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Abstract. There are known results showing a canonical association between
Lipschitz cross-norms (norms on the Lipschitz tensor product of a metric space
and a Banach space) and ideals of Lipschitz maps from a metric space to a
dual Banach space. We extend this association, relating Lipschitz cross-norms
to ideals of Lipschitz maps taking values in general Banach spaces. To do
that, we prove a Lipschitz version of the representation theorem for maximal
operator ideals. As a consequence, we obtain linear characterizations of some
ideals of (nonlinear) Lipschitz maps between metric spaces.

Introduction

In the theory of Banach spaces, it is well understood that there is a deep
connection between norms on tensor products and certain special families of linear
maps. The reason is simple: if E and F are vector spaces, a linear functional on
E ⊗ F can naturally be identified with a linear map from E to the dual of F . If
E and F are furthermore Banach spaces, a norm on the tensor product E ⊗ F
will naturally define a collection of bounded linear maps from E to F ∗. With
this association in mind, it is possible to develop parallel and interconnected
theories between these two worlds: one of norms on tensor products, and one
corresponding to these special families of linear maps. Requiring rather minimal
conditions for the norm on the tensor product gives rise to collections of linear
maps that are in fact ideals—that is, they are closed under composition—and so
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one often talks about the relationship between tensor norms and operator ideals
(see [8] for a very comprehensive account).

In our previous works [1], [2], we have started an analogous program for study-
ing ideals of Lipschitz maps from a metric space to a Banach space. In [1] we
introduced the concept of a Lipschitz tensor product X � E between a metric
space X and a Banach space E, whose dual can be canonically identified with
a family of Lipschitz maps from X to E∗. In [2] we showed that, just as in the
Banach space case, the associated family of maps X → E∗ will satisfy an ideal
property under rather minimal conditions for the norm on X �E. Moreover, we
showed that several known examples of ideals of Lipschitz maps (Lipschitz maps,
Lipschitz p-summing maps, maps admitting a Lipschitz factorization through a
subset of an Lp space) are associated to norms on Lipschitz tensor products in
this canonical way.

However, there is something slightly unsatisfactory about this association. It
makes perfect sense to consider, say, a Lipschitz p-summing map from a metric
space to a general Banach space, but our association only covers the case of
maps taking values on a dual Banach space. The purpose of the present paper
is to fill this gap and study the relationship between norms on Lipschitz tensor
products and ideals of Lipschitz maps, even in the case when the latter take
values in a Banach space which is not a dual space. In order to do that, we prove
a Lipschitz version of the representation theorem for maximal operator ideals
(see [8, Section 17.5], originally due to H. P. Lotz [12]). In a nutshell, that result
says that under appropriate conditions on the ideal of maps (or the tensor norm),
having a duality between the ideal and the tensor norm at the finite-dimensional
level extends to a general duality that covers the case of maps taking values in a
Banach space which is not a dual space.

Let us now describe the contents of the paper. In Section 1, we introduce nota-
tion and state some preliminary results from [1] and [2]. In particular, we define
the objects that we will be studying: norms on the Lipschitz tensor product (called
Lipschitz cross-norms) and what we mean by ideals of Lipschitz maps (called Lip-
schitz operator ideals). Up to now, these concepts had only been considered for
one fixed metric space and one fixed Banach space at a time. In Section 2, we
define what we have called generic versions of them: variants that cover all pos-
sible spaces at once and not just a fixed pair. Section 3 shows that, under mild
technical conditions, there is a canonical correspondence between the generic ver-
sions of Lipschitz cross-norms and Lipschitz operator ideals. In Section 4, we
prove a couple of technical lemmas, Lipschitz versions of two of the “basic lem-
mas” of Defant and Floret [8, Section 13]. Section 5 contains the main result, the
aforementioned representation theorem. As in the linear case, in essence it says
that (under mild technical assumptions) once we have a generic Lipschitz cross-
norm and a generic Lipschitz operator ideal, which are associated for finite metric
spaces and finite-dimensional Banach spaces, that yields a very general associa-
tion covering even the case of maps taking values in a Banach space which is not
a dual space. Finally, in Section 6, we use the representation theorem to deduce
some consequences in the more general case of ideals of Lipschitz maps between
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metric spaces. In particular, we obtain a general theorem that characterizes, by
linear means, certain families of nonlinear maps between metric spaces.

1. Notation and preliminary results

Given two metric spaces (X, dX) and (Y, dY ), let us recall that a map f : X → Y
is said to be Lipschitz if there exists a constant C such that dY (f(x), f(y)) ≤
CdX(x, y) for all x, y ∈ X. The smallest such constant C will be denoted by
Lip(f). Evidently,

Lip(f) = sup
{dY (f(x), f(y))

dX(x, y)
: x, y ∈ X, x 6= y

}
.

A pointed metric spaceX is a metric space with a basepoint 0. As usual,K denotes
the field of real or complex numbers. We will consider a normed space E over
K as a pointed metric space with the distance defined by its norm and the zero
vector as the base point. As is customary, BE and SE stand for the closed unit
ball of E and the unit sphere of E, respectively.

Given two pointed metric spaces X and Y , we denote by Lip0(X,Y ) the set
of all basepoint-preserving Lipschitz maps from X to Y . If E is a Banach space,
then Lip0(X,E) is a Banach space under the Lipschitz norm Lip. The elements
of Lip0(X,E) are known as Lipschitz operators. The space Lip0(X,K) is called
the Lipschitz dual of X and will be denoted by X#.

For two Banach spaces E and F , L(E,F ) stands for the Banach space of
all bounded linear operators from E to F endowed with the canonical norm of
operators. In particular, the topological dual L(E,K) are denoted by E∗.

We now recall some concepts and results stated in [1] and [2]. Let X be a
pointed metric space, and let E be a Banach space. The Lipschitz tensor product
X � E is the linear span of all linear functionals δ(x,y) � e on Lip0(X,E

∗) of the
form

(δ(x,y) � e)(f) =
〈
f(x)− f(y), e

〉
for (x, y) ∈ X2 and e ∈ E. A norm α on X � E is a Lipschitz cross-norm if

α(δ(x,y) � e) = d(x, y)‖e‖

for all (x, y) ∈ X2 and e ∈ E. We denote by X �αE the linear space X �E with

norm α, and we denote by X �̂αE the completion of X �α E.
For g ∈ X# and φ ∈ E∗, consider the linear functional g�φ on X �E defined

by

(g � φ)
( n∑

i=1

δ(xi,yi) � ei

)
=

n∑
i=1

(
g(xi)− g(yi)

)
〈φ, ei〉,

and consider, for h ∈ Lip0(X,Y ) and T ∈ L(E,F ), the linear operator h � T
from X � E to Y � F given by

(h� T )
( n∑

i=1

δ(xi,yi) � ei

)
=

n∑
i=1

δ(h(xi),h(yi)) � T (ei).
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A Lipschitz cross-norm α on X � E is called dualizable (uniform) if, for each
g ∈ X# and φ ∈ E∗, we have g�φ ∈ (X �αE)

∗ and ‖g�φ‖ ≤ Lip(g)‖φ‖ (resp.,
if, for each h ∈ Lip0(X,X) and T ∈ L(E,E), we have h�T ∈ L(X�αE,X�αE)
and ‖h� T‖ ≤ Lip(h)‖T‖).

The Lipschitz injective norm ε and the Lipschitz projective norm π on X �E
were introduced in [1]. For 1 ≤ p ≤ ∞, we also have the norms dp and wp on
X �E (see [2] for definitions). It is known that all those norms are uniform and
dualizable Lipschitz cross-norms on X � E. Moreover, ε is the least dualizable
Lipschitz cross-norm on X � E, and π is the greatest Lipschitz cross-norm on
X � E. In fact, a norm α on X � E is a dualizable Lipschitz cross-norm if and
only if ε ≤ α ≤ π.

Let α be a Lipschitz cross-norm onX�E. A basepoint-preserving map f : X →
E∗ is said to be an α-Lipschitz operator if there exists a real constant C ≥ 0 such
that ∣∣∣ n∑

i=1

〈
f(xi)− f(yi), ei

〉∣∣∣ ≤ Cα
( n∑

i=1

δ(xi,yi) � ei

)
for all

∑n
i=1 δ(xi,yi) � ei ∈ X � E. The infimum of such constants C is de-

noted by Lipα(f) and called the α-Lipschitz norm of f . Equipped with that
norm, the Banach space of all α-Lipschitz operators from X into E∗ is de-
noted by Lipα(X,E

∗) and it is isometrically isomorphic to (X �̂αE)
∗ via the

map Λ0 : Lipα(X,E
∗) → (X �̂αE)

∗ defined by

Λ0(f)(u) =
n∑

i=1

〈
f(xi)− f(yi), ei

〉
for f ∈ Lipα(X,E

∗) and u =
∑n

i=1 δ(xi,yi) � ei ∈ X � E.
For α = ε, π, the space Lipα(X,E

∗) can be identified with the space of Lip-
schitz Grothendieck-integral operators Lip0GI (X,E

∗) (see [3]) and the space of
Lipschitz operators Lip0(X,E

∗). For α = dp, wp with 1 ≤ p ≤ ∞, Lipα(X,E
∗) co-

incides with the space ΠL
p′(X,E

∗) of Lipschitz p′-summing operators and the space

ΓLip
p′ (X,E∗) of Lipschitz operators admitting a Lipschitz factorization through a

subset of an Lp′ space, where p
′ denotes the conjugate index of p.

For a pointed metric space X (a Banach space E), we denote by MFIN(X)
(resp., FIN(E)) the set of all finite subsets of X containing the basepoint (resp.,
the set of all finite-dimensional subspaces of E). For a Banach space E, we denote
by COFIN(E) the set of all finite-codimensional closed subspaces of E. Given
L ∈ COFIN(E), letQE

L : E → E/L be the canonical projection, and given Y ⊂ X,
let IXY : Y → X be the canonical injection. For a Banach space E, κE : E → E∗∗

denotes the canonical injection.

2. Generic versions of Lipschitz cross-norm and Lipschitz
operator Banach ideal

Definition 2.1. By a generic Lipschitz cross-norm α, we mean an assignment for
each pointed metric space X and each Banach space E of a Lipschitz cross-norm



MAXIMAL BANACH IDEALS OF LIPSCHITZ MAPS 597

α(·;X,E) on the Lipschitz tensor product X �E (sometimes denoted simply by
α if the spaces are clear from the context) such that we have the following:

(i) α is dualizable (i.e., ε ≤ α ≤ π);
(ii) α satisfies the metric mapping property: if h ∈ Lip0(X0, X1) and T ∈

L(E0, E1), then ‖h� T : X0 �α E0 → X1 �α E1‖ ≤ Lip(h)‖T‖.
If the assignment and the conditions above are given only for finite pointed metric
spaces and finite-dimensional Banach spaces, we say that α is FIN-generic.

A generic Lipschitz cross-norm α is said to be finitely generated if

α(u;X,E) = inf
{
α(u;X0, E0) : X0 ∈ MFIN(X), E0 ∈ FIN(E), u ∈ X0 � E0

}
for every pointed metric space X, every Banach space E, and every u ∈ X � E.

Note that condition (ii) in Definition 2.1 is a generalization of uniformity, and
note that all the Lipschitz cross-norms presented in Section 1 (namely, ε, π, dp,
and wp) are in fact finitely generated generic Lipschitz cross-norms.

Given a FIN-generic Lipschitz cross-norm α, we can use the following procedure
to extend it to a finitely generated generic Lipschitz cross-norm.

Lemma 2.2. Let α be a FIN-generic Lipschitz cross-norm. For a pointed metric
space X, a Banach space E, and u ∈ X � E, define

θ(u;X,E) = inf
{
α(u;X0, E0) : X0 ∈ MFIN(X), E0 ∈ FIN(E), u ∈ X0 � E0

}
.

Then θ is a finitely generated generic Lipschitz cross-norm. Moreover, θ and
α coincide on X � E whenever X is a finite pointed metric space and E is a
finite-dimensional Banach space.

Proof. First, let us show that θ is a norm on X � E. It is clear that θ satisfies
θ(λu) = |λ|θ(u) because so does α. Let u1, u2 ∈ X�E. Take X1, X2 ∈ MFIN(X),
E1, E2 ∈ FIN(E) such that uj ∈ Xj � Ej, j = 1, 2. Then, if X0 = X1 ∪ X2 and
E0 = E1 + E2, using the metric mapping property of α applied to the inclusions
Xj → X0 and Ej → E0, j = 1, 2, we have

α(u1 + u2;X0, E0) ≤ α(u1;X0, E0) + α(u2;X0, E0)

≤ α(u1;X1, E1) + α(u2;X2, E2),

and, by taking the infimum over all such Xj, Ej, we conclude that

θ(u1 + u2;X,E) ≤ θ(u1;X,E) + θ(u2;X,E),

giving the triangle inequality. Since ε and π are finitely generated and ε ≤ α ≤ π,
it follows that ε ≤ θ ≤ π, and thus θ is a dualizable Lipschitz cross-norm on
X � E.

Now let X,Y be pointed metric spaces, let E,F be Banach spaces, let h ∈
Lip0(X,Y ), and let S ∈ L(E,F ). Let u ∈ X � E. Given X0 ∈ MFIN(X) and
E0 ∈ FIN(E) such that u ∈ X0 � E0, note that Y0 := h(X0) ∈ MFIN(Y ),
F0 := S(E0) ∈ FIN(F ), and (h � S)(u) ∈ Y0 � F0. From the metric mapping
property for α, we infer that

θ
(
(h� S)(u);Y, F

)
≤ α

(
(h� S)(u);Y0, F0

)
≤ Lip(h)‖S‖α(u;X0, E0),



598 M. G. CABRERA-PADILLA ET AL.

and, by taking the infimum over all such X0, E0, we conclude that θ has the
metric mapping property.

Now assume that X is a finite pointed metric space, E is a finite-dimensional
Banach space, and u ∈ X � E. By the definition of θ, clearly θ(u;X,E) ≤
α(u;X,E). Whenever X0 ∈ MFIN(X), E0 ∈ FIN(E) are such that u ∈ X0 �
E0, the metric mapping property of α applied to the inclusion maps X0 → X
and E0 → E shows that α(u;X,E) ≤ α(u;X0, E0), and so we conclude that
θ(u;X,E) = α(u;X,E). �

Definition 2.3. By a generic Lipschitz operator Banach ideal A, we mean an
assignment for each pointed metric space X and each Banach space E of a linear
subspace A(X,E) of Lip0(X,E) equipped with a norm ‖ · ‖A with the following
properties.

(i) The Lipschitz rank 1 operator g · e : x 7→ g(x)e from X to E belongs to
A(X,E) for every g ∈ X# and e ∈ E, and ‖g · e‖A ≤ Lip(g)‖e‖.

(ii) Lip ≤ ‖ · ‖A.
(iii) (A(X,E), ‖ · ‖A) is a Banach space.
(iv) The (strengthened) ideal property: If f ∈ A(X,E), h ∈ Lip0(Z,X), and

S ∈ L(E,F ), then the composition Sfh belongs to A(Z, F ) and

‖Sfh‖A ≤ ‖S‖‖f‖A Lip(h).

If the assignment and the conditions above are given only for finite pointed metric
spaces and finite-dimensional Banach spaces, we say that A is FIN-generic.

Note that Definition 2.3 is a combination of the definitions of the Lipschitz
operator Banach ideal and the Lipschitz operator Banach space introduced in [2],
but with a stronger ideal property and for a general Banach space instead of a
dual one. Note also that the spaces Lip0, Π

L
p , and ΓLip

p are examples of generic
Lipschitz operator Banach ideals.

Given a FIN-generic Lipschitz operator Banach ideal A, there are several dif-
ferent ways of extending it to a generic Lipschitz operator Banach ideal. Here we
consider the “largest” such extension.

Lemma 2.4. Let A be a FIN-generic Lipschitz operator Banach ideal. For a
pointed metric space X, a Banach space E, and f ∈ Lip0(X,E), define

‖f‖Amax = sup
{
‖QE

L ◦ f ◦ IXY ‖A : Y ∈ MFIN(X), L ∈ COFIN(E)
}

and

Amax(X,E) =
{
f ∈ Lip0(X,E) : ‖f‖Amax <∞

}
.

Then (Amax, ‖ · ‖Amax) is a generic Lipschitz operator Banach ideal. In addition,
Amax(X,E) = A(X,E) holds isometrically whenever X is a finite pointed metric
space and E is a finite-dimensional Banach space.

Proof. Clearly, Amax(X,E) is a nonempty subset of Lip0(X,E). Since ‖ · ‖A is
a norm, it is immediate that Amax(X,E) is a linear subspace of Lip0(X,E) and
that ‖·‖Amax is a norm. We now verify the conditions in the definition of a generic
Lipschitz operator Banach ideal.
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(i) Let g ∈ X#, and let e ∈ E. For every Y ∈ MFIN(X) and L ∈ COFIN(E),
we have∥∥QE

L ◦ (g · e) ◦ IXY
∥∥
A
=

∥∥(g|Y ) · (QE
Le)

∥∥
A
≤ Lip(g|Y )‖QE

Le‖ ≤ Lip(g)‖e‖,

and so g · e belongs to Amax(X,E) and ‖g · e‖Amax ≤ Lip(g)‖e‖.
(ii) Note that, for any f ∈ Lip0(X,E),

Lip(f) = sup
{
Lip(QE

L ◦ f ◦ IXY ) : Y ∈ MFIN(X), L ∈ COFIN(E)
}
,

from which it follows that Lip ≤ ‖ · ‖Amax .
(iii) Since we already know that Amax(X,E) is a normed space, it suffices to

show that every absolutely convergent series
∑
fn in Amax(X,E) is convergent.

Since Lip ≤ ‖ · ‖Amax , the series
∑

n fn converges in Lip0(X,E) to a limit f ∈
Lip0(X,E). Fix Y ∈ FIN(X), and fix L ∈ COFIN(E). Since Y is finite and
E/L is finite-dimensional, by [2, Corollary 6.6] there exists a dualizable Lipschitz
cross-norm α on Y � (E/L)∗ such that A(Y,E/L) = (Y �α (E/L)∗)∗. Note that
the series

∑
nQ

E
L ◦ fn ◦ IXY converges pointwise to QE

L ◦ f ◦ IXY , and so, for each
u ∈ Y � (E/L)∗, we have∣∣(QE

L ◦ f ◦ IXY )(u)
∣∣ = ∣∣∣+∞∑

n=1

(QE
L ◦ fn ◦ IXY )(u)

∣∣∣
≤

+∞∑
n=1

∣∣(QE
L ◦ fn ◦ IXY )(u)

∣∣ ≤ α(u)
+∞∑
n=1

‖QE
L ◦ fn ◦ IXY ‖A.

Then it follows that ‖QE
L ◦ f ◦ IXY ‖A ≤

∑+∞
n=1 ‖fn‖Amax , and thus f ∈ Amax(X,E)

and ‖f‖Amax ≤
∑+∞

n=1 ‖fn‖Amax . Now, applying the same argument to f−
∑N

n=1 fn
yields ∥∥∥f −

N∑
n=1

fn

∥∥∥
Amax

=
∥∥∥ +∞∑
n=N+1

fn

∥∥∥
Amax

≤
+∞∑

n=N+1

‖fn‖Amax ,

and so the series
∑

n fn converges to f in Amax(X,E).
(iv) Let f ∈ Amax(X,E), let h ∈ Lip0(Z,X), and let S ∈ L(E,F ). Fix Y ∈

MFIN(Z), and fix L ∈ COFIN(F ). Let K ⊂ E be the kernel of the map QF
L ◦ S,

and note that K ∈ COFIN(E) and that, by the universal property of quotients,
there is a linear map S̃ : E/K → F/L with ‖S̃‖ ≤ ‖S‖ such that S̃QE

K = QF
LS.

Thus, noting that h(Y ) ∈ FIN(X) and using the ideal property of A,

‖QF
L ◦ Sfh ◦ IZY ‖A = ‖S̃QE

K ◦ f ◦ IXh(Y ) ◦ hIZY ‖A
≤ ‖S̃‖‖QE

K ◦ f ◦ IXh(Y )‖A Lip(hIZY ) ≤ ‖S‖‖f‖Amax Lip(h).

Now letX be a finite pointed metric space, let E be a finite-dimensional Banach
space, and let f ∈ Lip0(X,E). From the definition of Amax and the ideal property
for A, it is clear that ‖f‖Amax ≤ ‖f‖A. But taking Y = X and L = {0} in the
definition of ‖f‖Amax shows that

‖f‖Amax ≥ ‖QE
{0} ◦ f ◦ IXX ‖A = ‖QE

{0} ◦ f‖A = ‖f‖A,

where the last equality follows from the fact that QE
{0} is a bijective isometry. �
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Definition 2.5. We call (Amax, ‖ · ‖Amax) the maximal hull of A, and we say that
a generic Lipschitz operator Banach ideal A is maximal if (A, ‖ · ‖A) = (Amax,
‖ · ‖Amax).

Note that Amax is always a maximal generic Lipschitz operator Banach ideal.
A first example of a maximal generic Lipschitz operator Banach ideal is given
by the ideal Lip0 of Lipschitz operators. Suppose that f ∈ Lipmax

0 (X,E) with
norm at most C, and let x, y be distinct points in X. Note that ‖QE

L ◦ f(x) −
QE

L ◦ f(y)‖ ≤ Cd(x, y) for every L ∈ codim(E). By taking L to be the kernel
of a norm 1 functional in E∗ which norms f(x) − f(y) ∈ E, we conclude that
‖f(x)−f(y)‖ ≤ Cd(x, y), and thus f is Lipschitz with norm at most C as required.
A similar but slightly more involved argument shows that ΠL

p and ΓLip
p are also

maximal generic Lipschitz operator Banach ideals based on the fact that, given
finitely many vectors in E, one can find L ∈ COFIN(E) such that the quotient
E → E/L preserves the norms of those vectors.

There are also generic Lipschitz operator Banach ideals that are not maximal,
for example, the Lipschitz compact operators from [10] and the Lipschitz p-nuclear
operators from [7] (the reader is referred to those papers for the definitions). Any
Lipschitz operator belongs to the maximal hull of the ideal of Lipschitz compact
operators since every Lipschitz operator with finite domain is Lipschitz-compact,
but it is easy to find Lipschitz operators which are not Lipschitz-compact, and
thus the ideal of Lipschitz compact operators is not maximal. Similarly, using [7,
Theorem 2.1], the existence of a linear operator from a separable Banach space
to a dual Banach space which is p-integral but not p-nuclear shows that the ideal
of Lipschitz p-nuclear operators is not maximal.

3. The association between finitely generated generic Lipschitz
cross-norms and maximal generic Lipschitz operator

Banach ideals

The main idea we will exploit is that to every finitely generated generic Lips-
chitz cross-norm one can canonically associate a maximal generic Lipschitz oper-
ator Banach ideal, and vice versa.

Definition 3.1. We say that a FIN-generic Lipschitz cross-norm α and a
FIN-generic Lipschitz operator Banach ideal A are associated and we write A ∼ α
if, for every finite pointed metric space X and every finite-dimensional Banach
space E, the relation A(X,E∗) = (X �α E)

∗, or, equivalently, A(X,E∗) =
Lipα(X,E

∗), holds isometrically.

The key will be the following generalization of [2, Theorem 5.3], whose heart
is the fact that the metric mapping property of α and the (strengthened) ideal
property of Lipα are equivalent as long as we restrict ourselves to finite metric
spaces and finite-dimensional Banach spaces.

Proposition 3.2. Suppose that, for every finite pointed metric space X and every
finite-dimensional Banach space E, α is a norm on X�E and A(X,E) is a linear
subspace of Lip0(X,E) equipped with a norm ‖ ·‖A so that A(X,E) = (X�αE

∗)∗
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holds isometrically. Then α is a FIN-generic Lipschitz cross-norm if and only if
A is a FIN-generic Lipschitz operator Banach ideal.

Proof. Suppose that A is a FIN-generic Lipschitz operator Banach ideal. Let X
be a finite pointed metric space, and let E be a finite-dimensional Banach space.
By hypothesis, α is already a norm on X �E. The condition Lip ≤ ‖ · ‖A implies
that α ≤ π on X � E, whereas the fact that for every g ∈ X# and e ∈ E we
have ‖g · e‖A ≤ Lip(g)‖e‖ implies that ε ≤ α on X � E. Thus α is a dualizable
Lipschitz cross-norm. A small modification of the arguments in the proof of [2,
Theorem 5.3(i)] shows that α has the metric mapping property.

Now suppose that α is a FIN-generic Lipschitz cross-norm. By hypothesis, ‖·‖A
is a complete norm on A(X,E). Reversing the arguments above, the condition
α ≤ π implies that Lip ≤ ‖ · ‖A on A(X,E), whereas the condition ε ≤ α implies
that, for every g ∈ X# and e ∈ E, we have ‖g · e‖A ≤ Lip(g)‖e‖. Finally, a small
modification of the argument in the proof of [2, Theorem 5.3(i)] shows that A has
the (strengthened) ideal property. �

More generally, we have the following two lemmas that give constructions al-
lowing us to go back and forth between generic Lipschitz cross-norms and generic
Lipschitz operator Banach ideals.

Lemma 3.3. Let α be a FIN-generic Lipschitz cross-norm. For a pointed metric
space X and a Banach space E, given f ∈ Lip0(X,E), define

‖f‖A = sup
{
Lipα(Q

E
L ◦ f ◦ IXY ) : Y ∈ MFIN(X), L ∈ COFIN(E)

}
and

A(X,E) =
{
f ∈ Lip0(X,E) : ‖f‖A <∞

}
.

Then A is a maximal generic Lipschitz operator Banach ideal associated to α.

Proof. First, a word about the definition: note that since E/L is finite-dimen-
sional, it is a dual space, and thus it makes sense to consider the Lipα-norm of the
mapping QE

L ◦ f ◦ IXY : Y → E/L. Since α is a FIN-generic Lipschitz cross-norm,
Proposition 3.2 implies that Lipα is a FIN-generic Lipschitz operator Banach
ideal. Therefore, from Lemma 2.4, A is a maximal generic Lipschitz operator Ba-
nach ideal that agrees isometrically with Lipα whenever the pointed metric space
is finite and the Banach space is finite-dimensional, and so A ∼ α. �

Lemma 3.4. Let A be a FIN-generic Lipschitz operator Banach ideal. For a
pointed metric space X, a Banach space E, and u ∈ X �E, define α(u;X,E) as

inf
{
sup

{∣∣f(u)∣∣ : ‖f : X0 → E∗
0‖A ≤ 1

}
:

X0 ∈ MFIN(X), E0 ∈ FIN(E), u ∈ X0 � E0

}
.

Then α is a finitely generated generic Lipschitz cross-norm associated to A.

Proof. For every finite pointed metric space X and every finite-dimensional Ba-
nach space E, consider the norm α0(·;X,E) on X � E given by duality with A

α0(u;X,E) =
{
sup

∣∣f(u)∣∣ : ‖f : X → E∗‖A ≤ 1
}
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so that (X �α0 E
∗)∗ = A(X,E). From Proposition 3.2, it follows that α0 is a

FIN-generic Lipschitz cross-norm. By definition, α is obtained from α0 by means
of the procedure in Lemma 2.2, which implies that α is a finitely generated generic
Lipschitz cross-norm that agrees with α0 on X �E whenever the pointed metric
space X is finite and the Banach space E is finite-dimensional, and so A ∼ α. �

The previous two lemmas show the following.

(i) For every FIN-generic Lipschitz cross-norm there is a maximal generic
Lipschitz operator Banach ideal A such that A ∼ α.

(ii) For every FIN-generic Lipschitz operator Banach ideal there is a finitely
generated generic Lipschitz cross-norm α such that A ∼ α.

Since both finitely generated generic Lipschitz cross-norms and maximal generic
Lipschitz operator Banach ideals are determined by their behavior on finite
pointed metric spaces and finite-dimensional Banach spaces, these constructions
show that the relation ∼ is a one-to-one correspondence between finitely gener-
ated generic Lipschitz cross-norms and maximal generic Lipschitz operator Ba-
nach ideals.

4. Two basic lemmas for finitely generated generic Lipschitz
cross-norms

According to [8, Section 13], there are five lemmas that are basic for the un-
derstanding and use of tensor norms. Here we prove Lipschitz versions of the
two we will need later. Every ϕ ∈ (X �̂π E)

∗ = Lip0(X,E
∗) has a canoni-

cal extension ϕ∧ ∈ (X �̂π E
∗∗)∗ = Lip0(X,E

∗∗∗), characterized by the relation
〈ϕ∧, δ(x,y)�v∗∗〉 = 〈v∗∗, Lϕ(x)−Lϕ(y)〉, where Lϕ := Λ−1

0 (ϕ) ∈ Lip0(X,E
∗) is the

Lipschitz operator given by 〈Λ−1
0 (ϕ)(x), e〉 = ϕ(δ(x,0) � e). The following lemma

tells us what happens if in fact ϕ ∈ (X �̂αE)
∗ (cf. [8, Lemma 13.2]).

Lemma 4.1 (Extension lemma). Let ϕ ∈ (X �̂π E)
∗, and let α be a finitely

generated generic Lipschitz cross-norm. Then ϕ ∈ (X �̂αE)
∗ if and only if ϕ∧ ∈

(X �̂αE
∗∗)∗. In this case, ‖ϕ‖(X �̂α E)∗ = ‖ϕ∧‖(X �̂α E∗∗)∗.

Proof. The metric mapping property implies that the canonical inclusion map
idX � κE : X �α E → X �α E

∗∗ is contractive, and hence ‖ϕ‖(X �̂α E)∗ ≤
‖ϕ∧‖(X �̂α E∗∗)∗ .

For the converse, take u0 ∈ X �E∗∗ and X0 ∈ MFIN(X), E0 ∈ FIN(E∗∗) such
that u0 ∈ X0�E0. By the principle of local reflexivity (even in a weak form as in
[8, Section 6.5]), for every ε > 0 there exists R ∈ L(E0, E) with ‖R‖ ≤ 1+ ε such
that, for all v∗∗ ∈ E0 and x, y ∈ X0, 〈v∗∗, Lϕ(x)−Lϕ(y)〉 = 〈Lϕ(x)−Lϕ(y), Rv

∗∗〉.
This means that 〈ϕ∧, δ(x,y) � v∗∗〉 = 〈ϕ, (idX � R)(δ(x,y) � v∗∗)〉, and therefore
〈ϕ∧, u0〉 = 〈ϕ, (idX � R)(u0)〉. Hence |〈ϕ∧, u0〉| ≤ ‖ϕ‖‖R‖α(u0;X0, E0) ≤ (1 +
ε)‖ϕ‖α(u0;X0, E0), which implies the result since α is finitely generated. �

Lipschitz cross-norms generally do not respect subspaces, but the embedding
into the bidual is respected when the Lipschitz cross-norm is finitely generated
(cf. [8, Lemma 13.3]).
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Lemma 4.2 (Embedding lemma). If α is a finitely generated generic Lipschitz

cross-norm, then the mapping idX � κE : X �̂αE → X �̂αE
∗∗ is an isometry for

every pointed metric space X and every Banach space E.

Proof. As pointed out above, the metric mapping property implies that α(u;X,
E∗∗) ≤ α(u;X,E) for any u ∈ X�E (in an abuse of notation, we are not writing
the map idX � κE). Now, by the extension lemma,

α(u;X,E) = sup
{∣∣〈ϕ, u〉∣∣ : ϕ ∈ (X �̂αE)

∗, ‖ϕ‖(X �̂α E)∗ ≤ 1
}

= sup
{∣∣〈ϕ∧, u〉

∣∣ : ϕ ∈ (X �̂αE)
∗, ‖ϕ‖(X �̂α E)∗ ≤ 1

}
≤ sup

{∣∣〈ψ, u〉∣∣ : ψ ∈ (X �̂αE
∗∗)∗, ‖ψ‖(X �̂α E∗∗)∗ ≤ 1

}
= α(u;X,E∗∗),

giving the reverse inequality. �

5. The representation theorem

We are now ready to present the main result of this paper. Modulo technical
assumptions, philosophically it is a combination of [2, Theorems 5.3 and 6.5]:
Lipschitz cross-norms that are both uniform and dualizable give rise to a very
satisfactory duality theory.

Theorem 5.1. Let A be a maximal generic Lipschitz operator Banach ideal,
and let α be a finitely generated generic Lipschitz cross-norm, which are both
associated with each other. Then, for every pointed metric space X and every
Banach space E, the relations

A(X,E∗) = (X �̂αE)
∗, (5.1)

A(X,E) = (X �̂αE
∗)∗ ∩ Lip0(X,E) (5.2)

hold isometrically.

Proof. First, note the diagram

ϕ ∈ (X �̂αE)
∗ � � //

� _

��

(X �̂π E)
∗

� _

��

Lip0(X,E
∗)

ϕ∧ ∈ (X �̂αE
∗∗)∗ � � // (X �̂π E

∗∗)∗.

The vertical arrows are isometries thanks to the embedding lemma, whereas the
horizontal arrows are continuous because α ≤ π. By the extension lemma, (5.1)
will follow from (5.2).

In order to prove (5.2), we need to show that, for f ∈ Lip0(X,E), f belongs to
A(X,E) if and only if the associated linear map ϕf : X�αE

∗ → K is continuous;
that is, there is C > 0 such that∣∣u(f)∣∣ ≤ Cα(u;X,E∗), ∀u ∈ X � E∗. (5.3)

Since A is maximal, it is clear that f ∈ A(X,E) with ‖f‖A ≤ C if and only if

‖QE
L ◦ f ◦ IXY ‖A ≤ C, ∀Y ∈ MFIN(X),∀L ∈ COFIN(E). (5.4)
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Denote by L0 the annihilator of L. Since A(Y,E/L) = (Y �α (E/L)∗)∗ = (Y �α

L0)∗, and as L0 varies over all spaces in FIN(E∗) when L varies over all spaces in
COFIN(E), (5.4) is equivalent to∣∣u(QE

L ◦ f ◦ IXY )
∣∣ ≤ Cα(u;Y, L0), ∀u ∈ Y � L0 (5.5)

whenever Y ∈ MFIN(X) and L0 ∈ FIN(E∗). Now, for such an u ∈ Y � L0, note
that since both IXY and (QE

L )
∗ are canonical injections,

u(QE
L ◦ f ◦ IXY ) =

(
(QE

L )
∗u
)
(f ◦ IXY ) = u(f).

Therefore, (5.5) is equivalent to (5.3) because α is finitely generated, finishing the
proof. �

We can now show that maximal generic Lipschitz operator Banach ideals can
be thought of as those arising as Lipα for a finitely generated generic Lipschitz
cross-norm α.

Corollary 5.2. Let A be a generic Lipschitz operator Banach ideal. Then A is
maximal if and only if there exists a finitely generated generic Lipschitz cross-
norm α such that, for every pointed metric space X and every Banach space E,

A(X,E) = (X �̂αE
∗)∗ ∩ Lip0(X,E) (5.6)

holds isometrically. In this case,

A(X,E∗) = (X �̂αE)
∗ (5.7)

also holds isometrically for every pointed metric space X and every Banach
space E.

Proof. Suppose that A is maximal. Let α be the finitely generated generic Lip-
schitz cross-norm associated to A given by Lemma 3.4. By the representation
theorem, (5.6) holds isometrically.

Now suppose that there is a finitely generated generic Lipschitz cross-norm α
such that (5.6) holds isometrically. It follows from the proof of the representation
theorem that (5.7) must also hold isometrically, and so, in particular, A ∼ α. Let
f ∈ Lip0(X,E). If f ∈ A(X,E), then, by the ideal property and the definition
of Amax, it follows that ‖f‖Amax ≤ ‖f‖A. Now assume that f ∈ Amax(X,E) with
‖f‖Amax ≤ c. By definition of Amax, this means that (5.4) holds. Following the
proof of the representation theorem, this in turn implies (5.3), which means that
f ∈ A(X,E) with ‖f‖A ≤ c because of (5.6). �

Another consequence is that a maximal generic Lipschitz operator Banach ideal
respects the canonical embeddings into the bidual.

Corollary 5.3. A maximal generic Lipschitz operator Banach ideal A is regular,
which means that, for every pointed metric space X, every Banach space E, and
every f ∈ Lip0(X,E), f ∈ A(X,E) if and only if κE ◦ f ∈ A(X,E∗∗); moreover,

‖f : X → E‖A = ‖κE ◦ f : X → E∗∗‖A.
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Proof. Let α be the finitely generated generic Lipschitz cross-norm given by Corol-
lary 5.2. Notice then that A(X,E) → (X �̂αE

∗)∗ = A(X,E∗∗), where the arrow
is an isometry. The desired result follows. �

6. Lipschitz operator ideals between metric spaces

Some important classes of Lipschitz maps satisfying an ideal property, like
the Lipschitz p-summing maps or the maps admitting a Lipschitz factorization
through a subset of an Lp space, are actually defined for maps between metric
spaces. Thus it might seem that we are losing something by insisting on having
a Banach space as a codomain as it has been done so far in this paper and in
previous works (see [4], [6], [1], [2]). Nevertheless, we show next that generic
Lipschitz operator Banach ideals satisfying a slightly stronger ideal property can
be canonically extended to an ideal of Lipschitz maps between metric spaces.
Recall that F (X) denotes the Lipschitz-free Banach space of a pointed metric
space X, and that δX : X → F (X) denotes the canonical embedding. For a
Banach space E, the barycentric map βE : F (E) → E is a norm 1 linear operator
with βE ◦ δE = idE (see [9]).

Definition 6.1. We will say that a generic Lipschitz operator Banach ideal A is
strong if, whenever X,Z are pointed metric spaces, E and F are Banach spaces,
f ∈ A(X,E), h ∈ Lip0(Z,X), and g ∈ Lip0(E,F ), the composition gfh belongs
to A(Z, F ) and ‖gfh‖A ≤ Lip(g)‖f‖A Lip(h).

The ideals Lip0, Π
L
p , and ΓL

p are examples of strong generic Lipschitz Banach
ideals. The next proposition characterizes strong generic Lipschitz operator Ba-
nach ideals.

Proposition 6.2. Let A be a generic Lipschitz operator Banach ideal. Then A
is strong if and only if, for every pointed metric space X, every Banach space E,
and every map f ∈ Lip0(X,E), f ∈ A(X,E) if and only if δE ◦ f ∈ A(X,F (E)),
and with ‖f‖A = ‖δE ◦ f‖A.

Proof. Suppose that A is strong. Let X, E, and f be as above. If f ∈ A(X,E),
then by the ideal property δE ◦ f ∈ A(X,F (E)) and

‖δE ◦ f‖A ≤ Lip(δE)‖f‖A = ‖f‖A = ‖βE ◦ δE ◦ f‖A
≤ Lip(βE)‖δE ◦ f‖A = ‖δE ◦ f‖A,

and so ‖f‖A = ‖δE ◦ f‖A. The same chain of inequalities shows that if δE ◦ f is
in A, then so is f and with the same norm.

For the converse implication, let X,Z be pointed metric spaces, let E and F be
Banach spaces, let f ∈ A(X,E), let h ∈ Lip0(Z,X), and let g ∈ Lip0(E,F ). By
[11, Lemma 3.1], there exists a unique bounded linear operator ĝ : F (E) → F (F )
such that ĝ ◦ δE = δF ◦ g. Furthermore, ‖ĝ‖ = Lip(g). Since f ∈ A(X,E), then
by hypothesis δE ◦ f ∈ A(X,F (E)), and thus by the ideal property δE ◦ f ◦ h ∈
A(Z,F (E)). Using the ideal property of generic Lipschitz operator Banach ideals
again, we have ĝ ◦ δE ◦ f ◦ h = δF ◦ g ◦ f ◦ h ∈ A(Z,F (F )). By the hypothesis,
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we get g ◦ f ◦ h ∈ A(Z, F ). Moreover,

‖g ◦ f ◦ h‖A = ‖δF ◦ g ◦ f ◦ h‖A = ‖ĝ ◦ δE ◦ f ◦ h‖A
≤ ‖ĝ‖‖δE ◦ f ◦ h‖A = Lip(g)‖f ◦ h‖A
≤ Lip(g)‖f‖A Lip(h). �

In the next result, we define an extension of the notion of the Lipschitz oper-
ator Banach ideal, now having a metric space as a codomain for the maps. The
arguments are almost the same as those used to prove Proposition 6.2.

Proposition 6.3. Let A be a strong generic Lipschitz operator Banach ideal. For
any pointed metric spaces X and Y and f ∈ Lip0(X,Y ), define f ∈ Ã(X,Y ) if
and only if δY ◦ f ∈ A(X,F (Y )), and denote ‖f‖Ã = ‖δY ◦ f‖A.

(i) For any pointed metric space X and any Banach space E, f ∈ A(X,E) if
and only if f ∈ Ã(X,E), and, moreover, ‖f‖Ã = ‖f‖A.

(ii) If f ∈ Ã(X,Y ), h ∈ Lip0(W,X), and g ∈ Lip0(Y, Z), then the composition
g ◦ f ◦ h belongs to Ã(W,Z) and ‖g ◦ f ◦ h‖Ã ≤ Lip(g)‖f‖Ã Lip(h).

Proof. (i) If f ∈ A(X,E), then δE ◦ f ∈ A(X,F (E)) and ‖δE ◦ f‖A ≤
Lip(δE)‖f‖A = ‖f‖A by the ideal property. Now assume that δE ◦ f ∈ A(X,
F (E)). Note that βE ◦ δE ◦ f = f , and so, by the ideal property, f ∈ A(X,E)
and

‖f‖A = ‖βE ◦ δE ◦ f‖A ≤ ‖βE‖‖δE ◦ f‖A = ‖f‖Ã.
(ii) By [11, Lemma 3.1], there exists a unique bounded linear operator ĝ :

F (Y ) → F (Z) such that ĝ ◦ δY = δZ ◦ g. Furthermore, ‖ĝ‖ = Lip(g). By the
ideal property, δZ ◦ g ◦ f ◦ h ∈ A(W,F (Z)) and ‖g ◦ f ◦ h‖Ã = ‖δZ ◦ (gf) ◦ h‖A =
‖ĝ ◦ (δY ◦ f) ◦ h‖A ≤ ‖ĝ‖‖δY ◦ f‖A Lip(h) = Lip(g)‖f‖Ã Lip(h). �

In an abuse of notation, given a strong generic Lipschitz operator Banach ideal,
we will still denote by A its extension to metric spaces (instead of Ã). We keep
the notation ‖f‖A, though when we leave the Banach space context this is no
longer a norm. Nevertheless, it still denotes a quantitative property of the map f .

The following result is interesting because it characterizes a nonlinear property
in terms of a linear one closely related to [4, Theorem 4.6] and [5, Theorem 4.4].
Of course, as always happens in this kind of situation, we have simplified the
mapping but made the spaces more complicated (cf. [8, Theorem 17.15]).

Theorem 6.4. Let A be a strong and maximal generic Lipschitz operator Banach
ideal, and let α be the finitely generated generic Lipschitz cross-norm which is
associated to A. For any pointed metric spaces X and Y , and f ∈ Lip0(X,Y ),
the following are equivalent:

(i) f ∈ A(X,Y ),

(ii) for all Banach spaces G (or only G = Y #), f � idG : X �̂αG → Y �̂π G
is continuous.

In this case, ‖f‖A = ‖f � idY # : X �̂α Y
# → Y �̂π Y

#‖ ≥ ‖f � idG : X �̂αG →
Y �̂π G‖.
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Proof. Suppose that f ∈ A(X,Y ), and let G be a Banach space. The boundedness

of f � idG : X �̂αG → Y �̂π G will follow from the boundedness of the adjoint
map

(f � idG)
∗ : (Y �̂π G)

∗ = Lip0(Y,G
∗) → (X �̂αG)

∗ = A(X,G∗).

Now, for v ∈ G, x ∈ X, and h ∈ Lip0(Y,G
∗),〈[

(f � idG)
∗h
]
(x), v

〉
= (δ(x,0) � v)

(
(f � idG)

∗h
)
=

(
(f � idG)[δ(x,0) � v]

)
(h)

= (δ(f(x),0) � v)(h) =
〈
h
(
f(x)

)
, v
〉
.

Therefore, (f � idG)
∗ is given by h ∈ Lip0(Y,G

∗) 7→ h ◦ f ∈ A(X,G∗), which has
norm at most ‖f‖A because of the ideal property.

Now suppose that f � idY # : X �̂α Y
# → Y �̂π Y

# has norm c. By definition,
f ∈ A(X,Y ) if and only if δY ◦ f ∈ A(X,F (Y )) and with the same norm,
which by the representation theorem is equivalent to having δY ◦ f define an
element of (X �̂α F (Y )∗)∗ = (X �̂α Y

#)∗. Therefore, we seek to prove that, given

u ∈ X �̂Y #, |u(δY ◦ f)| ≤ cα(u). Note that, for a given u ∈ X �̂Y #, u(f �
idY #) belongs to Y �̂Y #. Since κF (Y ) ◦ δY : Y → Y #∗, we may consider [(f �
idY #)u](κF (Y ) ◦ δY ). Note that this is in fact just u(f) since δY , κF (Y ), and idY #

are inclusions. Therefore,∣∣u(f)∣∣ = ∣∣[(f � idY #)u
]
(κF (Y ) ◦ δY )

∣∣
≤ Lip(κF (Y ) ◦ δY )π

(
(f � idY #)u

)
≤ cα(u),

and the conclusion follows. �

Remark 6.5. In the previous proof, when the codomain is a Banach space E
(resp., F ∗) in part (ii) it suffices to consider G = E∗ (resp., G = F ).
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