
Ann. Funct. Anal. 7 (2016), no. 3, 434–441

http://dx.doi.org/10.1215/20088752-3605510

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

A NOTE CONCERNING THE NUMERICAL RANGE OF
A BASIC ELEMENTARY OPERATOR

MOHAMED BOUMAZGOUR1* and HOSSAM A. NABWEY1,2

Communicated by T. Yamazaki

Abstract. Let B(H) be the algebra of all bounded linear operators on a
complex Hilbert space H, and let S be a norm ideal in B(H). For A,B ∈ B(H),
define the elementary operator MS,A,B on S by MS,A,B(X) = AXB (X ∈ S).
The aim of this paper is to give necessary and sufficient conditions under which
the equality V (MS,A,B) = co(W (A)W (B)) holds. Here V (T ) andW (T ) denote
the algebraic numerical range and spatial numerical range of an operator T ,
respectively, and co(Ω) denotes the closed convex hull of a subset Ω ⊆ C.

1. Introduction

Let B(H) be the algebra of all bounded linear operators acting on a complex
Hilbert space H. For A and B in B(H), define the operators LA and RB on B(H)
by LA(X) = AX and RB(X) = XB (X ∈ B(H)), respectively. The basic ele-
mentary operator MA,B, induced by the operators A and B, is the multiplication
operator on B(H) defined by MA,B = LARB. An elementary operator on B(H)
is a finite sum R =

∑n
i=1MAi,Bi

of basic ones. A familiar example of elementary
operators is the generalized derivation δA,B defined by δA,B = LA −RB.

Let S be a nonzero two-sided ideal of the algebra B(H). We say that S is a
norm ideal if S is equipped with a norm ‖ · ‖S satisfying the following conditions:

(1) S is a Banach space with respect to the norm ‖ · ‖S;
(2) ‖X‖S = ‖X‖ for all X ∈ S with 1-dimensional range;
(3) ‖AXB‖S ≤ ‖A‖‖X‖S‖B‖ for all A,B ∈ B(H) and X ∈ S.
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Familiar examples of norm ideals are the Schatten p-ideals (Cp(H), ‖ · ‖p) (1 ≤
p ≤ ∞) of operators on a given Hilbert space H. Here we denote by C∞(H) the
ideal of all compact operators on H. Recall that the Hilbert–Schmidt ideal C2(H)
is a Hilbert space when equipped with the inner product defined by

〈X,Y 〉 = tr(XY ∗),

where tr denotes the usual functional trace. (We refer the reader to [10] for more
details about norm ideals.)

Let S be a norm ideal in B(H), and let A,B ∈ B(H). Then MA,B(S) ⊂
S, and we denote the restriction of MA,B to S by MS,A,B. Since ‖AXB‖S ≤
‖A‖‖X‖S‖B‖ for all X ∈ S, clearly MS,A,B ∈ B(S). Moreover, one can easily
show that ‖MS,A,B‖ = ‖A‖‖B‖. In a case where S = Cp(H) (1 ≤ p ≤ ∞), we
denote MS,A,B by Mp,A,B.

Let E be a complex Banach space, and let E ′ be its dual space. For T ∈ B(H),
the spatial numerical range of T , denoted by W (T ), is defined to be the set

W (T ) =
{
f(Tx) : x ∈ E, ‖x‖ = 1 and f ∈ D(x)

}
,

where

D(x) =
{
f ∈ E ′ : f(x) = ‖f‖ = ‖x‖

}
·

If H is a Hilbert space and T ∈ B(H), then the numerical range of T is given
by

W (T ) =
{
〈Tx, x〉 : x ∈ H and ‖x‖ = 1

}
.

Let T ∈ B(E). The algebraic numerical range of T is defined by

V (T ) =
{
F (T ) : F ∈

(
B(E)

)′ and ‖F‖ = F (I) = 1
}
;

here I denotes the identity operator on E.
It is well known that V (T ) (T ∈ B(E)) is a compact convex subset of the plane

and that V (T ) contains the spectrum of T (see [2]). Furthermore, V (T ) coincides
with the closed convex hull of W (T ) whenever T is a bounded operator on a
Banach space. (For basic facts about numerical ranges, see [2].)

Elementary operators appear and are used in branches of mathematics such as
Banach algebras, the theory of complete positive linear maps, quantum informa-
tion theory, and many others. Their spectral and structural properties have been
intensively studied over the past decades (see [4], [5], and the references therein).
However, the problem of computing the numerical range of an elementary oper-
ator when restricted to a norm ideal is still open (see [5, Problem 4.5]). Besides
the case of generalized derivations on norm ideals for which Shaw [12] found an
explicit formula for the numerical range, no formula is known even for computing
the numerical range of the operator MS,A,B; here A,B ∈ B(H) and S is a norm
ideal in B(H). In [11], Seddik established the inclusion W (A)W (B) ⊆ V (MS,A,B)
for every A,B ∈ B(H) and every norm ideal S. Since V (MS,A,B) is a compact
convex subset, it follows that co(W (A)W (B)) ⊆ V (MS,A,B). Further, this inclu-
sion may be strict. It is then natural and interesting to understand the class of
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operators A and B which satisfy the equation

V (MS,A,B) = co
(
W (A)W (B)

)
, (1.1)

where S is a given norm ideal in B(H).
In [3], Chraibi proved that if S is the ideal of Hilbert–Schmidt operators, then

the equality in (1.1) holds whenever either A or B is a subnormal operator.
Motivated by results of Chraibi [3], we aim in this article to characterize the

class of operators A and B which satisfy equation (1.1). In Section 2, we consider
the equality in (1.1) in the case when A and B are convexoid operators and S
is an arbitrary norm ideal. Section 3 is devoted to equation (1.1) when one of
the operators A and B has a normal dilation; as a consequence of the obtained
result, we get a generalization of the main result of Chraibi [3, Théorème 10].
Section 4 contains some remarks and a discussion about the numerical range of
an elementary operator when restricted to a Schatten p-ideal (1 ≤ p ≤ ∞).

For T ∈ B(E), let T ∗, σ(T ), r(T ), and w(T ) denote the adjoint, the spectrum,
the spectral radius, and the numerical radius of T , respectively. If Ω is a subset
of C, then we denote by Ω its closure. If H and K are Hilbert spaces, then we
denote by C2(H,K) the class of Hilbert–Schmidt operators from H to K.

2. Convexoid operators

Recall that a bounded linear operator T on a Banach space is said to be convex-
oid if co(σ(T )) = V (T ). Note that the class of convexoid operators on a Hilbert
space includes hyponormal operators.

The main result of this section is the following.

Theorem 2.1. Let A,B ∈ B(H), and let S be a norm ideal in B(H). Then

(1) if MS,A,B is convexoid, then the equality in (1.1) holds;
(2) if A and B are convexoid operators, then MS,A,B is convexoid if and only

if the equality in (1.1) holds.

For the proof, we need the following auxiliary lemmas.

Lemma 2.2. If Ω1 and Ω2 are two subsets of C, then

co(Ω1Ω2) = co
(
co(Ω1) co(Ω2)

)
.

Proof. For the proof, see [7, p. 683]. �

Lemma 2.3. Let A,B ∈ B(H), and let S be a norm ideal in B(H). Then

σ(MS,A,B) ⊆ W (A)W (B) ⊆ V (MS,A,B).

Proof. The first inclusion follows from the fact that σ(MS,A,B) = σ(A)σ(B) (see
[4]), and the second follows from [11]. �

Proof of Theorem 2.1. The property (1) follows from Lemma 2.3.
To prove (2), assume that A and B are convexoid operators. Then the suffi-

ciency follows from Part (1) so that we only need to prove the necessity. In fact,
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if V (MS,A,B) = co(W (A)W (B)), then, by virtue of Lemmas 2.2 and 2.3, we have

co
(
W (A)W (B)

)
= co

(
co
(
σ(A)

)
co
(
σ(B)

))
= co

(
σ(A)σ(B)

)
= co

(
σ(MS,A,B)

)
⊆ co

(
W (A)W (B)

)
,

and so

co
(
σ(MS,A,B)

)
= co

(
W (A)W (B)

)
= V (MS,A,B);

that is, MS,A,B is convexoid, as desired. �

Corollary 2.4. Let A,B ∈ B(H), and let S be a norm ideal in B(H). If MS,A,B

is convexoid, then w(A) = r(A) and w(B) = r(B).

Proof. If MS,A,B is convexoid, then it follows from Theorem 2.1 that

w(MS,A,B) = r(MS,A,B) = r(A)r(B),

where the second equality follows from [4]. Since we always have w(A)w(B) ≤
w(MS,A,B) (see [11]), and r(A) ≤ w(A), r(B) ≤ w(B), we deduce that w(A) =
r(A) and w(B) = r(B). �

The next example shows that the converse of Corollary 2.4 does not hold in
general.

Example 2.5. Consider the operator matrices A =
[
I 0 0
0 I 0
0 0 M

]
and B =

[
0 I 0
0 0 0
0 0 I

]
,

where I = [ 1 0
0 1 ] and M = [ 0 1

0 0 ]. One can easily check that

W (A) = W (B) = co
(
{1} ∪

{
z : |z| ≤ 1

2

})
, co

(
σ(A)σ(B)

)
= [0, 1],

and

w(A) = r(A) = w(B) = r(B) = 1.

Since, by Lemma 2.3, W (A)W (B) ⊆ V (MS,A,B) for every norm ideal S, clearly
co(σ(A)σ(B)) is strictly contained in V (MS,A,B), and so MS,A,B is not convexoid.

Example 2.6. If one of the operators A and B is not convexoid, then the equiv-
alence in Theorem 2.1, part (2), is no longer true. Indeed, let A = [ 1 0

0 0 ] and
B = [ 0 1

0 0 ]. Then W (A) = [0, 1] and W (B) = {z : |z| ≤ 1/2}, and thus

V (M2,A,B) = co
(
W (A)W (B)

)
=

{
z : |z| ≤ 1

2

}
.

However, σ(M2,A,B) = {0}, and therefore M2,A,B is not convexoid.
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3. Operators having normal dilations

Let A and B be bounded linear operators on the complex Hilbert spaces H
and K, respectively. A is said to be dilated to B (or B is a dilation of A) if B is
unitarily equivalent to a 2×2 operator matrix of the form [ A ∗

∗ ∗ ]. This is equivalent
to requiring the existence of an isometry V from H to K such that A = V ∗BV .

In this section, we consider the equality in (1.1) when one of the operators A
or B has a normal dilation. The main result here is the following.

Theorem 3.1. Let A,B ∈ B(H). If A has a normal dilation N on K such that
σ(N) ⊆ σ(A), then

V (M2,A,B) = co
(
W (A)W (B)

)
. (3.1)

Proof. Since A has a normal dilation N on K, then there is an operator V from
H to K such that V ∗V = I and A = V ∗NV ; hence

M2,A,B = M2,V ∗NV,B = L2,V ∗M2,N,BL2,V .

Since L2,V ∗ = L∗
2,V , we have L∗

2,VL2,V = I, and

M2,A,B = L∗
2,VM2,N,BL2,V ;

that is, M2,A,B is dilated to M2,N,B on C2(H,K). From this we derive that

V (M2,A,B) ⊆ V (M2,N,B). (3.2)

Next, since N is normal, by virtue of [3, Théorème 10], we have

V (M2,N,B) = co
(
W (N)W (B)

)
.

Since N is convexoid, this last equality implies that

V (M2,N,B) = co
(
co
(
σ(N)

)
W (B)

)
⊆ co

(
co
(
σ(A)

)
W (B)

)
⊆ co

(
W (A)W (B)

)
. (3.3)

From Lemma 2.3, we have co(W (A)W (B)) ⊆ V (M2,A,B). Hence, by combining
(3.2) and (3.3), we obtain

V (M2,A,B) = V (M2,N,B) = co
(
W (A)W (B)

)
.

This completes the proof. �

Note that the class of operators having normal dilations with the same condi-
tion as in the above theorem includes Toeplitz operators and hyponormal opera-
tors (see [8]).

Remark 3.2. Let A,B ∈ B(H), and let X ∈ C2(H) be such that ‖X‖2 = 1. Then
‖X∗‖2 = 1 and tr(AXBX∗) = tr(BX∗A(X∗)∗). From this we derive that

V (M2,A,B) = V (M2,B,A) for all A,B ∈ B(H).

Thus, if B has a normal dilation whose spectrum contains σ(B), then the equality
in (3.1) still holds.



NUMERICAL RANGE OF A BASIC ELEMENTARY OPERATOR 439

The main result in [3] states that, if either A or B is a subnormal operator,
then the equality in (3.1) holds. As a consequence of Theorem 3.1, we get the
next generalization of this result. Here we recall that every subnormal operator
is hyponormal.

Corollary 3.3. Let A,B ∈ B(H) be such that either A or B is hyponormal. Then
the equality in (3.1) holds.

Proof. This follows from Theorem 3.1, Remark 3.2, and the fact that every
hyponormal operator A on H may be dilated to a normal operator N with
σ(N) ⊆ σ(A) (see [8, Theorem 3.2]). �

Remark 3.4. If A ∈ B(H) is hyponormal, then it follows from the above corollary
that w(M2,A,B) = w(A)w(B) = ‖A‖w(B) for any operator B in B(H).

Recall that a bounded linear operator on a Banach space is called spectraloid
if its spectral radius coincides with its numerical radius. As an application of
Corollary 3.3, we get the next proposition.

Proposition 3.5. Let A,B ∈ B(H) be given such that A is hyponormal. Then
M2,A,B is spectraloid if and only if B is spectraloid.

Proof. If M2,A,B is spectraloid, then

w(M2,A,B) = r(M2,A,B) = r(A)r(B).

Since, by Remark 3.4, w(M2,A,B) = w(A)w(B), then it follows that

r(A)r(B) = w(A)w(B).

Thus r(B) = w(B).
The converse is obvious. �

Let us give an example showing that the condition σ(N) ⊆ σ(A) in Theorem 3.1
may not be dropped even in finite dimensions. Here we recall that every operator
A may dilated to a normal operator N , but the operator N may not satisfy
σ(N) ⊆ σ(A).

Example 3.6. Let A = [ 0 1
0 0 ]. Then clearly A has no normal dilation N such that

σ(N) ⊆ σ(A) = {0}. If B = [ 0 0
1 0 ], then w(A) = w(B) = 1/2.

On the other hand, a straightforward computation shows that w(M2,B,A) =
1/2, and so w(A)w(B) < w(M2,B,A). This shows that co(W (A)W (B)) is strictly
contained in V (M2,A,B).

4. Concluding remarks

Let A,B ∈ B(H). Since the operators L2,A and R2,B satisfy L2,AR2,B =
R2,BL2,A and L∗

2,AR2,B = R2,BL
∗
2,A, it follows from [9] that

w(M2,A,B) = w(L2,AR2,B) ≤ w(L2,A)‖R2,B‖ = w(A)‖B‖.
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Suppose that W (A) is a disk centered at the origin and B is a normaloid
operator; that is, w(B) = ‖B‖. Since, by Lemma 2.3, W (A)W (B) ⊆ V (M2,A,B),
one easily checks that

V (M2,A,B) = co
(
W (A)W (B)

)
.

Thus we get another class of operators satisfying equation (3.1).
In the remainder of this section, we consider the numerical range of the operator

Mp,A,B (1 ≤ p ≤ ∞). Recall from [10] that (C∞(H))′ = C1(H) and (C1(H))′ =
B(H). Further, (Cp(H))′ = (Cq(H))′ for every 1 < p, q < ∞ with 1/p + 1/q = 1.
Under these identifications, we have

M∗
∞,A,B = M1,B,A, MA,B = M∗∗

∞,A,B, and Mp,A,B = M∗
q,B,A (4.1)

(see [6]).
Denote by U(H) the set of all unitary operators acting on H.

Proposition 4.1. Let A,B ∈ B(H). Then

(1) V (M1,B,A) = V (M∞,A,B) = V (MA,B) = [
⋃

U∈U(H) W (AUBU∗)]−;

(2) V (Mp,A,B) = V (Mq,B,A) for any p, q ∈ (1,∞) with 1
p
+ 1

q
= 1.

Proof. Note from [2, Corollary 6] that if E is a Banach space and if T ∈ B(E),
then V (T ) = V (T ∗). Thus the equalities V (M1,B,A) = V (M∞,A,B) = V (MA,B)
and V (Mp,A,B) = V (Mq,B,A) follow directly from (4.1). The equality V (MA,B) =
[
⋃

U∈U(H) W (AUBU∗)]− follows from [1]. �

The following corollary is an immediate consequence of Proposition 4.1.

Corollary 4.2. Let A,B ∈ B(H). Then

(1) w(M1,B,A) = w(M∞,A,B) = w(MA,B) = sup{w(AUBU∗) : U ∈ U(H)};
(2) w(Mp,A,B) = w(Mq,B,A).

Example 4.3. One might expect that the equalities in Corollary 4.2, part (1),
still hold in case of an arbitrary norm ideal of B(H). But this is not true. To see
this, consider the matrices A = [ 0 1

0 0 ] and B = [ 0 0
1 0 ]. Since AB = [ 1 0

0 0 ], we have
1 ∈ W (AB) ⊆ V (MA,B) (see [1]). Thus

w(MA,B) = 1.

On the other hand, we have w(M2,B,A) = 1/2. This shows that

V (MA,B) 6= V (M2,B,A).

Remark 4.4. Let A1, . . . , An and B1, . . . , Bn be elements of B(H). From (4.1) we
have( n∑

i=1

M∞,Ai,Bi

)∗
=

n∑
i=1

M1,Bi,Ai
and

( n∑
i=1

M∞,Ai,Bi

)∗∗
=

n∑
i=1

MAi,Bi
.

Thus the equalities established in Proposition 4.1 and Corollary 4.2 still hold for
the elementary operator

∑n
i=1MAi,Bi

.
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