
Ann. Funct. Anal. 7 (2016), no. 4, 578–592

http://dx.doi.org/10.1215/20088752-3661557

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

EXTREMALLY RICH JB∗-TRIPLES

FATMAH B. JAMJOOM,1 ANTONIO M. PERALTA,2*

AKHLAQ A. SIDDIQUI,1 and HAIFA M. TAHLAWI1

Communicated by J. Hamhalter

Abstract. We introduce and study the class of extremally rich JB∗-triples.
We establish new results to determine the distance from an element a in an
extremally rich JB∗-triple E to the set ∂e(E1) of all extreme points of the
closed unit ball of E. More concretely, we prove that

dist
(
a, ∂e(E1)

)
= max

{
1, ‖a‖ − 1

}
,

for every a ∈ E which is not Brown–Pedersen quasi-invertible. As a conse-
quence, we determine the form of the λ-function of Aron and Lohman on the
open unit ball of an extremally rich JB∗-triple E by showing that λ(a) = 1/2
for every non-BP quasi-invertible element a in the open unit ball of E. We also
prove that for an extremally rich JB∗-triple E, the quadratic conorm γq(·) is
continuous at a point a ∈ E if and only if either a is not von Neumann regular
(i.e., γq(a) = 0) or a is Brown–Pedersen quasi-invertible.

1. Introduction

This article presents new investigations which provide some answers to prob-
lems concerning the geometric structure of those complex Banach spaces included
in the class of JB∗-triples. In 1983, Kaup proved that the open unit ball of a com-
plex Banach space X is a bounded symmetric domain (a pure holomorphic prop-
erty) if and only if X is a JB∗-triple (see [13]). That is, the holomorphic properties
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of the open unit ball of X determine when X satisfies certain algebraic-geometric
axioms, which are listed below. In [9], Harris proved that the open unit ball of
a C∗-algebra A is a bounded symmetric domain; actually, A is a JB∗-triple with
triple product defined by

{x, y, z} :=
1

2
(xy∗z + zy∗x). (1.1)

JB∗-triples have been intensively studied during the last three decades, and
special attention has been paid to the geometric properties of these spaces. In
several cases, the studies determine whether JB∗-triples satisfy certain properties
fulfilled by C∗-algebras. For example, the quasi-invertible elements of C∗-algebras
studied by Brown and Pedersen in [3] gave rise to the introduction of the Brown–
Pedersen quasi-invertible elements in a JB∗-triple, which are found in [19] and
[20]. Building on work of Aron and Lohman in [2], Brown and Pedersen also
showed in [4] that quasi-invertible elements in C∗-algebras play a crucial role in
determining the form of the λ-function. The precise description of the λ-function
is determined in [4]. A C∗-algebra A is said to be extremally rich if the set A−1

q of
quasi-invertible elements in A is norm-dense in A (see [3, Section 3]). The class
of extremally rich C∗-algebras is strictly larger than the class of von Neumann
algebras. From the geometric point of view, a unital C∗-algebra A is extremally
rich if and only if it has the (uniform) λ-property, that is, if the infimum of the
values of the λ-function on the closed unit ball of A is greater than zero (see [3,
Section 3] and [4, Theorem 3.7]).

In a recent paper [11], we proved that every JBW∗-triple (i.e. a JB∗-triple which
is also a dual Banach space) satisfies the uniform λ-property. In that same paper
we also determined the λ-function on the closed unit ball of a JBW∗-triple and
on the set E−1

q of all Brown–Pedersen quasi-invertible elements in the closed unit
ball of a general JB∗-triple E. If we assume that the set ∂e(E1) of all extreme
points in the closed unit ball E1 of E is nonempty, then we can only prove that
the inequality

λ(a) ≤ 1

2

(
1− αq(a)

)
(1.2)

holds for every a ∈ E1\E−1
q , where αq(a) is the distance from a to E−1

q (see [11,
Corollary 3.7]).

The question whether in (1.2) the inequality sign can be replaced with an
equality symbol is one of the main open problems in the setting of JB∗-triples.
This question is related to the problem of determining the distance from an
element a to the set ∂e(E1). The best estimation follows from Theorem 3.6 in
[11], where it is established that for every JB∗-triple E with ∂e(E1) 6= ∅, the
inequalities

1 + ‖a‖ ≥ dist
(
a, ∂e(E1)

)
≥ max

{
1 + αq(a), ‖a‖ − 1

}
hold for every a in E\E−1

q .
We introduce here the notion of extremally rich JB∗-triples, with the aim of

studying the above problems in more depth. We devote some effort to clarifying
the relationships between the different uses of the notion of quasi-invertibility
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found in the literature. We also consider the notion of Brown–Pedersen quasi-
invertible elements, introduced by Brown and Pedersen in the setting of
C∗-algebras and by the last two authors in the case of JB∗-triples. We clarify the
relationship between the concept of Brown–Pedersen quasi-invertible elements
and the notion of Jordan quasi-invertibility developed in the monograph [15].

We say that a JB∗-triple E is extremally rich if the set of Brown–Pedersen
quasi-invertible elements in E is norm-dense in E. Several characterizations of
extremally rich JB∗-triples are provided in Proposition 2.4. Among the new results
in this article, we prove that for an extremally rich JB∗-triple E, we have

dist
(
a, ∂e(E1)

)
= max

{
1, ‖a‖ − 1

}
for every a ∈ E\E−1

q (see Theorem 2.6). As a consequence, we show that λ(a) =
1/2 for every non-BP quasi-invertible element a in the open unit ball of an ex-
tremally rich JB∗-triple (see Corollary 2.7).

We also deal with another related open question. We recall that the reduced
minimum modulus of a nonzero bounded linear or conjugate linear operator T
between two normed spaces X and Y is defined by

γ(T ) := inf
{∥∥T (x)∥∥ : dist

(
x, ker(T )

)
≥ 1

}
. (1.3)

Following [12], we set γ(0) = ∞. When X and Y are Banach spaces, we have
that γ(T ) > 0 ⇔ T (X) is norm-closed (see [12, Theorem IV.5.2]).

The quadratic-conorm, γq(a), of an element a in a JB∗-triple E is defined as
the reduced minimum modulus of the conjugate linear operator Q(a) : E → E,
x 7→ Q(a)(x) := {a, x, a}; that is, γq(a) = γ(Q(a)) (see [5]). Theorem 3.13
in [5] proves that γq(·) is upper semicontinuous on E\{0}. It is also remarked,
in the reference quoted above, that the continuity points of γq(·) are, in general,
unknown. In the present article we shed some light on the question of determining
the continuity points of the quadratic conorm, showing that for an extremally rich
JB∗-triple E, the quadratic conorm γq(·) is continuous at a point a ∈ E if and only
if either a is not von Neumann regular (i.e., γq(a) = 0) or a is BP quasi-invertible
(see Theorem 3.3). We also explore the applications of this result to determine
the continuity points of the conorm of an extremally rich C∗-algebra in the sense
introduced by Harte and Mbekhta in [10].

1.1. Preliminaries. A complex Banach space E is a JB∗-triple if it can be
equipped with a triple product {· , · , ·} : E × E × E → E, (x, y, z) 7→ {x, y, z},
which is linear and symmetric in x and z, conjugate linear in y, and satisfies the
following axioms:

(a) (Jordan identity){
x, y, {a, b, c}

}
=

{
{x, y, a}, b, c

}
−

{
a, {y, x, b}, c

}
+
{
a, b, {xyc}

}
,

for every a, b, c ∈ E;
(b) for each a ∈ E, the operator x 7→ L(a, a)(x) := {a, a, x} is hermitian with

nonnegative spectrum;
(c) ‖{x, x, x}‖ = ‖x‖3, for all x ∈ E.
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The class of JB∗-triples includes all C∗-algebras, all complex Hilbert spaces,
and all spin factors. It is further known that every JB∗-algebra is a JB∗-triple
with the triple product {x, y, z} := (x ◦ y∗) ◦ z − (x ◦ z) ◦ y∗ + (y∗ ◦ z) ◦ x.

A JBW∗-triple is a JB∗-triple which is also a dual Banach space. The second
dual E∗∗ of a JB∗-triple E is a JBW∗-triple (see [7, Corollary 3.3.5]). Every
JBW∗-triple W admits a unique isometric predual W∗, and its triple product is
separately σ(W,W∗)-continuous (see [7, Theorem 3.3.9, p. 210]).

JB∗-triples are stable by `∞-sums (see [13, p. 523]); that is, if (Ej) is a family
of JB∗-triples, then the `∞-sum ⊕∞

j Ej is a JB∗-triple with respect to the product{
(aj), (bj), (cj)

}
:=

(
{aj, bj, cj}

)
.

Following standard notation, given two elements x, y in a JB∗-triple E, the
conjugate linear operator Q(x, y) : E → E is defined by Q(x, y)z := {x, z, y} for
all z ∈ E; we usually write Q(x) instead of Q(x, x). The symbol L(x, y) will stand
for the linear operator on E given by L(x, y)(z) = {x, y, z}.

We recall that an element e in a JB∗-triple E is said to be a tripotent if
{e, e, e} = e. It is known that, for each tripotent e in E, the eigenvalues of
the operator L(e, e) are contained in the set {0, 1/2, 1}, and E decomposes in the
form

E = E2(e)⊕ E1(e)⊕ E0(e),

where, for i = 0, 1, 2, Ei(e) is the i
2
-eigenspace of L(e, e). This decomposition

is called the Peirce decomposition of E with respect to e. The Peirce subspaces
appearing in the above decomposition satisfy certain multiplication rules (called
Peirce rules), which can be stated as follows:{

Ei(e), Ej(e), Ek(e)
}
⊆ Ei−j+k(e)

if i− j+k ∈ {0, 1, 2}, and it is zero otherwise. In addition, {E2(e), E0(e), E} = 0.
The projection of E onto Ek(e) is denoted by Pk(e), and it is called the Peirce
k-projection. Peirce projections are contractive (see [7, Lemma 3.2.1]) and satisfy
P2(e) = Q(e)2, P1(e) = 2(L(e, e) − Q(e)2), and P0(e) = IdE −2L(e, e) + Q(e)2.
A tripotent e in E is said to be unitary if L(e, e) coincides with the identity map
on E—that is, E2(e) = E. If E0(e) = {0}, then we say that e is complete.

The Peirce space E2(e) is a unital JB∗-algebra with unit e, product x ◦e y :=
{x, e, y}, and involution x∗e := {e, x, e}, respectively. Furthermore, the triple
product on E2(e) is given by

{a, b, c} = (a ◦e b∗e) ◦e c+ (c ◦e b∗e) ◦e a− (a ◦e c) ◦e b∗e
(
a, b, c ∈ E2(e)

)
.

Let a be an element in a JB∗-triple E, and let Ea denote the JB∗-subtriple
of E generated by a. That is, Ea coincides with the closed linear span of the
elements a, a[3] = {a, a, a}, a[2n+1] := {a, a, a[2n−1]} (n ≥ 2). It follows from
the commutative Gelfand theory that there exist a locally compact Hausdorff
space La ⊆ (0, ‖a‖], with La ∪ {0} compact, and a triple isomorphism Ψa :
Ea → C0(La), where C0(Ωx) denotes the Banach space of all complex-valued
continuous functions vanishing at 0, such that Ψa(a)(t) = t, ∀t ∈ La (see [13,
Section 1, Corollary 1.15]). Therefore, for each natural n, there exists a unique
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a[1/(2n−1)] ∈ Ea satisfying (a[1/(2n−1)])[2n−1] = a. The sequence (a[1/(2n−1)]) need
not be convergent in the norm topology of E. However, when a is an element in a
JBW∗-triple W , the sequence (a[1/(2n−1)]) converges in the weak∗ topology of W
to a tripotent in W , which is denoted by r(a) and is called the range tripotent
of a. The tripotent r(a) is the smallest tripotent e in W such that a is positive
in the JBW∗-algebra W2(e) (see [8, Section 3, Lemma 3.2]).

The deep geometric-algebraic connections appearing in the setting of
JB∗-triples materialize in many important properties, one of them ensures that
complete tripotents in a JB∗-triple E coincide with the extreme points of its
closed unit ball (see [7, Theorem 3.2.3]). Throughout this article, the set of all
extreme points of the closed unit ball X1 of a Banach space X is denoted by
∂e(X1).

1.2. Quasi-invertibility. Let E be a JB∗-triple. The Bergmann operator,
B(x, y), associated with a couple of elements x, y ∈ E is the mapping defined
by B(x, y) := Id− 2L(x, y) +Q(x)Q(y), where Id is the identity operator on E.
We observe that, for a tripotent e ∈ E, B(e, e) = P0(e). When a C∗-algebra A is
regarded as a JB∗-triple with the product in (1.1), then the identity

B(x, y)(z) = (1− xy∗)z(1− y∗x) (1.4)

holds for every x, y, z ∈ A.
Following the notation introduced by Brown and Pedersen in [3, Theorem 1.1

and p. 118], we say that an element a in a unital C∗-algebra A is quasi-invertible
if a belongs to the set A−1∂e(A1)A

−1, where A−1 denotes the group of invert-
ible elements in A. The open subset of quasi-invertible elements in A is denoted
by A−1

q . It was shown in [3, Theorem 1.1] that A−1
q = ∂e(A1)A

−1
+ , and that an

element a lies in A−1
q if and only if there is a pair of closed ideals I, J of A, such

that IJ = {0}, a+ I is left-invertible in A/I, and a+J is right invertible in A/J .
A celebrated result (see [17, Theorem 1.6.4]), due to Kadison, proves that a

norm 1 element v ∈ A is an extreme point of A1 if and only if v is a partial
isometry such that (1− vv∗)A(1− v∗v) = 0. Suppose that a = cvd ∈ A−1

q , where

v ∈ ∂e(A1) and c, d ∈ A−1. Taking b = (c−1)∗v(d−1)∗ ∈ A, we deduce from (1.4)
that

B(a, b)(z) = (1− ab∗)z(1− b∗a) = c(1− vv∗)c−1zd−1(1− v∗v) d = 0

for every z ∈ A. Conversely, Ara, Pedersen, and Perera observed in [1, end of
p. 611] that, for each a ∈ A, the existence of an element b ∈ A such that {0} =
(1− ab∗)A(1− b∗a) = B(a, b)(A) implies that a is quasi-invertible. The last two
authors of the present article show up this equivalence in [19, Theorem 3.1] by
proving that an element a in a unital C∗-algebra A is quasi-invertible if and only
if there exists b ∈ A with B(a, b) = 0. It should be also remarked here that for a
suitable left-invertible element a ∈ A, we can find different elements b1 6= b2 ∈ A
with b∗ja = 1, and hence B(a, bj) = 0 for every j = 1, 2.

The results in the above paragraphs motivated the last two authors to in-
troduce the notion of Brown–Pedersen quasi-invertibility in the wider setting
of JB∗-triples. According to [19], [20], an element x in a JB∗-triple E is called
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Brown–Pedersen quasi-invertible (BP quasi-invertible for short) if there exists
y ∈ E satisfying B(x, y) = 0. In the conditions above, we say that y is a BP
quasi-inverse of x. It is known that B(x, y) = 0 ⇒ B(y, x) = 0. A BP quasi-
invertible element need not admit a unique BP quasi-inverse. It is established in
[20] that an element x in E is BP quasi-invertible if and only if there exists a
complete tripotent v ∈ E (v ∈ ∂e(E1)) such that x is positive and invertible in the
Peirce 2-space E2(v). Therefore, the set E−1

q of all BP quasi-invertible elements
in E contains all extreme points of the closed unit ball of E. When E = J is a
JB∗-algebra, J −1

q contains the set J −1 of all invertible elements in E.
When a C∗-algebra A is regarded as a JB∗-triple, BP quasi-invertible elements

in A are precisely the quasi-invertible elements of A in the sense defined by Brown
and Pedersen in [3].

Remark 1.1. In the setting of Jordan algebras there exists another meaning for the
term “quasi-invertible”. Following Definition 1.3.1 in the monograph [15], an ele-
ment x in a Jordan algebra J is called quasi-invertible (or Jordan quasi-invertible

to avoid confusion) if (1̂− x) is invertible (in the Jordan sense) in the unital hull

Ĵ of J ; the element w = 1̂ − (1̂ − x)−1 is called the Jordan quasi-inverse of x,
and it is denoted by qi(x).

The unit of a JB∗-algebra is not Jordan quasi-invertible. In the commutative
C∗-algebra C[0, 1], an element f is Jordan quasi-invertible if and only if 1 is
not in the image of f . In J = Mn(C), a matrix a is Jordan quasi-invertible
if and only if det(In − a) 6= 0. In the last two C∗-algebras there are examples
of invertible elements which are not Jordan quasi-invertible, and examples of
Jordan quasi invertible elements which are not invertible. In particular, there is
no relation between the notions of Jordan quasi-invertibility and Brown–Pedersen
quasi-invertibility in the setting of C∗-algebras.

There is another connection between Jordan quasi-invertibility for pairs and
Brown–Pedersen quasi-invertibility. Namely, by [15, Definition 1.4.1(1)], a pair
(x, y) of elements in a Jordan algebra J is called a Jordan quasi-invertible pair if
x is Jordan quasi-invertible in the homotope J (y). It is shown in the same reference
that (x, y) is a Jordan quasi-invertible pair if and only if the Bergmann operator
B(x, y) is an invertible linear operator on the space J . For each x ∈ J , we have
B(x, 0) = IJ , and hence the pair (x, 0) is Jordan quasi-invertible. When A is a
unital C∗-algebra, B(1, λ1) = (1− λ)2IA is an invertible linear operator on A for
every λ 6= 1. That is, the pair (1, λ1) is Jordan quasi-invertible for every λ 6= 1.
Elements x in a JB∗-triple E for which there exists y ∈ E such that B(x, y) is
an invertible linear operator on E do not receive a special name in the literature,
and there is no link between these elements and Brown–Pedersen quasi-invertible
elements.

After introducing the basic results on quasi-invertibility, and clarifying the
relationship between the different concepts established in the literature, we recall
that an element a in a JB∗-triple E is called von Neumann regular if and only if
there exists b ∈ E such thatQ(a)b = a,Q(b)a = b, and [Q(a), Q(b)] := Q(a)Q(b)−
Q(b)Q(a) = 0 (see [14, Lemma 4.1]). For a von Neumann regular element a, there
might exist many elements c in E such that Q(a)c = a. However, there exists
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a unique element b ∈ E (denoted by a†) satisfying Q(a)b = a, Q(b)a = b and
[Q(a), Q(b)] = 0; this unique element b is called the generalized inverse of a in E.
For an element a in a JB∗-triple E, we can consider the range tripotent, r(a), of
a in E∗∗. It is known that a is von Neumann regular if and only if r(a) ∈ E and
a is positive and invertible in E2(r(a)) (see [5, Section 2, pp. 191–192]).

2. Extremally Rich JB∗-triples

In [3, Section 3], Brown and Pedersen introduced and studied the class of ex-
tremally rich C∗-algebras. We recall that a unital C∗-algebra A is extremally rich
if the set A−1

q of Brown–Pedersen quasi-invertible elements in A is (norm-) dense
in A. When A is nonunital, it is extremally rich if its unitization enjoys this prop-
erty. Every von Neumann algebra and every purely infinite (simple) C∗-algebra
is extremally rich (see [3, Section 3]). From the point of view of Banach space
theory, a unital C∗-algebra is extremally rich if and only if it has the (uniform)
λ-property defined by Aron and Lohman in [2] (see also [3, Section 3] and [4,
Theorem 3.7]).

We recall that, given a normed space X, x, y ∈ X, with ‖y‖ ≤ 1, e ∈ ∂e(X1),
and 0 < λ ≤ 1, the ordered 3-tuple (e, y, λ) is said to be amenable to x if
x = λe+ (1− λ)y. The λ-function is defined by

λ(x) := sup
{
λ : (e, y, λ) is a 3-tuple amenable to x

}
.

The space X is said to have the λ-property if each element in its closed unit ball
admits an amenable 3-tuple (see [2]).

The notion of Brown–Pedersen quasi-invertibility in JB∗-triples was recently
studied in [19], [20] and [21]. The study of the λ-function in JB∗-triples was
developed in [21] and [11], where it was proved that every JBW∗-triple (i.e.,
a JB∗-triple which is a dual Banach space) satisfies the (uniform) λ-property. We
introduce the following definition with the aim of determining those JB∗-triples
satisfying the (uniform) λ-property.

Definition 2.1. A JB∗-triple E is called extremally rich if the set E−1
q of BP

quasi-invertible elements in E is norm-dense in E.

Recall that an element u in a unital JB∗-algebra J is called unitary if u∗ = u−1

(where u−1 denotes the inverse of u), or equivalently, if {u, u, z} = z, ∀z ∈ J
(see [6, Definition 4.1.53, Propositions 4.1.54, 4.1.55]); that is, L(u, u) = IJ (the
identity operator over J ).

Remark 2.2. (a) We recall that a unital C∗-algebra A is of topological stable rank 1
(tsr 1) if the subgroup A−1 of invertible elements in A is norm-dense in A (see
[16]). A similar definition is introduced in the category of JB∗-algebras in [18].

If J is a JB∗-algebra of tsr 1, then J = J −1 ⊆ J −1
q . This shows that every

JB∗-algebra J of tsr 1 is extremally rich. There exist examples of extremally rich
C∗-algebras which are not of tsr 1. For example, suppose that A is a von Neumann
algebra that contains a nonunitary, maximal partial isometry (say, v) which is a
nonunitary extreme point of A1. Then, v ∈ ∂e(A1) 6= U(A), which implies that A
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is not of tsr 1 (see [18, Corollary 6.10]). On the other hand, every von Neumann
algebra is extremally rich (see [3, p. 126]).

(b) It should be also noted that the von Neumann envelope of a JB∗-algebra
of tsr 1 need not be, in general, of tsr 1 (see [18, Theorems 3.1, 3.2]).

(c) Let A be a C∗-algebra. Then A is extremally rich as a C∗-algebra if and
only if A is extremally rich when it is regarded as a JB∗-triple with the product
in (1.1).

Since the class of extremally rich C∗-algebras is strictly bigger than the class of
von Neumann algebras, we can immediately confirm that the class of extremally
rich JB∗-triples is agreeably large, strictly bigger than the class of JBW∗-triples. In
our next result we establish some characterizations of extremally rich JB∗-triples
along the lines set down by Brown and Pedersen for C∗-algebras in [3, Theo-
rem 3.3]. To that end, we recall a result taken from [11]. First, we recall that
for each element a in a JB∗-triple E, mq(a) := dist(a,E\E−1

q ) coincides with

the square root of the quadratic conorm of a, whenever a is in E−1
q (see [11,

Theorem 3.1]).

Proposition 2.3 ([11, Proposition 4.4]). Let a and b be elements in a JB∗-triple
E. Suppose that ‖a−b‖ < β and b ∈ E−1

q . Then a+βr(b) ∈ E−1
q and the inequality

mq

(
a+ βr(b)

)
≥ β − ‖b− a‖

holds. Furthermore, under the above conditions, the element P2(r(b))(a) + βr(b)
is invertible in the JB∗-algebra E2(r(b)).

The promised characterization of extremally rich JB∗-triples reads as follows.

Proposition 2.4. For a JB∗-triple E with ∂e(E1) 6= ∅, the following conditions
are equivalent.

(i) E is extremally rich.
(ii) For every a ∈ E and any β > 0, there is an element b ∈ E−1

q , with range

tripotent r(b) ∈ ∂e(E1), such that a+ βr(b) ∈ E−1
q .

(iii) For every a ∈ E and any β > 0, there is an element b ∈ E−1
q such that

P2(r(b))(a) + βr(b) is invertible in the JB∗-algebra E2(r(b)).

Proof. The implications (i) ⇒ (ii) and (i) ⇒ (iii) follow from the above Propo-
sition 2.3 (see [11, Proposition 4.4] and [20, Theorem 6]). The implication (ii)
⇒ (i) is clear from the definition of extremal richness and the arbitrariness of
β. For (iii) ⇒ (ii), fix a ∈ E and β > 0. By assumption there exists b ∈ E−1

q

such that P2(r(b))(a)+βr(b) ∈ E2(r(b)) is invertible in the JB∗-algebra E2(r(b)).
Since r(b) is an extreme point of E and P2(r(b))(a+βr(b)) = P2(r(b))(a)+βr(b)
is invertible in the JB∗-algebra E2(r(b)), it follows from [11, Lemma 2.2] that
a+ βr(b) ∈ E−1

q , and clearly ‖a− (a+ βr(b))‖ = β. �

We explore next the stability of the property of being extremally rich under
`∞-sums, ideals, and quotients. We recall that a (closed) subtriple I of a JB∗-triple
E is said to be an ideal of E if {E,E, I} + {E, I, E} ⊆ I. It is known that I is
an ideal if and only if {E,E, I} ⊆ I or {E, I, E} ⊆ I.
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Theorem 2.5. Every quotient of an extremally rich JB∗-triple is extremally rich.
Let (Ej) be a family of JB∗-triples. Then an element a = (aj) ∈ E = ⊕∞

j Ej is
BP quasi-invertible if and only if aj is BP quasi-invertible in Ej for every j.
Consequently, the `∞-sum E = ⊕∞

j Ej is an extremally rich JB∗-triple if and only
if each Ej is extremally rich.

Proof. Let E be an extremally rich JB∗-triple, and let J be a closed ideal of E.
Let π : E → E/J , π(x) = x+ J , denote the canonical projection of E onto E/J .
Since π is a surjective triple homomorphism, it follows that π(E−1

q ) ⊆ (E/J)−1
q

(see [20, Theorem 3]). Let us take an element x ∈ E. By hypothesis, there exists
a sequence (xn) in E−1

q converging to x in the norm topology of E. Since π is

continuous, π(xn) → π(x) in norm, which proves that π(x) ∈ (E/J)−1
q , and hence

(E/J)−1
q = E/J .

Now, let (Ej)j∈I be an indexed family of JB∗-triples. We set E = ⊕∞
j Ej.

Suppose that a = (aj) ∈ E is BP quasi-invertible. Since for each j0, the canonical
projection πj0 : ⊕∞

j∈IEj → Ej0 is a surjective triple homomorphism, we deduce

that aj0 = πj0(a) ∈ (Ej0)
−1
q . Suppose now that aj is BP quasi-invertible in Ej

for every j. Consider bj ∈ Ej satisfying B(aj, bj) = 0 on Ej and (b†j) ∈ E (cf.
Proposition 2.3). Then B((aj), (bj)) = 0 on E, which shows that a = (aj) ∈ E is
BP quasi-invertible in E. The final statement follows from the above. �

Theorem 3.6 in [11] establishes that, for every JB∗-triple E with ∂e(E1) 6= ∅,
the inequalities

1 + ‖a‖ ≥ dist
(
a, ∂e(E1)

)
≥ max

{
1 + αq(a), ‖a‖ − 1

}
hold for every a in E\E−1

q . Under the additional hypothesis that E is extremally
rich, we can obtain an optimal computation of the distance from an element in
E to the set ∂e(E1) of extreme points of E1.

Theorem 2.6. Let E be an extremally rich JB∗-triple and let x ∈ E\E−1
q . Then

dist(x, ∂e(E1)) = max{1, ‖x‖−1}. In particular, if x ∈ E1, then dist(x, ∂e(E1)) =
1. Consequently, for each x in E we have

dist
(
x, ∂e(E1)

)
=

{
max{1−mq(x), ‖x‖ − 1} if x ∈ E−1

q ,

max{1, ‖x‖ − 1} if x /∈ E−1
q ,

where mq(x) = dist(x,E\E−1
q ).

Proof. Since the JB∗-triple E is extremally rich, αq(x) = dist(x,E−1
q ) = 0 for all

x ∈ E. Theorem 3.6 in [11] implies that

dist
(
x, ∂e(E1)

)
≥ max

{
1 + αq(x), ‖x‖ − 1

}
= max

{
1, ‖x‖ − 1

}
.

Applying [20, Theorem 27], we obtain dist(x, ∂e(E1)) ≤ max{1, ‖x‖ − 1} for all

x ∈ E−1
q = E. Combining the above inequalities, we have

dist
(
x, ∂e(E1)

)
= max

{
1, ‖x‖ − 1

}
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for all x ∈ E\E−1
q . The second statement of the theorem follows immediately

when ‖x‖ ≤ 1. The final statement follows form the first estimation and from [11,
Proposition 3.2]. �

We have already noted that from the geometric point of view of Banach
space theory, a C∗-algebra is extremally rich if and only if it has the (uniform)
λ-property (see [3, Section 3] and [4, Theorem 3.7]). We do not know if this state-
ment remains true for JB∗-triples. We know that every JBW∗-triple satisfies the
uniform λ-property (see [11]). For an element a in a JB∗-triple E, we also know

that λ(a) = 1+mq(a)

2
whenever a is a BP quasi-invertible element in E1 (see [11,

Theorem 3.4]). If we also assume that ∂e(E1) 6= ∅, then the inequalities

1 + ‖a‖ ≥ dist
(
a, ∂e(E1)

)
≥ max

{
1 + αq(a), ‖a‖ − 1

}
hold for every a in E\E−1

q (see [11, Theorem 3.6]), and hence

λ(a) ≤ 1

2

(
1− αq(a)

)
, (2.1)

for every a ∈ E1\E−1
q . We now prove that the λ-function takes only values greater

than or equal to 1/2 on the open unit ball of an extremally rich JB∗-triple.

Corollary 2.7. Let a be an element in the open unit ball of an extremally rich
JB∗-triple. Suppose that a is not BP quasi-invertible. Then λ(a) = 1/2.

Proof. Let us pick a real number t < 1/2. Clearly β = 1/t > 2. Since ‖a‖ < 1
and a ∈ E\E−1

q , we deduce, via Theorem 2.6, that

dist
(
βa, ∂e(E1)

)
= max

{
1, β‖a‖ − 1

}
< β − 1.

Therefore, there exists e ∈ ∂e(E1) satisfying ‖βa − e‖ < β − 1. The element
y = 1

β−1
(βa−e) lies in the open unit ball of E, and we can write βa = e+(β−1)y,

and hence a = 1
β
e + β−1

β
y = te + (1 − t)y, which proves that λ(a) ≥ t. The

arbitrariness of t shows that 1/2 ≤ λ(a). (The final statement follows from [11,
Corollary 3.7].) �

Remark 2.8. Let E be a JB∗-triple satisfying the uniform λ-property of Aron and
Lohman with 1/2 ≤ inf{λ(x) : x ∈ E1}. We can assure, via (2.1), that αq(a) = 0
for every a ∈ E1\E−1

q . This shows that E is extremally rich.

In [21, Section 4], the authors introduce the so-called Λ-condition in JB∗-triples.
A JB∗-triple E satisfies the Λ-condition if, for every v ∈ ∂e(E1) and every y ∈
(E2(v))1\E−1

q with λ(y) = 0, we have αq(y) = 1. We will consider the following
stronger variant: A JB∗-triple E satisfies the strong-Λ-condition if, for each y ∈
E1\E−1

q with λ(y) = 0, we have αq(y) = 1. Every C∗-algebra A satisfies λ(a) =

(1/2)(1 − αq(a)) for every a ∈ A1\A−1
q (see [4, Theorem 3.7]). Therefore every

C∗-algebra fulfills the strong-Λ-condition. A similar identity and statement is also
valid for every JBW∗-triple (see [11, Theorem 4.2]).

Clearly, if E satisfies the strong-Λ-condition, then λ(a) > 0 for every a ∈
E1\E−1

q with αq(a) < 1. The following result is a consequence of this fact, Corol-
lary 2.7, and the comments preceding it (see [11, Theorems 3.4, 3.6]).
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Corollary 2.9. Every extremally rich JB∗-triple satisfying the strong-Λ-condition
satisfies the Λ-property of Aron and Lohman.

3. Quadratic conorm in extremally rich JB∗-triples

As mentioned in the Introduction, the quadratic conorm, γq(a), of an element
a in a JB∗-triple E is defined as the reduced minimum modulus of the conjugate
linear operator Q(a) (see [5, Definition 3.1]); that is,

γq(a) := γ
(
Q(a)

)
= inf

{∥∥Q(a)(x)
∥∥ : dist

(
x, ker

(
Q(a)

))
≥ 1

}
.

In [5], the authors established that γq(a) = 1
‖a†‖2 whenever a is von Neumann

regular (where a† is the unique generalized inverse of a) and γq(a) = 0 otherwise
(see [5, Theorem 3.4 and its proof]).

Theorem 8 in [20] asserts that the set E−1
q of all BP quasi-invertible elements

in a JB∗-triple E is open in the norm topology. A more explicit measure of this
fact is given in the next result.

Proposition 3.1. Let a be a BP quasi-invertible element in a JB∗-triple E.
Suppose that b is an element in E satisfying ‖a − b‖ < γq(a)1/2. Then b is BP
quasi-invertible.

Proof. We recall that a being BP quasi-invertible implies that e = r(a) ∈ ∂e(E1),
and a is positive and invertible in the JB∗-algebra (E2(e), ◦e, ∗e). We further know
that it is von Neumann regular and its generalized inverse a† ∈ E2(e) coincides
with its inverse in this JB∗-algebra (cf. [5, proof of Theorem 3.4]). Let c = a1/2

denote the square root of a in E2(e). We observe that a1/2 is positive and invertible
in E2(e). Moreover, the inverse of a1/2, (a1/2)−1, coincides with (a1/2)† = (a†)1/2,
where the latter is the square root of a† in E2(e).

Since ‖a− b‖ < γq(a)1/2, by Peirce rules {c†, P1(e)(b), c
†} = 0, so∥∥e−Q(c†)

(
P2(e)(b)

)∥∥ =
∥∥Q(c†)(a− b)

∥∥ ≤
∥∥Q(c†)

∥∥‖a− b‖ < ‖c†‖2
(
γq(a)

)1/2
= ‖a†‖γq(a)1/2

=
(
see [5, Theorem 3.4 and its proof]

)
= 1.

Since e is the unit of E2(e), we deduce that Q(c†)(P2(e)(b)) is invertible in E2(e).
It is well known from the theory of invertible elements in JB∗-algebras that
Q(c†)|E2(e) : E2(e) → E2(e) is invertible as a mapping from E2(e) into itself with
inverse Q(c)|E2(e) : E2(e) → E2(e) (see [6, Section 4.1.1]). Since Q(c†)(P2(e)(b))
is invertible, we deduce that P2(e)(b) = Q(c)Q(c†)(P2(e)(b)) is invertible in E2(e)
(see [6, Theorem 4.1.3]). Finally, Lemma 2.2 in [11] implies that b ∈ E−1

q , as we
desired. �

The next lemma gathers some consequences of results in [11, Section 3].

Lemma 3.2. Let E be a JB∗-triple. Then the inequality∣∣γq(a)− γq(b)
∣∣ < (

‖a‖+ ‖b‖
)
‖a− b‖,

holds for all a and b in E−1
q .
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Proof. It is known that γq(x) = mq(x)
2 ≤ ‖x‖2 and that |mq(x)−mq(y)| ≤ ‖x−y‖

for every x, y ∈ E−1
q (see [11, Theorem 3.1 and subsequent comments]). Therefore,∣∣γq(a)− γq(b)

∣∣ = ∣∣mq(a)
2 −mq(b)

2
∣∣

=
∣∣mq(a)−mq(b)

∣∣∣∣mq(a) +mq(b)
∣∣

< ‖a− b‖
(
‖a‖+ ‖b‖

)
. �

It is proved in [5, Theorem 3.13] that the quadratic conorm, γq(·), in a JB∗-triple
E is upper semicontinuous on E\{0}. In the setting of extremally rich JB∗-triples,
we can characterize now the precise points at which γq(·) is continuous.

Theorem 3.3. Let E be an extremally rich JB∗-triple. Then the quadratic conorm
γq(·) is continuous at a point a ∈ E if and only if either a is not von Neumann
regular (i.e., γq(a) = 0) or a is BP quasi-invertible.

Proof. The upper semicontinuity of γq(·) implies that it is continuous at every
point a ∈ E which is not von Neumann regular. If a ∈ E−1

q , the continuity of
γq(·) at a follows from Proposition 3.1 and Lemma 3.2.

Suppose that γq(·) is continuous at a and that a is von Neumann regular
(i.e., γq(a) > 0). In this case, Q(a)(E) is norm-closed, or equivalently, γq(a) =
γ(Q(a)) > 0 (see [5, Corollary 2.4 and proof of Theorem 3.4]). The mapping
x 7→ γq(x)1/2 is continuous at a. So there exists δ > 0 such that

‖a− b‖ < δ ⇒
∣∣γq(a)1/2 − γq(b)1/2

∣∣ < γq(a)1/2

2
;

that is, γq(b)1/2 > γq(a)1/2

2
, whenever ‖a− b‖ < δ. Extremal richness of E implies

that E−1
q = E. Thus, there is c ∈ E−1

q with ‖a−c‖ < min{δ, γ
q(a)1/2

2
}. In particular

‖a − c‖ < δ, that is, γq(c)1/2 > γq(a)1/2

2
> ‖a − c‖. Proposition 3.1 above proves

that a ∈ E−1
q . �

Remark 3.4. In [5, Remark 3.18] it is shown that the quadratic conorm γq(·)
of a JB∗-triple E is continuous at every element a ∈ E for which Q(a) is left-
or right-invertible in B(E). In the same remark it is also asked whether these
points are the only nontrivial continuity points of γq(·). Theorem 3.3 character-
izes the continuity points of the quadratic conorm in the class of extremally rich
JB∗-triples (a class that contains all JBW∗-triples). Theorem 3.3 shows the ex-
istence of points x satisfying that the quadratic conorm is continuous at x, but
Q(x) is neither left- nor right-invertible. For example, when E is an extremally
rich JB∗-triple and e is a complete tripotent with E1(e) 6= {0}, then the quadratic
conorm is continuous at e, but Q(e) is neither left- nor right-invertible.

The arguments in the second part of the proof of Theorem 3.3 are also valid
and prove the following.

Proposition 3.5. Let (an) be a sequence of BP quasi-invertible elements in a
JB∗-triple E. Suppose that (an) converges in norm to some element a in E, and
let γq(an) → γq(a) > 0. Then a is BP quasi-invertible.
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Our next result is a consequence of [5, Theorem 3.16, Corollary 3.17] and the
previous Proposition 3.5.

Corollary 3.6. Let (an) be a sequence of BP quasi-invertible elements in a
JB∗-triple E. Suppose that (an) converges in norm to some element a in E. Then
the following assertions are equivalent:

(a) (a†n) is a bounded sequence in E,
(b) γq(an) → γq(a) > 0.

Furthermore, if any of the above statements holds, then a is BP quasi-invertible
and ‖a†n − a†‖ → 0.

Proof. (a) ⇒ (b) Suppose that (a†n) is a bounded sequence in E. Corollary 3.17
in [5] implies that a is von Neumann regular (i.e., γq(a) > 0). It follows from [5,
Theorem 3.16] (d) ⇒ (c) that γq(an) → γq(a) > 0.

(b) ⇒ (a) Suppose that γq(an) → γq(a) > 0. In particular, a is von Neumann
regular. The desired statement follows from [5, Theorem 3.16] (c) ⇒ (d).

The final statement is a consequence of Proposition 3.5 and [5, Theorem 3.16].
�

The result in Theorem 3.3 is new, even in the case of C∗-algebras. According
to the notation of Harte and Mbekhta, who introduced the notions of left and
right conorms for C∗-algebras in [10], the left conorm, γ(a), of an element a in a
C∗-algebra A is given by

γ(a) = γleft(a) = γ(La) = inf
{ ‖ax‖
d(x, ker(La))

: x /∈ ker(La)
}
,

where La is the left multiplication mapping by a; that is, La(x) = ax (x ∈ A).
The right conorm is similarly defined. Theorem 4 in [10] shows that

γ(a)2 = γ(aa∗) = γ(a∗a) = γright(a)2 = inf
{
t : t ∈ σ(aa∗)\{0}

}
,

where σ(aa∗) denotes the spectrum of aa∗.
While Harte and Mbekhta established that the conorm γ(·) of a C∗-algebra is

upper semicontinuous (see [10, Theorem 7]), they also showed in [10, Theorem 9]
that the reduced minimum modulus is always continuous on the open set of all
bounded-below operators (resp., the set of all almost-open operators) between a
pair of normed spaces. By the upper semicontinuity of γ(·), the conorm is contin-
uous at elements with no generalized inverses (i.e., at elements a with γ(a) = 0).
When A = B(H), the C∗-algebra of all bounded linear operators on a complex
Hilbert space H, then these results cover all continuity points. The general case
is left as an open problem. For a general C∗-algebra A, Corollary 4.1 in [5] proves
that γq(a) = γ(a)2, for all a ∈ A. Theorem 3.3 particularizes in the following
result, which provides additional information to the problem left open by Harte
and Mbekhta.

Corollary 3.7. Let A be an extremally rich C∗-algebra. Then the conorm of A
is continuous at a point a ∈ A if and only if a is not von Neumann regular (i.e.,
γ(a) = 0) or a is quasi-invertible.
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