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ON THE ARAKI–LIEB–THIRRING INEQUALITY IN
THE SEMIFINITE VON NEUMANN ALGEBRA

YAZHOU HAN
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Abstract. This paper extends a recent matrix trace inequality of Bourin–
Lee to semifinite von Neumann algebras. This provides a generalization of the
Lieb–Thirring-type inequality in von Neumann algebras due to Kosaki. Some
new inequalities, even in the matrix case, are also given for the Heinz means.

1. Introduction

Let Mn be the space of n× n complex matrices. The Lieb–Thirring inequality
[17] states that, for 0 ≤ A,B ∈ Mn and p ≥ 1,

Tr
(
(B

1
2AB

1
2 )p

)
≤ Tr(ApBp).

Let A and B be positive self-adjoint operators on a Hilbert space, and let f be
any increasing continuous function on [0,∞) such that f(0) = 0 and t → f(et) is
a convex function. Araki [2] shows a refinement of the Lieb–Thirring inequality
as follows:

Tr f
(
(B

1
2AB

1
2 )q

)
≤ Tr f(B

q
2AqB

q
2 ) for all q ≥ 1. (1.1)

Here the condition f(0) = 0 ensures that the trace is well defined; that is, ∞−∞
does not occur. Recently, Bourin and Lee [6] proved that if f is increasing and
t → f(et) is convex, then the inequality

Tr f
(
(BZ∗AZB)q

)
≤ Tr f(BqZ∗AqZBq) for all q ≥ 1 (1.2)
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holds for contraction Z ∈ Mn and 0 ≤ A,B ∈ Mn. For further results about the
Lieb–Thirring inequality, the reader is referred to [6] and [14]. In 1992, Kosaki
[16] proved the Araki–Lieb–Thirring inequality (1.1) for τ -compact operators as-
sociated with the semifinite von Neumann algebra M.

By adapting the techniques in [4] and [12], we obtain some inequalities which
are related to the Araki–Lieb–Thirring inequality. In particular, we show that the
inequalities (1.1) and (1.2) hold for τ -measurable operators associated with the
semifinite von Neumann algebra M. We will conclude this paper with a series of
submajorization inequalities which are related to the Heinz means.

2. Preliminaries

Unless stated otherwise, M will always denote a semifinite von Neumann alge-
bra acting on the Hilbert space H with a normal semifinite faithful trace τ . We
refer to [20] and [21] for noncommutative integration. We denote the identity of
M by 1. A closed densely defined linear operator x in H with domain D(x) ⊆ H
is said to be affiliated with M if u∗xu = x for all unitary operators u which
belong to the commutant M′ of M. If x is affiliated with M, then we define its
distribution function by λs(x) = τ(e⊥s (|x|)) and x will be called τ -measurable if
and only if λs(x) < ∞ for some s > 0, where e⊥s (|x|) = e(s,∞)(|x|) is the spectral
projection of |x| associated with the interval (s,∞). If M is a finite von Neumann
algebra and x is affiliated with M, then x is automatically τ -measurable. The
decreasing rearrangement of x is defined by µt(x) = inf{s > 0 : λs(x) ≤ t}, t > 0.
We will denote simply by λ(x) and µ(x) the functions t → λt(x) and t → µt(x),
respectively (see [12] for basic properties and detailed information on decreasing
rearrangement of x).

The set of all τ -measurable operators will be denoted by L0(M). The set
L0(M) is a ∗-algebra with sum and product being the respective closures of
the algebraic sum and product. The measure topology in L0(M) is the vector
space topology defined via the neighborhood base {N(ε, δ) : ε, δ > 0}, where
N(ε, δ) = {x ∈ L0(M) : τ(e(ε,∞)(|x|)) ≤ δ} and e(ε,∞)(|x|) is the spectral pro-
jection of |x| associated with the interval (ε,∞). With respect to the measure
topology, L0(M) is a complete topological ∗-algebra. As usual, we denote by ‖ · ‖
(= ‖ · ‖∞) the usual operator norm.

Let L0 be the set of all Lebesgue-measurable functions on (0,∞). For f ∈ L0

we define its nonincreasing rearrangement as

f ∗(t) = inf
{
s > 0 : df (s) = m

{
r :

∣∣f(r)∣∣ > s
}
≤ t

}
, t > 0,

where m denotes the Lebesgue measure on (0,∞). By a symmetric Banach space
on (0,∞) we mean a Banach lattice E of measurable functions on (0,∞) satisfying
the following properties: (a) E contains a simple function; (b) if f ∈ L0 and g ∈ E
with f ∗ ≤ g∗, then f ∈ E and ‖f‖E ≤ ‖g‖E. It is called fully symmetric if, in
addition, for f ∈ L0 and g ∈ E with∫ t

0

f ∗(s) ds ≤
∫ t

0

g∗(s) ds, t > 0,
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we have f ∈ E and ‖f‖E ≤ ‖g‖E. The norm on E is said to be a σ-Fatou norm
if

0 ≤ fi ↑ f, fi, f ∈ E ⇒ ‖fi‖E ↑ ‖f‖E. (2.1)

If the norm on E is a σ-Fatou norm, then the natural embedding of E into the
second associate space (Köthe bidual) E×× is an isometry. Consequently, a sym-
metric Banach space which has a σ-Fatou norm is automatically fully symmetric.
Let E be a symmetric Banach space on (0,∞). For 0 < r < ∞, E(r) will denote
the quasi-Banach spaces defined by

E(r) :=
{
g ∈ L0 : |g|r ∈ E

}
and ‖g‖E(r) =

∥∥|g|r∥∥ 1
r

E
.

As is shown in [18], if E is a symmetric Banach space, then E(r) is a symmetric
quasi-Banach space.

Let E be a symmetric Banach space on (0,∞). We define

E(M) =
{
x ∈ L0(M) : µ(x) ∈ E

}
and ‖x‖E(M) =

∥∥µ(x)∥∥
E
.

Then (E(M), ‖ · ‖E(M)) is a noncommutative symmetric Banach space (see [22]).
If E = Lp, then E(M) is the usual noncommutative Lp spaces Lp(M). For
0 < r < ∞, we define

E(M)(r) =
{
x ∈ L0(M) : |x|r ∈ E(M)

}
and ‖x‖E(M)(r) =

∥∥|x|r∥∥ 1
r

E(M)
.

As is shown in Proposition 3.1 of [9], if E is a symmetric Banach space, then
E(r)(M) = E(M)(r), where E(r)(M) = {x ∈ L0(M) : µ(x) ∈ E(r)} and
‖x‖E(r)(M) = ‖µ(x)‖E(r) . It is well known that E(M)(r) is a noncommutative sym-

metric quasi-Banach space (see [9], [22]). Let 0 < r0, r1, r < ∞ with 1
r
= 1

r0
+ 1

r1
.

Then the Hölder inequality on E(M)(r) is that

‖xy‖E(M)(r) ≤ ‖x‖E(M)(r0)‖y‖E(M)(r1) (2.2)

holds for all x ∈ E(M)(r0) and y ∈ E(M)(r1) (see inequality (1.3) in [8, p. 492]).
Further details for commutative and noncommutative symmetric Banach spaces
may be found in [9], [8], [18], and [22].

The following well-known basic facts are needed in our proofs, and we list them
for the reader’s convenience. If x ∈ L0(M) and y, z ∈ M, then

µ(yxz) ≤ ‖y‖µ(x)‖z‖, (2.3)

µ(x) = µt(x
∗) = µ

(
|x|

)
, (2.4)

and

f
(
µ(x)

)
= µ

(
f
(
|x|

))
, (2.5)

where f is a continuous increasing function on [0,∞) such that f(0) = 0 (see
Lemma 2.5 in [12]). On the other hand, it follows from Theorem 2.2 in [7] that∫ t

0

µs(xy) ds ≤
∫ t

0

µs(x)µs(y) ds, t > 0 (2.6)

holds for x, y ∈ L0(M).
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If x ∈ L0(M) satisfies a “Lorentz space”-type condition of the form

x ∈ M or µt(x) ≤ Ct−α, C, α > 0, t > 0,

then we may define

Λt(x) = exp
(∫ t

0

log µs(x) ds
)
, t > 0.

Let x ∈ M. From the definition of Λt(x) and the properties of µt(x), we obtain

Λt(x) = Λt(x
∗) = Λt

(
|x|

)
, t > 0 (2.7)

and

Λt(x
α) = Λt(x)

α, t > 0, if α > 0 and x > 0. (2.8)

Moreover, it follows from Theorem 2.3 in [7] (or Theorem 2 in [19]) that

Λt(xy) ≤ Λt(x)Λt(y), t > 0 (2.9)

holds for all x, y ∈ M.
If x, y ∈ L0(M), then we say that x is submajorized by y and we write x - y

if and only if ∫ t

0

µs(x) ds ≤
∫ t

0

µs(y) ds for all t ≥ 0.

The set K of all τ -compact operators is defined by

K =
{
x ∈ L0(M) : lim

t→∞
µt(x) = 0

}
.

For 0 ≤ x, y ∈ K, and p ≥ 1, it was shown by Kosaki (see [16, Theorem 2]) that

f
(
|xy|p

)
- f

(
|xpyp|

)
, (2.10)

where f is a continuous increasing function on [0,∞) such that f(0) = 0 and
t → f(et) is convex. In what follows we will prove that (2.10) holds for all 0 ≤
x, y ∈ L0(M). Our idea of the proof follows the one given in [16].

Lemma 2.1. Let x, y ∈ M. If the product xy is self-adjoint, then we have

Λt(xy) ≤ Λt(yx), t > 0.

Proof. If x, y ∈ M satisfy that limt→∞ µt(x) = limt→∞ µt(y) = 0, then the result
follows from Remark 1 in [16]. The general case can be done similarly to the proof
of Remark 1 in [16]. For convenience, we give its proof.

If xy is self-adjoint, then it follows from (2.7), (2.8), and (2.9) that

Λt(xy)
2n = Λt

(
|xy|2n

)
= Λt

(
(xy)2n

)
= Λt

(
x(yx)2n−1y

)
≤ Λt(x)Λt(yx)

2n−1Λt(y), t > 0

holds for each n ∈ N+. Taking the 2nth roots of the both sides and then letting
n → ∞, we obtain the desired result. �
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Lemma 2.2. Let 0 ≤ x, y ∈ M and n ∈ N+. Then

Λt

(
|xy|2n

)
≤ Λt(x

2ny2
n

), t > 0.

Moreover, we have

Λt(x
1
2n y

1
2n ) ≤ Λt(xy)

1
2n , t > 0.

Proof. By Lemma 2.1, we have

Λt

(
|xy|2

)
= Λt

(
(xy)∗xy

)
= Λt(yx

2y) ≤ Λt(x
2y2), t > 0.

Therefore, (2.7) and (2.8) imply that

Λt

(
|xy|2n

)
= Λt

(
|xy|

)2n
= Λt

(
|xy|2

)2n−1

≤ Λt(x
2y2)2

n−1

= Λt

(
|x2y2|2n−1)

, t > 0.

Repeating this argument, we deduce

Λt

(
|xy|2n

)
≤ Λt(x

2ny2
n

), t > 0.

Replacing x, y by x
1
2n , y

1
2n , respectively, we get

Λt(x
1
2n y

1
2n ) ≤ Λt(xy)

1
2n , t > 0. �

Lemma 2.3. Let p ≥ 1, and let f : [0,∞) → [0,∞) be a continuous increasing
function such that f(0) = 0 and t → f(et) is convex. If 0 ≤ x, y ∈ M, then we
have

f
(
|xy|p

)
- f

(
|xpyp|

)
. (2.11)

Proof. Since 0 ≤ x, y ∈ M, for every t > 0, we have∫ t

0

µs

(
f
(
|xpyp|

))
ds ≤

∫ t

0

f
(
‖xpyp‖

)
ds = tf

(
‖xpyp‖

)
< ∞. (2.12)

If the inequality Λt(x
pyp) ≤ Λt(xy)

p, t > 0 is valid for p = α and p = β, 0 < α <
β ≤ 1, then so is the case for p = α+β

2
. Indeed, by the assumption and Lemma 2.1,

we deduce

Λt(x
α+β
2 y

α+β
2 )2 = Λt(y

α+β
2 xα+βy

α+β
2 )

= Λt

(
y

β−α
2 (yαxα+βyα)y

β−α
2

)
≤ Λt

(
(yαxα+βyα)yβ−α

)
≤ Λt(y

αxα)Λt(x
βyβ)

= Λt(x
αyα)Λt(x

βyβ) ≤ Λt(xy)
α+β, t > 0.

This means that Λt(x
α+β
2 y

α+β
2 ) ≤ Λt(xy)

α+β
2 , t > 0; thus, Lemma 2.2 implies that

the inequality Λt(x
pyp) ≤ Λt(xy)

p, t > 0, is valid for p in the dense subset in (0, 1].
Replacing xp, yp by x, y, respectively, we observe that Λt(xy)

p ≤ Λt(x
pyp), t > 0

is valid for p in the dense subset in [1,∞). Combining this with Corollary 4.2 in
[11], we get that∫ t

0

f
(
µs

(
|xy|p

))
ds ≤

∫ t

0

f
(
µs(x

pyp)
)
ds, t > 0 (2.13)
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holds for p in the dense subset in [1,∞). For any p ∈ [1,∞), we choose a se-
quence {pn} such that (2.13) is valid and pn → p. Since the map: x → µs(x) is
norm continuous, the standard argument on norm convergence and dominated
convergence theorem and the fact (2.12) show that∫ t

0

f
(
µs(x

pyp)
)
ds = lim

n→∞

∫ t

0

f
(
µs(x

pnypn)
)
ds

and ∫ t

0

f
(
µs

(
|xy|p

))
ds = lim

n→∞

∫ t

0

f
(
µs

(
|xy|pn

))
ds.

This means that (2.13) is valid for all p ∈ [1,∞). It follows from (2.5) that
f(|xy|p) - f(|xpyp|), p ≥ 1, is valid for 0 ≤ x, y ∈ M. �

Let 0 ≤ x, y ∈ L0(M). Then Corollary 3.6 in [5] tells us that

µ(xy) = µ(yx). (2.14)

Based on Lemma 2.3 and (2.14), we obtain the generalizations of inequality (2.10)
for τ -measurable operators associated with the semifinite von Neumann alge-
bra M.

Proposition 2.4. Let p ≥ 1, and let f : [0,∞) → [0,∞) be a continuous increas-
ing function such that f(0) = 0 and t → f(et) is convex. For 0 ≤ x, y ∈ L0(M),
we have

f
(
|xy|p

)
- f

(
|xpyp|

)
. (2.15)

Proof. If
∫ t0
0

µs(f(|xpyp|)) ds = ∞ holds for some t0 > 0, then it is clear that∫ t

0

µs

(
f
(
|xy|p

))
ds ≤

∫ t

0

µs

(
f
(
|xpyp|

))
ds, t > t0.

Therefore, without loss of generality, we suppose that 0 ≤ x, y ∈ L0(M) satisfy∫ t

0

µs

(
f
(
|xpyp|

))
ds < ∞ for all t > 0. (2.16)

Let x =
∫∞
0

λ deλ and y =
∫∞
0

λ dfλ be the spectral decompositions. We write

xn =
∫ n

0
λ deλ and yn =

∫ n

0
λ dfλ. Then xn, yn ∈ M. By Lemma 2.6 in [12], we

deduce that

µ(x− xn) = µ
(
xe(n,∞)(x)

)
≤ µ(x)χ[0,τ(e(n,∞)(x))].

From Proposition 21 of [21, Chapter I], we have limn→∞ τ(e(n,∞)(x)) = 0, which
means that limn→∞ µt(x − xn) = 0. By Lemma 3.1 in [12], we obtain x2p

n ↑ x2p,
n → ∞ in measure topology. Therefore, Lemma 3.4 in [12] implies that

µ(ypmx
2p
n ypm) ↑ µ(ypmx

2p
n ypm), n → ∞.
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Fixing m ∈ N+, from inequality (2.13) and the monotone convergence theorem
and the fact (2.16), we have∫ t

0

f
(
µs

(
|xym|p

))
ds =

∫ t

0

f
(
µs(ymx

2ym)
p
2

)
ds

= sup
n

∫ t

0

f
(
µs(ymx

2
nym)

p
2

)
ds

= sup
n

∫ t

0

f
(
µs

(
|xnym|p

))
ds ≤ sup

n

∫ t

0

f
(
µs(x

p
ny

p
m)

)
ds

= sup
n

∫ t

0

f
(
µs(y

p
mx

2p
n ypm)

1
2

)
ds =

∫ t

0

f
(
µs(y

p
mx

2pypm)
1
2

)
ds

=

∫ t

0

f
(
µs(x

pypm)
)
ds, t > 0.

By (2.14), (2.4), and (2.5), we obtain

µ
(
|xym|p

)
= µ(xym)

p = µ(ymx)
p = µ

(
|ymx|p

)
and µ(xpypm) = µ(ypmx

p); hence, we can use the monotone convergence as in the
preceding argument and get that∫ t

0

f
(
µs

(
|xy|p

))
ds ≤

∫ t

0

f
(
µs(x

pyp)
)
ds, t > 0

holds for 0 ≤ x, y ∈ L0(M). Combining this with (2.5), we obtain that f(|xy|p) -
f(|xpyp|), p ≥ 1 is valid for 0 ≤ x, y ∈ L0(M). �

We conclude this section with a series of submajorization inequalities that lead
to refinement of the submajorization inequality in Proposition 2.4.

Lemma 2.5. Let 0 ≤ x, z ∈ L0(M), and let f : [0,∞) → [0,∞) be a continuous
increasing function such that f(0) = 0 and t → f(et) is convex.

(1) If 1 ≤ p < ∞, then f((xzx)p) - f(xpzpxp).
(2) If 0 < p ≤ 1, then f(xpzpxp) - f((xzx)p).

Proof. The proof can be done similarly to the proof of Lemma 3.1 in [4] by using
Proposition 2.4. For convenience, we give its proof.

(1) Since g(t) = f(t2) is a continuous increasing function on [0,∞) such that
g(0) = 0 and t → g(et) = f(e2t) is convex, by (2.4), (2.5), and Proposition 2.4,
we have∫ t

0

µs

(
f
(
(xzx)p

))
ds =

∫ t

0

f
(
µs

(
|z

1
2x|2p

))
ds =

∫ t

0

f
(
µs

(
|z

1
2x|p

)2)
ds

≤
∫ t

0

f
(
µs

(
|z

p
2xp|

)2)
ds =

∫ t

0

f
(
µs(x

pzpxp)
)
ds, t > 0.

(2) Since g(t) = f(t2p) is a continuous increasing function on [0,∞) such that
g(0) = 0 and t → g(et) = f(e2t) is convex, by (2.4), (2.5), and Proposition 2.4,
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we obtain∫ t

0

f
(
µs(x

pzpxp)
)
ds =

∫ t

0

f
(
µs

(
(xpzpxp)

1
p
)p)

ds =

∫ t

0

f
(
µs

(
|z

p
2xp|

1
p
)2p)

ds

≤
∫ t

0

f
(
µs

(
|z

1
2x|

)2p)
ds

=

∫ t

0

f
(
µs(xzx)

p
)
ds, t > 0. �

Lemma 2.6. Let f : [0,∞) → [0,∞) be a continuous increasing function such
that f(0) = 0 and t → f(et) is convex. Let x, z ∈ L0(M), and let z ≥ 0.

(1) If 1 ≤ p < ∞, then f((xzx∗)p) - f(|x|pzp|x|p).
(2) If 0 < p ≤ 1, then f(|x|pzp|x|p) - f((xzx∗)p).

Proof. The proof is similar to the proof of Theorem 3.2 in [4]. The details are
omitted. �

Lemma 2.7. Let p ≥ 1, and let f : [0,∞) → [0,∞) be a continuous increasing
function such that f(0) = 0 and t → f(et) is convex. Let x, z ∈ L0(M), and let
z be self-adjoint. Then

f
(
|xzx∗|p

)
- f

(
|x|p|z|p|x|p

)
.

Proof. By slightly modifying the proof of Theorem 3.6 in [4], we can prove this
corollary and omit the details. �

Remark 2.8. If M is a finite von Neumann algebra, then the results of Lem-
mas 2.5–2.7 are contained in [4].

3. Main results

Let f be a nonnegative operator monotone function on [0,∞), and let M be a
semifinite von Neumann algebra. If y ∈ M is a contraction and x ∈ L0(M), then

y∗f(x)y ≤ f(y∗xy). (3.1)

This result is proved in [13] when x is a bounded linear operator, in [15] for finite
trace, and in [3] for the general case as above.

The following lemma plays a central role in our investigation.

Lemma 3.1. Let 0 ≤ x, z ∈ L0(M), and let y ∈ M be a contraction. Let
f : [0,∞) → [0,∞) be a continuous increasing function such that f(0) = 0 and
t → f(et) is convex.

(1) If 1 ≤ p < ∞, then f((xy∗zyx)p) - f(xpy∗zpyxp).
(2) If 0 < p ≤ 1, then f(xpy∗zpyxp) - f((xy∗zyx)p).

Proof. (1) For p ≥ 1, we put g(t) = f(tp). Then g is a continuous increasing
function on [0,∞) such that g(0) = 0 and t → g(et) = f(ept) is convex. Let
y ∈ M be a contraction. It follows from Lemma 3.1.1 of [3] (i.e., inequality (3.1))
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that y∗zy ≤ (y∗zpy)
1
p for p ≥ 1. Hence µ(x(y∗zpy)

1
px) ≥ µ(xy∗zyx). Following

(2.5), we obtain

µ
(
g
(
x(y∗zpy)

1
px

))
= g

(
µ
(
x(y∗zpy)

1
px

))
≥ g

(
µ(xy∗zyx)

)
= µ

(
g(xy∗zyx)

)
.

By Lemma 2.5, we deduce

f(xpy∗zpyxp) = g
(
(xpy∗zpyxp)

1
p
)

% g
(
x(y∗zpy)

1
px

)
≥ g(xy∗zyx) = f

(
(xy∗zyx)p

)
.

(2) A similar discussion to the proof of (1) shows that

f
(
(xy∗zyx)p

)
% f

(
xp(y∗zy)pxp

)
≥ f(xpy∗zpyxp). �

Now, using Lemma 3.1, we get our first main result of this paper.

Proposition 3.2. Let 0 ≤ x, z ∈ L0(M), and let y ∈ M be a contraction. Let
f : [0,∞) → [0,∞) be a continuous increasing function such that f(0) = 0 and
t → f(et) is convex. Then for 0 < p ≤ q < ∞, we have

(1) f((xpy∗zpyxp)
1
p ) - f((xqy∗zqyxq)

1
q );

(2) f((x
1
q y∗z

1
q yx

1
q )q) - f((x

1
py∗z

1
pyx

1
p )p).

Proof. (1) We put g(t) = f(t
1
q ). Then g is a continuous increasing function on

[0,∞) such that g(0) = 0 and t → g(et) = f(e
1
q
t) is convex. By Lemma 3.1, we

obtain

f
(
(xpy∗zpyxp)

1
p
)
= g

(
(xpy∗zpyxp)

q
p
)
- g(xqy∗zqyxq) = f

(
(xqy∗zqyxq)

1
q
)
.

(2) The proof can be done similarly to (1). The details are omitted. �

Corollary 3.3. Let E be a fully symmetric Banach space, and let 0 ≤ x, z ∈
E(M)(3), and y ∈ M be a contraction. Then

(1) g(p) = ‖|xpy∗zpyxp|
1
p‖E(M) is an increasing function on (0,∞);

(2) h(p) = ‖|x
1
py∗z

1
pyx

1
p |p‖E(M) is a decreasing function on (0,∞).

Proof. (1) Let 0 ≤ x, z ∈ E(M)(3), and let y ∈ M be a contraction. By (2.2) and
(2.3), we have ∥∥|xpy∗zpyxp|

1
p

∥∥p

E(M)
= ‖xpy∗zpyxp‖

E(M)
( 1p )

≤ ‖xp‖2
E(M)

( 3p )
‖y∗zpy‖

E(M)
( 3p )

≤ ‖x3‖
2p
3

E(M)‖z
3‖

p
3

E(M)

= ‖x‖2p
E(M)(3)

‖z‖p
E(M)(3)

< ∞.

This implies that g(p) < ∞ for all p ∈ (0,∞). Hence the result follows immedi-
ately from Proposition 3.2.

(2) The proof is similar to the proof of (1). �
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Remark 3.4. The following results can be done similarly to Corollary 3.3 by using
Proposition 2.4.

Let 0 ≤ x, z ∈ L0(M), and let f : [0,∞) → [0,∞) be a continuous increasing
function such that f(0) = 0 and t → f(et) is convex. Then, for 0 < p ≤ q < ∞,
we have

(1) f((xpzp)
1
p ) - f((xqzq)

1
q )—if E is a fully symmetric Banach space and

0 ≤ x, z ∈ E(M)(2), then g(p) = ‖|xpzp|
1
p‖E(M) is an increasing function

on (0,∞);

(2) f((x
1
q z

1
q )q) - f((x

1
p z

1
p )p)—if E is a fully symmetric Banach space and

0 ≤ x, z ∈ E(M)(2), then h(p) = ‖|x
1
p z

1
p |p‖E(M) is a decreasing function

on (0,∞).

Now, using Lemma 3.1, we get the other main result of this paper.

Proposition 3.5. Let f : [0,∞) → [0,∞) be a continuous increasing function
such that f(0) = 0 and t → f(et) is convex, and let x, z ∈ L0(M), and let z ≥ 0.

(1) For any contraction y ∈ M and 0 < p ≤ 1, we have

f
(
|x|py∗zpy|x|p

)
- f

(
(x∗y∗zyx)p

)
.

(2) For any contraction y ∈ M and 1 ≤ p < ∞, we have

f
(
(x∗y∗zyx)p

)
- f

(
|x|py∗zpy|x|p

)
.

Proof. By slightly modifying the proof of Lemma 2.6 (or Theorem 3.2 in [4]), we
can prove this proposition and omit the details. �

Corollary 3.6. Let E be a fully symmetric Banach space, and let y ∈ M be a
contraction.

(1) If 0 < p ≤ 1 and x, z ∈ E(M)(3p) and z ≥ 0, then∥∥|x|py∗zpy|x|p∥∥
E(M)

≤
∥∥(x∗y∗zyx)p

∥∥
E(M)

.

(2) If 1 ≤ p < ∞ and x, z ∈ E(M)(3p) and z ≥ 0, then∥∥(x∗y∗zyx)p
∥∥
E(M)

≤
∥∥|x|py∗zpy|x|p∥∥

E(M)
.

Proof. The result can be done similarly to the proof of Corollary 3.3 by using
Proposition 3.5. �

In view of the result in Proposition 3.5, we obtain another refinement of the
first inequality in Lemma 3.1.

Proposition 3.7. Let f : [0,∞) → [0,∞) be a continuous increasing function
such that f(0) = 0 and t → f(et) is convex, and let x, z ∈ L0(M) and z be
self-adjoint. For any contraction y ∈ M and 1 ≤ p < ∞, we have

f
(
|x∗y∗zyx|p

)
- f

(
|x|py∗|z|py|x|p

)
.

Proof. The proof can be done similarly to the proof of Lemma 2.7 (or Theorem 3.6
in [4]) by using Proposition 3.5. The details are omitted. �
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Corollary 3.8. Let 0 ≤ x, z, y ∈ L0(M), and let f : [0,∞) → [0,∞) be a
continuous increasing function such that f(0) = 0 and t → f(et) is convex.

(1) If 1 ≤ p < ∞, then f( (x(y+z)x)p

2p
) - f(x

p(yp+zp)xp

2
).

(2) If 0 < p ≤ 1, then f(x
p(yp+zp)xp

2
) - f( (x(y+z)x)p

2p
).

Proof. Let X =
(
x 0
0 0

)
, Z =

(
y 0
0 z

)
, Y = 1√

2

(
1 0
1 0

)
. Then

(XY ∗ZY X)p =

(
(x(y+z)x)p

2p
0

0 0

)
, XpY ∗ZpY Xp =

(
xp(yp+zp)xp

2
0

0 0

)
.

According to Lemma 3.1, we obtain

f
(
(XY ∗ZY X)p

)
- f(XpY ∗ZpY Xp), 1 ≤ p < ∞

and

f(XpY ∗ZpY Xp) - f
(
(XY ∗ZY X)p

)
, 0 < p ≤ 1.

This completes the proof. �

If we replace x by 1 in Corollary 3.8, then

(y + z)p - 2p−1(yp + zp) (3.2)

for 0 ≤ z, y ∈ L0(M), and p ≥ 1.
The following result is a special case of Theorem 5.3 in [10]. Let 0 ≤ x1, x2 ∈

L0(M). If f : [0,∞) → [0,∞) is any nonnegative concave function, then

f(x1 + x2) - f(x1) + f(x2). (3.3)

Based on (3.2) and (3.3), we have the following result, which is related to the
Heinz means.

Corollary 3.9. Let 0 ≤ x, y ∈ L0(M), and let 0 ≤ p ≤ 1. Then

µ(xpy1−p + ypx1−p) - 2|
1
2
−p|µ(x+ y).

Proof. Since the result is obvious when p = 0, 1, we only need to prove it for
0 < p < 1. Let us first assume 0 < p ≤ 1

2
. We write r = 1

p
and q = 1

1−p
. Then

1 ≤ q ≤ 2 ≤ r and 1
r
+ 1

q
= 1. Let A =

(
xp yp

0 0

)
, and let B =

(
y1−p 0
x1−p 0

)
. According

to (2.4), (2.5), (2.6), and the usual Hölder inequality, we obtain∫ t

0

µs(x
py1−p + ypx1−p) ds

=

∫ t

0

µs(AB) ds ≤
∫ t

0

µs(A)µs(B) ds

=

∫ t

0

µs(AA
∗)

1
2µs(B

∗B)
1
2 ds

=

∫ t

0

µs(x
2p + y2p)

1
2µs(x

2(1−p) + y2(1−p))
1
2 ds

≤
(∫ t

0

µs(x
2p + y2p)

r
2 ds

) 1
r
(∫ t

0

µs(x
2(1−p) + y2(1−p))

q
2 ds

) 1
q
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for all t > 0. Since q
2
≤ 1, by inequality (3.3), we get(∫ t

0

µs(x
2(1−p) + y2(1−p))

q
2 ds

) 1
q ≤

(∫ t

0

µs(x
q(1−p) + yq(1−p)) ds

) 1
q

=
(∫ t

0

µs(x+ y) ds
)1−p

, t > 0.

Note that r
2
≥ 1. It follows from inequality (3.2) that(∫ t

0

µs(x
2p + y2p)

r
2 ds

) 1
r ≤

(
2

p
2
−1

∫ t

0

µs(x
rp + yrp) ds

) 1
r

= 2
1
2
−p
(∫ t

0

µs(x+ y) ds
)p

, t > 0.

Hence, for 0 ≤ p ≤ 1
2
, we have∫ t

0

µs(x
py1−p + ypx1−p) ds ≤ 2

1
2
−p

∫ t

0

µs(x+ y) ds, t > 0. (3.4)

Now we suppose that 1
2
≤ p < 1. If we replace p by 1− p and interchange x and

y in (3.4), we obtain∫ t

0

µs(x
py1−p + ypx1−p) ds =

∫ t

0

µs

(
(xpy1−p + ypx1−p)∗

)
ds

=

∫ t

0

µs(y
1−pxp + x1−pyp) ds

≤ 2p−
1
2

∫ t

0

µs(x+ y) ds, t > 0.

This completes the proof. �

The matrix version of Corollary 3.9 appears in [1]. The result in Corollary 3.9
can be extended to normal measurable operators.

Corollary 3.10. Let x and y be normal in L0(M), and let p, q ≥ 0 with 1
p
+ 1

q
= 1.

Then

µ(xpyq + ypxq) - 2|
1
2
− 1

p
|µ
(
|x|p+q + |y|p+q

)
.

Proof. Without loss of generality, we may assume that p ≤ q. Then 1 ≤ p ≤ 2 ≤ q.
Let A =

(
xp yp

0 0

)
, and let B =

(
yq 0
xq 0

)
. Since x and y are normal, then |A∗| = |A|,

and hence

µ(AA∗) = µ

((
xp yp

0 0

)(
(xp)∗ 0
(yp)∗ 0

))
= µ

((
|x∗|2p + |y∗|2p 0

0 0

))
= µ

((
|x|2p + |y|2p 0

0 0

))
= µ

(
|x|2p + |y|2p

)
.
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Similarly, µ(B∗B) = µ(|x|2q+|y|2q). According to (2.4), (2.5), and (2.6), we obtain∫ t

0

µs(x
pyq + ypxq) ds =

∫ t

0

µs(AB) ds ≤
∫ t

0

µs(A)µs(B) ds

=

∫ t

0

µs(AA
∗)

1
2µs(B

∗B)
1
2 ds

=

∫ t

0

µs

(
|x|2p + |y|2p

) 1
2µs

(
|x|2q + |y|2q

) 1
2 ds, t > 0.

Then the proof can be done similarly to Corollary 3.9. The details are omitted. �

The matrix version of Corollary 3.10 appears in [1].

Corollary 3.11. Let p, q ≥ 0 with 1
p
+ 1

q
= 1, and let E be a fully symmetric

Banach space. If x and y are normal in E(M)(p+q), then

‖xpyq + ypxq‖E(M) ≤ 2|
1
2
− 1

p
|∥∥|x|p+q + |y|p+q

∥∥
E(M)

.

Proof. The result follows immediately from Corollary 3.10.

Remark 3.12. All the results in this section, in the matrix case and the type I∞
case, are contained in Bourin and Lee’s paper [6], except Corollaries 3.9–3.11 on
the Heinz means.
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