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Abstract. We present some results on the monotonicity of some traces in-
volving functions of self-adjoint operators with respect to the natural ordering
of their associated quadratic forms. The relation between these results and
Löwner’s Theorem is discussed. We also apply these results to complete a
proof of the Wegner estimate for continuum models of random Schrödinger
operators as given in a 1994 paper by Combes and Hislop.

1. Statement of the problem and result

We consider two lower-semibounded self-adjoint operators A and B associated
with closed symmetric, lower-semibounded quadratic forms qA and qB with form
domains Q(A) and Q(B), respectively. We suppose that qA ≤ qB. This inequality
means that Q(B) ⊂ Q(A) and that, for all ϕ ∈ Q(B), we have qA(ϕ) ≤ qB(ϕ).
Under these conditions, Kato proved in [8, Theorem 2.21, chapter VI] the fol-
lowing relationship between the resolvents of the two operators A and B. For all
a > − inf σ(A), we have

(B + a)−1 ≤ (A+ a)−1. (1.1)

This resolvent inequality may be used to derive several interesting relations
between the traces of functions of A and B under some additional assumptions.
We will prove that if f ≥ 0 and g is a member of a class of functions L described
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in Definition 2.1, then

Tr
(
f(B)g(B)

)
≤ Tr

(
f(B)g(A)

)
(see Theorem 2.4). We compare these inequalities with Löwner’s Theorem (see
Section 3) on operator monotone functions. We also use these results to complete
a proof of Wegner’s estimate for random Schrödinger operators given in [4]. These
results rely on the following technical theorem.

Theorem 1.1. Suppose that A and B are two lower semibounded self-adjoint
operators with quadratic forms qA and qB and form domains Q(A) and Q(B).
Suppose that A and B are relatively form bounded in that

(1) the form domains satisfy Q(B) ⊂ Q(A), and
(2) for all ψ ∈ Q(B), we have qA(ψ) ≤ qB(ψ).

Let PB be an orthogonal projection onto a B-invariant subspace so that, for some
m ∈ N and for all a > − inf σ(A), the operators PB(B + a)−m and PB(A+ a)−m

are in the trace class. Then we have

(1) for all n ∈ N large enough so that m < 2n and for all a > − inf σ(A),

Tr
(
PB(B + a)−2n

)
≤ Tr

(
PB(A+ a)−2n

)
;

(2) for any t > 0,

Tr(PBe
−tB) ≤ Tr(PBe

−tA).

Proof. 1. We first note that, by the assumptions that PB(B + a)−m and PB(A+
a)−m are trace class for some integer m ≥ 0, it follows that the operators in
statements (1) and (2) are all in the trace class since they may be expressed
as products of an operator in the trace class and a bounded operator, such as
PBe

−tA = PB(A + a)−m · (A + a)me−tA. The result of Kato [8, Theorem 2.21,
chapter VI], stated above, implies that (B + a)−1 ≤ (A+ a)−1. We first suppose
that PB is a nonzero rank 1 projection PB = Pλ, so that BPλ = λPλ. From
inequality (1.1), it follows that for a > − inf σ(A), we have

TrPλ = (λ+ a) Tr
(
Pλ(B + a)−1

)
≤ (λ+ a) Tr

(
Pλ(A+ a)−1

)
≤ (λ+ a)‖Pλ‖2

∥∥Pλ(A+ a)−1
∥∥
2
. (1.2)

Since Pλ is a rank 1 projector, we have

‖Pλ‖2 = ‖Pλ‖1 = TrPλ = 1, (1.3)

and ∥∥Pλ(A+ a)−1
∥∥
2
=

(
TrPλ(A+ a)−2

)1/2
. (1.4)

Upon squaring inequality (1.2) and using the results (1.3)–(1.4), we obtain

TrPλ ≤ (λ+ a)2
∥∥Pλ(A+ a)−1

∥∥2

2

= (λ+ a)2Tr
(
Pλ(A+ a)−2

)
. (1.5)
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We continue by rewriting the trace on the right in (1.5) using the Hilbert–Schmidt
norm. We square the resulting inequality, use (1.3)–(1.4), and we obtain

TrPλ ≤ (λ+ a)2
2

Tr
(
Pλ(A+ a)−22

)
. (1.6)

Continuing in this way, we obtain, for any n ∈ N,

TrPλ ≤ (λ+ a)2
n

Tr
(
Pλ(A+ a)−2n

)
. (1.7)

This may also be written as

Tr
(
Pλ(B + a)−2n

)
≤ Tr

(
Pλ(A+ a)−2n

)
. (1.8)

2. The restriction of B to the range of PB has a compact resolvent since it is the
fractional power of a positive trace class operator PB(B + A)−m. Consequently,
the restriction BPB has pure point spectrum so that PB =

∑
j Pλj

, with BPλj
=

λjPλj
. If we take 2n > m, the assumption that PB(B + a)−m is in the trace class

implies that
∑

j(λj + a)−2n is finite. Furthermore, since PB(A + a)−2n is in the
trace class, if we truncate PB to a finite N -dimensional subspace and call the
truncated projector PN

B , we have

lim
N→∞

Tr
(
PN
B (A+ a)−2n

)
= Tr

(
PB(A+ a)−2n

)
.

As a consequence, we can sum the inequalities (1.8) over j to obtain

Tr
(
PB(B + a)−2n

)
≤ Tr

(
PB(A+ a)−2n

)
. (1.9)

This establishes the inequality in statement (1).
3. For the exponential bound, we use the truncation PN

B of PB, obtained by
restricting PB to an N -dimensional subspace, introduced above. For t > 0 and
b ∈ R so that b > − inf σ(A), we obtain from the spectral theorem for B and
inequality (1.7)

TrPN
B e

−t(B+b) = lim
n→∞

Tr
[
PN
B

(
1 +

t(B + b)

2n

)−2n]
≤ lim

n→∞
Tr

[
PN
B

(
1 +

t(A+ b)

2n

)−2n]
= TrPN

B e
−t(A+b). (1.10)

It follows from the trace class property of PBe
−tB that

lim
N→∞

TrPN
B e

−t(B+b) = TrPBe
−t(B+b). (1.11)

We obtain from this and (1.10)

TrPBe
−t(B+b) ≤ lim

N→∞
TrPN

B e
−t(A+b). (1.12)

If PBe
−t(A+b) is in the trace class, then the limit converges since

lim
N→∞

TrPN
B e

−t(A+b) = lim
N→∞

TrPN
B PBe

−t(A+b)PB = TrPBe
−t(A+b). (1.13)

Inequality (1.12) and (1.13) prove the second claim of the theorem. �
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2. An application to trace inequalities

Theorem 1.1 may be applied to a large class of functions of self-adjoint operators
in order to obtain some inequalities relating traces of functions of self-adjoint
operators.

Definition 2.1. A real-valued function g is in the class L if there is a nonnegative
σ-finite Borel measure ρ supported on [0,∞) so that for s > 0

g(s) =

∫ ∞

0

e−st dρ(t). (2.1)

Theorem 2.2. Let self-adjoint operators A,B and projector PB be as in Theo-
rem 1.1. Then for any g ∈ L such that PBg(B) and PBg(A) are in the trace class,
one has

TrPBg(B) ≤ TrPBg(A). (2.2)

Proof. By the representation of g in (2.1) and the second inequality of Theo-
rem 2.2, the assumptions imply that

TrPBg(B) =

∫ ∞

0

Tr(PBe
−tB) dρ(t)

≤
∫ ∞

0

Tr(PBe
−tA) dρ(t)

= Tr
(
PBg(A)

)
. (2.3)

�

A particularly useful example of functions g are those related to powers of the
resolvent of a self-adjoint operator.

Corollary 2.3. Let self-adjoint operators A,B and projector PB be as in The-
orem 1.1, and let a > − inf σ(A). For any β > m, where m is defined in Theo-
rem 1.1, we have

Tr
(
PB(B + a)−β

)
≤ Tr

(
PB(A+ a)−β

)
. (2.4)

Proof. We use the Laplace transform formula valid for α > −1 and <z > 0:

1

z1+α
=

1

Γ(1 + α)

∫ ∞

0

e−zttα dt. (2.5)

This shows that the function g(s) = s−β is in the class L for any β > 0. The
result (2.4) follows from Theorem 2.2. �

We conclude this section with the following generalization of Theorem 2.2. It
presents a trace comparison theorem for the class L of functions of self-adjoint
operators.

Theorem 2.4. Let A and B be two lower semibounded self-adjoint operators
satisfying the hypotheses of Theorem 1.1. Suppose that g ∈ L and f ≥ 0 so that
f(B)g(B) and f(B)g(A) are in the trace class. We then have

Tr
(
f(B)g(B)

)
≤ Tr

(
f(B)g(A)

)
. (2.6)
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Proof. Since f(B)g(B) is assumed to be trace class, the operator B must have
pure point spectrum {λj} on the support of the function fg. For any j, it follows
from Theorem 1.1 that

Tr
(
Pλj

g(B)
)
≤ Tr

(
Pλj

g(A)
)
, (2.7)

where, as above, BPλj
= λjPλj

. Multiplying both sides of (2.7) by f(λj) ≥ 0, and
summing over j results in (2.6). �

We remark that if g(B) is in the trace class, we may take f = 1 and obtain

Tr
(
g(B)

)
≤ Tr

(
g(A)

)
, (2.8)

a result that also follows from the Min-Max theorem [10, Theorem XIII.1], since
any function g ∈ L is decreasing.

3. A relation with operator monotone functions

The following class of functions was introduced by Löwner [9] in 1934 and is
the object of his famous theorem that we now recall.

Definition 3.1. Let J ⊂ R be a finite interval or a half-line. A function g : J → R
is operator monotone increasing (respectively, decreasing) in J if for all pairs of
self-adjoint operators A,B with spectrum in J the operator inequality A ≤ B
implies the operator inequality g(A) ≤ g(B) (respectively g(B) ≤ g(A)).

If g is operator monotone decreasing, then (2.6) holds for any f ≥ 0 and
for all pairs of operators A ≤ B such that f(B)g(B) and f(B)g(A) are in the
trace class. Because of this, we study the relationship between operator monotone
decreasing functions and the class L of Definition 2.1. For simplicity, we assume
that J = R+. We denote by I (respectively, D) the class of operator monotone
increasing (respectively, decreasing) functions on R+. The map g ∈ D → g̃ ∈ I
defined by g̃(s) := g(1/s), for s > 0, is a bijective involution between D and I.

Löwner’s theorem [9] (see also [1]–[3], [6], [7]) states that g is operator monotone
increasing if and only if g has an analytic extension to the upper-half complex
plane with a positive imaginary part (see [7, Theorem 5.4]). Such functions are
known as Herglotz or Pick functions and have integral representations. For ex-
ample, Hansen proved the following representation.

Lemma 3.2 ([7, Corollary 5.1]). Let g̃ be a positive operator monotone increasing
function on the half-line R+. Then there exists a bounded, positive measure µ on
R+ such that

g̃(s) =

∫
R+

s(1 + λ)

s+ λ
dµ(λ), s > 0. (3.1)

It follows easily from Kato’s result (1.1) that any function on R+ with a repre-
sentation as on the right of (3.1) is in the class I. The difficult part of the proof
of Löwner’s Theorem is the converse.

Using the bijection g → g̃ between D and I described above, it follows that if
f ∈ D, then f has a representation of the form

f(s) =

∫
R+

1 + λ

1 + sλ
dµ(λ), s > 0, (3.2)
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for some bounded positive measure µ on R+. Using the Laplace transform repre-
sentation (2.3) with α = 0, we may write f as

f(s) =

∫
R+

e−sth(t) dt, (3.3)

where h is defined by

h(t) =

∫
R+

(
1 +

1

λ

)
e−

t
λ dµ(λ). (3.4)

The function h ∈ L1
loc(R+), so by Definition 2.1, the function f ∈ L.

This shows that D ⊂ L. On the other hand, the functions on R+ such as
f(s) = e−as, with a > 0, or f(s) = (s + a)−ρ, with ρ > 1 and a > 0, belong to
the class L but not to the class D. As a consequence, we obtain the following
theorem.

Theorem 3.3. The class of operator monotone decreasing functions D is strictly
contained in the class of functions L.

4. An application to the proof of Wegner’s estimate

We complete the proof of the Wegner estimate given in [4]. Since this method of
proof seems to have been used in several subsequent papers, we wanted to present
the complete argument. The Wegner estimate is an upper bound on the proba-
bility that a local random Hamiltonian has eigenvalues in a given energy interval.
We considered a large cube Λ centered at the origin in Rd with odd integer side
length. We let Hω := −∆ + Vω be the random Schrödinger operator on L2(Rd)
with a standard Anderson-type random potential Vω ≥ 0 (this condition can be
removed). We denote by HΛ the restriction of Hω to Λ with Dirichlet bound-
ary conditions. This operator has discrete spectrum. For any bounded interval
I = [I−, I+] ⊂ R, we let EΛ(I) be the spectral projection for HΛ and interval I.
The trace of this projection is finite and it is a random variable. The Wegner
estimate proved in [4, Proposition 4.5] is

P
{
TrEΛ(I) ≥ 1

}
≤ CW |I||Λ|, (4.1)

where CW > 0 is a finite constant depending on I+.
The proof of the Wegner estimate in [4] depends on a comparison of the operator

HΛ to a direct sum of operators defined on unit cubes in Λ. Let Λ = Int {
⋃

j Λ1(j)}
be a decomposition of Λ into unit cubes centered at the lattice points Λ̃ of Λ. In
the proof of Proposition 4.5 (see [4, Section 4]), we used the operator inequality

HΛ ≥ HN,Λ ≡ −
⊕
j

∆N,j, (4.2)

where −∆N,j is the Neumann Laplacian on a unit cube centered at j ∈ Λ ∩ Zd,
if the boundary of the cube does not intersect the boundary of Λ, or the Lapla-
cian with mixed Neumann–Dirichlet boundary conditions if the cube’s boundary
intersects the boundary of Λ. This inequality is valid only in the operator form
sense. It cannot be used in conjunction with Jensen’s inequality as done after



400 J.-M. COMBES and P. D. HISLOP

equation (4.15) in [4] since the eigenfunctions φn of HΛ are not in the operator
domain of HN,Λ.

We apply Theorem 1.1 in order to complete the proof of Wegner’s estimate as
stated in [4, Proposition 4.5]. We divide the set of indices Λ̃ of the unit cubes in
Λ into two sets: The set ∂Λ̃ associated with unit cubes whose boundary intersects
∂Λ, and the set Int Λ̃ of interior points. We take A = HN,Λ, as defined in (4.2),
and B = HΛ, the restriction of H to Λ with Dirichlet boundary conditions.

We verify conditions (1) and (2) of Theorem 1.1. As quadratic forms, we have
Q(B) := Q(HΛ) = H1

0 (Λ), whereas Q(A) := Q(HN,Λ) = {
⊕

j∈Int Λ̃H
1(Λ1(j))} ⊕

{
⊕

j∈∂Λ̃H
1
M(Λ1(j))}, where H1

M(Λ1(j)) consists of functions in H1(Λ1(j)) with

Neumann boundary conditions along ∂Λ ∩ ∂Λ1(j). It follows that Q(HΛ) ⊂
Q(HN,Λ). The second condition of Theorem 1.1 holds identically.

We have inf σ(A) = 0 in this case. Then, with the notation of [4], the projection
PB is EΛ(Iη). From part 2 of Theorem 1.1, we have

TrEΛ(Iη) ≤ eIη,+ Tr
(
EΛ(Iη)e

−HΛ
)

≤ eIη,+ Tr
(
EΛ(Iη)e

−HN,Λ
)

= eIη,+
( ∑
j∈Λ∩Zd

Tr
(
EΛ(Iη)e

∆N,jχj

))
, (4.3)

where χj is the characteristic function for the unit cube Λ1(j) centered at j ∈ Zd.
In this way, we recover (4.16) of [4]. Following the remainder of the proof there,
since the operators −∆N,j do not depend on the random variables, we expand
the trace in the eigenfunctions of −∆N,j and apply the spectral averaging result
[4, Corollary 4.2]. In this manner, one obtains (4.1). We refer the reader to [5] for
a more general proof of the Wegner estimate.
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E-mail address: jmcombes@cpt.uni-mrs.fr

2Department of Mathematics, University of Kentucky, Lexington, Kentucky
40506-0027, USA.

E-mail address: peter.hislop@uky.edu

http://www.emis.de/cgi-bin/MATH-item?0278.30004
http://www.ams.org/mathscinet-getitem?mr=0486556
http://www.ams.org/mathscinet-getitem?mr=3034551
http://dx.doi.org/10.1016/j.laa.2013.01.022
http://www.ams.org/mathscinet-getitem?mr=1335452
http://www.ams.org/mathscinet-getitem?mr=1545446
http://dx.doi.org/10.1007/BF01170633
http://www.ams.org/mathscinet-getitem?mr=0493421
mailto:jmcombes@cpt.uni-mrs.fr
mailto:peter.hislop@uky.edu

	1 Statement of the problem and result
	2 An application to trace inequalities
	3 A relation with operator monotone functions
	4 An application to the proof of Wegner's estimate
	Acknowledgments
	References
	Author's addresses

