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Abstract. For Banach spaces X and Y , let K(X,Y ) denote the space of all
compact operators from X to Y endowed with the operator norm. We give
sufficient conditions for subsets of K(X,Y ) to be relatively compact. We also
give some necessary and sufficient conditions for the Dunford–Pettis relatively
compact property of some spaces of operators.

1. Introduction and preliminaries

In this article, sufficient conditions are given for subsets of compact operators to
be relatively compact. Also, the Dunford–Pettis relatively compact property and
the Gelfand–Phillips property are studied in the context of spaces of operators.

Let X and Y denote Banach spaces, let X∗ denote the continuous linear dual
of X, and let BX denote the unit ball of X. An operator T : X → Y will be
a continuous and linear function. The set of all operators from X to Y will be
denoted by L(X,Y ), and the subspace of compact operators will be denoted by
K(X,Y ). The w∗ − w continuous (resp., compact) operators from X∗ to Y will
be denoted by Lw∗(X∗, Y ) (resp., Kw∗(X∗, Y )). The projective tensor product of
X and Y will be denoted by X ⊗π Y .

An operator T : X → Y is called completely continuous (or Dunford–Pettis) if
T maps weakly convergent sequences to norm-convergent sequences. LetCC (X,Y )
denote the set of all completely continuous operators from X to Y .

A bounded subset A of X is called a Dunford–Pettis (DP) (resp., limited)
subset of X if every weakly null (resp., w∗-null) sequence (x∗n) in X

∗ tends to 0
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uniformly on A; that is,

lim
n

(
sup

{∣∣x∗n(x)∣∣ : x ∈ A
})

= 0.

A sequence (xn) is Dunford–Pettis (DP) (resp., limited) if the set of its terms
is a DP (resp., limited) set.

A bounded subset S of X is said to be weakly precompact provided that every
sequence from S has a weakly Cauchy subsequence. Every DP (resp., limited) set
is weakly precompact (e.g., see [14, p. 377]) (resp., [2]).

A Banach space X has the Dunford–Pettis relatively compact property (DPrcP)
if every DP subset of X is relatively compact (see [7]). Schur spaces have the
DPrcP.

A bounded subset A of X∗ is called an L-subset of X∗ if each weakly null
sequence (xn) in X tends to 0 uniformly on A; that is,

lim
n

(
sup

{∣∣x∗(xn)∣∣ : x∗ ∈ A
})

= 0.

It is known that `1 6↪→ X if and only if X∗ has the DPrcP if and only if every
L-subset of X∗ is relatively compact (see [7], [6]).

A Banach space X has the Gelfand–Phillips (GP) property if every limited
subset of X is relatively compact. The following spaces have the Gelfand–Phillips
property: Schur spaces; spaces with w∗-sequential compact dual unit balls; sepa-
rable spaces; reflexive spaces; spaces whose duals do not contain `1; subspaces of
weakly compactly generated spaces; spaces whose duals have the Radon–Nikodym
property; dual spaces X∗ whith X not containining `1 (see [2], [6], [18, p. 31]).

A series
∑
xn of elements of X is called weakly unconditionally convergent

(wuc) if
∑

|x∗(xn)| < ∞ for each x∗ ∈ X∗. An operator T : X → Y is called
unconditionally converging if it maps weakly unconditionally convergent series to
unconditionally convergent ones. A Banach space X has property (V ) if and only
if every unconditionally converging operator with domain X is weakly compact
(see [13]). Also, C(K) spaces and reflexive spaces have property (V ) (see [13]).

A Banach space X has the Dunford–Pettis property (DPP) if every weakly
compact operator T : X → Y is completely continuous, for any Banach space Y
(see [4]); C(K) spaces and L1(µ) spaces have the DPP (see [4]).

Numerous papers have investigated whether spaces of operators inherit the
Dunford–Pettis relatively compact property or the Gelfand–Phillips property
when the codomain and the dual of the domain possess the respective prop-
erty (e.g., see the [5, Introduction and Section 2], [7], [8, Sections 2, 3], [10], and
[17]).

In the present article, sufficient conditions for subsets of compact operators to
be relatively compact and evaluation operators are used in spaces of operators to
establish simple mapping results which extend and consolidate results in [10], [7],
[8], [17], [16], and [5]. The Dunford–Pettis complete continuity of the evaluation
operators is used in Theorem 3.3 and Theorem 3.7 to give sufficient conditions for
K(X,Y ) and K(X,Y ∗) to have the DPrcP, thus extending results in [10] and [7].
The Dunford–Pettis complete continuity, the limited complete continuity, and
the complete continuity of the evaluation operators are used in Theorem 3.12
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to give sufficient conditions for L(X,Y ) and Lw∗(X∗, Y ) to have the DPrcP,
the GP property, and the Schur property, thus extending results in [7], [8], [17],
and [16]. The limited complete continuity of the evaluation operators is used
in Theorem 3.16 to study the GP property of Kw∗(X∗, Y ), thus extending [5,
Theorem 2.1].

2. Relative Compactness in spaces of compact operators

If H is a subset of K(X,Y ), x ∈ X and y∗ ∈ Y ∗, then let H(x) = {T (x) :
T ∈ H}, H∗(y∗) = {T ∗(y∗) : T ∈ H}, H(BX) = {T (x) : T ∈ H, x ∈ BX},
and H∗(BY ∗) = {T ∗(y∗) : T ∈ H, y∗ ∈ BY ∗}. We begin by proving a theorem
of Palmer [12] about relative compactness in K(X,Y ). The original proof used
a variation of a general Arzela–Ascoli theorem. We give a different proof based
on the following result, which gives a criterion for a set of compact operators
to be weakly precompact. Our proof clarifies the connections between the weak
precompactness and relative compactness of subsets of compact operators.

Theorem 2.1 ([9, Theorem 1]). Let H be a bounded subset of K(X,Y ) such that

(i) H(x) is weakly precompact for each x ∈ X, and
(ii) H∗(y∗) is relatively weakly compact for each y∗ ∈ Y ∗.

Then H is weakly precompact.

Theorem 2.2 ([12, Theorems 2.1, 2.2]). A subset H of K(X,Y ) is relatively
compact if and only if

(a) H(BX) is relatively compact in Y and
(b) H∗(y∗) is relatively compact in X∗, for each y∗ ∈ Y ∗,

or

(a)′ H∗(BY ∗) is relatively compact in X∗ and
(b)′ H(x) is relatively compact in Y , for each x ∈ X.

Proof. Suppose that H is relatively compact in K(X,Y ). Let y∗ ∈ Y ∗ and x ∈ X.
The maps ψy∗ : K(X,Y ) → X∗, ψy∗(T ) = T ∗(y∗) and φx : K(X,Y ) → Y ,
ψx(T ) = T (x) are bounded linear operators. Hence H∗(y∗) is relatively compact
in X∗ and H(x) is relatively compact in Y .

Let (Tn(xn)) be a sequence in H(BX). Since H is relatively compact, we can
suppose (by passing to a subsequence) that ‖Tn − T‖ → 0, where T ∈ K(X,Y ).
For n,m ∈ N we have∥∥Tn(xn)− Tm(xm)

∥∥
≤

∥∥(Tn − Tm)(xn)
∥∥+

∥∥(Tm − T )(xn − xm)
∥∥+

∥∥T (xn − xm)
∥∥

≤ ‖Tn − Tm‖+ 2‖Tm − T‖+
∥∥T (xn)− T (xm)

∥∥.
Since ‖Tn − T‖ → 0 and T is compact, some subsequence of (Tn(xn)) is norm-
convergent. Thus H(BX) is relatively compact. Since the map T → T ∗ from
K(X,Y ) to K(Y ∗, X∗) is an isometry, H∗ is relatively compact in K(Y ∗, X∗).
Using an argument similar to the previous one, H∗(BY ∗) is relatively compact.

Suppose that H satisfies (a) and (b). If H is not bounded, there is a sequence
(Tn) in H so that ‖Tn‖ > n for all n. Let (xn) be a sequence in BX such that
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‖Tn(xn)‖ > n for all n. Since H(BX) is relatively compact, without loss of gen-
erality we can assume that (Tn(xn)) is convergent. Hence (Tn(xn)) is bounded, a
contradiction. Thus H is bounded.

Since H(BX) is relatively compact in Y , H(x) is relatively compact in Y for
each x ∈ X. Thus the assumptions of Theorem 2.1 are satisfied. By Theorem 2.1,
H is weakly precompact. Let (Tn) be a sequence in H. Without loss of generality
we can assume that (Tn) is weakly Cauchy.

Suppose that (Tn) has no norm-convergent subsequence. Choose ε > 0 and
let {nk} and {mk} be two sequences of positive integers such that mk < nk <
mk+1 and ‖Tnk

− Tmk
‖ > ε for all k. Let (xk) be a sequence in BX so that

‖Tnk
(xk)− Tmk

(xk)‖ > ε for all k.
For each y∗ ∈ Y ∗, the sequence (T ∗

n(y
∗)) has a convergent subsequence and is

weakly Cauchy, and thus is convergent. Let L ∈ L(Y ∗, X∗) so that T ∗
n(y

∗) → L(y∗)
for all y∗ ∈ Y ∗. For all y∗ ∈ Y ∗,〈

Tnk
(xk)− Tmk

(xk), y
∗〉 ≤ ∥∥T ∗

nk
(y∗)− T ∗

mk
(y∗)

∥∥ → 0.

Thus (Tnk
(xk) − Tmk

(xk)) is weakly null in Y . Since (Tnk
(xk)) and (Tmk

(xk)) lie
in H(BX) which is relatively compact, {Tnk

(xk)− Tmk
(xk) : k ∈ N} is relatively

compact. Therefore ‖Tnk
(xk)− Tmk

(xk)‖ → 0. This is a contradiction.
Now suppose that H satisfies (a)′ and (b)′. Note that H is bounded. Since

H∗(BY ∗) is relatively compact in X∗, H∗(y∗) is relatively compact in X∗ for each
y∗ ∈ Y ∗. Let (Tn) be a sequence in H. By Theorem 2.1, we can assume that (Tn)
is weakly Cauchy.

Suppose that (Tn) has no norm-convergent subsequence. Choose ε > 0 and
let {nk} and {mk} be two sequences of positive integers such that mk < nk <
mk+1 and ‖Tnk

− Tmk
‖ > ε for all k. Let (y∗k) be a sequence in BY ∗ so that

‖T ∗
nk
(y∗k) − T ∗

mk
(y∗k)‖ > ε for all k. For each x ∈ X, the sequence (Tn(x)) has

a convergent subsequence and is weakly Cauchy, and thus is convergent. Let
T ∈ L(X,Y ) so that Tn(x) → T (x) for each x ∈ X. For all x ∈ X,〈

Tnk
(x)− Tmk

(x), y∗
〉
≤

∥∥Tnk
(x)− Tmk

(x)
∥∥ → 0.

Hence (T ∗
nk
(y∗k) − T ∗

mk
(y∗k)) is w∗-null in X∗. Since H∗(BY ∗) is relatively com-

pact, {T ∗
nk
(y∗k) − T ∗

mk
(y∗k) : k ∈ N} is relatively compact. Therefore ‖T ∗

nk
(y∗k) −

T ∗
mk

(y∗k)‖ → 0. This contradiction concludes the proof. �

The following two theorems give criterions for relative compactness in the space
Kw∗(X∗, Y ). We recall the following well-known isometries:

(1) Lw∗(X∗, Y ) ' Lw∗(Y ∗, X), Kw∗(X∗, Y ) ' Kw∗(Y ∗, X) (T → T ∗),
(2) W (X,Y ) ' Lw∗(X∗∗, Y ) and K(X,Y ) ' Kw∗(X∗∗, Y ) (T → T ∗∗).

Theorem 2.3 ([15, Theorem 1.15]). A subset H of Kw∗(X∗, Y ) is relatively com-
pact if and only if

(i) H(BX∗) is relatively compact in Y and
(ii) H∗(y∗) is relatively compact in X for each y∗ ∈ Y ∗,
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or

(i)′ H∗(BY ∗) is relatively compact in X and
(ii)′ H(x∗) is relatively compact in Y for each x∗ ∈ X∗.

Theorem 2.4. Suppose that X is a Banach space. The Banach space Y has the
Dunford–Pettis relatively compact property (DPrcP) (resp., the GP property) if
and only if the following holds: if H is a subset of Kw∗(X∗, Y ) such that

(i) limn(sup{‖T ∗(y∗n)‖ : T ∈ H}) = 0 for any weakly null (resp., w∗-null)
sequence (y∗n) in Y

∗, and
(ii) H∗(y∗) is relatively compact for any y∗ ∈ Y ∗,

then H is relatively compact in Kw∗(X∗, Y ).

Proof. Suppose that H is a subset of Kw∗(X∗, Y ) satisfying (i) and (ii). (Note
that H satisfies condition (ii) of Theorem 2.3.) Suppose that (y∗n) is a weakly
null (resp., w∗-null) sequence in Y ∗. Since limn(sup{‖T ∗(y∗n)‖ : T ∈ H}) = 0, we
obtain

lim
n

(
sup

{∣∣〈T (x∗), y∗n〉∣∣ : T ∈ H, x∗ ∈ BX∗
})

= lim
n

(
sup

{∣∣〈x∗, T ∗(y∗n)
〉∣∣ : T ∈ H, x∗ ∈ BX∗

})
= 0.

Hence H(BX∗) is a DP (resp., limited) subset of Y , and thus relatively compact.
By Theorem 2.3, H is relatively compact.

We show that if X and Y are such that a subset H of Kw∗(X∗, Y ) satisfying
(i) and (ii) is relatively compact, then Y has the DPrcP (resp., the GP property).
Let A be a DP (resp., limited) subset of Y , and let x0 ∈ X, ‖x0‖ = 1. For each
y ∈ A, define Ty : X∗ → Y by Ty(x

∗) = x∗(x0)y. Note that Ty ∈ Kw∗(X∗, Y ),
and that H = {Ty : y ∈ A} satisfies (ii). Further, if (y∗n) is a weakly null (resp.,
w∗-null) sequence in Y ∗, then supy∈A ‖T ∗

y (y
∗
n)‖ = supy∈A ‖y∗n(y)x0‖ → 0, since

A is a DP (resp., limited) subset of Y . Hence H = {Ty : y ∈ A} is relatively
compact in Kw∗(X∗, Y ). This implies that A is relatively compact. �

Theorem 2.5. Suppose that X is a Banach space. The Banach space Y has the
Dunford–Pettis relatively compact property (DPrcP) (resp., the GP property) if
and only if the following holds:

if H is a subset of K(X,Y ) such that

(i) limn(sup{‖T ∗(y∗n)‖ : T ∈ H}) = 0 for any weakly null (resp., w∗-null)
sequence (y∗n) in Y

∗, and
(ii) H∗(y∗) is relatively compact for any y∗ ∈ Y ∗,

then H is relatively compact in K(X,Y ).

Proof. Suppose that H is a subset of K(X,Y ) satisfying (i) and (ii). Using the
isometry K(X,Y ) ' Kw∗(X∗∗, Y ) and Theorem 2.4, H is relatively compact.

If X and Y are such that a subset H of K(X,Y ) satisfying (i) and (ii) is
relatively compact, then Y has the DPrcP (resp., the GP property), by the proof
of Theorem 2.4. �

Theorem 2.6. Suppose that X is a Banach space. The Banach space Y does not
contain copies of `1 if and only if the following holds:
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if H is a subset of K(X,Y ∗) such that

(i) limn(sup{‖T ∗(yn)‖ : T ∈ H}) = 0 for any weakly null sequence (yn) in Y ,
and

(ii) H∗(y∗∗) is relatively compact for any y∗∗ ∈ Y ∗∗,

then H is relatively compact in K(X,Y ∗).

Proof. Suppose that H is a subset of K(X,Y ∗) satisfying (i) and (ii). We show
that H(BX) is relatively compact in Y ∗. Suppose that (yn) is a weakly null
sequence in Y . Since limn(sup{‖T ∗(yn)‖ : T ∈ H}) = 0, it follows that

lim
n

(
sup

{∣∣〈T (x), yn〉∣∣ : T ∈ H, x ∈ BX

})
= lim

n

(
sup

{∣∣〈x, T ∗(yn)
〉∣∣ : T ∈ H, x ∈ BX

})
= 0.

ThenH(BX) is an L-subset of Y
∗. Since Y does not contain copies of `1,H(BX) is

relatively compact (see [6, Theorem 2]). By Theorem 2.2, H is relatively compact.
We show that if X and Y are such that a subset H of K(X,Y ∗) satisfying (i)

and (ii) is relatively compact, then Y does not contain copies of `1. It is enough
to show that every L-subset of Y ∗ is relatively compact [6]. Let A be an L-subset
of Y ∗, and let x∗0 ∈ X∗, ‖x∗0‖ = 1. For each y∗ ∈ A, define Sy∗ : X → Y ∗ by
Sy∗(x) = x∗0(x)y

∗. Note that Sy∗ is compact, and that H = {Sy∗ : y
∗ ∈ A} satisfies

(ii). Further, if (yn) is a weakly null sequence in Y , then supy∗∈A ‖S∗
y∗(yn)‖ =

supy∗∈A ‖y∗(yn)x∗0‖ → 0, since A is an L-set in Y ∗. Hence H = {Sy∗ : y∗ ∈ A} is
relatively compact in K(X,Y ∗). This implies that A is relatively compact. �

Definition 2.7. A subset H of K(X,Y ) is called sequentially weak-norm equicon-
tinuous (see [11]) if for each weakly null sequence (xn) in X, the sequence (T (xn))
converges to 0 uniformly for T ∈ H (i.e., sup{‖T (xn)‖ : T ∈ H} → 0).

Corollary 2.8 ([11, Theorem 1]). Suppose that X does not contain copies of `1
and Y is a Banach space. Let H be a subset of K(X,Y ) such that

(i) H is sequentially weak-norm equicontinuous and
(ii) H(x) is relatively compact in Y , for each x ∈ X.

Then H is relatively compact.

Proof. Let H be a subset of K(X,Y ) satisfying (i) and (ii). Suppose that (xn) is
a weakly null sequence in X. Since sup{‖T (xn)‖ : T ∈ H} → 0, we obtain

lim
n

(
sup

{∣∣〈xn, T ∗(y∗)
〉∣∣ : T ∈ H, y∗ ∈ BY ∗

})
= lim

n

(
sup

{∣∣〈T (xn), y∗〉∣∣ : T ∈ H, x ∈ BX

})
= 0.

Then H∗(BY ∗) is an L-subset of X∗. Since X does not contain copies of `1,
H∗(BY ∗) is relatively compact (see [6]). By Theorem 2.2, H is relatively compact.

�

3. Evaluation operators and the Dunford–Pettis relatively
compact property

Suppose that X and Y are Banach spaces and M is a closed subspace of
L(X,Y ). If x ∈ X and y∗ ∈ Y ∗, then the evaluation operators φx : M → Y and
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ψy∗ :M → X∗ are defined by

φx(T ) = T (x), ψy∗(T ) = T ∗(y∗), T ∈M.

Definition 3.1. An operator T : X → Y is called Dunford–Pettis completely
continuous (DPcc) if T carries weakly null DP sequences to norm null ones.

In the following we give some necessary and sufficient conditions for the
Dunford–Pettis relatively compact property of some spaces of operators in terms
of the Dunford–Pettis complete continuity of the evaluation operators.

We note that a space X has the DPrcP if and only if every weakly null DP
sequence in X is norm null.

Lemma 3.2. An operator T : X → Y is Dunford–Pettis completely continuous
if and only if T (A) is relatively compact in Y for each DP subset A of X.

Proof. Suppose that T : X → Y is Dunford–Pettis completely continuous and let
A be a DP subset of X. Let (xn) be a sequence in A. Since DP sets are weakly
precompact (see [14, p. 377]), (xn) has a weakly Cauchy subsequence. Without
loss of generality suppose that (xn) is weakly Cauchy. Note that A−A is a DP set.
For any two subsequences (an) and (bn) of (xn), (an − bn) is weakly null and DP,
and ‖T (an)−T (bn)‖ → 0. Then (T (xn)) is norm Cauchy, hence norm-convergent
in Y . Thus T (A) is relatively compact.

Conversely, suppose that T (A) is relatively compact for each DP subset A
of X. Let (xn) be a weakly null DP sequence in X. Since (T (xn)) is relatively
compact and weakly null, ‖T (xn)‖ → 0. Thus T is Dunford–Pettis completely
continuous. �

The following theorem extends [10, Theorem 3.8].

Theorem 3.3. Suppose that Y has the DPrcP and that L(Y ∗, X∗) = CC (Y ∗, X∗).
IfM is a closed subspace of L(X,Y ) = K(X,Y ) such that the evaluation operator
ψy∗ : M → X∗ is Dunford–Pettis completely continuous for each y∗ ∈ Y ∗, then
M has the DPrcP.

Proof. Let T : X → Y be an operator. Since T ∗ : Y ∗ → X∗ is completely
continuous, T (BX) is a DP subset of Y , and thus relatively compact. Hence T is
compact. Thus L(X,Y ) = K(X,Y ).

Let H be a DP subset of M . Let y∗ ∈ Y ∗. Since ψy∗ : M → X∗ is Dunford–
Pettis completely continuous, ψy∗(H) = H∗(y∗) is relatively compact. Hence H
satisfies condition (ii) of Theorem 2.5. Suppose that condition (i) of Theorem 2.5
is not satisfied. Let ε > 0, (y∗n) be a weakly null sequence in Y ∗, and (Tn) a
sequence in H such that for each n,∥∥T ∗

n(y
∗
n)
∥∥ > ε.

Let (xn) be a sequence in BX such that 〈T ∗
n(y

∗
n), xn〉 > ε.

Since L(Y ∗, X∗) = CC (Y ∗, X∗), (xn ⊗ y∗n) is weakly null in X ⊗π Y
∗. Indeed,

if T ∈ (X ⊗π Y
∗)∗ ' L(X,Y ∗∗) ([4, p. 230]), T ∗|Y ∗ ∈ L(Y ∗, X∗) = CC (Y ∗, X∗)

and

〈xn ⊗ y∗n, T 〉 ≤
∥∥T ∗(y∗n)

∥∥ → 0.
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Now L(X,Y ) embeds isometrically in L(X,Y ∗∗) and (Tn) is a DP sequence in
L(X,Y ∗∗). Since a DP subset of a dual space is necessarily an L-subset of the
dual space,

〈Tn, xn ⊗ y∗n〉 =
〈
T ∗
n(y

∗
n), xn

〉
→ 0.

This is a contradiction. By Theorem 2.5, H is relatively compact. �

Corollary 3.4. Suppose that X∗ and Y have the DPrcP and every operator
T : Y ∗ → X∗ is completely continuous. If M is a closed subspace of L(X,Y ) =
K(X,Y ), then M has the DPrcP.

Proof. Since X∗ has the DPrcP, ψy∗ : M → X∗ is Dunford–Pettis completely
continuous for each y∗ ∈ Y ∗. Apply Theorem 3.3. �

In [10, Theorem 3.8] it is shown that if X∗ and Y have the DPrcP and if
L(Y ∗, X∗) = K(Y ∗, X∗), then L(X,Y ) has the DPrcP. Corollary 3.4 is more
general than [10, Theorem 3.8], since the assumption L(Y ∗, X∗) = CC (Y ∗, X∗) is
more general than the assumption L(Y ∗, X∗) = K(Y ∗, X∗). Let X = c0 and Y =
E be the first Bourgain–Delbaen space [1]; that is, E is an infinite-dimensional
separable L∞-space with the Schur property. Since E∗∗ is complemented in some
C(K) space (see [1, Proposition 1.23]), and C(K) spaces have property (V ) (see
[13]), E∗∗ has property (V ) (see [13]). Since E∗∗ is also nonreflexive, c0 ↪→ E∗∗

(see [13]), and thus `1 is complemented in E∗ by a result of Bessaga–Pelczynski.
Hence the projection P : E∗ → `1 is a noncompact operator. Thus L(Y ∗, X∗) =
CC (Y ∗, X∗) 6= K(Y ∗, X∗).

Corollary 3.5 ([7, Corollary 9]). Suppose that X∗ has Schur property and Y has
the DPrcP. Then L(X,Y ) = K(X,Y ) has the DPrcP.

Proof. Since X∗ has the Schur property, L(Y ∗, X∗) = CC (Y ∗, X∗). Apply Corol-
lary 3.4. �

Lemma 3.6. Suppose that L(X,Y ∗) = K(X,Y ∗).

(i) If (xn) is bounded in X and (yn) is weakly null in Y , then (xn ⊗ yn) is
weakly null in X ⊗π Y .

(ii) If (xn) is weakly null in X and (yn) is bounded in Y , then (xn ⊗ yn) is
weakly null in X ⊗π Y .

Proof. (i) Suppose that (xn) is a sequence in BX and (yn) is weakly null in Y . If
T ∈ (X ⊗π Y )∗ ' L(X,Y ∗) (see [4, p. 230]), then

〈T, xn ⊗ yn〉 =
〈
T ∗(yn), xn

〉
≤

∥∥T ∗(yn)
∥∥ → 0,

since T ∗|Y is completely continuous.
(ii) Suppose that (xn) is weakly null in X and (yn) is a sequence in BY . If

T ∈ (X ⊗π Y )∗ ' L(X,Y ∗) = K(X,Y ∗), then

〈T, xn ⊗ yn〉 =
〈
T (xn), yn

〉
≤

∥∥T (xn)∥∥ → 0,

since T is completely continuous. �

We note that Lemma 3.6(i) holds if we only assume that L(Y,X∗) = CC (Y,X∗)
and Lemma 3.6(ii) holds if we only assume that L(X,Y ∗) = CC (X,Y ∗).
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Theorem 3.7. Suppose that Y does not contain copies of `1, that L(X,Y
∗) =

K(X,Y ∗), and that M is a closed subspace of L(X,Y ∗) such that the evaluation
operator ψy∗∗ : M → X∗ is Dunford–Pettis completely continuous for each y∗∗ ∈
Y ∗∗. Then M has the DPrcP and X ⊗π Y does not contain a copy of `1.

Proof. Let (Tn) be a weakly null DP sequence in M so that ‖Tn‖ = 1 for each n.
Let (xn) be a sequence in BX such that ‖Tn(xn)‖ > 1/2 for each n. If y∗∗ ∈ Y ∗∗,
then 〈y∗∗, Tn(xn)〉 ≤ ‖T ∗

n(y
∗∗)‖ → 0, since ψy∗∗ : M → X∗ is Dunford–Pettis

completely continuous. Hence (Tn(xn)) is weakly null in Y ∗.
Let (yn) be a weakly null sequence in Y . By Lemma 3.6 (i), (xn⊗ yn) is weakly

null in X ⊗π Y . Since (Tn) is a DP subset of L(X,Y ∗) ' (X ⊗π Y )∗,

〈Tn, xn ⊗ yn〉 =
〈
Tn(xn), yn

〉
→ 0.

Hence (Tn(xn)) is an L-set in Y ∗, and thus relatively compact [6]. Therefore
‖Tn(xn)‖ → 0, and we have a contradiction.

Since L(X,Y ∗) ' (X ⊗π Y )∗ has the DPrcP, X ⊗π Y does not contain copies
of `1 (see [7]). �

Corollary 3.8 ([7, Theorem 3]). Suppose that X and Y do not contain copies of
`1 and that L(X,Y ∗) = K(X,Y ∗). Then X ⊗π Y does not contain a copy of `1.

Proof. Since X does not contain copies of `1, X
∗ has the DPrcP [7]. Hence ψy∗∗ :

L(X,Y ∗) → X∗ is Dunford–Pettis completely continuous for each y∗∗ ∈ Y ∗∗.
Apply Theorem 3.7. �

Theorem 3.9. Suppose that X does not contain copies of `1, L(X,Y
∗∗) =

K(X,Y ∗∗), and suppose that M is a closed subspace of L(X,Y ) such that the
evaluation operator φx : M → Y is Dunford–Pettis completely continuous for
each x ∈ X. Then M has the DPrcP.

Proof. Let (Tn) be a weakly null DP sequence in M so that ‖Tn‖ = 1 for each n.
Let (y∗n) be a sequence in BY ∗ such that ‖T ∗

n(y
∗
n)‖ > 1/2 for each n. For each

x ∈ X, φx :M → Y is Dunford–Pettis completely continuous, hence ‖φx(Tn)‖ =
‖Tn(x)‖ → 0. Then 〈T ∗

n(y
∗
n), x〉 ≤ ‖Tn(x)‖ → 0, and thus (T ∗

n(y
∗
n)) is w∗-null

in X∗.
Let (xn) be a weakly null sequence in X. By Lemma 3.6 (ii), (xn⊗y∗n) is weakly

null in X ⊗π Y
∗. Now L(X,Y ) embeds isometrically in L(X,Y ∗∗) and (Tn) is a

DP sequence in L(X,Y ∗∗) ' (X ⊗π Y
∗)∗. Hence

〈Tn, xn ⊗ y∗n〉 =
〈
T ∗
n(y

∗
n), xn

〉
→ 0.

Therefore (T ∗
n(y

∗
n)) is an L-set in X∗, and thus relatively compact [6]. Then

‖T ∗
n(y

∗
n)‖ → 0, and we have a contradiction. �

Corollary 3.10.

(i) Suppose that X does not contain copies of `1, that Y has the DPrcP, and
that L(X,Y ∗∗) = K(X,Y ∗∗). Then any closed subspace of L(X,Y ) has
the DPrcP.
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(ii) Suppose that X does not contain copies of `1, that X has the DPP and
property (V ), that Y has the DPrcP, and that Y ∗∗ does not contain copies
of c0. Then any closed subspace of L(X,Y ) has the DPrcP.

Proof. (i) Since Y has the DPrcP, φx : M → Y is Dunford–Pettis completely
continuous for each x ∈ X. Apply Theorem 3.9.

(ii) Let T : X → Y ∗∗ be an operator. Since c0 6↪→ Y ∗∗, every wuc series in Y ∗∗

is unconditionally converging (see [4, p. 22]) and T is unconditionally converging.
Since X has property (V ), T is weakly compact (see [13]). Thus T is completely
continuous, since X has the DPP. Then T is compact, since `1 6↪→ X (see [14,
p. 377]). Apply (i). �

Definition 3.11. An operator T : X → Y is called limited completely continuous
(lcc) if T maps weakly null limited sequences to norm null sequences [17].

Theorem 3.12.

(i) Let X and Y be Banach spaces and let M be a closed subspace of L(X,Y )
such that the evaluation operator ψy∗ : M → X∗ is Dunford–Pettis com-
pletely continuous (resp., lcc) for each y∗ ∈ Y ∗. If M does not have the
DPrcP (resp., the GP property), then there is a separable subspace Y0 of
Y and an operator A : Y0 → c0 which is not completely continuous.

(ii) LetX and Y be Banach spaces and letM be a closed subspace of Lw∗(X∗, Y )
such that the evaluation operator ψy∗ : M → X is Dunford–Pettis com-
pletely continuous (resp., lcc) for each y∗ ∈ Y ∗. If M does not have the
DPrcP (resp., the GP property), then there is a separable subspace Y0 of
Y and an operator A : Y0 → c0 which is not completely continuous.

(iii) LetX and Y be Banach spaces and letM be a closed subspace of Lw∗(X∗, Y )
such that the evaluation operator ψy∗ : M → X is completely continuous
for each y∗ ∈ Y ∗. If M does not have the Schur property, then there is
a separable subspace Y0 of Y and an operator A : Y0 → c0 which is not
completely continuous.

Proof. (i) Suppose that M is a closed subspace of L(X,Y ) which does not have
the DPrcP (resp., the GP property). Let (Tn) be a weakly null DP (resp., weakly
null limited) sequence in M such that ‖Tn‖ 6→ 0. By passing to a subsequence,
suppose that for some ε > 0, ‖Tn‖ > ε, for each n. Let (xn) be a sequence in BX

so that ‖Tn(xn)‖ > ε for each n.
Let y∗ ∈ Y ∗. Since ψy∗ : M → X∗ is Dunford–Pettis completely continuous

(resp., lcc), ‖ψy∗(Tn)‖ = ‖T ∗
n(y

∗)‖ → 0. Then 〈y∗, Tn(xn)〉 = 〈T ∗
n(y

∗), xn〉 ≤
‖T ∗

n(y
∗)‖ → 0. Therefore (yn) := (Tn(xn)) is weakly null in Y . By the Bessaga–

Pelczynski selection principle (see [3]), we may (and do) assume that (yn) is a
seminormalized weakly null basic sequence in Y . Let Y0 = [yn] be the closed linear
span of (yn) and let (y∗n) be the sequence of coefficient functionals associated with
(yn). Define A : Y0 → c0 by A(y) = (y∗k(y)), y ∈ Y0. Note that ‖A(yn)‖ ≥ 1 for
each n. Then A is a bounded linear operator defined on a separable space, and A
is not completely continuous.
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(ii) Suppose that M a closed subspace of Lw∗(X∗, Y ) which does not have the
DPrcP (resp., the GP property). Let (Tn) be a weakly null DP (resp., weakly
null limited) sequence in M such that ‖Tn‖ 6→ 0. By passing to a subsequence,
suppose that for some ε > 0, ‖Tn‖ > ε, for each n. Let (x∗n) be a sequence in BX∗

so that ‖Tn(x∗n)‖ > ε for each n.
Let y∗ ∈ Y ∗. Since ψy∗ : M → X is Dunford–Pettis completely continuous

(resp., lcc), ‖ψy∗(Tn)‖ = ‖T ∗
n(y

∗)‖ → 0. Then 〈y∗, Tn(x∗n)〉 = 〈T ∗
n(y

∗), x∗n〉 ≤
‖T ∗

n(y
∗)‖ → 0. Therefore (yn) := (Tn(x

∗
n)) is weakly null in Y . Continue as in (i).

(iii) Suppose that M does not have the Schur property. Let (Tn) be a weakly
null sequence in M such that ‖Tn‖ 6→ 0. By passing to a subsequence, suppose
that for some ε > 0, ‖Tn‖ > ε, for each n. Let (x∗n) be a sequence in BX∗ so that
‖Tn(x∗n)‖ > ε for each n.

Let y∗ ∈ Y ∗. Since ψy∗ : M → X is completely continuous, ‖ψy∗(Tn)‖ =
‖T ∗

n(y
∗)‖ → 0. Then 〈y∗, Tn(x∗n)〉 ≤ ‖T ∗

n(y
∗)‖ → 0. Therefore (yn) := (Tn(x

∗
n)) is

weakly null in Y . Continue as in (i). �

Corollary 3.13.

(i) Suppose that X has the DPrcP (resp., the GP property) and that M is a
closed subspace of Lw∗(X∗, Y ). If M does not have the DPrcP (resp., the
GP property), then there is a separable subspace Y0 of Y and an operator
A : Y0 → c0 which is not completely continuous.

(ii) Suppose that X has the DPrcP and that Y has the Schur property. If M is
a closed subspace of Lw∗(X∗, Y ) = Kw∗(X∗, Y ), then M has the DPrcP.

(iii) Suppose thatM is a closed subspace of Lw∗(X∗, Y ) such that the evaluation
operator φx∗ :M → Y is Dunford–Pettis completely continuous (resp., lcc)
for each x∗ ∈ X∗. If M does not have the DPrcP (resp., the GP property),
then there is a separable subspace X0 of X and an operator A : X0 → c0
which is not completely continuous.

(iv) Suppose that X has the Schur property and that Y has the DPrcP. If M
is a closed subspace of Lw∗(X∗, Y ) = Kw∗(X∗, Y ), then M has the DPrcP
(see [7, Theorem 7]).

Proof. (i) Since X has the DPrcP (resp., the GP property), ψy∗ : M → X is
Dunford–Pettis completely continuous (resp., lcc). Apply Theorem 3.12.

(ii) Suppose that X has the DPrcP and that Y has the Schur property. Let
T ∈ Lw∗(X∗, Y ). Since T is weakly compact and Y has the Schur property, T is
compact. Suppose that M does not have the DPrcP. By Theorem 3.12, there is a
noncompletely continuous operator defined on a closed linear subspace Y0 of Y .
This is a contradiction since Y has the Schur property.

(iii) Suppose that M is a closed subspace of Lw∗(X∗, Y ) ' Lw∗(Y ∗, X) which
satisfies the assumptions. Apply Theorem 3.12.

(iv) By (ii) and the isometries (1) on p. 4, M has the DPrcP. �

Corollary 3.13 (iii) extends [17, Theorem 3.9], which shows that if X has the
Schur property and if M is a closed subspace of Lw∗(X∗, Y ) such that the evalu-
ation operator φx∗ : M → Y is limited completely continuous for each x∗ ∈ X∗,
then M has the GP property.
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In [8, Theorem 2], it was shown that if X∗ has the GP property and Y has the
Schur property, then L(X,Y ) has the GP property. In [17, Theorem 3.8], it was
shown that if Y has the Schur property and M is a closed subspace of L(X,Y )
such that the evaluation operators ψy∗ :M → X∗ are limited completely contin-
uous, then M has the GP property. Corollary 3.14(i) extends [17, Theorem 3.8]
and [8, Theorem 2].

Corollary 3.14.

(i) Suppose that X∗ has the DPrcP (resp., the GP property), and suppose
that M is a closed subspace of L(X,Y ). If M does not have the DPrcP
(resp., the GP property), then there is a separable subspace Y0 of Y and
an operator A : Y0 → c0 which is not completely continuous.

(ii) Suppose that X∗ has the DPrcP, and suppose that Y has the Schur prop-
erty. Then L(X,Y ) = K(X,Y ) has the DPrcP.

Proof. (i) Since X∗ has the DPrcP (resp., the GP property), ψy∗ : M → X∗

is Dunford–Pettis completely continuous (resp., lcc) for each y∗ ∈ Y ∗. Apply
Theorem 3.12.

(ii) Let T : X → Y be an operator. Since T is completely continuous, T ∗(BY ∗)
is an L-subset of X∗, and thus relatively compact (see [7]). Hence T ∗, thus T , is
compact. Thus L(X,Y ) = K(X,Y ). Then L(X,Y ) = K(X,Y ) has the DPrcP
by (i). �

Using Theorem 3.12(iii), we obtain the following result.

Corollary 3.15. We have the folllowing.

(i) Lw∗(X∗, Y ) has the Schur property if and only if X and Y have the Schur
property (see [16]).

(ii) L(X,Y ) has the Schur property if and only if X∗ and Y have the Schur
property (see [16]).

The following result extends [5, Theorem 2.1], which states that if X and Y
have the GP property, then Kw∗(X∗, Y ) has the GP property.

Theorem 3.16.

(i) If Y has the GP property and M is a closed subspace of Kw∗(X∗, Y ) such
that the evaluation operator ψy∗ :M → X is limited completely continuous
for each y∗ ∈ Y ∗, then M has the GP property.

(ii) If Y has the GP property and M is a closed subspace of K(X,Y ) such that
the evaluation operator ψy∗ : M → X∗ is limited completely continuous
for each y∗ ∈ Y ∗, then M has the GP property.

Proof. (i) Let H be a limited subset of M . Let y∗ ∈ Y ∗. Since ψy∗ : M → X
is limited completely continuous, H∗(y∗) = ψy∗(H) is relatively compact ([17,
Theorem 2.1]).

Let (y∗n) be a w
∗-null sequence in Y ∗. By Theorem 2.4, it is enough to show that

(T ∗(y∗n)) converges to zero uniformly for T ∈ H. Let T ∈ H. Since
T ∈ Kw∗(X∗, Y ), T ∗ is w∗-norm sequentially continuous. Thus ‖ψy∗n(T )‖ =
‖T ∗(y∗n)‖ → 0, and (ψy∗n) is a pointwise norm null sequence of operators. Since
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H is limited, (ψy∗n) converges uniformly on H (see [18, Proposition 1.1.2, p. 23]);
that is,

sup
{∥∥ψy∗n(T )

∥∥ : T ∈ H
}
= sup

{∥∥T ∗(y∗n)
∥∥ : T ∈ H

}
→ 0.

By Theorem 2.4, H is relatively compact. Thus M has the GP property.
(ii) Apply (i) and the isometry K(X,Y ) ' Kw∗(X∗∗, Y ). �
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