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Abstract. For Banach spaces X and Y , let Kw∗(X∗, Y ) denote the space
of all w∗ − w continuous compact operators from X∗ to Y endowed with the
operator norm. A Banach space X has the BD property if every limited subset
of X is relatively weakly compact. We prove that if X has the Gelfand–Phillips
property and Y has the BD property, then Kw∗(X∗, Y ) has the BD property.

1. Introduction and preliminaries

A bounded subset A of X is called a limited subset of X if every w∗-null
sequence (x∗n) in X∗ tends to 0 uniformly on A; that is,

lim
n

(
sup

{∣∣x∗n(x)
∣∣ : x ∈ A

})
= 0.

If A is a limited subset of X, then T (A) is relatively compact for any operator
T : X → c0 (see [1], [14]). A Banach space X has the BD property (see [1]) if
every limited subset of X is relatively weakly compact. The space X has property
BD whenever X is weakly sequentially complete or X does not contain `1 (see
[1], [14]).

If X has the BD property, then Lp(µ,X), 1 ≤ p < ∞, also has the BD
property (see [5], [11]). If Lw∗(X∗, Y ) = Kw∗(X∗, Y ) and both X and Y have the
BD property, then Kw∗(X∗, Y ) has the BD property (see [8]).

In this note, we study whether the space Kw∗(X∗, Y ) has the BD property
when X and Y have the BD property. We give some applications to the spaces
(N1(X,Y ))∗ and we prove that in some cases, if L(X,Y ) has the BD property,
then L(X,Y ) = K(X,Y ).
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Throughout this paper, X and Y will denote Banach spaces. The unit ball of
X will be denoted by BX , and X∗ will denote the topological dual of X. The
canonical unit vector basis of c0 will be denoted by (en). An operator T : X → Y
will be a continuous and linear function. The set of all operators, weakly compact
operators, and compact operators from X to Y will be denoted by L(X,Y ),
W (X,Y ), and K(X,Y ). The w∗ −w continuous (resp., compact) operators from
X∗ to Y will be denoted by Lw∗(X∗, Y ) (resp., Kw∗(X∗, Y )). The injective tensor
product of two Banach spaces X and Y will be denoted by X ⊗ε Y . The space
X ⊗ε Y can be embedded into the space Kw∗(X∗, Y ) by identifying x ⊗ y with
the rank 1 operator x∗ → 〈x∗, x〉y.

A bounded subset S of X is said to be weakly precompact provided that every
sequence from S has a weakly Cauchy subsequence. Every limited set is weakly
precompact (e.g., see [1]).

The space X has the Gelfand–Phillips (GP) property if every limited subset of
X is relatively compact. The following spaces have the Gelfand–Phillips property:
Schur spaces; spaces with w∗-sequential compact dual unit balls; separable spaces;
reflexive spaces; spaces whose duals do not contain `1; subspaces of weakly com-
pactly generated spaces; spaces whose duals have the Radon–Nikodym property
(see [1], [14, p. 31]).

A topological space S is called dispersed (or scattered) if every nonempty closed
subset of S has an isolated point. A compact Hausdorff space K is dispersed if
and only if `1 6↪→ C(K).

2. The BD property in Kw∗(X∗, Y )

Let wot denote the weak operator topology on L(X,Y ): Tn → T (wot) pro-
vided that 〈Tn(x), y∗〉 → 〈T (x), y∗〉 for all x ∈ X and y∗ ∈ Y ∗ (see [10]). In [8,
Lemma 4.7] it is shown that if (Tn) is a sequence in Kw∗(X∗, Y ) such that Tn → T
(wot), where T ∈ Kw∗(X∗, Y ), then Tn → T weakly.

We note that if Kw∗(X∗, Y ) has the BD (resp., the Gelfand–Phillips) property,
then X and Y have it too, since this property is inherited by closed subspaces.

We say that an operator T : X → Y is limited weakly completely continuous if
it maps weakly Cauchy limited sequences to weakly convergent sequences.

Suppose that X and Y are Banach spaces and that M is a closed subspace of
Lw∗(X∗, Y ). If x∗ ∈ X∗ and y∗ ∈ Y ∗, the evaluation operators φx∗ : M → Y and
ψy∗ : M → X are defined by

φx∗(T ) = T (x∗), ψy∗(T ) = T ∗(y∗), T ∈M.

Theorem 2.1. Suppose that X has the Gelfand–Phillips property. If the evalua-
tion operator φx∗ : Kw∗(X∗, Y ) → Y is limited weakly completely continuous for
each x∗ ∈ X∗, then Kw∗(X∗, Y ) has the BD property.

Proof. Let H be a limited subset of M = Kw∗(X∗, Y ). For fixed y∗ ∈ Y ∗, the
map ψy∗ : M → X is a bounded operator. Then H∗(y∗) is a limited subset of X,
and thus is relatively compact.

Let (Tn) be a sequence in H. Since limited sets are weakly precompact (see
[1]), without loss of generality we can assume that (Tn) is weakly Cauchy. For
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each y∗ ∈ Y ∗, (T ∗
n(y∗)) is weakly Cauchy and relatively compact, and hence

convergent. Let x∗ ∈ X∗. Since φx∗ : M → Y is limited weakly completely
continuous, (Tn(x∗)) is weakly convergent.

Define T : X∗ → Y by T (x∗) = w− limTn(x∗), x∗ ∈ X∗. Since Tn(x∗)
w→ T (x∗),

T ∗
n(y∗)

w→ T ∗(y∗) for each y∗ ∈ Y ∗. Then T ∗(y∗) ∈ X for each y∗ ∈ Y ∗, and thus
T is w∗ − w continuous.

We will show that T ∗(BY ∗) is a limited subset of X. Let (y∗i ) be a sequence
in BY ∗ and (x∗i ) be a w∗-null sequence in X∗. Define L : Kw∗(X∗, Y ) → c0 by
L(S) = (〈x∗i , S∗(y∗i )〉)i, for S ∈ Kw∗(X∗, Y ). If S ∈ Kw∗(X∗, Y ), then〈

x∗i , S
∗(y∗i )

〉
=

〈
S(x∗i ), y

∗
i

〉
≤

∥∥S(x∗i )
∥∥ → 0.

Thus S is a well-defined operator.
Since (L(Tn)) is a limited subset of c0, it is relatively compact [1]. Note that

limn〈x∗i , T ∗
n(y∗i )〉 = 〈x∗i , T ∗(y∗i )〉 for all i. Therefore limi〈x∗i , T ∗(y∗i )〉 = 0. Then

T ∗(BY ∗) is a limited subset of X, thus relatively compact. Then T ∗, thus T , is
compact. Hence (Tn) → T weakly by [8, Lemma 4.7]. Thus H is relatively weakly
compact. �

Corollary 2.2. If X has the Gelfand–Phillips property and Y has the BD prop-
erty, then Kw∗(X∗, Y ) has the BD property.

Proof. Since Y has the BD property, φx∗ : Kw∗(X∗, Y ) → Y is limited weakly
completely continuous for each x∗ ∈ X∗. Apply Theorem 2.1. �

We recall the following well-known isometries:

(1) Lw∗(X∗, Y ) ' Lw∗(Y ∗, X), Kw∗(X∗, Y ) ' Kw∗(Y ∗, X) (T → T ∗),
(2) W (X,Y ) ' Lw∗(X∗∗, Y ) and K(X,Y ) ' Kw∗(X∗∗, Y ) (T → T ∗∗).

Corollary 2.3. If X has the BD property and Y has the Gelfand–Phillips prop-
erty, then Kw∗(X∗, Y ) has the BD property.

Corollary 2.4. Suppose that X has the Gelfand–Phillips property and Y has
the BD property (or X has the BD property and Y has the Gelfand–Phillips
property). Then X ⊗ε Y has the BD property.

Proof. By Corollary 2.2 (or Corollary 2.3), Kw∗(X∗, Y ) has the BD property.
Hence X ⊗ε Y has the BD property, since property BD is inherited by closed
subspaces. �

Example 2.5. The space L1(µ), where µ is a finite measure, has the Gelfand–
Phillips property. Suppose that X has the BD property. It is known that L1(µ)⊗ε

X ' Kw∗(X∗, L1(µ)) (see [3, Theorem 5]). By Corollary 2.3, this space has the
BD property.

Example 2.6. The space c0 has the Gelfand–Phillips property (see [1]). Suppose
that X has the BD property. It is known that c0⊗εX ' c0(X), the Banach space
of sequences in X that converge to zero, with the norm ‖(xn)‖ = supn ‖xn‖ (see
[13, p. 47]). Then c0 ⊗ε X has the BD property by Corollary 2.4.
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Definition 2.7. A subset S of a topological space T = (T, ρ) is ρ-conditionally
sequentially compact (shortly, (ρ-) CSC) if every sequence in S has a subsequence
converging to a limit in S (see [4]). A topological space T satisfies condition
(DCSC) if it has a dense conditionally sequentially compact subset S (see [4]).

Corollary 2.8.

(i) If K is a compact Hausdorff topological space satisfying (DCSC) and Y
has the BD property, then C(K,Y ) has the BD property.

(ii) If X contains no copy of `1 and Y has the Gelfand–Phillips property, then
Kw∗(X∗, Y ) and X ⊗ε Y have the BD property.

(iii) If K is dispersed and Y has the Gelfand–Phillips property, then C(K,Y )
has the BD property.

Proof.

(i) If K is (DCSC), then C(K) has the Gelfand–Phillips property (see [4]).
Hence C(K) ⊗ε Y ' C(K,Y ) has the BD property, by Corollary 2.4.

(ii) Since X contains no copy of `1, X has the BD property (see [1], [14]).
Apply Corollaries 2.3 and 2.4.

(iii) Since K is dispersed, X = C(K) contains no copy of `1. By (ii), C(K)⊗ε

Y ' C(K,Y ) has the BD property. �

Remark 2.9. There is a Banach space Y such that Y contains no copies of `1 and
Y does not have the Gelfand–Phillips property (see [14, Theorem 5.2.4]). If K
is (DCSC), then C(K,Y ) has the BD property by Corollary 2.8(i), and it does
not have the Gelfand–Phillips property. Schlumprecht constructed a C(K) space
which has the BD property, but does not have the Gelfand–Phillips property (see
[14, Proposition 5.1.7]). If Y has the Gelfand–Phillips property, then C(K,Y )
has the BD property by Corollary 2.4, and it does not have the Gelfand–Phillips
property.

Corollary 2.10. Suppose that X∗ has the Gelfand–Phillips property and Y has
the BD property (or that X∗ has the BD property and Y has the Gelfand–Phillips
property). Then K(X,Y ) and X∗ ⊗ε Y have the BD property.

Proof. Apply Corollaries 2.2, 2.3, and 2.4 (with X∗ instead of X) and the isometry
K(X,Y ) ' Kw∗(X∗∗, Y ). �

Definition 2.11. A Banach space X has the Grothendieck property if every w∗-
convergent sequence in X∗ is weakly convergent.

If X = C(K) has the Grothendieck property, then a bounded subset of X is
weakly precompact if and only if it is limited (see [1], [14]). It is known that
the space `∞ does not have property BD (see [14, Example 1.1.8]). For instance,
let (sn) = (

∑n
i=1 ei). Note that (sn) is bounded, (sn) ⊆ c0, and (sn) is weakly

precompact. Further, (sn) is not relatively weakly compact (since (1, 1, 1, . . .) is
not in c0). Thus, if X has property BD , then `∞ 6↪→ X.

The next three results continue to concentrate on conditions which ensure that
spaces of operators have the BD property.
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Theorem 2.12. Suppose that Lw∗(X∗, Y ) = Kw∗(X∗, Y ). The following state-
ments are equivalent:

(i) X and Y have the BD property and either `2 6↪→ X or `2 6↪→ Y , and if,
moreover, Y is a dual space Z∗, then the condition `2 6↪→ Y implies that
`1 6↪→ Z;

(ii) Lw∗(X∗, Y ) has the BD property.

Proof. (i) ⇒ (ii) This is proved by [8, Corollary 4.11].
(ii) ⇒ (i) Suppose that Lw∗(X∗, Y ) has BD property. Then X and Y have the

BD property, since the BD property is inherited by closed subspaces. Suppose
`2 ↪→ X and `2 ↪→ Y . Then c0 embeds in Kw∗(X∗, Y ) (by [9, Theorem 20]). Since
c0 ↪→ Lw∗(X∗, Y ) and X and Y do not have the Schur property, `∞ ↪→ Lw∗(X∗, Y )
(by [9, Corollary 2]). This contradiction proves the first assertion.

Now suppose Y = Z∗ and `1 ↪→ Z. Then L1 ↪→ Z∗ ([2, p. 212]). Also, the
Rademacher functions span `2 inside of L1, hence `2 ↪→ Z∗. �

A similar argument shows that if Lw∗(X∗, Y ) has the BD property, then X
and Y have the BD property and either `p 6↪→ X or `q 6↪→ Y , for 1 < p′ ≤ q <∞
(where p and p′ are conjugate).

Corollary 2.13. Suppose that W (X,Y ) = K(X,Y ). The following statements
are equivalent:

(i) X∗ and Y have the BD property and either `1 6↪→ X or `2 6↪→ Y , and if,
moreover, Y is a dual space Z∗, then the condition `2 6↪→ Y implies that
`1 6↪→ Z;

(ii) W (X,Y ) has the BD property.

Proof. Apply Theorem 2.12 and the isometries in (2) in Corollary 2.2. �

Corollary 2.14. Suppose that L(X,Y ∗) = K(X,Y ∗) and that both X∗ and Y ∗

have the BD property. Then K(X,Y ∗) has the BD property and `1 6
c
↪→ X ⊗π Y .

Proof. Note that L(X,Y ∗) ' (X ⊗π Y )∗ (see [13, p. 24]) and that L(X,Y ∗) =
K(X,Y ∗) has the BD property by [8, Corollary 4.12]. Hence `∞ 6↪→ L(X,Y ∗). By

a result of Bessaga and Pe lczyński (see [2, Theorem 8]), `1 6
c
↪→ X ⊗π Y . �

Corollary 2.15. Suppose that L(X∗, Y ∗) = K(X∗, Y ∗) and that both X∗∗ and
Y ∗ have the BD property. Then the dual of the space of all nuclear operators

N1(X,Y ) has the BD property, and hence `1 6
c
↪→ N1(X,Y ).

Proof. It is known that N1(X,Y ) is a quotient of X∗⊗π Y (see [13, p. 41]). By [8,
Corollary 4.12], (X∗ ⊗π Y )∗ ' L(X∗, Y ∗) has the BD property. Hence the dual
of N1(X,Y ) is a closed subspace of (X∗⊗π Y )∗, so it inherits the BD property of
(X∗ ⊗π Y )∗ ' L(X∗, Y ∗). Thus `∞ 6↪→ (N1(X,Y ))∗. By Bessaga and Pe lczyński’s

result mentioned above, `1 6
c
↪→ N1(X,Y ). �

Next we present some results about the necessity of the conditions Lw∗(X∗, Y ) =
Kw∗(X∗, Y ) and L(X,Y ) = K(X,Y ).
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Theorem 2.16. Suppose that X and Y are infinite-dimensional Banach spaces
satisfying the following assumption: if T is an operator in Lw∗(X∗, Y ), then there
is a sequence of operators (Tn) in Kw∗(X∗, Y ) such that, for each x∗ ∈ X∗, the
series

∑
Tn(x∗) converges unconditionally to T (x∗). If Lw∗(X∗, Y ) has the BD

property, then Lw∗(X∗, Y ) = Kw∗(X∗, Y ).

Proof. Suppose that the assumption holds. If Lw∗(X∗, Y ) 6= Kw∗(X∗, Y ), then [9,
Theorem 14] implies that `∞ embeds in Lw∗(X∗, Y ). Hence, Lw∗(X∗, Y ) does not
have the BD property. �

The assumption of the previous theorem is satisfied, for instance, in the follow-
ing cases.

(1) X (or Y ) has an unconditional compact expansion of the identity (UCEI),
(i.e. there is a sequence (An) of compact operators fromX toX such that

∑
An(x)

converges unconditionally to x for all x ∈ X); in this case, (An) is called a UCEI
of X.

(2) Y is complemented in a Banach space Z which has an unconditional
Schauder decomposition (Zn) and L(X∗, Zn) = K(X∗, Zn) for each n. (A sequence
(Xn) of closed subspaces of a Banach space X is called an unconditional Schauder
decomposition of X if every x ∈ X has a unique representation of the form
x =

∑
xn, with xn ∈ Xn, for every n, and the series converges unconditionally.)

Corollary 2.17. Suppose that X and Y are infinite-dimensional Banach spaces
such that X∗ or Y has UCEI. If W (X,Y ) has the BD property, then W (X,Y ) =
K(X,Y ).

Proof. Apply Theorem 2.16 and the isometries in (2) in Corollary 2.2. �

Definition 2.18. A series
∑
xn inX is said to be weakly unconditionally convergent

(wuc) if for every x∗ ∈ X∗, the series
∑

|x∗(xn)| is convergent. Equivalently,
∑
xn

is wuc if {
∑

n∈A xn : A ⊆ N, A finite} is bounded.

Definition 2.19. A basis (xi) of E is shrinking if the associated sequence of coor-
dinate functionals (x∗i ) is a basis for E∗.

Definition 2.20. A separable Banach space X has the bounded approximation
property (bap) if there is a sequence (An) of finite rank operators from X to X
such that

∑
An(x) converges to x for all x ∈ X (see [7]).

Definition 2.21. The space X has (Rademacher) cotype q for some 2 ≤ q ≤ ∞ if
there is a constant C such that for every n and every x1, x2, . . . , xn in X,( n∑

i=1

‖xi‖q
)1/q

≤ C
(∫ 1

0

∥∥ri(t)xi∥∥2
dt
)1/2

,

where (rn) are the Rademacher functions.

For the definition of L∞-spaces and L1-spaces, we refer the reader to [2, p. 181]
or [13, p. 31, 51]. The dual of an L1-space (resp., L∞-space) is an L∞-space (resp.,
L1-space).
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Theorem 2.22. Suppose that X, Y are infinite-dimensional Banach spaces sat-
isfying one of the assumptions:

(i) if T : X → Y is an operator, then there is a sequence (Tn) in K(X,Y )
such that, for each x ∈ X, the series

∑
Tn(x) converges unconditionally

to T (x);
(ii) c0 embeds in either Y or X∗;
(iii) X is an L∞-space and Y is a closed subspace of an L1-space;
(iv) X = C(K), K a compact Hausdorff space, and Y is a space with cotype 2;
(v) X is weakly compactly generated, Y is a subspace of a space Z with a

shrinking unconditional basis and X∗ or Y ∗ has the bounded approxima-
tion property;

(vi) X has UCEI.

If L(X,Y ) has the BD property, then L(X,Y ) = K(X,Y ).

Proof. Suppose that L(X,Y ) has the BD property and that L(X,Y ) 6= K(X,Y ).
(i) Let T : X → Y be a noncompact operator. Let (Tn) be a sequence as in the

hypothesis. By the uniform boundedness principle, {
∑

n∈A Tn : A ⊆ N, A finite} is
bounded inK(X,Y ). Then

∑
Tn is wuc and not unconditionally convergent (since

T is noncompact). By a result of Bessaga and Pe lczyński (see [2, Theorem 8]),
c0 ↪→ K(X,Y ).

(ii) If c0 embeds in Y or X∗, then c0 embeds in K(X,Y ).
Suppose that (iii) or (iv) holds. It is known that any operator T : X → Y is

2-absolutely summing (see [2, p. 189]), and hence it factorizes through a Hilbert
space. Then c0 ↪→ K(X,Y ) (by [6, Remark 3]).

(v) By [7, Theorem 4], c0 ↪→ K(X,Y ).
(vi) By [10, Theorem 6], c0 ↪→ K(X,Y ).
By [9, Theorem 1], `∞ ↪→ L(X,Y ). Since the BD property is inherited by closed

subspaces and `∞ does not have this property, we have a contradiction. �

Assumption (i) of the Theorem 2.22 is satisfied, for instance, in the following
cases:

(1) X∗ (or Y ) has UCEI;
(2) Y is complemented in a Banach space Z which has an unconditional

Schauder decomposition (Zn) and L(X,Zn) = K(X,Zn) for each n.

Example 2.23. For 1 < p < q < ∞, the natural inclusion map i : `p → `q is not
compact. Then c0 ↪→ K(`p, `q), `∞ ↪→ L(`p, `q) = W (`p, `q) (by [9, Theorem 14]),
and L(`p, `q) does not have the BD property.

Definition 2.24. An operator T : X → Y is completely continuous (or Dunford–
Pettis) if T maps weakly convergent sequences to norm convergent sequences.
A Banach space X has the Dunford–Pettis property (DPP) if every weakly com-
pact operator T with domain X is completely continuous.

Schur spaces, C(K) spaces, and L1(µ) spaces have the DPP. The reader can
check [2] and [3] for a guide to the extensive classical literature dealing with the
DPP. The L∞-spaces, L1-spaces, and their duals have the DPP.



THE BD PROPERTY IN COMPACT OPERATORS 643

Definition 2.25. An operator T : X → Y is called limited if T (BX) is a limited
subset of Y .

The operator T is limited if and only if T ∗ : Y ∗ → X∗ is w∗-norm sequentially
continuous. Let Li(X,Y ) denote the space of limited operators T : X → Y .

Theorem 2.26. Assume that one of the following assumptions holds:

(i) X has the DPP and `1 ↪→ Y ,
(ii) X and Y have the DPP.

If W (X,Y ∗) has the BD property, then Li(X, Y ∗) = K(X,Y ∗).

Proof. Since every compact operator T : X → Y ∗ is limited, we only need to
show that every limited operator T : X → Y ∗ is compact.

Suppose that W (X,Y ∗) has property BD . Since Y ∗ has the BD property, every
limited operator T : X → Y ∗ is weakly compact, by [8, Theorem 3.12].

(i) Since W (X,Y ∗) has the BD property, either `1 6↪→ X or `1 6↪→ Y , by the
second part of Corollary 2.13. By the assumption `1 ↪→ Y , we obtain `1 6↪→ X.
Since moreover X has the DPP, X∗ has the Schur property (see [2, p. 212]).
Let T : X → Y ∗ be a weakly compact operator. Then T ∗ : Y ∗∗ → X∗ is weakly
compact, thus compact, since X∗ has the Schur property. Therefore T is compact.
Thus W (X,Y ∗) = K(X,Y ∗), which proves the result.

(ii) Assume that X and Y have the DPP. Then W (X,Y ∗) = K(X,Y ∗) either
by (i) if `1 ↪→ Y , or because Y ∗ has the Schur property (see [2, p. 212]) if `1 6↪→ Y .

Therefore every limited operator T : X → Y ∗ is compact. �

The preceding proof shows that if X and Y satisfy one of the hypotheses
(i) or (ii) and if W (X,Y ∗) does not contain `∞ (as a closed subspace), then
W (X,Y ∗) = K(X,Y ∗).

Definition 2.27. An operator T : X → Y is unconditionally converging if it maps
weakly unconditionally convergent series to unconditionally convergent ones.

Definition 2.28. A bounded subset A of X (resp., A of X∗) is called a V ∗-subset
of X (resp., a V -subset of X∗) provided that

lim
n

(
sup

{∣∣x∗n(x)
∣∣ : x ∈ A

})
= 0(

resp., lim
n

(
sup

{∣∣x∗(xn)
∣∣ : x∗ ∈ A

})
= 0

)
for each wuc series

∑
x∗n in X∗ (resp., wuc series

∑
xn in X). The Banach space

X has property (V ) (resp., (V ∗)) if every V -subset of X∗ (resp., V ∗-subset of X)
is relatively weakly compact.

The following results were established in [12]: C(K) spaces have property (V );
L1-spaces have property (V ∗); reflexive Banach spaces have both properties (V )
and (V ∗); the Banach space X has property (V ) if and only if every uncondition-
ally converging operator T from X to any Banach space Y is weakly compact; if
X has property (V ∗), then X is weakly sequentially complete.

Remark 2.29. If T : Y → X∗ is an operator such that T ∗|X is (weakly) compact,
then T is (weakly) compact. To see this, let T : Y → X∗ be an operator such that
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T ∗|X is (weakly) compact. Let S = T ∗|X . Suppose that x∗∗ ∈ BX∗∗ and choose a

net (xα) in BX which is w∗-convergent to x∗∗. Then (T ∗(xα))
w∗
→ T ∗(x∗∗). Now,

(T ∗(xα)) ⊆ S(BX), which is a relatively (weakly) compact set. Then (T ∗(xα)) →
T ∗(x∗∗) (resp., (T ∗(xα))

w→ T ∗(x∗∗)). Hence T ∗(BX∗∗) ⊆ S(BX), which is rel-
atively (weakly) compact. Therefore, T ∗(BX∗∗) is relatively (weakly) compact,
and thus T is (weakly) compact.

It follows that if L(X,Y ∗) = K(X,Y ∗), then L(Y,X∗) = K(Y,X∗) and if
L(X,Y ∗) = W (X,Y ∗), then L(Y,X∗) = W (Y,X∗).

Corollary 2.30. Assume that one of the following assumptions holds:

(i) X and Y have the DPP and Y ∗ (or X∗) has property (V ∗),
(ii) X and Y have the DPP and Y (or X) has property (V ),
(iii) X and Y are infinite-dimensional L∞-spaces.

If W (X,Y ∗) has the BD property, then L(X,Y ∗) = K(X,Y ∗).

Proof. Suppose that W (X,Y ∗) has the BD property.
(i) Since Y ∗ has the BD property, `∞ 6↪→ Y ∗ and thus c0 6↪→ Y ∗ (see [2, p. 48]).

Similarly, c0 6↪→ X∗. Let T : X → Y ∗ be an operator. Then T ∗ : Y ∗∗ → X∗ is
unconditionally converging (since c0 6↪→ X∗). If Y ∗ has property (V ∗), then T is
weakly compact (see [8, Theorem 3.10]). If X∗ has property (V ∗), then a similar
argument shows that L(Y,X∗) = W (Y,X∗). Thus L(X,Y ∗) = W (X,Y ∗). By the
proof of Theorem 2.26, W (X,Y ∗) = K(X,Y ∗), which proves the result.

(ii) If Y has property (V ), then Y ∗ has property (V ∗) (see [12]). Apply (i).
(iii) Since X and Y are infinite-dimensional L∞-spaces, L(X,Y ∗) =

W (X,Y ∗) = CC(X,Y ∗) (see [2, p. 189, 61], [13, p. 148, 155]). By the proof
of Theorem 2.26, W (X,Y ∗) = K(X,Y ∗), which proves the result. �
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