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Abstract. We introduce a certain property of commutative Banach alge-
bras which we call property OB. We prove that every bounded disjointness-
preserving linear map from a commutative Banach algebra with the aforesaid
property to any semisimple, commutative Banach algebra is a weighted com-
position map. Further, it is shown that a variety of important Banach algebras
in harmonic analysis have the property OB.

1. Introduction

The basic aim of this article is to bring together the theory of operator hyper-
Tauberian Banach algebras developed by Samei in [15] and the pattern estab-
lished in [1] with the purpose of analyzing the so-called disjointness-preserving
linear maps. This class of maps has been extensively studied in different con-
texts: Banach lattices, function algebras, and general Banach algebras. A lin-
ear map Φ: A → B between Banach function algebras A and B is said to be
disjointness-preserving if Φ(a)Φ(b) = 0 whenever a, b ∈ A are such that ab = 0.
The question of whether such a map for certain algebras is a weighted composi-
tion map has been widely studied. This paper focuses on a variety of significant
Banach function algebras associated with a locally compact group G such as the
Figà–Talamanca–Herz algebra Ap(G) and the Figà–Talamanca–Herz–Lebesgue
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algebra Aq
p(G) for p ∈ ]1,∞[ and q ∈ [1,∞[. Accordingly, it seems appropri-

ate to refer the reader to the papers [1], [3]–[5], [7], [9], [12], [13], and [14].
The paper [4] is concerned with bijective disjointness-preserving linear maps
Φ: A(G) → A(H) between the Fourier algebras A(G) and A(H) of amenable
locally compact groups G and H. In [14], the author removes the amenability as-
sumption and studies the continuous bijective disjointness-preserving linear maps
Φ: Ap(G) → Ap(H) for arbitrary locally compact groups G and H. The article
[12] deals with bijective disjointness-preserving linear maps between Fourier al-
gebras, and, further, it is shown that such a map gives rise to a topological group
isomorphism between the corresponding groups in the case where additionally it
preserves a kind of orthogonality. In [3] and [13], the operator space structure of
the Fourier algebra A(G) of a locally compact group G is involved, and the au-
thors are concerned with completely bounded surjective disjointness-preserving
linear maps from A(G) in the case where G is amenable. Further, articles [1]
and [5] are devoted to group algebras ([5] is restricted to locally compact abelian
groups).

In Section 2 we introduce a certain property of commutative Banach algebras
which we call property OB, and we show that a variety of important Banach
algebras in harmonic analysis have the aforementioned property, namely Ap(G)
together with its quotient Ap(E) for any locally compact group G and E ⊂ G
closed, and Aq

p(G) together with its quotient Aq
p(E) whenever the group G is such

that Ap(G) has a certain approximate identity (which holds for G amenable) and
E ⊂ G closed.

In Section 3 we show that every bounded disjointness-preserving linear map
Φ: A → B from a commutative Banach algebra A with the property OB into
any semisimple, commutative Banach algebra B is a weighted composition map.
We should stress that we do not require that the map Φ be either bijective or
surjective, and we do not impose the amenability on the locally compact group
G in the case where we deal with a Banach function algebra associated with G.
Furthermore, we emphasize that although our approach makes use of the operator
space theory, we do not require at all for the map Φ to be completely bounded
(but this time-boundedness on Φ is enough).

2. Orthosymmetric bilinear maps: properties B and OB

Throughout this article, let A be a commutative Banach algebra. Let Ω(A)
denote the character space of A. For a subset B of A and a subset E of Ω(A),
let h(B) = {γ ∈ Ω(A) : γ(a) = 0 for each a ∈ B} and I(E) = {a ∈ A : γ(a) =
0 for each γ ∈ E} denote the hull of B and the kernel of E, respectively (taking
h(∅) = Ω(A) and I(∅) = A). The annihilator of a ∈ A is Ann(a) = {b ∈
A : ab = 0}. Consider the dual space A∗ of A with the usual A-module action
(φ · a)(b) = φ(ab) for all φ ∈ A∗ and a, b ∈ A. The annihilator of φ ∈ A∗ is
Ann(φ) = {a ∈ A : φ · a = 0}.

Let X be a Banach space, and let ϕ : A×A → X be a bilinear map. Then ϕ is
said to be orthosymmetric if ϕ(a, b) = 0 whenever a, b ∈ A are such that ab = 0.



444 J. ALAMINOS, J. EXTREMERA, and A. R. VILLENA

It should be pointed out that the orthosymmetry has been widely studied in
the context of Banach lattices and that it has been shown in [1] to be useful in
studying disjointness-preserving linear maps on Banach algebras.

2.1. Property B and hyper-Tauberian Banach algebras. The paper [1]
makes heavy use of the orthosymmetric bilinear maps even though the orthosym-
metric bilinear functionals would suffice. We say that the Banach algebra A has
the property B if every bounded orthosymmetric bilinear functional ϕ : A×A → C
satisfies ϕ(ab, c) = ϕ(a, bc) for all a, b, c ∈ A.

Remark 2.1. Let A have the property B, and let ϕ : A × A → X be a bounded
orthosymmetric bilinear map for some Banach space X. For every continuous
linear functional ξ on X, the composition ξ ◦ ϕ is a bounded orthosymmetric
bilinear functional, and therefore ξ(ϕ(ab, c)) = ξ(ϕ(a, bc)) for all a, b, c ∈ A. We
thus get ϕ(ab, c) = ϕ(a, bc) for all a, b, c ∈ A. This shows that our definition
agrees with that of [1].

In [15] Samei confines himself to regular, semisimple, commutative Banach
algebras and develops the theory of hyper-Tauberian Banach algebras through
the local maps from the algebra to its dual space. Suppose that A is a regular
semisimple, commutative Banach algebra. We can think of A as a Banach function
algebra on Ω(A). Then supp(a) = h(Ann(a)) for each a ∈ A. The support of
φ ∈ A∗ is defined to be the set supp(φ) = h(Ann(φ)). A linear map Φ: A → A∗ is
said to be local if supp(Φ(a)) ⊂ supp(a) for each a ∈ A. The algebra A is defined
to be hyper-Tauberian if every bounded local map Φ: A → A∗ is an A-module
homomorphism.

Lemma 2.2. Let A be a regular, semisimple, commutative Banach algebra, and
let ϕ : A×A → C be a bounded orthosymmetric bilinear functional. Then the map
Φ: A → A∗ defined by Φ(a)(b) = ϕ(a, b) for all a, b ∈ A is local.

Proof. It suffices to check that Ann(a) ⊂ Ann(Φ(a)) for each a ∈ A. Let a ∈ A,
and let b ∈ Ann(a). If c ∈ A, then a(bc) = 0 and the orthosymmetry of ϕ yields
(Φ(a) · b)(c) = Φ(a)(bc) = ϕ(a, bc) = 0, which shows that b ∈ Ann(Φ(a)) as
required. �

Remark 2.3. It is worth noting that it is easy to construct a bounded local lin-
ear map Φ: A → A∗ for some commutative Banach algebra A such that the
corresponding bilinear functional is not orthosymmetric. Let A be the space con-
sisting of all sequences a of complex numbers with (na(n)) convergent. Then A is a
regular, semisimple, commutative Banach algebra with respect to pointwise mul-
tiplication and the norm given by ‖a‖ = supn∈N n|a(n)|. We define the bounded
bilinear functional ϕ : A × A → C by ϕ(a, b) = a(1) limnb(n) for all a, b ∈ A.
Define a, b ∈ A by a(1) = 1 and a(n) = 0 for each n > 1, and b(1) = 0 and
b(n) = 1/n for each n > 1. Then ab = 0 and ϕ(a, b) = 1, which shows that ϕ is
not orthosymmetric. Nevertheless, it is immediate to check that Ann(ϕ(a, ·)) = A
for each a ∈ A, which shows that the map a 7→ ϕ(a, ·) from A to A∗ is local.

Proposition 2.4. Let A be a hyper-Tauberian Banach algebra. Then A has the
property B.



DISJOINTNESS-PRESERVING LINEAR MAPS 445

Proof. Let ϕ : A × A → C be a bounded orthosymmetric bilinear functional,
and let Φ: A → A∗ be the local map defined in Lemma 2.2. Since A is hyper-
Tauberian, it follows that Φ is an A-module homomorphism, which gives

ϕ(ab, c) = Φ(ab)(c) =
(
Φ(a) · b

)
(c) = Φ(a)(bc) = ϕ(a, bc)

for all a, b, c ∈ A. �

2.2. Property OB and operator hyper-Tauberian algebras. Throughout
this section, A is a commutative quantized Banach algebra. For the convenience
of the reader, we recall that a quantized Banach algebra is an algebra A which is
also an operator space such that the multiplication A × A → A is a completely
bounded bilinear map. This is the same as asserting that it determines a com-
pletely bounded linear map on the operator space projective tensor product. It
is worth noting that a bilinear functional ϕ : A × A → C is completely bounded
if and only if it determines a completely bounded linear map from A to A∗. We
refer the reader to [2] for the necessary background from operator space theory.
It seems appropriate to mention that we always assume the operator spaces to
be complete.

We say that A has the property OB (O for operator) if every completely
bounded orthosymmetric bilinear functional ϕ : A × A → C satisfies ϕ(ab, c) =
ϕ(a, bc) for all a, b, c ∈ A.

Suppose that A is a regular, semisimple, commutative quantized Banach al-
gebra. The algebra A is said to be operator hyper-Tauberian if every completely
bounded local map Φ: A → A∗ is an A-module homomorphism.

The same argument as in Lemma 2.4 gives the following.

Proposition 2.5. Let A be an operator hyper-Tauberian Banach algebra. Then
A has the property OB.

Remark 2.6. Let A be a quantized Banach algebra. It is clear that if A is hyper-
Tauberian, then A is operator hyper-Tauberian. Nevertheless, the Fourier algebra
A(G) of the group G of rotations of R3 is operator hyper-Tauberian (see [15, The-
orem 26(v)]), but it is not weakly amenable (see [10, Corollary 7.3]), which implies
that it is not hyper-Tauberian (see [15, Theorem 5(iii)]). It is also clear that if
A has the property B, then A has the property OB. We don’t know whether or
not having the property OB implies having the property B. In Remark 2.15 we
show that a regular, semisimple, commutative quantized Banach algebra with the
property B need not be operator hyper-Tauberian.

2.3. Hereditary properties and examples. In [1], the authors give examples
of (in general, noncommutative) Banach algebras with the property B such as the
group algebra L1(G) of any locally compact group G, and it is shown that this
property is stable under the usual methods of constructing Banach algebras. In
[15], the author provides some examples of (operator) hyper-Tauberian Banach
algebras and investigates the hereditary properties of this class. As a matter of
fact, it is shown in [15] that the algebra Ap(G) of a locally compact group G for
p ∈ ]1,∞[ is operator hyper-Tauberian.
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We gather here various facts concerning the behavior of properties B and OB
with respect to some basic constructions.

Proposition 2.7. Let A be a (quantized) Banach algebra with the property B
(OB), let B be a (quantized) Banach algebra, and let Φ: A → B be a (completely)
bounded homomorphism with dense range. Then B has the property B (OB).

Proof. The nonquantized statement is given in [1, Proposition 2.6]. The proof of
the quantized counterpart can be handled in much the same way. �

Corollary 2.8. Let A be a (quantized) Banach algebra with the property B (OB),
and let I be a closed ideal of A. Then the quotient algebra A/I has the property B
(OB).

Proof. It suffices to apply the preceding result to the quotient homomorphism
Φ: A → A/I. �

Proposition 2.9. Let A be a (quantized) Banach algebra with the property B
(OB), and let I be an ideal of A. Suppose that

(1) I is a (quantized) Banach algebra with respect to some norm (operator
space structure),

(2) the inclusion map from I into A is (completely) bounded,
(3) the multiplication A× I → I is (completely) bounded,
(4) the linear span of the set AI is dense in I.

Then I has the property B (OB).

Proof. This follows by the same method as in the proof of [1, Proposition 2.5(ii)].
�

Corollary 2.10. Let A be a (quantized) Banach algebra with the property B
(OB), and let I be a closed ideal of A such that the linear span of the set AI is
dense in I. Then I has the property B (OB).

Proof. We equip I with the (operator space) Banach space structure inherited
from A. Then Proposition 2.9 applies. �

Proposition 2.9 applies equally well to (operator) abstract Segal algebras in A.
We recall that a subalgebra B of A is an abstract Segal algebra in A if

(i) B is a dense ideal of A,
(ii) B is a Banach algebra with respect to a norm ‖ · ‖B,
(iii) there exists α > 0 such that ‖b‖ ≤ α‖b‖B for each b ∈ B,
(iv) there exists β > 0 such that ‖ab‖B ≤ β‖a‖‖b‖B for all a ∈ A and b ∈ B.

Abstract Segal algebras have been studied in [6] from an operator space per-
spective. The authors keep (i) and replace (ii), (iii), and (iv) by the quantized
counterparts, namely:

(Oii) B is a quantized Banach algebra with respect to some operator space
structure,

(Oiii) the inclusion map from B into A is completely bounded,
(Oiv) the multiplication A×B → B is completely bounded.

Consequently, Proposition 2.9 clearly gives the following.
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Corollary 2.11. Let A be a (quantized) Banach algebra with the property B
(OB), and let B be an (operator) abstract Segal algebra with respect to A such
that the linear span of the set AB is dense in B. Then B has the property B
(OB).

We now restrict our attention to a variety of significant Banach algebras that
come from a locally compact group G. Let G be a locally compact group, and let
p ∈ ]1,∞[. Then Ap(G) is the Figà–Talamanca–Herz algebra of G. Also Ap(G) is
a regular, Tauberian, semisimple, commutative Banach algebra whose character
space is identified with G by point evaluation. It should be pointed out that
A2(G) agrees with the Fourier algebra A(G) of G. If q ∈ [1,∞[, then Aq

p(G) =
Ap(G) ∩ Lq(G) is the Figà–Talamanca–Herz–Lebesgue algebra of G. Note that
Aq

p(G) is an abstract Segal algebra in Ap(G), and it is a regular, semisimple,
commutative Banach algebra whose character space is G (see [7, Theorem 1]).
Let E ⊂ G be closed. Then Ap(E) and Aq

p(E) denote the usual quotient algebras
Ap(G)/I(E) and Aq

p(G)/I(E), respectively. These algebras can be thought of as
the algebras obtained from Ap(G) and Aq

p(G), respectively, by restriction to E.
Since the dual of A(G) can be identified with the group von Neumann algebra

V N(G) of G, it follows that A(G) is an operator space in a natural manner.
Further, with this structure, A(G) becomes a quantized (actually, completely
contractive) Banach algebra (see [2, Sections 16.1 and 16.2]). There have been
several attempts to equip Ap(G) with an operator space structure. Here we con-
sider the structure defined in [11] which turns Ap(G) into a quantized Banach
algebra (though the multiplication is not known to be completely contractive).
In [6], it is shown that Aq

p(G) admits an operator space structure under which it
is an operator abstract Segal algebra in Ap(G).

Theorem 2.12. Let G be a locally compact group, and let E be a closed sub-
set of G. Then the algebras Ap(E) for p ∈ ]1,∞[ and A1

2(E) have the property
OB. Furthermore, if the principal component of G is abelian, then they have the
property B.

Proof. By [15, Theorem 28], Ap(G) is operator hyper-Tauberian, and Proposi-
tion 2.5 shows that Ap(G) has the property OB. In the case where the principal
component of G is abelian, [15, Theorem 22] and Proposition 2.4 show that Ap(G)
has the property B. Corollary 2.8 now gives the required property for Ap(E).

By [6, Corollary 2.4], the linear span of the set A(G)A1
2(G) is dense in A1

2(G).
Thus [6, Theorem 4.4] shows that A1

2(G) is always operator hyper-Tauberian,
and it is hyper-Tauberian in the case when the principal component of G is
abelian. Then the claimed property forA1

2(E) follows from Proposition 2.4, Propo-
sition 2.5, and Corollary 2.8. �

Theorem 2.13. Let G be a locally compact group, and let E be a closed subset
of G. Suppose that Ap(G) has an approximate identity (uλ)λ∈Λ such that

sup
{
‖uλf‖ : f ∈ Ap(G), ‖f‖ ≤ 1, λ ∈ Λ

}
< ∞.

Then the algebra Aq
p(E) for p ∈ ]1,∞[ and q ∈ [1,∞[ has the property OB.

Furthermore, if the principal component of G is abelian, then it has the property B.
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Proof. On account of Theorem 2.12, Ap(G) has the property OB. By [7, Corol-
lary 2], the set Ap(G)Aq

p(G) is dense in Aq
p(G). Consequently, Corollary 2.11

shows that Aq
p(G) has the property OB, and Corollary 2.8 yields that property

for Aq
p(E). An obvious adjustment in the preceding argument proves that Aq

p(E)
has the property B in the case where the principal component of G is abelian. �

Remark 2.14. Let G an amenable locally compact group, and let p ∈ ]1,∞[. Then
Ap(G) has an approximate identity of bound 1 (see [9, Theorem 6]), and hence
it satisfies the requirement in Theorem 2.13. On account of Corollary 2.8, every
closed ideal I of Ap(G) has the property OB (actually, the property B in the case
where the principal component of G is abelian). By [8, Theorem 2.1], the Fourier
algebra A(F2) of the free group on two generators has an approximate identity
that satisfies the requirement in Theorem 2.13 even though F2 is not amenable.

Remark 2.15. Let S2 be the 2-dimensional sphere. According to the preceding re-
mark, the closed ideal I(S2) of A(R3) has the property B. By [15, Proposition 18],
the algebra A(R3) is hyper-Tauberian, and a famous theorem of Schwartz states
that S2 is not a set of synthesis for the Fourier algebra A(R3). Therefore, [15,
Theorem 26(v)] shows that I(S2) is not operator hyper-Tauberian.

3. Disjointness-preserving maps

Properties B and OB are useful in studying disjointness-preserving maps. Since
property B has already been extensively discussed in [1], we now focus attention
on property OB. Recall that a linear map Φ: A → B between commutative
Banach algebras A and B is said to be disjointness-preserving if Φ(a)Φ(b) = 0
whenever a, b ∈ A are such that ab = 0.

Lemma 3.1. Let A be a commutative Banach algebra, and let φ be a nonzero
continuous linear functional on A. Suppose that

φ(ab)φ(c) = φ(a)φ(bc) (a, b, c ∈ A).

Then φ can be uniquely expressed in the form φ = αγ, where α ∈ C \ {0} and
γ ∈ Ω(A).

Proof. Take c ∈ A with φ(c) = 1. If a ∈ ker(φ) and b ∈ A, then

φ(ab) = φ(ab)φ(c) = φ(a)φ(bc) = 0.

Consequently, ker(φ) is a closed 1-codimensional ideal of A, and therefore there
exists γ ∈ Ω(A) such that ker(γ) = ker(φ). This implies that there exists α ∈
C \ {0} such that φ = αγ.

We proceed to show the uniqueness of the representation. Suppose that φ = βτ ,
where β ∈ C and τ ∈ Ω(A). Then γ = α−1βτ with γ, τ ∈ Ω(A), and this implies
that α−1β = 1 and γ = τ . �

Lemma 3.2. Let A be a commutative Banach algebra, and let B be a semisimple,
commutative Banach algebra. Let Φ: A → B be a nonzero bounded linear map,
and let O(Φ) = {γ ∈ Ω(B) : γ ◦ Φ 6= 0}. Suppose that

Φ(ab)Φ(c) = Φ(a)Φ(bc) (a, b, c ∈ A).



DISJOINTNESS-PRESERVING LINEAR MAPS 449

Then there exist a continuous function µ : O(Φ) → C\{0} and a continuous map
σ : O(Φ) → Ω(A) such that γ ◦ Φ = µ(γ)σ(γ) for each γ ∈ O(Φ). Furthermore,
the following statements hold:

(i) if Φ is bijective, then σ is a homeomorphism from Ω(B) onto Ω(A),
(ii) if Φ is surjective, then σ is a homeomorphism from Ω(B) onto h(ker(Φ)).

Proof. Let γ ∈ O(Φ). The composition γ ◦ Φ yields a nonzero continuous linear
functional on A satisfying the requirement in Lemma 3.1, and therefore it can
be written in a unique way in the form γ ◦ Φ = µ(γ)σ(γ), where µ(γ) ∈ C \ {0}
and σ(γ) ∈ Ω(A). Hence there exist a function µ : O(Φ) → C \ {0} and a map
σ : O(Φ) → Ω(A) such that

γ ◦ Φ = µ(γ)σ(γ) (3.1)

for each γ ∈ O(Φ).
Let us observe that

γ
(
Φ(ab)

)
= σ(γ)(a)γ

(
Φ(b)

)
(3.2)

and

µ(γ)γ
(
Φ(ab)

)
= γ

(
Φ(a)

)
γ
(
Φ(b)

)
(3.3)

for all a, b ∈ A and γ ∈ O(Φ). Indeed, by (3.1), we have

γ
(
Φ(ab)

)
= µ(γ)σ(γ)(ab) = µ(γ)σ(γ)(a)σ(γ)(b) = σ(γ)(a)γ

(
Φ(b)

)
,

which gives (3.2), and, multiplying by µ(γ), we obtain (3.3).
Our next goal is to prove the continuity of both µ and σ. Let γ0 ∈ O(Φ). Pick

b ∈ A with γ0(Φ(b)) 6= 0, and let W be the open neighborhood of γ0 defined by
W = {γ ∈ O(Φ) : γ(Φ(b)) 6= 0}. By (3.2), we have σ(γ)(a) = γ(Φ(ab))/γ(Φ(b))
for all γ ∈ W and a ∈ A. Since the functions γ 7→ γ(Φ(ab)) and γ 7→ γ(Φ(b))
are continuous at γ0, we see that the function γ 7→ σ(γ)(a) is continuous at
γ0 for each a ∈ A. This proves that the map σ is continuous at γ0 because
Ω(A) is equipped with the w∗-topology. On account of (3.1), σ(γ)(b) 6= 0 and
µ(γ) = γ(Φ(b))/σ(γ)(b) for each γ ∈ W . Since the functions γ 7→ γ(Φ(b)) and
γ 7→ σ(γ)(b) are continuous at γ0, it follows that µ is continuous at γ0.

Suppose that Φ is bijective. We claim that O(Φ) = Ω(B). Indeed, since B is
semisimple, it follows that Ω(B) \ O(Φ) = h(Φ(A)) = h(B) = ∅. Our objective
is to show that the conditions in the lemma hold for Φ−1. We begin by proving
that A is semisimple. Assume that a lies in the radical of A. Then γ(Φ(a)) =
µ(γ)σ(γ)(a) = 0 for each γ ∈ Ω(B), and therefore Φ(a) = 0. Since Φ is injective,
we conclude that a = 0 as desired. By the open mapping theorem, Φ−1 is bounded.
We now proceed to show that Φ−1(uv)Φ−1(w) = Φ−1(u)Φ−1(vw) for all u, v,
w ∈ B. Let u, v, w ∈ B, and let γ ∈ Ω(B). From (3.3), we have

µ(γ)γ
(
Φ
(
Φ−1(uv)Φ−1(w)

))
= γ

(
Φ
(
Φ−1(uv)

)
Φ
(
Φ−1(w)

))
= γ(uvw),

and similarly we obtain µ(γ)γ(Φ(Φ−1(u)Φ−1(vw))) = γ(uvw). We thus get
γ(Φ(Φ−1(uv)Φ−1(w))) = γ(Φ(Φ−1(u)Φ−1(vw))). Since γ is arbitrary and B is
semisimple, it may be concluded that

Φ
(
Φ−1(uv)Φ−1(w)

)
= Φ

(
Φ−1(u)Φ−1(vw)

)
,
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and hence that Φ−1(uv)Φ−1(w) = Φ−1(u)Φ−1(vw). From what has already been
proved, it follows that there exist a continuous function ν : Ω(A) → C\{0} and a
continuous map τ : Ω(A) → Ω(B) such that ξ◦Φ−1 = ν(ξ)τ(ξ) for each ξ ∈ Ω(A).
For every γ ∈ Ω(B), we have

γ = (γ ◦ Φ) ◦ Φ−1 = µ(γ)σ(γ) ◦ Φ−1 = µ(γ)ν
(
σ(γ)

)
τ
(
σ(γ)

)
,

which shows that γ and τ(σ(γ)) are proportional characters, and therefore that
τ(σ(γ)) = γ. Likewise, we check that σ(τ(ξ)) = ξ for each ξ ∈ Ω(A). Conse-
quently, σ is bijective with σ−1 = τ , and therefore σ is a homeomorphism.

Finally, suppose that Φ is surjective. Write I = ker(Φ). We claim that I is
an ideal of A. Let a ∈ I, and let b ∈ A. By (3.3), we have µ(γ)γ(Φ(ab)) =
γ(Φ(a)Φ(b)) = 0, and so γ(Φ(ab)) = 0 for each γ ∈ Ω(B). Since B is semisimple,
it follows that Φ(ab) = 0, which establishes the claim. Since Φ is continuous, I is a

closed ideal of A. Then Φ drops to a continuous bijective linear map Φ̃ : A/I → B

so that Φ̃ ◦ Q = Φ, where Q denotes the quotient homomorphism from A onto
A/I. Let us recall that the map ζ 7→ ζ ◦Q yields a homeomorphism from Ω(A/I)
onto h(I) = {ξ ∈ Ω(A) : ξ(I) = {0}}. We can now apply what has previously been
proved to get a continuous function µ̃ : Ω(B) → C \ {0} and a homeomorphism

σ̃ : Ω(B) → Ω(A/I) such that γ ◦ Φ̃ = µ̃(γ)σ̃(γ) for each γ ∈ Ω(B). Therefore,

(γ ◦ Φ̃)◦Q = µ̃(γ)σ̃(γ)◦Q, and, on the other hand, (γ ◦ Φ̃)◦Q = γ ◦Φ = µ(γ)σ(γ)
for each γ ∈ Ω(B). This shows that µ̃(γ) = µ(γ) and σ̃(γ) ◦ Q = σ(γ) for each
γ ∈ Ω(B). Consequently, σ is a homeomorphism from Ω(B) onto h(I). �

Theorem 3.3. Let A be a quantized commutative Banach algebra with the prop-
erty OB, and let B be a semisimple, commutative Banach algebra. Let Φ: A → B
be a nonzero bounded disjointness-preserving linear map, and let O(Φ) = {γ ∈
Ω(B) : γ ◦ Φ 6= 0}. Then there exist a continuous function µ : O(Φ) → C \ {0}
and a continuous map σ : O(Φ) → Ω(A) such that γ ◦ Φ = µ(γ)σ(γ) for each
γ ∈ O(Φ). Furthermore, the following statements hold:

(i) if Φ is bijective, then σ is a homeomorphism from Ω(B) onto Ω(A);
(ii) if Φ is surjective, then σ is a homeomorphism from Ω(B) onto h(ker(Φ)).

Proof. Let γ ∈ Ω(B). Then the bilinear functional ϕ : A × A → C defined by
ϕ(a, b) = γ(Φ(a))γ(Φ(b)) for all a, b ∈ A is easily seen to be orthosymmetric.
Further, since the continuous linear functional γ ◦ Φ is automatically completely
bounded, it follows that ϕ is completely bounded. From Proposition 2.5 it follows
that γ(Φ(ab)Φ(c)) = γ(Φ(a)Φ(bc)) for all a, b, c ∈ A. Since γ is arbitrary and B
is semisimple, it may be concluded that Φ satisfies the condition in Lemma 3.2,
which establishes all the statements in the theorem. �
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