
Ann. Funct. Anal. 8 (2017), no. 2, 152–167

http://dx.doi.org/10.1215/20088752-3773229

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

COMPUTATION OF RIEMANN MATRICES FOR THE
HYPERBOLIC CURVES OF DETERMINANTAL POLYNOMIALS

MAO-TING CHIEN1* and HIROSHI NAKAZATO2

Communicated by P. N. Dowling

Abstract. The numerical range of a matrix, according to Kippenhahn, is
determined by a hyperbolic determinantal form of linear Hermitian matrices
associated to the matrix. On the other hand, using Riemann theta functions,
Helton and Vinnikov confirmed that a hyperbolic form always admits a deter-
minantal representation of linear real symmetric matrices. The Riemann matrix
of the hyperbolic curve plays the main role in the existence of real symmetric
matrices. In this article, we implement computations of the Riemann matrix
and the Abel–Jacobi variety of the hyperbolic curve associated to a determi-
nantal polynomial of a matrix. Further, we prove that the lattice of the Abel–
Jacobi variety is decomposed into the direct sum of two orthogonal lattices for
some 4× 4 Toeplitz matrices.

1. Introduction

Let T be an n×n complex matrix. The real ternary form FT (x, y, z) associated
to T is defined by

FT (x, y, z) = det
(
zIn + x<(T ) + y=(T )

)
,

where the two Hermitian matrices <(T ) = (T +T ∗)/2, =(T ) = (T −T ∗)/(2i) cor-
respond to the Cartesian decomposition T = <(T )+ i=(T ). The form FT (x, y, z)
is deeply related to the numerical range W (T ) of T defined by

W (T ) = {ξ∗Tξ : ξ ∈ Cn, ξ∗ξ = 1}.
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The numerical radius of a matrix T or a Hilbert space operator T denoted by
w(T ) = sup{|λ| : λ ∈ W (T )} provides fruitful information for analyzing the
operator T (see [17], [22]). Toeplitz [20] initiated the study of numerical range,
and Hausdorff [11] proved its convexity. Kippenhahn [16] showed that W (T ) is
the convex hull of the real part of the dual curve GT (X,Y, Z) = 0 of the alge-
braic curve FT (x, y, z) = 0. In [1], the classification of the curve FT (x, y, z) = 0
is applied to categorize the shapes of the numerical ranges of 4 × 4 matrices.
In [2] and [3], we discussed rational curves and elliptic curves in the context of
numerical ranges. For any pair (x0, y0) of real numbers, the algebraic equation
FT (x0, y0, z) = 0 has n real solutions in z because x0<(T )+y0=(T ) is a Hermitian
matrix. The polynomial FT (x, y, z) also satisfies FT (0, 0, 1) = 1. A ternary form
with these two properties is called hyperbolic with respect to (0, 0, 1). Fiedler [8]
conjectured that a ternary hyperbolic form F (x, y, z) of degree n admits the rep-
resentation F (x, y, z) = FT (x, y, z) for some n×n matrix T . Lax [18] conjectured
a stronger requirement that the matrix T is a complex symmetric matrix. Helton
and Vinnikov [14] confirmed that the Lax conjecture is true by using Riemann
theta functions with g phases given by

θ(φ1, φ2, . . . , φg : R) =
∑

m1,...,mg∈Z

exp
(
2π

√
−1

(∑
i,j

rijmimj +
∑
i

miφi

))
,

where R = (rij) is a g × g Riemann matrix which will be described in Section 2.
The confirmation of the Lax conjecture is useful for characterizing the shapes
of the numerical ranges (see [13]). We have two main motivations for studying
this Riemann matrix. One is to control the Riemann matrix R as an important
parameter of the theta function when applying the Helton–Vinnikov theorem for
the determinantal representation. The other is to recognize that the Riemann
matrix R plays an essential part in classifying the curve FT (x, y, z) = 0, which is
efficient even when this curve has no singular points.

Let F (x, y, z) be an irreducible ternary form of degree n ≥ 3. A point P =
(x0, y0, zo) of the complex projective curve

CF =
{
[x, y, z] ∈ CP2 : F (x, y, z) = 0

}
is called a singular point if the gradient of F (x, y, z) at P is zero. For a singular
point P = (x0, y0, z0) 6= (0, 0, 0), we can assume that z0 = 1 by the exchange of
the roles of the coordinates x, y, z if necessary. We assume that the multiplicity
of the curve CF at P is m ≥ 2 and that the number of analytic branches of CF

around P is s ≥ 1. The two polynomials

f(X,Y ) = F (x0 +X, y0 + Y, 1), fY (X,Y ) = FY (x0 +X, y0 + Y, 1)

are expressed by Taylor series as

f(X,Y ) =
∑

j+k≥2

ajkX
jY k, fY (X,Y ) =

∑
j+k≥2,k≥1

kaj,kX
jY k−1.

The Taylor series of these functions define an ideal (f, fY ) of the ring C[[X,Y ]]
of formal power series in X, Y . The complex dimension of the quotient ring
C[[X,Y ]]/(f, fY ) is finite, and is called the local intersection number of the curves



154 M.-T. CHIEN and H. NAKAZATO

F (x, y, 1) = 0 and Fy(x, y, 1) = 0 at P . The δ-number of the curve CF at P is
defined as

δ(P ) =
1

2

(
dimC[[X,Y ]]/(f, fY )−m+ s

)
.

Let Q1, Q2, . . . , Q` be the set of all singular points of the algebraic curve CF . The
genus g(CF ) of the curve CF is given by

g(CF ) =
1

2
(n− 1)(n− 2)−

∑̀
j=1

δ(Qj).

An irreducible curve is called a rational (resp., elliptic) curve if its genus g = 0
(resp., g = 1).

We assume that the form F (x, y, z) is irreducible. By using the resolution of
singular points of the curve, we can construct a compact Riemann surface Γ
which is a parameter space of the curve CF . This Riemann surface is called the
nonsingular model C̃F of the curve CF . If the curve CF has no singular points,
the curve itself is a Riemann surface. We consider the canonical projection π of
C̃F onto CF : F (x, y, z) = 0. For a sufficiently small open neighborhood V of a
singular point P of CF , the set π

−1(V ) is composed of a finite number of connected
open sets V1, V2, . . . , Vq of C̃F which form a multilevel crossing around P . The
complex affine curve F (x, y, 1) = 0 is parameterized by two rational functions L1,
L2 on C̃F : x = L1(s), y = L2(s). The nonsingular model C̃F is homeomorphic to
one of the compact surfaces: the Riemann sphere C∪{∞}, the torus C/(Z+ iZ),
or a g-hole torus with g ≥ 2. The genus g of the curve CF coincides with the
number of holes of the compact Riemann surface C̃F . (For references on Riemann
surfaces, see, e.g., [5], [4], [10].)

In this article, we use the complex analytic method to study invariants of the
numerical ranges of matrices. The complex analytic technique is often involved in
studying operators on a Hilbert space (see [6], [15]). We investigate some invari-
ants of the Riemann surface C̃F of the algebraic curve associated to a matrix T .
In particular, we compute the Riemann matrix of C̃F . The Riemann matrix is
a common invariant for the birationally equivalent class of algebraic curves, and
hence the invariant for the curve CF and its dual curve. The Riemann matrix
generates a lattice of the Abel–Jacobi variety of C̃F . We prove that the lattice
is decomposed into the direct sum of two orthogonal sublattices for some 4 × 4
Toeplitz matrices.

2. Riemann matrix

Let Γ be a compact Riemann surface with genus g. We recall the definition of a
Riemann matrix which adopts the standard notation used in [5]. For an arbitrary
base point P0 of Γ, define a cycle to be a continuous map f : [0, 1] → Γ with
f(0) = f(1) = P0. Two such maps f1, f2 produce a new map f2 ◦ f1 by the rule

(f2 ◦ f1)(t) = f1(2t), (f2 ◦ f1)(1/2 + t) = f2(2t),

0 ≤ t ≤ 1/2. The inverse f−1 of f is given by f−1(t) = f(1 − t). Two maps
f , g are identified if they are homotopic, that is, there is a continuous map
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F : [0, 1]× [0, 1] → Γ satisfying

F (0, t) = f(t), F (1, t) = g(t), F (s, 0) = F (s, 1) = P0.

The fundamental group Π1(Γ) of Γ is the collection of cycles of Γ under the homo-
topic relation. We identify an element of Π1(Γ) with a closed, oriented, piecewise
smooth curve on Γ. Let ω be an arbitrary C(1)-differential 1-form on Γ. On a local
coordinate z = x + iy in an open neighborhood V of a point P of Γ, the differ-
ential form ω is expressed as ω = Q(z, z) dz + R(z, z) dz, by C(1)-differentiable
complex-valued functions Q,R. We define a differential 2-form dω by

dω =
(∂R
∂z

− ∂Q

∂z

)
dz ∧ dz.

If dω = 0, the differential form ω is closed. If there exists a holomorphic function
U on an open neighborhood of an arbitrary point P of Γ satisfying ω = Uz dz,
then ω is called a holomorphic 1-form or an abelian differential form of the first
kind. A holomorphic 1-form is a closed form.

Given two cycles a, b, the equation
∫
a−1◦b−1◦a◦b ω = 0 holds for any holomorphic

differential 1-form ω. Let N be the normal subgroup of Π1(Γ) generated by {a−1◦
b−1 ◦ a ◦ b : a, b ∈ Π1(Γ)}. The abelian group H1(Γ,Z) = Π1(Γ)/N is called the
1-dimensional homology group (see [4]). A cycle c of Γ is homologous to zero if∫
c
ω = 0 for any holomorphic differential 1-form ω. For two cycles a and b with

different base points, the intersection index a · b of two cycles counts the number
of intersections, taking the orientation of the cycles into account. If two cycles
a and b do not intersect transversally, their intersection index a · b is zero. If
they intersect once, a · b is 1 if the outer product of the tangent vectors ta × tb
points out from the surface, and −1 if the outer product points into the surface.
The homology group H1(Γ) ∼= Z2g has a canonical basis {a1, . . . , ag, b1, . . . , bg}
satisfying the symplectic relations

ai · aj = 0, bi · bj = 0, ai · bj = δij,

where δij is the Kronecker delta (see [10]). Any element c of H1(Γ) is expressed
as

c = m1a1 + · · ·+mgag +mg+1b1 + · · ·+m2gbg

for some integers m1, . . . ,m2g. The set of all holomorphic differential 1-forms is
a g-dimensional complex vector space. Let {ω1, . . . , ωg} be a basis for the holo-
morphic differential 1-form vector space. The period matrix Ω of Γ is a g × 2g
complex matrix defined as Ω = [AB], where A = (Aij)

g
i,j=1 and B = (Bij)

g
i,j=1 are

given by

Aij =

∮
aj

ωi, Bij =

∮
bj

ωi.

The matrix A is known to be invertible. The Riemann matrix of Γ is defined
as R = A−1B. The imaginary part matrix (=Rij)i,j≤g is positive definite. The
Riemann matrix is closely related to the geometric and analytic structure of the
Riemann surface under consideration (see [10]).
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The period matrix Ω generates a nondegenerate lattice

Λ = {m1A1 + · · ·+mgAg +mg+1B1 + · · ·+m2gBg : m1,m2, . . . ,m2g ∈ Z},

where A1, . . . , Ag and B1, . . . , Bg are, respectively, the columns of A and B. This
lattice is the period lattice associated to the basis {ω1, . . . , ωg} of the space of
holomorphic 1-forms on Γ. Given a point z0 ∈ Γ, the holomorphic mapping J :
Γ → Cg/Λ defined by

J(z) =
(∫ z

z0

ω1,

∫ z

z0

ω2, . . . ,

∫ z

z0

ωg

)
modΛ

is a holomorphic embedding of Γ onto J(Γ) = Cg/Λ. The g-dimensional compact
space Cg/Λ is called the Abel–Jacobi variety of Γ.

Suppose that Γ is a Riemann surface with genus g associated to an irreducible
hyperbolic curve FT (x, y, 1) = 0 defined by a complex n×n matrix T . It would be
interesting to see whether there exists a canonical basis {a1, a2, . . . , ag, b1, . . . , bg}
for the homology group H1(Γ) for which the Riemann matrix R = A−1B =
(eg+1, . . . , e2g)

T and the basis e1 = (1, 0, . . . , 0)T , . . . , eg = (0, . . . , 0, 1)T span the
lattice

Σ = {m1e1 + · · ·+mgeg +mg+1eg+1 + · · ·+m2ge2g : m1,m2, . . . ,m2g ∈ Z}

so that Σ is decomposed into the direct sum of two orthogonal lattices Σ1,Σ2,
where each of Σ1 and Σ2 is spanned by g elements of the column vectors {e1, . . . ,
eg, eg+1, . . . , e2g} and Σ1

∼= Σ2
∼= Zg as free abelian groups. In the case g = 1,

the Riemann matrix R is none other than the τ -invariant of the elliptic curve
FT (x, y, 1) = 0. In [3], the authors showed that the τ -invariants of the elliptic
curves for some 4 × 4 matrices are pure imaginary. In this article, we generalize
the problem for g ≥ 2, and we verify the orthogonal lattice decomposition in
Sections 3 and 4 for some 4× 4 Toeplitz matrices.

3. Quartic curve of genus 2

Using a graph-theoretic technique, C. Tretkoff and M. Tretkoff [21] provided
an explicit method of constructing a canonical basis {aj, bj : j = 1, . . . , g} for the
homology group H1(Γ) = H1(Γ,Z) of a Riemann surface Γ. Deconinck and van
Hoeji [5] gave an algorithm to compute the period matrix of the Riemann surface
using the Tretkoff method, where the Maple algcurves package, a collection of
Maple programs for computations with algebraic curves, is performed (see also
[4]). In this article, we follow the algorithm in [5], and implement the algcurves
package to find a canonical basis for the group H1(Γ) associated to 4×4 Toeplitz
matrices. We provide some numerical values to explain the process of computing
the Riemann matrix.

Consider a Toeplitz matrix

T =


0 2 2a 2k
0 0 2 2a
0 0 0 2
0 0 0 0

 (3.1)
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for a ∈ R, k = a2 − 1. Then

FT (x, y, z) =
(
(4− 4a2)x2 + 4a3xz − (4 + a4)z2

)
y2

+
(
(4− 4a2)x4 + 4a3x3z − (4 + a4)x2z2 + z4

)
.

If a = 0, then the curve CF is a rational curve. We assume that a > 0. If a = 1,
then the polynomial FT (x, y, z : a) = z(4x3+4xy2−5x2z−5y2z+z3) is reducible.
Since

F (x, 1, z) =
(
−(2 + 2a)x+ (2 + 2a+ a2)z

)(
−(2− 2a)x− (2− 2a+ a2)z

)
+ (4− 4a2)x4 + 4a3x3z − (4 + a4)x2z2 + z4,

the point (x, y, z) = (0, 1, 0) is an ordinary double point under the condition
0 < a < 1 or a > 1. The roots of the polynomial

p(x) =
(
(2a+ 2)x− (a2 + 2a+ 2)

)(
(2a− 2)x− (a2 − 2a+ 2)

)
×

(
(2a+ 2)x2 − a2x− 1

)(
(2a− 2)x2 − a2x+ 1

)
are branch points of the Riemann surface. For a =

√
2, two of these points

coincide. We treat the case a >
√
2. In this case, the curve FT (x, y, z) = 0 is a

hyperelliptic curve of genus 2. The roots of p(x) are given by

r1 =
a2 −

√
a4 + 8a+ 8

4(a+ 1)
< r2 =

a2 −
√
a4 − 8a+ 8

4(a− 1)
< r3 =

a2 +
√
a4 + 8a+ 8

4(a+ 1)

< r4 =
a2 − 2a+ 2

2(a− 1)
< r5 =

a2 + 2a+ 2

2(a+ 1)

< r6 =
a2 +

√
a4 − 8a+ 8

4(a− 1)
.

Theorem 3.1. Let T be the 4 × 4 matrix defined in (3.1) with a >
√
2. Sup-

pose that Γ is the Riemann surface associated to the irreducible hyperbolic form
FT (x, y, z). Then there exists a canonical basis {ã1, ã2, b̃1, b̃2} for the homology
group H1(Γ) such that the lattice

Σ = {m1e1 +m2e2 +m3e3 +m4e4 : m1,m2,m3,m4 ∈ Z},

spanned by the Riemann matrix R = A−1B = (e3, e4)
T and the basis {e1 =

(1, 0), e2 = (0, 1)}, is the direct sum of two mutually orthogonal lattices Σ1 =
{m1e1 +m2e2 : m1,m2 ∈ Z} and Σ2 = {m3e3 +m4e4 : m3,m4 ∈ Z}.

Proof. Consider the curve f(x, y) = FT (x, y, 1) = 0 which is described by(
(2a+ 2)x− (a2 + 2a+ 2)

)(
(2a− 2)x− (a2 − 2a+ 2)

)
y2

=
(
(2a− 2)x2 − a2x+ 1

)(
−(2a+ 2)x2 + a2x+ 1

)
.

The basis {ω1, ω2} for the space of holomorphic differential 1-forms is given by

ω1 = −1

2

dx

((4a2 − 4)x2 − 4a3x+ (a4 + 4))y
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and

ω2 = −1

2

x dx

((4a2 − 4)x2 − 4a3x+ (a4 + 4))y
.

The base point x0 is taken on the real line with x0 < r1, and hence the function
y = y(x) with f(x, y(x)) = 0 takes pure imaginary values at x = x0. We define
the two sheets of the surface Γ as =(y1(x0)) < 0 and =(y2(x0)) > 0.

Suppose that {a1, a2, b1, b2} is a canonical basis for the homology group H1(Γ)
produced by the algorithm in [5] and the algcurves implementation. We construct
a new basis depending on the canonical basis as follows.

1. The cycle ã1 = a1 starts on sheet 1, encircles branch point r1 = (a2 −√
a4 + 8a+ 8)/(4(a + 1)) to arrive at sheet 2, and encircles branch point

r2 = (a2 −
√
a4 − 8a+ 8)/(4(a− 1)) to arrive at sheet 1.

2. The cycle ã2 = −a2 starts on sheet 1, encircles branch point r3 = (a2 +√
a4 + 8a+ 8)/(4(a + 1)) to arrive at sheet 2, and encircles branch point

r4 = (a2 − 2a+ 2)/(2(a− 1)) to arrive at sheet 1.

3. The cycle b̃2 = −b2 − a1 starts on sheet 1, encircles branch point r4 =
(a2 − 2a + 2)/(2(a − 1)) to arrive at sheet 2, and encircles branch point
r5 = (a2 + 2a+ 2)/(2(a+ 1)) to arrive at sheet 1.

4. The cycle b̃3 = b̃1 − b̃2 = b1 + b2 + a2 starts on sheet 1, encircles branch
point r2 = (a2−

√
a4 − 8a+ 8)/(4(a−1)) to arrive at sheet 2, and encircles

branch point r3 = (a2 +
√
a4 + 8a+ 8)/(4(a+ 1)) to arrive at sheet 1.

Consider the set {ã1, ã2, b̃1, b̃2} in the group H1(Γ) given by

ã1 = a1, ã2 = −a2,

b̃1 = b1 − a1 + a2, b̃2 = −b2 − a1.

Then, the new basis {ã1, ã2, b̃1, b̃2} of H1(Γ) satisfies the symplectic structure:

b̃1 · b̃2 = (b1 − a1 + a2) ·
(
−(b2 + a1)

)
= −(b1 · a1 + a2 · b2) = 0,

b̃1 · b̃1 = (b1 − a1 + a2) · (b1 − a1 + a2) = −b1 · a1 − a1 · b1 = 0,

b̃2 · b̃2 = (b2 + a1) · (b2 + a1) = b2 · b2 + a1 · a1 + b2 · a1 + a1 · b2 = 0,

ã1 · b̃1 = a1 · (b1 − a1 + a2) = 1,

ã2 · b̃1 = 0,

ã1 · b̃2 = a1 ·
[
−(b2 + a1)

]
= 0,

ã2 · b̃2 = −a2 ·
[
−(b2 + a2)

]
= 1,

ã1 · ã1 = ã2 · ã2 = ã1 · ã2 = ã2 · ã1 = 0.

Taking a base point x0 < r1, we define the branch y2(x) of the function y = y(x)
with FT (x, y(x), 1) = 0 on sheet 2 in each interval rj < x < rj+1, j = 1, 2, 3, 4,
according to the algorithm given in [5] on pages 33–34. We characterize y2(x) and
the function U(x) = −1/(((4a2 − 4)x2 − 4a3x + (a4 + 4))y2(x)) on each interval
rj < x < rj+1 as follows.
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On the interval r1 < x < r2, the functions y2(x) and U(x) are real valued,
y2(x) > 0 and U(x) < 0. Moreover, U(x) = − 1√

V (x)
, where

V (x) =
(
(2a+ 2)x− (a2 + 2a+ 2)

)(
(2a− 2)x− (a2 − 2a+ 2)

)
×
(
(2a− 2)x2 − a2x+ 1

)(
−(2a+ 2)x2 + a2x+ 1

)
.

On the interval r3 < x < r4, the functions y2(x) and U(x) are real valued,
y2(x) < 0 and U(x) > 0.

On the interval r2 < x < r3, the functions y2(x) and U(x) take pure imaginary
values, =(U(x)) < 0 and =(y2(x)) < 0.

On the interval r4 < x < r5, the functions y2(x) and U(x) take pure imaginary
values, =(U(x)) > 0 and =(y2(x)) < 0.

According to the labeling of the branches of y(x) in [5], we compute that

ã11 = −
∫
a1

1

2

dx

((4a2 − 4)x2 − 4a3x+ (a4 + 4))y(x)
dx = −

∫ r2

r1

dx√
V (x)

< 0

and

ã12 = −
∫
ã2

1

2

dx

((4a2 − 4)x2 − 4a3x+ (a4 + 4))y(x)
dx =

∫ r4

r3

dx√
V (x)

> 0.

Similarly, we have

b̃12 = −
∫
b2

1

2

dx

((4a2 − 4)x2 − 4a3x+ (a4 + 4))y(x)
= i

∫ r5

r4

dx√
−V (x)

,

which is a pure imaginary number with =(b̃12) > 0, and

b11 + b12 + a12 = −
∫
b1+b2+a2

1

2

dx

((4a2 − 4)x2 − 4a3x+ (a4 + 4))y(x)

= −i

∫ r3

r2

dx√
−V (x)

dx,

which is also a pure imaginary number with =(b11 + b12 + a12) < 0.
We proceed to compute the entries of the periodic matrix. The values of the

integrals∮
ã1

ω2 = −1

2

∮
a1

x dx

[(4a2 − 4)x2 − 4a3x+ (a4 + 4)]y(x)
dx = −

∫ r2

r1

x dx√
V (x)

and ∮
ã2

ω2 = −1

2

∮
ã2

x dx

[(4a2 − 4)x2 − 4a3x+ (a4 + 4)]y(x)
dx =

∫ r4

r3

x dx√
V (x)

are real numbers. The values of the integrals∮
b̃2

ω2 = −1

2

∮
b̃2

x dx

[(4a2 − 4)x2 − 4a3x+ (a4 + 4)]y(x)
dx = i

∫ r5

r4

x dx√
−V (x)
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and∮
b̃1−b̃2

ω2 = −1

2

∮
b̃1−b̃2

x dx

[(4a2 − 4)x2 − 4a3x+ (a4 + 4)]y(x)
dx = −i

∫ r3

r2

x dx√
−V (x)

are pure imaginary numbers, and hence
∮
b̃1
ω2 is also pure imaginary.

Let Ω̃ = [ÃB̃] be the periodic matrix of Γ with respect to the new basis

{ã1, ã2, b̃1, b̃2}. Then the matrix Ã =
(
ã11 ã12
ã21 ã22

)
is invertible and its entries are real.

Further, the entries of the matrix B̃ =
(
b̃11 b̃12
b̃21 b̃22

)
are pure imaginary, and hence

the Riemann matrix R = Ã−1B̃ is a complex symmetric matrix whose entries are
pure imaginary.

Let R =
(
r11 r12
r21 r22

)
, and set e1 = (1, 0), e2 = (0, 1), e3 = (r11, r12), e4 =

(r21, r22) = (r12, r22). The space Cg ∼= R2g is equipped with the real part of the
standard inner product. Then the lattice Σ spanned by the vectors e1, e2, e3, e4
is the direct sum of two orthogonal lattices Σ1 = {ne1 + me2 : n,m ∈ Z} and
Σ2 = {ne3 +me4 : n,m ∈ Z}. �

We run the algcurves package for the case a = 2; the period matrix [ÃB̃]
constructed by Theorem 3.1 is approximately evaluated by

Ã ≈
(
−0.195915 0.410645
−0.0199325 0.382071

)
, B̃ ≈

(
0.170162i 0.655061i
0.553593i 0.865335i

)
.

4. Quartic curve of genus 3

C. Tretkoff and M. Tretkoff [21, p. 501] mentioned that the Riemann matrix of
the Fermat curve x4 + y4 = 1 is diag(i, 2i, i). Hence, the lattice Σ is spanned by
six mutually orthogonal bases of the lattice. They also found that the Riemann
matrix of the Klein–Hurwitz curve −y7 + x(1 − x)2 = 0 is (−1 +

√
7i)/2I3. In

this case, the lattice Σ for this real Riemann surface cannot be decomposed into
the direct sum of two orthogonal lattices Σ1,Σ2; each one has three generators.
However, we may find a suitable basis for the homology group H1(Γ) so that the
Riemann surface generates a lattice which is the direct sum of two orthogonal
lattices for some 4 × 4 Toeplitz matrices. (For the computation of the Riemann
matrix and the split of the lattice Σ, we refer the reader to [7], [12], [19].)

Theorem 4.1. Let T be the 4× 4 nilpotent matrix given by

T =


0 2 0 6
0 0 2 0
0 0 0 2
0 0 0 0

 .

Then the homology group H1(Γ) of the Riemann surface of the algebraic curve

CF of the polynomial FT (x, y, z) has a canonical basis {ã1, ã2, ã3, b̃1, b̃2, b̃3} for the
homology group H1(Γ) such that the Riemann matrix R = A−1B of the period



COMPUTATION OF RIEMANN MATRICES 161

matrix [AB] is the form

R =

ir11 ir12 r13
ir12 ir22 r23
r13 r23 ir33


for some real numbers rij, 1 ≤ i ≤ j ≤ 3. Furthermore, the lattice Σ gen-
erated by the six vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) and e4 =
(ir11, ir12, r13), e5 = (ir12, ir22, r23), e6 = (r13, r23, ir33) is decomposed into the
direct sum of two mutually orthogonal lattices generated, respectively, by {e1, e2, e6}
and {e3, e4, e5}.

Proof. It is easy to find that

FT (x, y, z) = 16y4 + (20x2 − 12z2)y2 + 4x4 − 12x2z2 + z4.

The curve CF of the polynomial FT (x, y, z) has no singular points with genus 3.
From the partial derivative Fy(x, y, 1) = 8y(5x2 + 8y2 − 3), a basis for the space
of holomorphic differential 1-forms on the Riemann surface Γ associated to CF

consists of

ω1 =
1

8

dx

y(5x2 + 8y2 − 3)
, ω2 =

1

8

dx

5x2 + 8y2 − 3
,

ω3 =
1

8

x dx

y(5x2 + 8y2 − 3)

(see [4]). Our strategy is to find a basis {ã1, ã2, ã3, b̃1, b̃2, b̃3} of the homology group
H1(Γ) so that the period matrix [ÃB̃] is the form

Ã =

α11 α12 0
α21 0 iα23

iα31 0 α33

 , B̃ =

 0 iβ12 β13

iβ21 0 β23

β31 β32 iβ33

 ,

where αij and βij are real numbers. Then the form Ã−1B̃ is the kind required.
The curve CF has the following eight branch points:

P1 : x = −i
√

5/3 ≈ −1.29099i, P2 : x = − i√
3
≈ −0.577350i,

P3 : x =
−2−

√
2

2
≈ −1.70711, P4 : x =

−2 +
√
2

2
≈ −0.292893,

P5 : x =
2−

√
2

2
≈ 0.292893, P6 =

2 +
√
2

2
≈ 1.70711,

P7 : x =
i√
3
≈ 0.577350i, P8 : x = i

√
5/3 ≈ 1.29099i.

We take a base point x0 = −2.27279. The labels of the four branches of the
function are based on the following labeling:

y1(−2.27279) ≈ −2.26981i, y2(−2.27279) ≈ −0.744951i,

y3(−2.27279) ≈ 0.744951i, y4(−2.27279) ≈ 2.26981i.
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The values of yj(x0) are pure imaginary, and labeled as

=
(
y1(x0)

)
< =

(
y2(x0)

)
< =

(
y3(x0)

)
< =

(
y4(x0)

)
.

First, we define the cycles {a1, a2, a3, b1, c6 − a1, c7} in the following way:

1. The cycle a1 starts on sheet 1, encircles branch point P1 to arrive at
sheet 2, and encircles branch point P2 to arrive at sheet 1.

2. The cycle a2 starts on sheet 1, encircles branch point P4 to arrive at
sheet 4, and encircles branch point P5 to arrive at sheet 1.

3. The cycle a3 starts on sheet 3, encircles branch point P2 to arrive at
sheet 4, and encircles branch point P7 to arrive at sheet 3.

4. The cycle b1 starts on sheet 1, encircles branch point P1 to arrive at sheet 2,
and encircles point P8 to arrive sheet 1.

5. The cycle c6 − a1 starts on sheet 1, encircles branch point P2 to arrive at
sheet 2, encircles branch point P3 to arrive at sheet 3, encircles branch
point P7 to arrive at sheet 4, and encircles branch point P4 to arrive at
sheet 1.

6. The cycle c7 starts on sheet 1, encircles branch point P1 to arrive at sheet 2,
encircles branch point P3 to arrive at sheet 3, encircles branch point P8

to arrive at sheet 4, and encircles branch point P4 to arrive at sheet 1.

The cycles b2, b3 are defined by b2 = b1 − a1 − 2(c6 − a1) + c7 and b3 = a2 +
(c6 − a1) + a1 − c7. Then the set {a1, a2, a3, b1, b2, b3} is a canonical basis for the
homology group H1(Γ). We use another canonical basis {ã1 = a1, ã2 = a2, ã3 =

a3 − a2, b̃1 = b1, b̃2 = b2 + b3 − a2, b̃3 = b3}. Then the cycles b̃2, b3 satisfy b̃2 =
b1 − (c6 − c1), b3 = a2 + (c6 − a1) + a1 − c7.

We outline the method for computing the period matrix [ÃB̃] by computing
some specified entries.

The integrals over the cycle ã1 = a1 give ãi1, the column one entries of Ã.
On the line segment {iX : −

√
5/3 < X < −1/

√
3}, the function y(x) takes

imaginary values. The branches y1(x), y2(x) of the function on this line segment

satisfy y2(x) = y1(x) and =(y1(x)) < 0 < =(y2(x)), and hence the four branches
yj(x) are vertices of a rectangle with edges parallel to the real or imaginary axis
and satisfy y1(x) + y2(x) + y3(x) + y4(x) = 0. The function W (x) = 1/((5x2 +

8y2−3)y) satisfies W2(x) = W1(x) for y = yj(x), and =(W2(x)) < 0 < =(W1(x)).
Then

ã11 =
1

8

∮
ã1

dx

(5x2 + 8y2 − 3)y

=
1

8

∫ −i/
√
3

−
√

5/3i

dx

(5x2 + 8y22 − 3)y2
+

1

8

∫ −
√

5/3i

−i/
√
3

dx

(5x2 + 8y21 − 3)y1

≈ (0.0778069− 0.0066436i) + (0.0778069 + 0.0066436i)

≈ 0.155614.
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The function U(x) = 1/(5x2+8y2−3) on the line segment takes pure imaginary
values, and =(U2(x)) < 0 < =(U1(x)). Then

ã21 =
1

8

∮
ã1

dx

(5x2 + 8y2 − 3)

=
1

8

∫ −i/
√
3

−
√

5/3i

dx

(5x2 + 8y22 − 3)
+

1

8

∫ −
√

5/3i

−i/
√
3

dx

(5x2 + 8y21 − 3)

≈ 0.072851 + 0.072851

≈ 0.145702.

The function V (x) = x/((5x2 + 8y2 − 3)) on the line segment takes imaginary

values, and V2(x) = −V1(x). These branches satisfy <(V2(x)) < 0 < <(V1(x)).
Then

ã31 =
1

8

∮
ã1

x dx

(5x2 + 8y2 − 3)

=
1

8

∫ −i/
√
3

−
√

5/3i

x dx

(5x2 + 8y22 − 3)y2
+

1

8

∫ −
√

5/3i

−i/
√
3

x dx

(5x2 + 8y21 − 3)y1

≈ (−0.00568944− 0.0669032i) + (0.00568944− 0.0669032i)

≈ −0.133806i.

Similarly, the integrals over the cycle b̃1 = b1 give b̃i1, the column one entries
of B̃. We compute that

b̃11 =
1

8

∫
b̃1

dx

(5x2 + 8y2 − 3)y

=
1

8

∫ −i/
√
3

−2.7279

( 1

(5x2 + 8y21 − 3)y1
− 1

(5x2 + 8y22 − 3)y2

)
dx

− 1

8

∫ i/
√
3

−2.27279

( 1

(5x2 + 8y21 − 3)y1
− 1

(5x2 + 8y21 − 3)y2

)
dx

+
1

8

∫ −i/
√
3

−
√

5/3i

( 1

(5x2 + 8y22 − 3)y2
− 1

(5x2 + 8y21 − 3)y1

)
dx

− 1

8

∫ i/
√
3

√
5/3i

( 1

(5x2 + 8y22 − 3)y2
− 1

(5x2 + 8y21 − 3)y1

)
dx

=
1

4
<
(∫ −i/

√
3

−2.27279

( 1

(5x2 + 8y21 − 3)y1
− 1

(5x2 + 8y22 − 3)y2

)
dx

)
− 1

4
<
(∫ −i/

√
3

−
√

5/3i

( 1

(5x2 + 8y22 − 3)y1
− 1

(5x2 + 8y21 − 3)y2

)
dx

)
≈ 2<(−0.155614 + i0.0721547)− 2<(−0.155614)

= 0.
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Next, we compute

b̃21 =
1

8

∮
b̃1

dx

5x2 + 8y2 − 3

=
1

8

∫ −i/
√
3

−2.27279

dx

5x2 + 8y21 − 3
− 1

8

∫ −i/
√
3

−2.27279

dx

5x2 + 8y22 − 3

+
1

8

∫ i/
√
3

−2.27279

dx

5x2 + 8y22 − 3
− 1

8

∫ i/
√
3

−2.27279

dx

5x2 + 8y21 − 3

+
1

8

∫ −i/
√
3

−
√

5/3i

dx

5x2 + 8y22 − 3
− 1

8

∫ −i/
√
3

−
√

5/3i

dx

5x2 + 8y21 − 3

− 1

8

∫ i/
√
3

√
5/3i

dx

5x2 + 8y22 − 3
+

1

8

∫ i/
√
3

√
5/3i

dx

5x2 + 8y21 − 3

=
4i

8
=
(∫ −i/

√
3

−2.27279

dx

5x2 + 8y2 − 3

)
− 4i

8
=
(∫ −i/

√
3

−
√

5/3i

dx

5x2 + 8y21 − 3

)
≈ 4i=(−0.0555593 + 0.053564i)− 2i=(−0.145702)

= 0.214256i.

From the definition, we have

b̃31 =
1

8

∮
b̃1

x dx

(5x2 + 8y2 − 3)y
dx

=
(1
8

∫ −
√

5/3i

−2.27279

x dx

(5x2 + 8y21 − 3)y1
− 1

8

∫ −
√

5/3i

−2.27279

x dx

(5x2 + 8y22 − 3)y2

)
+
(1
8

∫ √
5/3i

−2.27279

x dx

(5x2 + 8y22 − 3)y2
− 1

8

∫ √
5/3i

−2.27279

x dx

(5x2 + 8y21 − 3)y1

)
.

On the line segment {x(t) = (−2.27279)(1−t)+i
√

5/3it : 0 < t < 1}, we consider
the branches y1(x) and y2(x) of the function y = y(x) satisfying FT (x, y(x), 1) = 0.
The curve 9x(t)4+18x(t)2+5, 0 < t < 1, passes through the half-line {x : x < 0}
at some point t0 ∈ (0.8302473, 0.8302474). Denote the branch of square roots a
complex number √

λ =
√
|λ| exp(iArg λ/2)

for −π < Arg λ ≤ π. We define

Y2(x) =
1

2
√
2

√
−5x2 + 3 +

√
9x4 + 18x2 + 5,

Y1(x) =
1

2
√
2

√
−5x2 + 3−

√
9x4 + 18x2 + 5.

On the line (−2.27279,−
√

5/3i), the functions y2(x), y1(x) for 0 < t < t0 are
expressed, respectively, as

x

(5x2 + 8Y 2
2 − 3)Y2

,
x

(5x2 + 8Y 2
1 − 3)Y1

.
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The functions y1(x), y2(x) are expressed, respectively, as

x

(5x2 + 8Y 2
2 − 3)Y2

,
x

(5x2 + 8Y 2
1 − 3)Y1

for t0 < t < 1. Direct computations show that

1

8

∫ −
√

5/3i

−2.27279

x dx

(5x2 + 8y21 − 3)y1
− 1

8

∫ −
√

5/3i

−2.27279

x dx

(5x2 + 8y22 − 3)y2
≈ 0.133806− 0.0562865i,

and

1

8

∫ √
5/3i

−2.27279

x dx

(5x2 + 8y22 − 3)y2
− 1

8

∫ √
5/3i

−2.27279

x dx

(5x2 + 8y21 − 3)y1
≈ 0.133806 + 0.0562865i.

Therefore,

b̃31 =
1

8

∮
b1

x dx

(5x2 + 8y2 − 3)y

≈ (0.133806− 0.0562865i) + (0.133806 + 0.0562865i) ≈ 0.267613.

The remaining entries of the period matrix [ÃB̃] can be evaluated in a similar
way. We obtain numerically the matrix

Ã =

 0.155614 −0.311228 0
0.145702 0 −0.214256i

−0.133806i 0 0.267613


and

B̃ =

 0 −0.349582i −0.155614
0.214256i 0 0.145702
0.267613 0.267613 0.133806i

 .

Thus the Riemann matrix is numerically given by

R = Ã−1B̃ =

 1.69486i 0.847432i 0.152568
0.847432i 1.54696i 0.576284
0.152568 0.576284 0.576284i

 .

We equip the space Cg ∼= R2g with the real part of the standard inner product.
Then it is easy to verify that

〈e1, e3〉 = 〈e1, e4〉 = 〈e1, e5〉 = 0,

〈e2, e3〉 = 〈e2, e4〉 = 〈e2, e5〉 = 0,

〈e6, e3〉 = 〈e6, e4〉 = 〈e6, e4〉 = 0.

Hence the two lattices

Σ1 = {ne1 +me2 + `e6 : n,m, ` ∈ Z}, Σ2 = {ne3 +me4 + `e5 : n,m, ` ∈ Z}

are mutually orthogonal, and Σ = Σ1 ⊕ Σ2. �
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