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DENSE BANACH SUBALGEBRAS OF THE NULL SEQUENCE
ALGEBRA WHICH DO NOT SATISFY A DIFFERENTIAL

SEMINORM CONDITION
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Abstract. We construct dense Banach subalgebras A of the null sequence
algebra c0 which are spectral-invariant but do not satisfy the D1-condition
‖ab‖A ≤ K(‖a‖∞‖b‖A+‖a‖A‖b‖∞) for all a, b ∈ A. The sequences in A vanish
in a skewed manner with respect to an unbounded function σ : N → [1,∞).

1. Introduction

We say that A is a dense Banach subalgebra of a C?-algebra B if A is a dense
subalgebra of B, and A is a Banach algebra in some norm ‖·‖A, which is stronger
than the restriction to A of the norm on B. We say that A is spectral-invariant
in B if the quasi-invertible elements of A are precisely those elements of A which
are quasi-invertible in B. Recall that for a, b ∈ A, a ◦ b = a + b − ab, and b is
a quasi-inverse for a if and only if a ◦ b = b ◦ a = 0 (see [4, Definition 2.1.1]).
Dense subalgebras of a C?-algebra which are spectral-invariant or which satisfy a
differential seminorm condition such as D1 are used to give differential structure
to the C?-algebra, and they also have applications in noncommutative differential
geometry (see [1], [2]).

Let c0 be the C
?-algebra of complex-valued vanishing sequences, or null sequen-

ces, on the natural numbers N = {0, 1, 2, . . . }, with pointwise multiplication and
involution. For n ∈ N, let en : N → {0, 1} be the unit step function at n, where
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en(k) = 1 if k = n and en(k) = 0 for k ∈ N \ {n}. Let cf denote the linear
span of {en}∞n=0, which is a dense ideal in c0. The following result shows that it
is relatively easy for a dense subalgebra of c0 to be spectral-invariant.

Theorem 1.1. Let A be a dense Banach subalgebra of c0. Assume that the sub-
algebra of finite support functions cf is a dense subset of A. Then A is spectral-
invariant in c0.

Proof. Let AqG denote the group of quasi-invertible elements of A, with group
operation ◦ and identity 0. Let a ∈ A \ AqG. Then A ◦ a cannot intersect AqG,
or else a would have a quasi-inverse. So (a + A(1 − a)) ∩ AqG = ∅. Note that
J = A(1 − a) is an ideal in A, and is proper since J ∩ (AqG − a) = ∅. Since A
is a Banach algebra, AqG and its translate AqG − a are open sets in A. Hence J
cannot be dense in A, and cf * J , using the hypothesis. Since J is a linear space,
there is some n0 ∈ N for which en0 /∈ J . Since J is a cf -module not containing
en0 , every element of J must vanish at n0. This can only happen if a(n0) = 1.
Hence a is not quasi-invertible in c0. �

A dense Banach subalgebra A is a D1-subalgebra of B if, for some constant
KA > 0, the D1-condition

‖ab‖A ≤ KA

{
‖a‖A‖b‖B + ‖a‖B‖b‖A

}
(1.1)

is satisfied for all a, b ∈ A, where ‖ · ‖A is the norm on A and ‖ · ‖B is the norm on
B (see [3]). Being a D1-subalgebra implies spectral invariance (see [3, Theorem 5
and Lemma 4]), which raises the question: Is every dense Banach subalgebra of the
null sequence algebra, which satisfies the hypotheses of Theorem 1.1, alsoD1? The
purpose of the present paper is to provide a counterexample. To this end, we think
of c0 as C2-valued sequences vanishing at infinity, c0(N,C2), where C2 denotes
the 2-dimensional commutative C?-algebra, with coordinatewise multiplication
and involution. We identify the two C?-algebras using the isomorphism θ : c0 ∼=
c0(N,C2),

θ(f)(n) =
(
f(2n), f(2n+ 1)

)
, (1.2)

for f ∈ c0, n ∈ N. If A is a dense subalgebra, D1 is satisfied along each
C2-summand because it is finite-dimensional. In Section 2, we construct sub-
multiplicative norms ‖ · ‖n on the nth copy of C2, which make the D1-constants
Kn become unbounded as n increases. In Section 3, we define the Banach algebra
norm ‖ · ‖A as the sup of these C2-norms to construct the counterexample.

2. Some norms on C2

Let r ∈ R, and let σ be a constant in [1,∞). Let ‖~v‖max = max{|x|, |y|},
~v = (x, y) ∈ C2, denote the C?-norm on C2. Define a seminorm on C2 by

‖~v‖r,σ = ‖Tr,σ~v‖max = max
{
|x+ ry|, σ|y − rx|

}
, (2.1)

where Tr,σ is the (2× 2)-matrix (
1 r

−σr σ

)
. (2.2)
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Note that ∆ = det(Tr,σ) = σ(1 + r2) > 0, so Tr,σ is invertible, and ‖ · ‖r,σ is a
norm on C2.

We want to find the smallest constant D > 0 which satisfies ‖~v‖max ≤ D‖~v‖r,σ
for all ~v ∈ C2. Then D is the norm of

T−1
r,σ =

1

∆

(
σ −r
σr 1

)
as an operator on C2 with max-norm,

D = ‖T−1
r,σ ‖op = max

{∥∥(σ,−r)
∥∥
1
,
∥∥(σr, 1)∥∥

1

}
/∆

=
1

σ(1 + r2)
max

{
σ + |r|, σ|r|+ 1

}
=

1

1 + r2
max

{
1 + |r|/σ, |r|+ 1/σ

}
(2.3)

≤ 1

1 + r2
max

{
1 + |r|, |r|+ 1

}
since σ ≥ 1

=
1 + |r|
1 + r2

,

since the dual of the max-norm is the `1-norm. As r ranges over all real numbers,
the last expression in (2.3) is bounded by 1.21.

Next we want to find a constant C > 0 satisfying ‖~v1∗~v2‖r,σ ≤ C‖~v1‖r,σ‖~v2‖r,σ,
for all ~v1, ~v2 ∈ C2, where ~v1∗~v2 denotes pointwise multiplication. This is equivalent
to finding the norm of the operator ~u1 ⊗ ~u2 7→ Tr,σ(T

−1
r,σ ~u1 ∗ T−1

r,σ ~u2) from C2 ⊗C2

to C2. The operator is 1
∆2 times(

1 r
−σr σ

)((
σ −r
σr 1

)(
u11

u12

)
∗
(
σ −r
σr 1

)(
u21

u22

))
=

(
1 r

−σr σ

)(
(σu11 − ru12)(σu21 − ru22)
(σru11 + u12)(σru21 + u22)

)

=

(
1 r

−σr σ

)(
σ2 −rσ −rσ r2

σ2r2 σr σr 1

)
u11u21

u11u22

u12u21

u12u22



=

(
σ2(1 + r3) σ(r2 − r) σ(r2 − r) r2 + r
σ3(r2 − r) σ2(r2 + r) σ2(r2 + r) σ(1− r3)

)
u11u21

u11u22

u12u21

u12u22

 .

So the constant C is

C = max
{∥∥(σ2(1 + r3), σ(r2 − r), σ(r2 − r), r2 + r

)∥∥
1
,∥∥(σ3(r2 − r), σ2(r2 + r), σ2(r2 + r), σ(1− r3)

)∥∥
1

}
/∆2

(2.4)

=
σmax{ |1+r3|

σ
+ 2|r2−r|

σ2 + |r2+r|
σ3 , |r2 − r|+ 2|r2+r|

σ
+ |1−r3|

σ2 }
(1 + r2)2
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≤ σmax{|1 + r3|+ 2|r2 − r|+ |r2 + r|, |r2 − r|+ 2|r2 + r|+ |1− r3|}
(1 + r2)2

,

where the first step used the fact that the dual of the max-norm is the `1-norm,
and the last step used that σ ≥ 1. As r ranges over all real numbers, the last
expression in (2.4) is bounded by 2σ.

It follows that 2σ‖~v1 ∗ ~v2‖r,σ ≤ (2σ‖~v1‖r,σ)(2σ‖~v2‖r,σ), for ~v1, ~v2 ∈ C2. By the
preceding paragraph, ‖~v‖max ≤ D‖~v‖r,σ < 2‖~v‖r,σ = 1

σ
(2σ‖~v‖r,σ), for ~v ∈ C2.

3. The Banach algebras Ar,σ

In this section, we pass from the case of a single copy of C2 (see Section 2) to
infinitely many copies of C2. Let r ∈ R, and let σ be any unbounded function from
N to [1,∞). Define an infinite matrix Sr,σ as the direct sum of (2× 2)-matrices,

Sr,σ =
∞⊕
n=0

2σ(n)Tr,σ(n),

where each Tr,σ(n) is defined as in (2.2). Let Ar,σ = {f ∈ c0 | Sr,σθf ∈ c0(N,C2)},
where θ was defined in the Introduction (see (1.2)). By [5, Theorem 4.3.1], Ar,σ

is complete in the norm

‖f‖r,σ = ‖Sr,σθf‖c0(N,C2) =
∞
sup
n=0

{
2σ(n)

∥∥(f(2n), f(2n+ 1)
)∥∥

r,σ(n)

}
, (3.1)

where each ‖ · ‖r,σ(n) is defined as in (2.1), and where by the final remarks of
Section 2, ‖fg‖r,σ ≤ ‖f‖r,σ‖g‖r,σ and ‖f‖∞ ≤ ‖f‖r,σ, for f, g ∈ Ar,σ. Since
Sr,σθf ∈ c0(N,C2) for f ∈ Ar,σ, then

0 = lim
n→∞

∥∥(Sr,σθf)(n)
∥∥
C2 = lim

n→∞
2σ(n)

∥∥(f(2n), f(2n+ 1)
)∥∥

r,σ(n)
.

For ε > 0, let Nε be large enough so that the argument of the limit is smaller
than ε if n > Nε. Then for n ≥ Nε,∥∥f −

(
f(0), . . . , f(2n+ 1), 0, 0, . . .

)∥∥
r,σ

=
∥∥( 0, . . . , 0︸ ︷︷ ︸

2n+ 2 zeros

, f(2n+ 2), . . .
)∥∥

r,σ

= sup
k>n

2σ(k)
∥∥(f(2k), f(2k + 1)

)∥∥
r,σ(k)

< ε,

using the definition of ‖ · ‖r,σ (3.1). It follows that cf is dense in Ar,σ, and we can
apply Theorem 1.1 to see that Ar,σ is spectral-invariant in c0.

Theorem 3.1. The dense Banach subalgebra Ar,σ of c0 is not a D1-subalgebra of
c0 for r ∈ R \ {0, 1}.

Proof. For n ∈ N, define an ∈ Ar,σ by

an = (0, 0, . . . , 0, 0︸ ︷︷ ︸
2n zeros

, 1, r, 0, 0, . . . ),
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where an(2n) = 1 and an(2n+ 1) = r are the only nonzero components. Then

‖an‖r,σ = 2σ(n)(1 + r2),

‖a2n‖r,σ = 2σ(n)max
(
|1 + r3|, σ(n)|r2 − r|

)
,

‖an‖∞ = max
(
1, |r|

)
.

If K > 0 were a constant satisfying the D1-condition (1.1) for Ar,σ in c0, then

K ≥ ‖a2n‖r,σ
2‖an‖∞‖an‖r,σ

=
max(|1 + r3|, σ(n)|r2 − r|)

2(1 + r2)max(1, |r|)

≥ σ(n)|r2 − r|
2(1 + r2)max(1, |r|)

must hold for each n for which σ(n)|r2 − r| ≥ |1 + r3|. No such constant K can
exist if r 6= 1 or 0, since σ is unbounded. �

Remark 3.2. Note that Ar,σ is a Banach ?-algebra. The norms defined on C2

(2.1) and the norm on Ar,σ (3.1) are both left unchanged by the ?-operation of
pointwise complex conjugation.

Remark 3.3. In the cases r = 0 and r = 1, it can be shown that Ar,σ is a
D1-subalgebra of c0. Further, Ar,σ is a dense Banach ideal in c0 if r = 0, but not
if r = 1.
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1. S. J. Bhatt, Smooth Fréchet subalgebras of C?-algebras defined by first order differential
seminorms, Proc. Indian Acad. Sci. Math. Sci. 126 (2016), no. 1, 125–141. Zbl 06563136.
MR3470819. DOI 10.1007/s12044-016-0265-8. 686

2. A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994. Zbl 0818.46076.
MR1303779. 686

3. E. Kissin and V. S. Shulman, Differential properties of some dense subalgebras of
C?-algebras, Proc. Edinb. Math. Soc. (2) 37 (1994), no. 3, 399–422. Zbl 0808.46066.
MR1297311. DOI 10.1017/S0013091500018873. 687

4. T. W. Palmer, Banach Algebras and the General Theory of ?-algebras, I: Algebras and
Banach Algebras, Encyclopedia Math. Appl. 49, Cambridge Univ. Press, Cambridge, 1994.
Zbl 0809.46052. MR1270014. DOI 10.1017/CBO9781107325777. 686

5. A. Wilansky, Summability through Functional Analysis, North-Holland Math. Stud. 85,
North-Holland, Amsterdam, 1984. Zbl 0531.40008. MR0738632. 689

Department of Statistics and Biostatistics, California State University East
Bay, 25800 Carlos Bee Boulevard, Hayward, CA 94542, USA.

E-mail address: lschweitzer@horizon.csueastbay.edu; lsch@svpal.org

http://www.emis.de/cgi-bin/MATH-item?06563136
http://www.ams.org/mathscinet-getitem?mr=3470819
http://dx.doi.org/10.1007/s12044-016-0265-8
http://www.emis.de/cgi-bin/MATH-item?0818.46076
http://www.ams.org/mathscinet-getitem?mr=1303779
http://www.emis.de/cgi-bin/MATH-item?0808.46066
http://www.ams.org/mathscinet-getitem?mr=1297311
http://dx.doi.org/10.1017/S0013091500018873
http://www.emis.de/cgi-bin/MATH-item?0809.46052
http://www.ams.org/mathscinet-getitem?mr=1270014
http://dx.doi.org/10.1017/CBO9781107325777
http://www.emis.de/cgi-bin/MATH-item?0531.40008
http://www.ams.org/mathscinet-getitem?mr=0738632
mailto:lschweitzer@horizon.csueastbay.edu
mailto:lsch@svpal.org

	1 Introduction
	2 Some norms on C2
	3 The Banach algebras Ar, sigma
	References
	Author's addresses

