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Abstract. It is shown that, for an operator algebra A, the operator system
S = A + A∗ in the C∗-algebra C∗(S), and any representation ρ of C∗(S)
on a Hilbert space H, the restriction ρ|S has a unique extension property if
and only if the Hilbert module H over A is both orthogonally projective and
orthogonally injective. As a corollary we deduce that, when S is separable,
the hyperrigidity of S is equivalent to the Hilbert modules over A being both
orthogonally projective and orthogonally injective.

1. Introduction

The notion of boundary representations introduced by Arveson [1] proved to be
a very important idea connecting various directions of research in noncommuta-
tive approximation theory. The other areas of operator algebras such as noncom-
mutative convexity, peaking phenomena for operator systems, and Korovkin type
properties for completely positive maps benefited from Averson’s theory. Arve-
son’s definition of boundary representation is in the context of an operator system
and the generated C∗-algebra. An irreducible representation of a C∗-algebra is
called a boundary representation for an operator system in it if the only com-
pletely positive extension of the restriction of the representation to the operator
system is the given representation.

Muhly and Solel [9] in 1998 gave an algebraic characterization of boundary
representations in terms of Hilbert modules, but used a generalized version of
boundary representation by dropping the irreducibility condition. Muhly and
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Solel proved that boundary representations of operator algebras may be charac-
terized as those completely contractive representations that determine modules
that are simultaneously orthogonally projective and orthogonally injective.

By using the same generalized notion of boundary representation, Dritschel
and McCullough [5] in 2005 showed the existence of C∗-envelopes for operator
systems and operator algebras. Another important work to be mentioned here is
that of Hamana [6] in 1979, where the existence of C∗-envelopes using methods
other than that of boundary representations is established. It is to be noted that
C∗-envelopes may exist without the existence of boundary representations.

In this article, for a (unital) operator algebra A and the operator system
S = A + A∗, we show that the unique extension property of the restriction to
S of a representation of C∗(S) is equivalent to the Hilbert modules over A corre-
sponding to the representation being simultaneously orthogonally projective and
orthogonally injective. This result leads to an algebraic characterization of hyper-
rigidity of the operator system A + A∗ in terms of the orthogonality properties
of Hilbert modules over A.

2. Preliminaries

2.1. Operator systems and boundary representations. Here we establish
some definitions, conventions, and notation.

Let H be a complex Hilbert space, and let B(H) be the bounded linear oper-
ators on H. A (concrete) operator system S is a unital self-adjoint subspace
of B(H). We will view S as a subspace of the C∗-algebra it generates, namely
C∗(S) ⊆ B(H). There is a theory of abstract operator systems given by an
axiomatic definition due to Choi and Effros [4] as opposed to the so-called con-
crete operator system defined above. This distinction is irrelevant due to the
representation theorem for the abstract operator system established in [4].

A (concrete) operator algebra A is a unital subalgebra of a B(H). Similar to
the case of operator systems, there is a notion of abstract operator algebras and
a corresponding representation theorem due to Blecher, Ruan, and Sinclair [3]
showing that those can be represented completely isometrically as subalgebras of
B(H), thus making the distinction irrelevant here also.

A linear map ϕ from any subspace V of a C∗-algebra A into a C∗-algebra B
determines a family of maps ϕn : Mn(V ) → Mn(B) given by ϕn([aij]) = [ϕ(aij)].
We say that ϕ is completely bounded (CB) if ‖ϕ‖CB = supn≥1 ‖ϕn‖ < ∞. We
say that ϕ is completely contractive (CC) if ‖ϕ‖CB ≤ 1 and that ϕ is completely
isometric if ϕn is isometric for all n ≥ 1. If the domain of ϕ is an operator system
S, then we say that ϕ is completely positive (CP) if ϕn is positive for all n ≥ 1,
and that ϕ is unital completely positive (UCP) if in addition ϕ(1) = 1. Since
‖ϕ‖CB = ‖ϕ(1)‖ for CP maps, we see that UCP maps are always completely
contractive.

The C∗-envelope of an operator algebra A, denoted by C∗
e (A), is the essen-

tially unique smallest C∗-algebra among those C∗-algebras C for which there is a
completely isometric homomorphism φ : A → C.
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Definition 2.1. A UCP map π : S → B(H) is said to have unique extension
property (UEP) if

(i) π has a unique completely positive extension π̃ : C∗(S) → B(H), and
(ii) π̃ is a representation of C∗(S) on H.

If the extension π̃ of such a map π to C∗(S) is an irreducible representation, then
the extension is called a boundary representation.

Two theorems due to Arveson [1], which we quote below, concerning extensions
of contractive linear maps on unital subspaces of C∗-algebras are crucial to the
proof of our main result.

The following theorem from [1, Proposition 1.2.8] shows that every unital com-
pletely contractive linear map from a unital subspace V of a C∗-algebra can be
extended uniquely in a completely positive way to the operator system V + V ∗.

Theorem 2.2. Let V be a linear subspace of a C∗-algebra A such that identity
e ∈ V , and let S be the norm-closure of V +V ∗. Then every contractive linear map
ϕ of V into B(H), for which ϕ(e) = I, has a unique bounded self-adjoint linear
extension ϕ1 to S. ϕ1 is positive, and it is completely positive if ϕ is completely
contractive.

The following theorem from [1, Theorem. 1.2.9] shows that every unital com-
pletely contractive linear map from a unital subspace V of a C∗-algebra can be
extended to a completely positive map on the C∗-algebra.

Theorem 2.3. Let V be a linear subspace of a C∗-algebra A such that identity
e ∈ V , and let H be a Hilbert space. Let ϕ be a completely contractive linear map
V into B(H) such that ϕ(e) = I. Then ϕ has a completely positive extension
to A.

In connection with the fundamental work related to the noncommutative
approximation theory, Arveson [2] introduced the notion of noncommutative
Korovkin sets which he called hyperrigid sets.

Definition 2.4 ([2, Definition 1.1]). A finite or countably infinite set G of genera-
tors of a C∗-algebra A is said to be hyperrigid if, for every faithful representation
A ⊆ B(H) of A on a Hilbert space and every sequence of unit-preserving com-
pletely positive (UCP) maps φn : B(H) → B(H), n = 1, 2, . . . ,

lim
n→∞

∥∥φn(g)− g
∥∥ = 0, ∀g ∈ G ⇒ lim

n→∞

∥∥φn(a)− a
∥∥ = 0, ∀a ∈ A.

Arveson’s still not completely resolved “hyperrigidity conjecture” relates
boundary representations of C∗-algebras for operator systems with hyperrigid-
ity of operator systems. It states that, if every irreducible representation of a
C∗-algebraA is a boundary representation for a separable operator system S ⊆ A,
then S is hyperrigid. Arveson [2] proved the conjecture for C∗-algebras having
a countable spectrum, while Kleski [7] established the conjecture for all type-I
C∗-algebras.
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2.2. Hilbert modules over operator algebras. Here we recall basic defini-
tions of Hilbert modules and related concepts relevant to our discussion.

As far as representations of algebras are concerned, we are interested in con-
tractive representations here. One reason for focusing on contractive representa-
tions is that they coincide with C∗-representations when the operator algebra is
a C∗-algebra. Representations of algebras on Hilbert spaces give rise to Hilbert
modules over algebras and vice versa. We will assume that all given representa-
tions are nondegenerate.

Let ρ : A → B(H) be a representation for an operator algebra A on a Hilbert
space H. A (left) Hilbert module over A is simply the Hilbert space H viewed as
an algebraic (left) module over A via the module action aξ := ρ(a)ξ.

The advantage of using the language of Hilbert modules over operator algebras
and their representations is that we can pass from one to the other when it is
convenient. If ρ : A → B(H) is a representation, then the associated module
will be written as AH or Hρ. If H is a Hilbert module, then the representation
associated will be written as ρH.

A contractive Hilbert module is one where the associated representation is con-
tractive. A Hilbert module is called completely bounded (completely contractive) if
the associated representation is completely bounded (completely contractive) as
a linear operator-valued map on the operator algebra. Module maps are bounded
linear intertwining operators for the representations, and Hilbert module isomor-
phisms are unitary module maps. We write Hom(H,K) for the module maps from
H to K, and if H = K, then we write Hom(H).

A sequence of Hilbert modules over an operator algebra A,

. . .Hi−1
Φi−1−−−→ Hi

Φi−→ Hi+1 → . . . ,

where the Φi’s are module maps, is called exact at Hi if the kernel of Φi coincides
with the range of Φi−1. It is called isometric if each of the Φi’s is a partial isometry
as a Hilbert space map.

A sequence of Hilbert modules over an operator algebra A,

0 → K Ψ−→ M Φ−→ N → 0,

is said to be a short exact isometric sequence if the map Ψ has a zero kernel, the
range of Ψ is the kernel of Φ, the range of Φ is all of N , Ψ is an isometry, and Φ
is a co-isometry (Φ∗ is an isometry).

To say that the short exact sequence is isometric is to say that, as a Hilbert
space, M is the orthogonal direct sum K ⊕N , and that in matrix form we may
write ρM as [

ρK D
0 ρN

]
,

where the map D carries A into the bounded operators mapping N into K and
satisfies the equation D(ab) = D(a)ρN (b)+ ρK(a)D(b); that is, D is a derivation.

In pure algebra, a short exact sequence is said to split if there is a module map
Φ′ : N → M with the property that Φ ◦ Φ′ is the identity on N . In this event,
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M is isomorphic to the algebraic direct sum K ⊕N . In our theory, being at the
Hilbert space level, we want direct sums to be orthogonal direct sums.

A short exact isometric sequence is orthogonally split if there is a contractive
module map Φ′ such that Φ ◦ Φ′ is the identity on N . It is easy to see that this
happens if and only if Φ∗ is a module map, which is equivalent to the initial space
of Φ being a submodule of M, in which case D is the zero map.

Definition 2.5. A Hilbert module AP over an operator algebra A is called orthog-
onally projective (or orthoprojective) in case every short exact isometric sequence

0 →A K →A M →A P → 0

is orthogonally split.
A Hilbert module AI is called orthogonally injective (or orthoinjective) in case

every short exact isometric sequence

0 →A I →A M →A N → 0

is orthogonally split.

Just as isometries and co-isometries are adjoints of one another, the same,
essentially, is true of orthogonally projective Hilbert modules and orthogonally
injective Hilbert modules. If H is a Hilbert module over operator algebra A with
associated representation ρH, then defining σ by the formula σ(a) = (ρH(a

∗))∗,
a ∈ A∗, where the adjoint on elements of A is calculated in C∗

e (A), yields a
representation of A∗ and a Hilbert module over A∗. It is easy to see that H
is orthogonally projective if and only if the Hilbert space associated with σ is
orthogonally injective.

The algebraic characterization of boundary representations first made by Muhly
and Solel [9], which appeared in 1998, characterizes boundary representations of a
C∗-algebra for an operator algebra in terms of orthogonally projective and orthog-
onally injective modules over the operator algebra. It is as follows.

Theorem 2.6. Let H be a contractive Hilbert module over an operator algebra
A, and let ρ be the associated representation. Then ρ is the restriction to A of
a boundary representation of C∗

e (A) for A if and only if H is both orthogonally
projective and orthogonally injective.

3. Main results

In this section, we establish a characterization of a unique extension property
for representations in the context of a C∗-algebra generated by an operator system
in terms of the orthogonal projectivity and orthogonal injectivity of the Hilbert
modules over the operator algebra underlying the operator system. In the proof of
the theorem below, we crucially make use of two extension theorems by Arveson in
the context of operator systems and generated C∗-algebras given in the previous
section. The theorem leads to a corollary characterizing hyperrigidity of operator
systems in terms of orthogonality properties of Hilbert modules.

Theorem 3.1. Let A be an operator algebra, and consider the operator system
S = A+A∗. Let C∗(S) be the C∗-algebra generated by S. For any representation
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ρ of C∗(S) on a Hilbert space H, the restriction ρ|S has UEP if and only if H as a
Hilbert module over A is both orthogonally projective and orthogonally injective.

Proof. Assume that the Hilbert module H over A is both orthogonally projective
and orthogonally injective. To show that ρ|S has UEP to C∗(S), let σ be a unital
completely positive extension of ρ|S to all of C∗(S), and σ(·) = Φ∗π(·)Φ be the
minimal Stinespring dilation of σ. Thus π is a representation of C∗(S) on a Hilbert
space K, and Φ : H → K is a Hilbert space isometry such that σ(a) = Φ∗π(a)Φ
for all a ∈ C∗(S) with the minimality assumption implying that the smallest
reducing subspace for π(C∗(S)) containing ΦH is all of K. In particular, for
a ∈ S, ρ(a) = σ(a) = Φ∗π(a)Φ.

We will establish the UEP of ρ|S by showing that σ is unitarily equivalent to
the restriction of π to the range of Φ where the equivalence implementing unitary
map is Φ. To prove that Φ is unitary, it is enough to prove that ΦH = K for which
it is sufficient to show that ΦH is invariant under π(S). Then the self-adjointness
of S will imply that Φ is reducing for π(S), and hence for π(C∗(S)). Now, the
minimality assumption above will show that ΦH = K.

In any case, ρ being a representation of A, the range of Φ is a semi-invariant
subspace for π(A). We will use Sarason’s representation [10, Lemma 0] for the
semi-invariant subspace ΦH to proceed.

Let P be the projection of K onto ΦH. We have P = ΦΦ∗. Let K1 be the
smallest invariant subspace for π(A) containing ΦH. Then K1 = π(A)ΦH as we
assume π to be nondegenerate. Let P1 be the orthogonal projection of K onto K1.
We write π1 for the representation of A obtained by restricting π(A) to K1 so that
π1(a) = π(a)|K1

for all a in A. In other words, we may think of π1(a) = π(a)P1

for a ∈ A. Also, we set Φ1 = P1Φ; that is, Φ1 is in fact Φ viewed as a map from
H to K1 and gives Φ∗

1 = Φ∗P1. Further, let K2 = K1 	 (ΦH), and let P2 be the
orthogonal projection of K onto K2. Sarason’s theory of semi-invariant subspaces
gives that K2 is invariant for π1(A) (and for π(A)). By construction, P1 = P +P2.

We will show that Φ∗
1 : K1 → H is a module map; that is, ρ(a)Φ∗

1 = Φ∗
1π1(a) for

all a ∈ A. Indeed, for a ∈ A, ρ(a)Φ∗
1 = ρ(a)Φ∗P1 = Φ∗π(a)ΦΦ∗P1 = Φ∗π(a)PP1.

Now, K2 is invariant for every π(a), and so π(a)P2 = P2π(a)P2 for all a ∈ A. Fur-
thermore, Φ∗P2 = 0 since the initial projection of Φ∗, namely P , is orthogonal to
P2. Thus we find that, for a ∈ A, Φ∗π(a)PP1 = Φ∗π(a)(P1−P2)P1 = Φ∗π(a)P1 =
Φ∗P1π(a)P1 as K2 is invariant for π(A) and Φ∗P2 = 0. But (Φ∗P1)(π(a)P1) =
Φ∗

1π1(a) for all a ∈ A. Thus ρ(a)Φ∗
1 = Φ∗

1π1(a) for all a ∈ A, and hence Φ∗
1 is a

module map.
Since H is orthogonally projective and Φ∗

1 is co-isometric, we get that Φ1 is a
module map too; that is, Φ1ρ(a) = π1(a)Φ1 for all a ∈ A, which can be rewritten
as P1Φρ(a) = π(a)P1Φ. Then Φρ(a) = π(a)Φ for all a ∈ A by dropping P1 as the
range of Φ is contained in K1 = range(P1).

For all a ∈ A,

π(a)P = π(a)PP1

= π(a)ΦΦ∗P1

= Φρ(a)Φ∗P1
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= Φρ(a)Φ∗
1

= ΦΦ∗π(a)PP1

= Pπ(a)P.

This shows that ΦH is invariant for π(A).
Since ρ is a C∗-representation, using the fact thatH is an orthogonally injective

module for A if and only if H is orthogonally projective for A∗, and arguing as
above, we can show that ΦH is invariant for π(A∗).

As ΦH is invariant for π(A) and π(A∗), we have ΦH is invariant for π(S). Thus
ρ|S has UEP.

To prove the converse, suppose that ρ|S has UEP. We will show that H is both
orthogonally projective and orthogonally injective over A. Let

0 → N → M → H → 0

be a short exact isometric sequence determined by Hilbert modules N and M,
where Φ : M → H is a co-isometric module map.

Since M is a completely contractive module over A, let ρM be the completely
contractive representation of A corresponding to M. By Theorem 2.3, ρM has a
completely positive linear extension to C∗(S). Let η be the completely positive
linear extension of ρM of A to C∗(S); that is, ρM = η|A .

By Stinespring dilation, there is a representation π of C∗(S) on a Hilbert space
K and a co-isometry Ψ : K → M such that η(a) = Ψπ(a)Ψ∗ ∀a ∈ C∗(S). In
particular, ρM(a) = η(a) = Ψπ(a)Ψ∗ ∀a ∈ A. By Theorem 2.2, there exists a
unique completely positive extension ρ̃M of ρM to S so that

ρ̃M(s) = Ψπ(s)Ψ∗ ∀s ∈ S.

But then, since ΦρM(a) = ρ(a)Φ ∀a ∈ A, we find that ΦρM(a)Φ∗ = ρ(a) ∀a ∈ A,
and hence Φρ̃M(s)Φ∗ = ρ(s) ∀s ∈ S.

Substituting for ρ̃M , we get

ΦΨπ(s)(ΦΨ)∗ = ρ(s) ∀s ∈ S,

where ΦΨ is a co-isometry. On C∗(S), ΦΨπ(·)(ΦΨ)∗ is a completely positive map
that agrees with ρ on S. Since ρ|S has UEP, we conclude that

ΦΨπ(a)(ΦΨ)∗ = ρ(a) ∀a ∈ C∗(S).

Thus the initial space of ΦΨ reduces π, and ΦΨ implements an equivalence
between ρ and π restricted to this initial space. Let P and Q be the initial
projections of Φ and ΦΨ, respectively.

Then, for s ∈ S, we have

ρ̃M(s)P =
(
Ψπ(s)Ψ∗)(Φ∗Φ)

=
(
Ψπ(s)Ψ∗)(Φ∗Φ)(ΨΨ∗)

= Ψπ(s)(Ψ∗Φ∗ΦΨ)Ψ∗

= Ψπ(s)QΨ∗

= ΨQπ(s)Ψ∗
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= Ψ(Ψ∗Φ∗ΦΨ)π(s)Ψ∗

= (ΨΨ∗)(Φ∗Φ)
(
Ψπ(s)Ψ∗)

= P ρ̃M(s),

crucially using the fact that Ψ is a co-isometry with range M.
From above, in particular for a ∈ A,

ρM(a)P = PρM(a).

This will imply by [8, Proposition 2.3] that H is orthogonally projective over A.
Also, for a ∈ A∗,

ρM(a)P = PρM(a),

which shows that H is orthogonally projective over A∗; from this we conclude
that H is orthogonally injective over A. �

The following corollary of the above theorem characterizes hyperrigidity of
separable operator systems of the form A + A∗, where A is an operator algebra
in terms of orthogonality properties of Hilbert modules over A.

Corollary 3.2. For a separable operator algebra A, the operator system S =
A+ A∗, and the C∗-algebra C∗(S), the following are equivalent:

(i) S is hyperrigid.
(ii) For every nondegenerate representation π : C∗(S) → B(Hπ) on a separa-

ble Hilbert space, π|S has a unique extension property.
(iii) The Hilbert module Hπ over A is both orthogonally projective and orthog-

onally injective.

Proof. The equivalence of (i) and (ii) follows from Arveson [2], and the equivalence
of (ii) and (iii) follows from the above theorem. �
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