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Abstract. By using some geometric properties and nested sequence of balls,
we prove seven necessary and sufficient conditions such that a point x in the
unit sphere of Banach space X is a nearly rotund point of the unit ball of
the bidual space. For any closed convex set C ⊂ X and x ∈ X \ C with
PC(x) 6= ∅, we give a series of characterizations such that C is approximatively
compact or approximatively weakly compact for x by using three types of
nearly convex points. Furthermore, making use of an S point, we present a
characterization such that the convex subset C is approximatively compact for
some x in X \ C. We also establish a relationship between nested sequence of
balls and the approximate compactness of the closed convex subset C for some
x ∈ X \ C.

1. Introduction

For a Banach space X, let X∗ be the dual of X, and let S(X) and B(X) stand
for the unit sphere and closed unit ball of X, respectively. Let B(x, r) = {y ∈
X : ‖y − x‖ < r} and let B(x, r) be the corresponding closed ball. We denote
D(x) = {f ∈ S(X∗), f(x) = 1} for any x ∈ S(X). Let w and w∗ stand for weak
and weak∗ topology on X and X∗, respectively.

It is well known that if a Banach space X is a generic continuity space (GC
space), then X is a dual differentiability space (DD space), and DD space plays
an important role in the study of differentiability of convex functions and admits
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many important properties (for more details, see [5]). Giles et al. in [5, Theo-
rem 1.13] proved that a Banach space X is a GC space if X can be equivalently
renormed to be weakly locally uniformly rotund. Moreover, they showed that a
Banach space X is a GC space if X admits an equivalent norm such that the
following property holds: given x ∈ S(X), for every F ∈ X∗∗ \ X, ‖F‖ = 1,
then ‖F + x‖ < 2. In [5, p. 420], the question of how to characterize this prop-
erty is raised. In our terminology (see our Definition 1.1), the question of how to
characterize a point x ∈ S(X) to be a nearly rotund point of B(X∗∗) arises.

Definition 1.1. Let X be a Banach space, with x ∈ S(X). Then we say that x is

(1) [1] a rotund point of B(X∗∗) if x = x∗∗ for any x∗∗ ∈ X∗∗ satisfying
‖x∗∗‖ = ‖x+x∗∗

2
‖ = 1;

(1′) a nearly rotund point of B(X∗∗) if x∗∗ ∈ X for any x∗∗ ∈ X∗∗ satisfying
‖x∗∗‖ = ‖x+x∗∗

2
‖ = 1;

(2) (see [2]) a WALUR point of B(X) if, for any {xn}∞n=1 ⊂ B(X) and
{x∗

m}∞m=1 ⊂ B(X∗), the condition

lim
m

lim
n

x∗
m

(x+ xn

2

)
= 1

implies that xn
w−→ x;

(2′) a CWALUR point of B(X) if, for any {xn}∞n=1 ⊂ B(X) and {x∗
m}∞m=1 ⊂

B(X∗), the condition

lim
m

lim
n

x∗
m

(x+ xn

2

)
= 1

implies that {xn}∞n=1 is relatively weakly compact;
(3) (see [11], [12]) a nearly very convex point (resp., nearly strongly convex

point) of B(X) if, for any {xn}∞n=1 ⊂ B(X) such that x∗(xn) → 1 for
some x∗ ∈ D(x), it holds that {xn}∞n=1 is relatively weakly compact (resp.,
relatively compact);

(4) (see [9], [10]) an S point (resp., weakly smooth or WS point) of X if,
for any {x∗

n}∞n=1 ⊂ S(X∗) such that x∗
n(x) → 1, it holds that {x∗

n}∞n=1 is
relatively compact (resp., relatively weakly compact).

We say that a Banach space X has one of the above properties if every point
of S(X) has the same property.

Remark 1.2. That x ∈ S(X) is a rotund point of B(X∗∗) implies that it is
a nearly rotund point of B(X∗∗), but the converse is not generally true. For
example, X = (R2, ‖ · ‖1) is reflexive and each x ∈ S(X) is not a rotund point
of B(X), and hence not a rotund point of B(X∗∗). However, each x ∈ S(X) is a
nearly rotund point of B(X∗∗).

Definition 1.3 (see [2]). An unbounded nested sequence of balls in Banach space
X is an increasing sequence {Bn = B(xn, rn)}∞n=1 of open balls inX with rn → ∞.
For a subset C ⊂ X, the metric projection PC : X → 2C is defined by PC(x) =
{y ∈ C : ‖x− y‖ = d(x,C)}, where d(x,C) = inf{‖x− y‖, y ∈ C}.
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Definition 1.4 (see [12], [3]). Suppose that X is a Banach space, that C is a
nonempty subset inX, and that x ∈ X\C. Then C is considered to be approxima-
tively weakly compact for x (resp., approximatively compact for x) if {xn}∞n=1 ⊂ C
and limn ‖xn−x‖ = d(x,C), and then {xn}∞n=1 is relatively weakly compact (resp.,
relatively compact).

Definition 1.5 (see [7, p. 285]). We have the following.

(1) A subset Φ of B(X∗) is said to be a norming set for X if ‖x‖ =
supx∗∈Φ x∗(x) for all x ∈ X.

(2) A sequence {xn} ⊂ B(X) is said to be asymptotically normed by Φ if for
any ε > 0 there exist x∗ ∈ Φ and N ∈ N such that x∗(xn) > 1− ε for all
n ≥ N .

In this article, we get seven necessary and sufficient conditions to guarantee
that x ∈ B(X∗∗) is a nearly rotund point of B(X∗∗) in terms of some geometric
properties and nested sequence of balls (Theorem 2.1, Theorem 2.2). By using
nearly very convex point (resp., nearly strongly convex point, S point), we will
give a series of characterizations such that a subset C in X with PC(x) 6= ∅ for
any x ∈ X \ C is approximatively weakly compact for x (resp., approximatively
compact for x) (see Theorems 3.1, 3.5, 3.8). Finally, by using nested sequence
of balls, we give a characterization so that a subset C ⊂ X is approximatively
compact for some x ∈ X \ C (see part (1) of Theorem 3.10).

2. The Characterizations of the Nearly Rotund Points

In this section, we present seven equivalent conditions to prove that a point x ∈
S(X) is a nearly rotund point of B(X∗∗), and this solves the question proposed
by Giles et al. in [5].

Theorem 2.1. Let X be a Banach space, with x ∈ S(X). Then the following are
equivalent:

(1) x is a nearly rotund point of B(X∗∗);
(2) for any {x∗∗

n }∞n=1 ⊂ B(X∗∗), {x∗
m}∞n=1 ⊂ B(X∗), the condition

lim
m

lim
n

(x+ x∗∗
n

2

)
(x∗

m) = 1

implies that all w∗-cluster points of {x∗∗
n }∞n=1 belong to X;

(3) for every unbounded nested sequence {B∗
n}∞n=1 of balls such that x is

bounded below on
⋃

B∗
n, if for any {y∗∗n }∞n=1 ⊂ S(X∗∗) the sequence

{inf y∗∗n (B∗
n)}∞n=1 is also bounded below, then all w∗-cluster points of

{y∗∗n }∞n=1 belong to X;
(4) for every unbounded nested sequence {B∗

n}∞n=1 of balls in X∗ such that
x is bounded below on

⋃
B∗

n, if for any {yn}∞n=1 ⊂ S(X) the sequence
{inf yn(B∗

n)}∞n=1 is also bounded below, then {yn}∞n=1 is relatively weakly
compact;

(5) for every unbounded nested sequence {B∗
n}∞n=1 of balls in X∗ such that x is

bounded below on
⋃

B∗
n, if x

∗∗ ∈ S(X∗∗) is also bounded below on
⋃
B∗

n,
then x∗∗ ∈ X.
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Proof. The proof is similar to Theorem 6 in [2]. We will give their proof for the
sake of completeness.

(1) ⇒ (2) Let {x∗∗
n }∞n=1 ⊂ B(X∗∗), {x∗

m}∞n=1 ⊂ B(X∗) such that

lim
m

lim
n

(x+ x∗∗
n

2

)
(x∗

m) = 1.

Let y∗∗ be a w∗-cluster point of {x∗∗
n }∞n=1; then

lim
m

(x+ y∗∗

2

)
(x∗

m) = 1,

and hence, ‖x+y∗∗

2
‖ = 1. By (1), y∗∗ ∈ X.

(2) ⇒ (3) Let {B∗
n}∞n=1 be an unbounded nested sequence of balls such that

x is bounded below on
⋃

B∗
n. Suppose that {y∗∗n }∞n=1 ⊂ S(X∗∗) such that

{inf y∗∗n (B∗
n)}∞n=1 is also bounded below. Suppose that c ∈ R is a common lower

bound and B∗
n = B(x∗

n, rn). We may assume without loss of generality that

0 ∈ B∗
1 . Let y

∗
n = x∗

n

rn
; then ‖y∗n‖ ≤ 1. The fact that {B∗

n}∞n=1 is nested implies that

y∗∗n (y∗m) ≥ 1 + c
rm

for all n ≥ m. It follows that(x+ y∗∗n
2

)
(y∗m) ≥ 1 +

c

rm
, for all n ≥ m.

Since rm → ∞, we conclude with

lim
m

lim
n

(x+ y∗∗n
2

)
(y∗m) = 1.

By (2), we obtain that all w∗-cluster points of {y∗∗n }∞n=1 belong to X.
(3) ⇒ (4) This is clear.
(4) ⇒ (5) Let {B∗

n}∞n=1 = {B(x∗
n, rn)}∞n=1 be an unbounded nested sequence of

balls in X∗ such that x and any x∗∗ ∈ S(X∗∗) \ X are both bounded below on⋃
B∗

n by some c ∈ R. Hence, for all n ≥ 1, inf x(B∗
n) = 〈x∗

n, x〉−rn ≥ c. Assuming
that 0 ∈ B∗

1 , for any ε > 0 and x∗ ∈ S(X∗), by Goldstine’s Theorem, there exists
{xn}∞n=1 ⊂ B(X) such that∣∣x∗(xn − x∗∗)

∣∣ < ε

2
,

∣∣x∗
n(xn − x∗∗)

∣∣ < 1, x∗∗(x∗
n)− rn ≥ c.

Then

1 ≥ ‖xn‖ ≥ x∗
n

rn
(xn) ≥ x∗∗

(x∗
n

rn

)
− 1

rn
≥ 1 +

c− 1

rn
.

Hence, ‖xn‖ → 1. Putting yn = xn

‖xn‖ , it follows that {yn}
∞
n=1 ⊂ S(X). Moreover,

inf xn(B
∗
n) = x∗

n(xn)− rn‖xn‖ > x∗
n(x

∗∗)− 1− rn‖xn‖
≥ (c− 1) + rn

(
1− ‖xn‖

)
≥ c− 1.

It follows that inf yn(B
∗
n) > c−1

‖xn‖ , and hence, {inf yn(B∗
n)}∞n=1 is also bounded

below. By (4), we know that {yn}∞n=1 is relatively weakly compact. Therefore,

there exists a subsequence {ynk
}∞k=1 ⊂ {yn}∞n=1 and y ∈ X such that ynk

w−→ y, and
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so we may assure that xnk
is also weakly convergent. Consequently, for sufficiently

large k, ∣∣x∗(y − x∗∗)
∣∣ < ∣∣x∗(xnk

− y)
∣∣+ ∣∣x∗(xnk

− x∗∗)
∣∣ < ε

2
+

ε

2
= ε.

By the arbitrariness of ε and x∗, we know that y = x∗∗ ∈ X, which is a contra-
diction.

(5) ⇒ (1) For any x∗∗ ∈ S(X∗∗) such that ‖x∗∗‖ = ‖x+x∗∗‖
2

= 1, taking
{x∗

n}∞n=1 ⊂ B(X∗) such that (x + x∗∗)(x∗
n) → 2, we can choose {δn}∞n=1 ⊂ R,

0 < δn < 1 satisfying
∑∞

n=1 δn < 1 such that x∗
n(x) > 1− δn and x∗∗(x∗

n) > 1− δn.
Putting B∗

n = B(
∑n

i=1 x
∗
i , n +

∑n
i=1 δi), then {B∗

n}∞n=1 is an unbounded nested
sequence of balls in X∗. Consequently,

inf x(B∗
n) = x

( n∑
i=1

x∗
i

)
− n−

n∑
i=1

δi = −
n∑

i=1

(
1− x(x∗

i ) + δi
)
> −2

n∑
i=1

δi > −2.

Similarly, inf x∗∗(B∗
n) > −2, this shows that x and x∗∗ are both bounded below

on
⋃

B∗
n. By (5), we have that x∗∗ ∈ X. �

By using the preceding Theorem 2.1, we also obtain the following equivalent
conditions to prove that a point x ∈ S(X) is a nearly rotund point of B(X∗∗).

Theorem 2.2. Let X be a Banach space, with x ∈ S(X). The following are
equivalent:

(1) x is a nearly rotund point of B(X∗∗);
(2′) x is a CWALUR point of B(X);
(3′) for every x∗∗ ∈ S(X∗∗), if there exists sequence {x∗

n}∞n=1 ⊂ S(X∗) such
that limn x

∗∗(x∗
n) = limn x

∗
n(x) = 1, then x∗∗ ∈ X;

(4′) for any {x∗∗
n }∞n=1 ⊂ B(X∗∗), if {x+x∗∗

n

2
}∞n=1 is asymptotically normed by

B(X∗), then all w∗-cluster points of {x∗∗
n }∞n=1 belong to X.

Proof. (1) ⇔ (2′) Let {xn}∞n=1 ⊂ B(X) and let {x∗
m}∞m=1 ⊂ B(X∗) such that

lim
m

lim
n

x∗
m

(x+ xn

2

)
= 1.

By the relatively weak∗-compactness of {xn}∞n=1 ⊂ B(X∗∗), we obtain a w∗-cluster
point x∗∗ of {xn}∞n=1. Then, it is easy to prove that limm limn x

∗
m(

x+x∗∗

2
) = 1, which

further implies that x∗∗ ∈ X by (1). Consequently, {xn}∞n=1 is relatively weakly
compact. This shows x is a CWALUR point of B(X).

Conversely, in order to complete (2′) ⇒ (1), we just need to prove that (2′) ⇒
(4) of Theorem 2.1. Let {B∗

n = Bn(x
∗
n, rn)}∞n=1 be an unbounded nested sequence

of balls in X∗ such that x is bounded below on
⋃
B∗

n. Let {yn}∞n=1 ⊂ S(X) such
that the sequence {inf yn(B∗

n)} is also bounded below. Suppose that c ∈ R is a

common lower bound. We may assume that 0 ∈ B∗
1 . Putting y∗n = x∗

n

rn
, the fact

that {B∗
n}∞n=1 is nested implies that y∗m(yn) ≥ 1 + c

rm
and that y∗m(x) ≥ 1 + c

rm

for all n ≥ m. It follows that y∗m(
x+yn

2
) ≥ 1 + c

rm
. Since rm → ∞, we obtain

limm limn y
∗
m(

x+yn
2

) = 1. By (2′), x is a CWALUR point of B(X), so {yn}∞n=1 is
relatively weakly compact.
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(1) ⇔ (3′) For every x∗∗ ∈ S(X∗∗), we have {x∗
n}∞n=1 ⊂ S(X∗) with

lim
n

x∗∗(x∗
n) = lim

n
x∗
n(x) = 1.

Since

1 = lim
n

x∗∗(x∗
n) + x∗

n(x)

2
≤

∥∥∥x+ x∗∗

2

∥∥∥ ≤ 1,

we conclude that ‖x+x∗∗‖
2

= 1. By (1), we have x∗∗ ∈ X.

Conversely, for any x∗∗ ∈ S(X∗∗), ‖x∗∗‖ = ‖x+x∗∗‖
2

= 1, we can take {x∗
n}∞n=1 ⊂

S(X∗) such that limn(
x+x∗∗

2
)(x∗

n) = 1. Clearly, |x∗∗(x∗
n)| ≤ 1, |x∗

n(x)| ≤ 1. Conse-
quently, we obtain limn x

∗∗(x∗
n) = limn x

∗
n(x) = 1, and by (3′), we have x∗∗ ∈ X.

(1) ⇔ (4′) Suppose that {x+x∗∗
n

2
}∞n=1 is asymptotically normed by B(X∗). Then,

for anym ≥ 1, there exists {x∗
m}∞m=1 ⊂ B(X∗) andNm ∈ N such that x∗

m(
x+x∗∗

n

2
) >

1− 1
m

for all n ≥ Nm. Therefore,

lim
m

lim
n

x∗
m

(x+ x∗∗
n

2

)
= 1.

For any w∗-cluster point x∗∗ of {x∗∗
n }∞n=1, we have ‖x+x∗∗

2
‖ = 1. By (1), we obtain

x∗∗ ∈ X.
Conversely, in order to complete (4′) ⇒ (1), we just need to prove that (4′) ⇒

(3) of Theorem 2.1. If {B∗
n}∞n=1 = {Bn(x

∗
n, rn)}∞n=1 is an unbounded nested

sequence of balls such that x is bounded below on
⋃

B∗
n, if for {y∗∗n }∞n=1 ⊂ S(X∗∗)

the sequence {inf y∗∗n (B∗
n)}∞n=1 is also bounded below, and if c ∈ R is a common

lower bound, then the sequence {inf(x+y∗∗n
2

)(B∗
n)}∞n=1 is also bounded below by c.

We may assume that 0 ∈ B∗
1 . Let y∗n = x∗

n

rn
. The fact that {B∗

n}∞n=1 is nested

implies that y∗m(x) > 1 + c
rm

for all m and that y∗∗n (y∗m) ≥ 1 + c
rm

for all n ≥ m.

It follows that (x+y∗∗n
2

)(y∗m) ≥ 1 + c
rm

for all n ≥ m. This means that {x+y∗∗n
2

}∞n=1

is asymptotically normed by B(X∗). By (4′), we obtain that all w∗-cluster points
of {y∗∗n }∞n=1 belong to X. �

3. Applications of Three Types of Nearly Convex Points

It is well known that if a closed convex set C in X is approximatively weakly
compact for some x ∈ X \ C, then PC(x) 6= ∅. However, its converse is not
generally true (see [3, Example 2.3]). In this section, we will give a series of
equivalent (or sufficient) conditions such that the reversed conclusion holds by
using three types of nearly convex points and S points.

Fang and Wang in [4] proved that a Banach space X is nearly strongly convex if
and only if every convex and proximinal subset of X is approximatively compact.
Guirao and Montesinos in [6] improved Fang and Wang’s result by showing that
X is nearly strongly convex if and only if every proximinal hyperplane of X is
approximatively compact. Inspired by these conclusions, we give the following
theorems.

Theorem 3.1. Let X be a Banach space, with x ∈ X. Then the following are
equivalent.
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(1) For every closed convex subset C ⊂ X \ {x} and c ∈ PC(x),
c−x

‖c−x‖ is a

nearly very convex point.
(2) For every closed convex subset C ⊂ X \ {x} and PC(x) 6= ∅, C is approx-

imatively weakly compact for x.
(3) For every closed subspace Y ⊂ X \ {x} and PY (x) 6= ∅, Y is approxima-

tively weakly compact for x.
(4) For every hyperplane H ⊂ X \ {x} and PH(x) 6= ∅, H is approximatively

weakly compact for x.

Proof. (1) ⇒ (2) Assume that c−x
‖c−x‖ is a nearly very convex point, where c ∈

PC(x). Let {xn}∞n=1 ⊂ C, limn ‖xn − x‖ = dist(x,C) = d. By the separation
theorem, there exists a x∗ ∈ S(X∗) such that

sup
{
x∗(y − x) : y ∈ B(x, d)

}
≤ inf

{
x∗(y − x) : y ∈ C

}
.

Therefore,

d = ‖c− x‖ = x∗(c− x) ≤ x∗(xn − x) ≤ ‖xn − x‖ → d,

so x∗ ∈ D( c−x
‖c−x‖) and x∗( xn−x

‖xn−x‖) → 1. Since c−x
‖c−x‖ is a nearly very convex point,

{ xn−x
‖xn−x‖}

∞
n=1 is relatively weakly compact, and hence {xn} is relatively weakly

compact.
(2) ⇒ (3) This is clear.
(3) ⇒ (4) This is clear.
(4) ⇒ (1) Let c ∈ PC(x) and x∗ ∈ S(X∗) such that x∗(c − x) = ‖c − x‖. Let

H = {y ∈ X : x∗(y − x) = ‖c − x‖}, {xn}∞n=1 be a sequence in B(X) such that
x∗(xn) → 1. Put yn = ‖c − x‖xn + x + λn(c − x), where λn = 1 − x∗(xn), and
then x∗(yn − x) = ‖c− x‖ for all n ∈ N and limλn → 0. Moreover,

‖c− x‖ = x∗(yn − x) ≤ ‖yn − x‖ ≤ ‖c− x‖‖xn‖+ |λn|‖c− x‖
≤ ‖c− x‖+ |λn|‖c− x‖ → ‖c− x‖.

Hence ‖yn−x‖ → ‖c−x‖, i.e., ‖x−yn‖ → dist(x,H). By (4),H is approximatively
weakly compact for x, and we conclude that {yn}∞n=1 has a weakly convergent
subsequence, and then so does {xn}∞n=1. This proves that {xn}∞n=1 is relatively
weakly compact. �

Lemma 3.2. Let X be a Banach space, with x ∈ S(X). Then x is a nearly very
convex point if x∗∗ ∈ X for any x∗∗ ∈ S(X∗∗) and x∗ ∈ S(X∗) with x∗∗(x∗) =
x∗(x) = 1.

Proof. Let{xn}∞n=1 ⊂ S(X) with x∗(xn) → 1 for some x∗ ∈ D(x). Let C be the
set of all w∗-cluster points of {xn}∞n=1. For any x∗∗ ∈ C \ {xn}∞n=1, there exists a

subnet {xn(α)} of {xn}∞n=1 such that xn(α)
w∗
−−→ x∗∗. Clearly, x∗(xn(α)) → 1. This

shows that x∗∗(x∗) = 1 = x∗(x). By Lemma 3.2, we know that x∗∗ ∈ X. Hence,
{xn}∞n=1 is relatively weakly compact. �

By equivalence of (1) and (3′) in Theorem 2.2 and Lemma 3.2, we obtain that
if a point x ∈ S(X) is a nearly rotund point of S(X∗∗), then x is a nearly very
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convex point of B(X). Therefore, by Theorem 3.1, we can deduce the following
corollary.

Corollary 3.3. Let X be a Banach space. For any x ∈ X and closed convex
subset C ⊂ X \ {x} with c ∈ PC(x), and if c−x

‖c−x‖ is a nearly rotund point of

B(X∗∗), then C is approximatively weakly compact for x.

It is easy to prove that x∗ ∈ D( c−x
‖c−x‖) is a WS point, which implies that c−x

‖c−x‖
is nearly very convex point of X. By Theorem 3.1, we can obtain the following
corollary.

Corollary 3.4. For any x ∈ X and closed convex subset C ⊂ X \ {x} with
c ∈ PC(x), if x∗ ∈ D( c−x

‖c−x‖) is a WS point of X∗, then C is approximatively

weakly compact for x.

In a way similar to that used in Theorem 3.1, we can prove the following.

Theorem 3.5. Let X be a Banach space, with x ∈ X. Then the following are
equivalent.

(1) For every closed convex subset C ⊂ X \ {x} and c ∈ PC(x),
c−x

‖c−x‖ is a

nearly strongly convex point.
(2) For every closed convex subset C ⊂ X \ {x} and PC(x) 6= ∅, C is approx-

imatively compact for x.
(3) For every closed subspace Y ⊂ X \ {x} and PY (x) 6= ∅, Y is approxima-

tively compact for x.
(4) For every hyperplane H ⊂ X \ {x} and PH(x) 6= ∅, H is approximatively

compact for x.

Lemma 3.6 (see [8]). Let {xn}∞n=1 be a bounded sequence in Banach space X
and let ε > 0 be a positive real number. If {xn} has no finite ε-net, then for any
positive integers n0 > 0, k > 0, and any x ∈ X, there exist n1, n2, . . . , nk+1 > n0

such that

d
(
xn1 , span{x}

)
>

ε

2
, d

(
xni+1

, span{x, xn1 , xn2 , . . . , xni
}
)
>

ε

2
,

for i = 1, 2, . . . , k − 1.

Lemma 3.7. Let x ∈ S(X). Then x is a nearly strongly convex point of X if and
only if x∗ ∈ D(x) is an S point of X∗

Proof. Necessity case: Let x ∈ S(X), x∗ ∈ D(x). Suppose that x∗ is not an S
point of X∗. Then there exists a sequence {Fn}∞n=1 ⊂ S(X∗∗) with Fn(x

∗) →
1 which is not relatively compact. By the preceding Lemma 3.6, there exist

F
(n)
1 , F

(n)
2 , . . . , F

(n)
n+1 ∈ {Fn}∞n=1 such that

d
(
F

(n)
l+1, span{F

(n)
1 , . . . , F

(n)
l }

)
>

ε

2
, l = 1, 2, . . . , n;n = 1, 2, . . . .

Let E∗∗
n = span{F (n)

1 , F
(n)
2 , . . . , F

(n)
(n+1)}, E∗ = span{x∗}. By locally reflexive prin-

ciple, there exists a linear mapping Tn : E∗∗
n → X satisfying
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1− 1

n

)
‖F‖ ≤

∥∥Tn(F )
∥∥ ≤

(
1 +

1

n

)
‖F‖, ∀F ∈ E∗∗

n , (3.1)

x∗(Tn(F )
)
= F (x∗), ∀F ∈ E∗∗

n , (3.2)

Tn(x) = x, ∀x ∈ X ∩ E∗∗
n . (3.3)

Set x
(n)
l =

Tn(F
(n)
l )

‖Tn(F
(n)
l )‖

, l = 1, 2, . . . , n + 1, n = 1, 2, 3, . . . . Then x
(n)
l ∈ S(X). In

view of (3.1) and (3.2), we have

x∗(x
(n)
l ) = x∗

( Tn(F
(n)
l )

‖Tn(F
(n)
l )‖

)
=

F
(n)
l (x∗)

‖Tn(F
(n)
l )‖

→ 1

as n → ∞.
Moreover, for any α1, . . . , αl ∈ R,

‖x(n)
l+1 − α1x

(n)
1 − · · · − αlx

(n)
l ‖

=
∥∥∥ Tn(F

(n)
l+1)

‖Tn(F
(n)
l+1)‖

− α1
Tn(F

(n)
1 )

‖Tn(F
(n)
1 )‖

− · · · − αl
Tn(F

(n)
l )

‖Tn(F
(n)
l )‖

∥∥∥
=

1

‖Tn(F
(n)
l+1)‖

∥∥∥Tn

(
F

(n)
l+1 − α1

‖Tn(F
(n)
l+1)‖

‖Tn(F
(n)
1 )‖

F
(n)
1 − · · · − αl

‖Tn(F
(n)
l+1)‖

‖Tn(F
(n)
l )‖

F
(n)
l

)∥∥∥
≥ 1− n−1

1 + n−1
d
(
F

(n)
l+1, span{F

(n)
1 , . . . , F

(n)
l }

)
.

Therefore, for n large enough,

d
(
x
(n)
l+1, span{x

(n)
1 , . . . , x

(n)
l }

)
≥ ε

2
.

Since for every l, x∗(x
(n)
l ) → 1, and since x is a nearly strongly convex point,

{x(n)
l }∞n=1 is relatively compact. By the diagonal process, we can select a subse-

quence {nk} ⊂ {n} such that, for every l, we have that {x(nk)
l }k≥1 is convergent.

Let x
(nk)
l → xl, l = 1, 2, . . . .

On one hand, noting that x∗(xl) = 1 (∀l), we obtain that {xl}l≥1 is relatively
compact. On the other hand,

d
(
xl+1, span{x1, . . . , xl}

)
≥ lim inf

n→∞
d
(
x
(n)
l+1, span{x

(n)
1 , . . . , x

(n)
l }

)
≥ ε

2
.

This leads to a contradiction.
Sufficiency case: This is trivial. �

By Theorem 3.5 and Lemma 3.7, we have the following theorem.

Theorem 3.8. Let X be a Banach space, with x ∈ X. For any closed convex
subset C ⊂ X \ {x} and c ∈ PC(x), we have that x∗ ∈ D( c−x

‖c−x‖) is an S point of

X∗ if and only if C is approximatively compact for x.

Finally, we give a characterization of closed convex subset C to be approxima-
tively compact for some x in X \ C by using nested sequence of balls.

The S point (resp., WS point) is said to be P-II point (resp., P-III point) in [1].
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Lemma 3.9 ([1, Proposition 5.5]). For a Banach space X, x ∈ S(X) is a P-II
point (resp., P-III point) if and only if for every straight unbounded nested sequence
{Bn}∞n=1 of balls in the direction of x, for any {y∗n}∞n=1 ⊂ S(X∗), if the sequence
{inf y∗n(Bn}∞n=1 is bounded below, then the sequence {y∗n}∞n=1 is relatively compact
(resp., relatively weakly compact).

By Lemma 3.9, Corollary 3.4, and Theorem 3.8, we can obtain the following
results.

Theorem 3.10. Let X be a Banach space, let C ⊂ X be a closed convex subset,
and let x ∈ X \ C and c ∈ PC(x). Then we have the following.

(1) For every straight unbounded nested sequence {B∗
n}∞n=1 of balls in the

direction of x∗ ∈ D( c−x
‖c−x‖), for any {y∗∗n }∞n=1 ⊂ S(X∗∗), if the sequence

{inf y∗∗n (B∗
n)}∞n=1 is bounded below, then {y∗∗n }∞n=1 is relatively compact if

and only if C is approximatively compact for x.
(2) For every straight unbounded nested sequence {B∗

n}∞n=1 of balls in the direc-
tion of x∗ ∈ D( c−x

‖c−x‖), for any {y∗∗n }∞n=1 ⊂ S(X∗∗), if that the sequence

{inf y∗∗n (B∗
n)}∞n=1 is bounded below implies that {y∗∗n }∞n=1 is relatively weakly

compact, then C is approximatively weakly compact for x.
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