 large so that
—(;;h(;v,él + 7]/) S _Cl <M€/>Kla 0 S Zo S T,

on the support of x1(¢',7")x1(y’) with some ¢/ > 0. Then from integration by

parts we see by1 € S(S)(e_c“‘flw,g). We turn to Op°(b12). By Corollary A.3 we
see

102,080, (4 ) e Ty (¢ )X (v Y (2 + ¢, €]

< Al 4 5|;s<§/>;pla\+6lﬁl |7|!S<£/>;ph\ec<u£’>

w!

Take v such that |vy| = [(A_le_1<£'>ﬁ)1/s] and hence the right-hand side is
bounded by

cAle+bl|q m!s<§/>;p|a\+5|5|6—0’<u€/>”/5

because p/s > «'. This proves b1z € S(S)(e_C/Wﬁ/V/S?g). It is not difficult to see
that by € S((Hp)s)(e_cl <5/>ﬁ1/s,g). These prove the assertion. O
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We now consider Pu = hy f. From Ty PSpThu=Tph,f we have
ph(Thu) = Thhlf.
From Lemma 6.2 it follows that for any p, ¢ we have

||Thh1f||p < Cp,q“f“m

where ||ul|, = [|u|| gr»®»). Thus one has, from (6.13),

¢ t
[Thally < Cy [ Wb flydzn < G [ 1110

Assume that hy € S(4)(1,go) verifies

(6.16) suppha N {0 <xzg <7} C {zo+ h >0}

A repetition of similar arguments proving Lemma 6.2 gives

haSh € S((14p)s) (€)', 9)
for 0 < zo <7 and for any £ € Z, and hence

t
[haGha fllp = |[haullp = [|h2ShThullp < Cp gl Thull, < CM/ [1£llq do

for any p, q.
Assume supph; Nsuppho = (). Then it is clear that one can take 7 >0 and h
satisfying (6.15) and (6.16). Indeed it is enough to take h as a finite sum of such

ey €4€)a" — 8N R+ | — |+ & — e
where 0 < €1 < €2, 0 < € < 1 are small. Thus we have proved that G is a parametrix
of P with finite propagation speed at (0,5:’,5’).

Since the existence of a parametrix with finite propagation speed is invariant
under conjugation of Fourier integral operators, then the original operator (1.1)
has a parametrix with finite propagation speed at every (0,2’,¢’), |€'| # 0. Then
it follows (see the proof of Prop0s1t10n A.6 in [11]) that there is 7 > 0 such
that for any f € CO([-T,T);~, (R”)) vanishing in z¢ <0 there exists a unique
u€ C%([—m,m; HOO(R”)) vamshmg in zy <0 verifying (1.8).

Appendices
A

Here and in Appendix B we collect several results about symbol classes used
in this paper and Fourier integral operators with complex phase function (4.4)
without proofs. We refer to [17] for the proofs.

A.1 Almost analytic extension of Gevrey functions
In this subsection we study an almost analytic extension of a(x,&, i) € S(4)(m, g)
with
n
gec(ym) = _53y7 + p; 03,
j=1
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where § = (51(93,5,/1),...,5n($,§,,u)), p= (pl(xvgnu‘)w-'7pn('ra£7,u’)) and 5j(x7
§ i), pi(w,&, 1) are assumed to be in Sy (d5,9), S(s)(pj,9), respectively. Let

x(t) € Wés) (R) which is 1 in |¢t| <1/4 and 0 in |¢| > 1/2, and set

x(z) = x(@1)x(z2) - x(Tn)-

In what follows, to simplify notation we often drop a small parameter p > 0.
We assume that there exists a metric

n

9< Ge(ym) = _(O2y7 + (&), 3,

j=1
where 0 <a; <b; <1. Let us set

3

y 77 = Z Jy] 2(13',’7]2" h(g"u) _ <£>;mini,j(bi7aj).

j=1
Let k(& 1) € S(s)(k, 9)
E(k) = {(z,y,&,n) € R*™ | §Z (y,n) < k(& 1)*},
E°(k) = {(x,&n) e R*™ | §Z(0,n) < k(& 1)}
We denote by S(,)(m, g|E(k)) the set of all a(z,y,£,n) € C*(E(k)) verifying
107,08 ya(x,y,&,m)| < CAFPl|a+ Blims’p™, Va, b,

for (z,y,¢,m) € E(k) with some C > 0,4 > 0. Similarly we define S5 (m,g |
E°(k)). Let

, and set

dj=DBj*"', j>1,dy=1,
where B is some positive constant, take k(&, 1) € S(4)(k,g) such that
(A1) k(& (& 1) < C(8),

with some € > 0, and define an almost analytic extension a(z,¢) = a(x + iy, +in)
of a(z,£) € S(s)(m,g) by

a(my,gm):z P08l €)(i) i) (b €)X 57,

O(

where ds (€070 = (Ao, (€5 ™.+ da, () 7).

PROPOSITION A.1
Let a(x,£) € S(s)(m,g). Then we have

a(z,¢) € S(s) (m, g | E(K)).
Moreover, with 54 =0y, +10,, and 5@ = 0¢,; + 10y, we have, with some ¢ > 0,

3z,(2,C) € S(s) (ma*s e~ g | B(k)),

De,(2,€) € S(s) (mp~2e= M g | B(K)).
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COROLLARY A.1

Let Y; € S(S)(k<§>;b‘7,g | E(k)), H; € Ss)(k(&)i’,g|E(k)), and let Y = (Y1,...,
Y,), H=(H1,...,Hy,). Then we have

A Y H) ~ Y S 0R0Faw, Y ) (GH)" € S (mlkh) g | E(W)
la+B|<N
for any N € N.
PROPOSITION A.2

Let 0(z,&,v) be a positive function. Assume that a(x,&,v) € C(R?™ x Q) verifies
Poga)a(x,€,v)| < CACHF o+ B4 ~|15maP p=e67, z,&,v) e R x Q
zYE Y
for all a, B, v. Then an almost analytic extension a(z,(,v) verifies
2,08, 0%a(2,C,v)| < CAIHI | 4 B4 4|1*méP p= 0",
3 n
|35,y3?,n335zﬁ(z7 ()| < CAPH a4 g4+ 4|10
X méefefc(hk)fl/(kl)(sﬁpfam,
107 ,08,,070¢,a(2, ¢,v)| < CAIFF a4 44|10
% mp —c(hk)™ 1/('§_1)5ﬁp7(x0'\/
for (z,y,&,m,v) € E(k) x Q and for any a, B, v

A.2 Estimates of composite functions
Let us put

Then we have the following.

LEMMA A1

Choosing a positive constant M suitably, we have
(i)
@
> () el DEgal+ ) <Tullal +p+ 0

a'+a'’'=a
forp>0and g>1, p,geN,

()
> () rtal 4o a) <TGl )

a'+a'’'=a

forp>0.
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LEMMA A.2
Assume that

|050;(x)] < C;ATT (|| = 1), Ja|>1,7=1,2,...,N,
|0Zu(z)] < CAZTs(Ja| = 1), a2 1,

where Cj = Cj(x), A1(z) = (A11(z), ..., An(z)), Aa(2) = (A21(2), ..., Aan(2)),
and u(z) =u(z1,...,2n). Let

N
)= 2 Cila)dn(:
Then we have, with ¢(x) = (¢1(x),.. .,qbn(x)),
|02 u(é(@))| < Cd(e, 6(@) (14 d(, 6(2)) " ATDu(] = 1), hlz 1.

LEMMA A3
Assume that

0207 F(2,2)]=p()| < CASBIT(la+9]=1), |a+9]>1,
for la + v <k, |of <k, where Cj = Cj(x), Ai(z) = (A (z),...,Aim(2)),

Alj(.’b) > 0, AQ(iE) = (Agl(x),...7A2m(x)), and 32 = (Bgl(l'),...,BQN(l')).
Assume that

N m
ZCjBQj + ZAQjAl_jl S 1;
j=1 j=1

then we have

|01 F () (2, 6(2)| < CAGBYAIT (Jo+ 7] = 1)

ZL’(a

for a4+~ 4+ p| <k, where F((;/)) (x,2) =0%9)F(x,z).

COROLLARY A.2
Assume that
05¢;(x)] < C;ATTs(Ja| = 1), Ja|>1,j=1,...,N,
(03001 F (w,y,2)].=4| < CASBYDIT(ja+B+7|=1), |a+8+7]>1,
for la+ B+ <k, |a| <k, where C; =Cj(z), Ai(z) = (A11(x),...,Aim(2)),
Ayj(x) >0, Az(x) = (A21(x), ..., Aom (), Ba(z,y) = (Bar(z,y),. .., Bau(z,y)),
and Do(x,y) = (D21(x,y),...,Dan(x,y)). Assume that

Zc Do +ZA2JA <1
then we have
|40y F (,y,6(x))| < CAYBETs(|u+v| — 1)
for ju+v| <k.
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A.3 Estimates of some special symbols

LEMMA A4

Assume that ¢ € S(5)(k(§, 1), 9). Let w§ = e’d’ﬁfage‘z’. Then we have, with some
constants A; >0,

0t < CAl A 555 e

|+ _
X Y k(EPTIT (Jp+ v+ )
=0
COROLLARY A3
We have
la+] '
|3§3§ae¢| < C€¢A\a+ﬁ\5ﬁp*a Z k(g)loﬂrﬁlﬂjgs
=0
< C’AllaJrBl |o+ B|!565p_°‘e¢ek(5)l/s.
LEMMA A5

Assume that ¢(x) verifies
|0S0(z)| < CLA;(2)%|a!®, xeR™
For given m, £ € N, let us set
w(z) = (¢(2)*™ + B7?) vt

Then we have
02w (@) < COYhw(z)w(x)~011/2m A ()| a)?
for x eR.

COROLLARY A4
Assume that

0502 ¢, €)| < CAlHPlja 4 gl1=(g) 1.
Then we have, with w(z,€) = (¢(z,€)*™ + (€);")V/*,
1050gw(,&)| < CLA o+ Bl1w(x, €)w(z, &) Aot Al/2m (g) el
that is, w € S (w,w™™(|dz|* + (€);2dE?)). In particular, w € Sy (w,
(5™ (Jda|? + (), 2] de[?)).
COROLLARY A5
We have
w™t € Sy (w™ (/™ [da]? + (€),, 2P dE ).
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Proof
Since |(d/dz)kz~t| = k!|z| =%~ the assertion follows from Lemma A.2. O
Let 9 (s) satisty
1 ®) (s)] < CARE, seR,
and consider
¢ =log (¢(z1) + iw) —log (¥ (z1) — iw).
We set

r(2,6) = V(@1)? + w(z, )2

LEMMA A.6
Let

g* _ (T($,€)_1 +w_€/2m)2dI% + Zw—E/m dZC? +w—€/m<£>;2|d£‘2
j=2

Then we have ¢(x,&) € S(5)(1,9%) and r(x,£) € Sis)(r,9%).

Proof
For |a+ (| =1 we have
00026 = —2ir(w, €) [ (z, £)0002 (1) — (w1)00 08w,
Since it is clear that ¢ (x1) € S(5)(r,9*) and w € S(5)(r, g*), to prove the assertion
it is enough to prove r(z,£) 2 € S(,)(r~2,g*). Noting that
((d/dx)*z/?| < CARKIZY 207k, 2 >0,

and 72 = (x1)? + w?(x,€) € S(S)(TQ,Q*), applying Lemma A.2 we get 7 €
S(s)(r,9%). Again applying Lemma A.2 we conclude that r e S(S)(r_l,g*),
which proves the assertion. O

A.4 Implicit functions Z(z, y, ()

Let ¢(x,§) € Sesy(k(§,11),9) be real valued, and assume that 0,,¢(x,§) €
S(s)(kA;,g), where k is assumed to satisfy (A.1) and A; € S(5)(A;,g). Set

1
F<x7y7<>=/0 Vob(y+0(e —y).O)db, ¢ =+ in,

where V,¢(z,() is an almost analytic extension of V,¢(z, &) with k= Tc(@i and
small 0 < € <e.

PROPOSITION A.3
There is a C*-function Z(z,y,() = ¢ + G(z,y,() defined for (x,&,m;y) €
E°(k(©)S) x R (0< €’ <€) such that

(A.2) E(z,y,¢) =iF (z,y,2(2,9,¢)) + ¢,
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where G (2,y,C) satisfies, for (x.€.my) € EOR(E)) x R”,
07 ,0¢8,G;(x,y,0)| < CAIHl|a 4 B k(€)57 (€)af (€),, >
Moreover, we have
102,08, G (2,9, )ly=a € S(s) (k2;6%p7, g | E°(R(£)5)), o+ 5] > 1.
We have also

108 ,08,0¢,E(w,y,¢)| < CAHBl o 18 hem CPREOLDT Y (gyad () be

with some ¢ >0 for (z,&,m;y) € E%l%(ﬁ)j) x R™.

B
In this section we use
n
Z ORY2 +(O% 7, goym) =Dyl + (&), n7,
j=1 j=1

where 0 < < p < 1. Let p(x,&) € S(5)((#€)™, g), and let ¢ € S, )(<u§> g) which
is real valued such that

Ve € Sie)((HE)™(),%,9),  Vad(w,€) € S5y ({u€)"(€)3,9)-
We assume that (k' >k, s> 1)
(B.1) (s—1Dr, (s=1)(1—p+r)<p—05—kK, sk'<1-04.
Recall
Op'(e?p)u=(2m) " / Hrmer e (02O 1y 4 (1~ t)z, €)uly) dy dé,

where 0 <t < 1. Let us put

1

so that ¢(z,§ +1n) — ¢(z,£) =n®(x,£,n). Then we have the following.

PROPOSITION B.1
Assume (B.1). Then we have

Op°(e”) Op’(p) = Op°(e”q) + Op°(r),
where q € S5 ((u')™,g) and r € S(Sd)(e_“(“71<“5>)(175)/8,gp) with d=(1+ p —
8)/(1—19), and one can write
gz, 8) =Y 6‘ 0 p(s (2 — i®(2,€,1),€)|y=0 + an (2, €)
|B|<N

with qn € pP=IN S ((p&)m=P=IN g), where p(g)(x +iy,£) is the almost ana-
lytic extension of (—i)1P0Pp(x,€) given by Proposition A.1.



808 Enrico Bernardi and Tatsuo Nishitani

Consider Op°(e®q) Op' (e=?), where g € Sy (€)™, g). Let E(x,y,£) be the solu-
tion to

1
:f/ Voo (x+0(y —x),)do = ¢
0

which is given by Proposition A.3. Then we have the following.

PROPOSITION B.2
Assume (B.1). Then one can write
Op’(e?q) Op' (e~?) = Op’(p) + Op° (1),
where p(i’,é_) € S(s)(<:u’€>mag) and T'(LC,S) € S(sd)(e_C(uil“Lg))
can write
1 -
P& = > D5 [y a(e.Ew.5.)],, + R(a.)
la|<N

with Ry (x,€) € pP=IN S ((ug)m=P=ON g), where

9E(z,y, 5)] .
23

(1-6)/s
.9p), and we

J(,y,€) = det |

PROPOSITION B.3
Let s > 1. Assume that

p(x,€) € Sgy (e " (uey™  g), q(x,€) € Sy (eH "1™ ()™=, g)
with ¢+ ¢ <0 and some a > 0. Then one can write
Op’(p) Op' (q) = Op°(r1) + Op°(r2)

withr (z,€) € S(e (€)™ Hm2e=c1i ™ “WE™ G) ry(2,€) € S(aqy(e™ W (1)
gp) with some ¢; > 0. In particular, we have Op°(p) Op' (q) € ¥ S50y ((1€) 7, )
for any k€ N.

(1-68)/s
)

COROLLARY B.1
Assume (B.1) and p(x,§) € S5 ((u€)™, g). Then we have

Op”(e=?) Op”(p) Op' (¢?) = Op° (5) + Op’(r),
where p(z,€) € S5y (€)™, g) and r(x,£) € pFSisaz) ((u€) %, g) for any k € N.
Acknowledgments. We are very grateful to the referees for a careful reading

of the manuscript and for pointing out a lack of arguments in the proof of
Theorem 1.1, which now have been added.
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