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Abstract. Considering n× n× n stochastic tensors (aijk) (i.e., nonnegative
hypermatrices in which every sum over one index i, j, or k, is 1), we study the
polytope (Ωn) of all these tensors, the convex set (Ln) of all tensors in Ωn with
some positive diagonals, and the polytope (∆n) generated by the permutation
tensors. We show that Ln is almost the same as Ωn except for some boundary
points. We also present an upper bound for the number of vertices of Ωn.

1. Introduction

A square matrix is doubly stochastic if its entries are all nonnegative and
each row and column sum is 1. A celebrated result known as Birkhoff’s theorem
about doubly stochastic matrices (see, e.g., [8, p. 549]) states that an n × n
matrix is doubly stochastic if and only if it is a convex combination of some n×n
permutation matrices. Considered as elements in Rn2

, the n×n doubly stochastic
matrices form a polytope (ωn). The Birkhoff’s theorem says that the polytope
ωn is the same as the polytope (δn) generated by the permutation matrices.
A traditional proof of this result is to make use of a lemma which ensures that
every doubly stochastic matrix has a positive diagonal (see, e.g., [8, Lemma 8.7.1,
p. 548]). By a “diagonal of an n-square matrix” we mean a set of n entries taken
from different rows and columns. The n-square doubly stochastic matrices having
a positive diagonal form a polytope (ln) too. Apparently, δn ⊆ ln ⊆ ωn. Birkhoff’s
theorem asserts that the three polytopes ωn, ln, and δn coincide.
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In this paper, we consider the counterpart of the Birkhoff theorem for higher
dimensions. A multidimensional array of numerical values is referred to as a tensor
(see, e.g., [9]). It is also known as a hypermatrix [10]. Let A = (aijk) be an n×n×n
tensor (or an n-tensor cube). We call A a stochastic tensor (see [6]), or a stochastic
semi-magic cube [1], or simply a stochastic cube if all aijk ≥ 0 and

n∑
i=1

aijk = 1, ∀j, k, (1.1)

n∑
j=1

aijk = 1, ∀i, k, (1.2)

n∑
k=1

aijk = 1, ∀i, j. (1.3)

An n-tensor cube may be interpreted in terms of its slices (see [9]). By a “slice
of a tensor A,” we mean a 2-dimensional section of tensor A obtained by fixing
any one of the three indices. For a 3-tensor cube A = (aijk), there are nine slices,
each of which is a square matrix. An intersection of any two nonparallel slices is
called a line (also known as fiber or tube). That is, a line is a 1-dimensional section
of a tensor; it is obtained by fixing all but one of the indices. A diagonal of an
n×n×n tensor cube is a collection of n2 elements such that no two lie on the same
line. A nonnegative tensor is said to have a positive diagonal if all the elements of
a diagonal are positive. We say such a tensor has the positive diagonal property.

The Birkhoff theorem is about the matrices that are 2-way stochastic, while sto-
chastic cubes are 3-way stochastic. Related works on partial or multiple stochas-
ticity such as line or face stochasticity are [3], [5], [7], including the recent ones [9]
(on tensor computation), [10] (a survey chapter on tensors and hypermatrices),
[6] (on extreme points of tensors), and [4] (a survey on the spectral theory of
nonnegative tensors).

Let Ωn be the set of all n× n× n stochastic tensors (i.e., semimagic cubes). It

is evident that Ωn, regarded as a subset of Rn3
, is convex and compact (since it

is an intersection of finitely many closed half-spaces and it is bounded). It is not
difficult to show that every permutation tensor (i.e., (0, 1) stochastic tensor) is a
vertex of Ωn. Let ∆n be the polytope generated (i.e., convex combinations of) by
the n×n×n permutation tensors and let Ln be the set of all n×n×n stochastic
tensors with the positive diagonal property. Obviously,

∆n ⊆ Ln ⊆ Ωn.

If n = 2, a straightforward computation yields that ∆n = Ln = Ωn. For
n ≥ 3, it is known that each of the above inclusions is proper (see Section 3).
Furthermore, the number of vertices of ∆n is equal to the number of Latin squares
of order n (see [6, Proposition 2.6]).

We assume that n ≥ 2 throughout this article. We show a close relation between
Ln and Ωn, and especially the closure of Ln is Ωn. Moreover, a lower bound for
the number of the vertices of Ωn is available in [1, p. 34]. In the present article,
we give an upper bound for the number of vertices of Ωn.
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2. Vectorizing a cube

For an m× n matrix A with rows r1, . . . , rm and columns c1, . . . , cn, let

vecr(A) =

rT1
...
rTm

 , vecc(A) =

c1
...
cn

 .

Vectorizing, or “vecing” for short, a matrix (with respect to rows or columns)
is a basic method in solving matrix equations. It also plays an important role in
computation. We present in this section how to “vec” a cube. This may be useful
in tensor computations, which is a popular field currentty.

For n × n doubly stochastic matrices, we have the following fact by a direct
verification. Let en = (1, . . . , 1) ∈ Rn. An n × n nonnegative matrix S = (sij) is
doubly stochastic if and only if S is a nonnegative matrix satisfying

(In ⊗ en) vecr(S) = eTn and (In ⊗ en) vecc(S) = eTn .

When a tensor cube is interpreted in terms of slices (see [9, p. 458]), we see
that each slice of a stochastic tensor is a doubly stochastic square matrix. An
intersection of any two nonparallel slices is a line (fiber). An n × n × n tensor
cube has 3n2 lines. Considering each line as a column vector of n components, we
stack all the lines in the order of i, j, and k directions (or modes), respectively,
to make a column vector of 3n3 components. We call such a vector the “line
vec” of the cube and denote it by vec`(·). Note that when vecing a 3rd-order
n-dimensional tensor, every entry of the tensor is used three times.

For two cubes A and B of the same size and for any scalar α, we have

vec`(αA+B) = α vec`(A) + vec`(B)

and

〈A,B〉 = 1

3

〈
vec`(A), vec`(B)

〉
,

where the left inner product is for tensors while the right one is for vectors.
What follows is a characterization of a stochastic tensor through “vecing.”

Theorem 2.1. Let ek be the all 1 row vector of k components, where k is a
positive integer. An n × n × n nonnegative cube C = (cijk) is stochastic if and
only if

(Im ⊗ en) vec`(C) = eTm where m = 3n2.

Proof. The proof comes by a direct verification. �

3. The convex set Ln

It is known that if A = (aij) is an n × n doubly stochastic matrix, then A
has a positive diagonal; that is, there exist n positive entries of A such that no
two of these entries are on the same row and same column (the positive diagonal
property). Does the polytope of stochastic tensor cubes have the positive diagonal
property? Let A = (aijk) be an n × n × n stochastic cube. Is it true that there
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always exist n2 positive entries of A such that no two of these entries lie on the
same line? In short, does a stochastic tensor have the positive diagonal property?

It is easy to see that every permutation tensor is an extreme point of Ωn.
Apparently, the set of nonnegative tensors of the same size forms a cone; that is,
if A and B (of the same size) have the positive diagonal property, then so are
aA and A+ bB for any positive scalars a, b. Obviously, every permutation tensor
possesses the positive diagonal property, and so does any convex combination of
finitely many permutation tensors. However, some stochastic tensor cubes fail to
have the positive diagonal property as the following example shows.

Note that ∆n and Ωn are convex and compact (in Rn3
), while Ln is convex but

not compact. In what follows, Example 3.1 shows that a stochastic tensor cube
need not have a positive diagonal (unlike the case of doubly stochastic matrices);
Example 3.2 shows a stochastic tensor cube where the positive diagonal property
need not be generated by permutation tensors.

Example 3.1. Let E be the 3× 3× 3 stochastic tensor cube:

which can be “flattened” to be a 3× 9 matrix

1

2

0 1 1
... 1 1 0

... 1 0 1

1 1 0
... 0 1 1

... 1 0 1

1 0 1
... 1 0 1

... 0 2 0

 .

One may verify (by starting with the entry 2 at the position (3, 2, 3)) that E
has no positive diagonal and E is not a convex combination of the permutation
tensors. So L3 ⊂ Ω3. (In fact, E is an extreme point of Ω3; see, e.g., [1].)

Example 3.2. Taking the stochastic tensor cube F with the flattened matrix 0 0.6 0.4
... 1 0 0

... 0 0.4 0.6

0.6 0 0.4
... 0 0.4 0.6

... 0.4 0.6 0

0.4 0.4 0.2
... 0 0.6 0.4

... 0.6 0 0.4

 ,
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we see that F ∈ L3 by choosing the positive elements × as follows: × ... × ... ×
× ... × ... ×

× ... × ... ×

 .

On the other hand, if F is written as x1P1+ · · ·+xkPk, where all xi are positive
with sum 1, and each Pi is a permutation tensor of the same size, then each Pi

has 0 as its entry at position (j1, j2, j3) where Fj1j2j3 = 0; that is, every Pi takes
the form

Pi =

0 ∗ ∗ ... 1 0 0
... 0 ∗ ∗

∗ 0 ∗ ... 0 ? ∗ ... ∗ ∗ 0

∗ ∗ ∗ ... 0 ∗ ∗ ... ∗ 0 ∗

 .

There exists only one such permutation tensor with 0 in the (2, 2) position (?) in
the second slice. Therefore, F /∈ ∆3. So the inclusions ∆3 ⊂ L3 ⊂ Ω3 are proper.

Next we show that the closure of Ln is Ωn and also that every interior point of
Ωn belongs to Ln. So Ln is “close” to Ωn except for some points of the boundary.

Theorem 3.3. The closure of the set of all n× n× n stochastic tensors having
a positive diagonal is the set of all n× n× n stochastic tensors. In symbols,

cl(Ln) = Ωn.

Moreover, every interior point (tensor) of Ωn has a positive diagonal. Conse-
quently, a stochastic tensor that does not have the positive diagonal property be-
longs to the boundary ∂Ωn of the polytope Ωn.

Proof. Since Ln ⊆ Ωn, we have cl(Ln) ⊆ Ωn. For the other way around, observe
that every permutation tensor is in Ln. If P,Q ∈ Ωn, where P is a permutation
tensor, then tP +(1− t)Q belongs to Ln for any 0 < t ≤ 1. Thus, for any Q ∈ Ωn,
if we set t = 1

m
, we get limm→∞( 1

m
P+(1− 1

m
)Q) = Q. This says that Ωn ⊆ cl(Ln).

It follows that Ωn = cl(Ln).
We now show that every interior point of Ωn lies in Ln. Let B be an interior

point of Ωn. Then there is an open ball, denoted by B(B), centered at B, inside
Ωn. Take a permutation tensor A, say, in ∆n. Then tA + (1 − t)B ∈ Ln for any
0 < t ≤ 1. Suppose that the intersection point of the sphere ∂ cl(B(B)) with the
line tA + (1 − t)B is at C. Let C ′ be the corresponding point of C under the
antipodal mapping with respect to the center B. Then B is between A and C ′, so
B can be written as sA+ (1− s)C ′ for some 0 < s < 1. By the above discussion,
B = sA+ (1− s)C ′ is in Ln. That is, every interior point of Ωn lies in Ln. �

4. An upper bound for the number of vertices

The Birkhoff polytope (i.e., the set of doubly stochastic matrices) is the convex
hull of its extreme points—the permutation matrices. The Krein–Milman theorem
(see, e.g., [11, p. 96]) states that every compact convex polytope is the convex hull
of its vertices. A fundamental question of polytope theory is that of an upper (or
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lower) bound for the number of vertices (or even faces). Determining the number
of vertices (and faces) of a given polytope is a computationally difficult problem
in general (see, e.g., the texts on polytopes [2] and [11]).

Ahmed et al. [1, p. 34] gave a lower bound (n!)2n/nn2
for the number of vertices

(extreme points) of Ωn through an algebraic combinatorial approach. We present
an upper bound and our approach is analytic.

Theorem 4.1. Let v(Ωn) be the number of vertices of the polytope Ωn. Then

v(Ωn) ≤
1

n3
·
(

p(n)

n3 − 1

)
where p(n) = n3 + 6n2 − 6n+ 2.

Proof. Considering Ωn as defined by (1.1)–(1.3), we want to know the number of
independent equations (lines) that describe Ωn. For each horizontal slice (an n×n
doubly stochastic matrix), 2n− 1 independent lines are needed and sufficient. So
there are n(2n − 1) independent horizontal lines from n horizontal slices. Now
consider the vertical lines: there are n2 vertical lines. However, (2n− 1) of them,
say, on the most right and back, have been determined by the horizontal lines (as
each line sum is 1). Thus, n2 − (2n− 1) = (n− 1)2 independent vertical lines are
needed. So there are n(2n−1)+(n−1)2 = 3n2−3n+1 independent lines in total
to define the tensor cube. It follows that we can view Ωn defined by (1.1)–(1.3)

as the set of all vectors x = (xijk) ∈ Rn3
satisfying

n∑
i=1

xijk = 1, 1 ≤ j ≤ n, 1 ≤ k ≤ n, (4.1)

n∑
j=1

xijk = 1, 1 ≤ i ≤ n, 1 ≤ k ≤ n− 1, (4.2)

n∑
k=1

xijk = 1, 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1, (4.3)

xijk ≥ 0, 1 ≤ i, j, k ≤ n. (4.4)

We may rewrite (4.1)–(4.3) and (4.4), respectively, as

Ax = u, Bx ≥ 0,

where A is a (3n2 − 3n + 1) × n3 (0, 1) matrix, u is the all 1 column vector in

R3n2−3n+1, and B is an n3 × n3 (0, 1) matrix. Let m = n3.
A subset of Rm is a convex hull of a finite set if and only if it is a bounded

intersection of closed half-spaces (see [11, p. 29]). The polytope Ωn is generated
by the p = n3+6n2−6n+2 half-spaces defined by the linear inequalities Ax ≥ u,
Ax ≤ u, and Bx ≥ 0, x ∈ Rm. Let e be a vertex of Ωn. We claim that at
least m equalities he = 1 or 0 hold, where h is a row of A or row of B, that is,
Ce = w, where C is a k × n3 (k ≥ m) matrix consisting some rows of A and
some rows of B, and w is a (0, 1) column vector. If, otherwise, k equalities hold
for k < m, let K = {x ∈ Rm | Cx = w}. K is an affine space and e ∈ K. Since
C is a k ×m matrix, the affine space K has dimension at least m − k ≥ 1. Let
O = {x ∈ Rm | B′x > 0} ∩K, where B′ is a submatrix of B for which B′e > 0;
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O is open in K. Since e ∈ O, e is an interior point of O, and thus it cannot be
an extreme point of Ωn. We then have that every extreme point e lies on at least
m supporting hyperplanes h(x) := hx = w in (4.1)–(4.4) that define Ωn.

To show the upper bound, we use induction on n by reducing the problem
to a polytope (a supporting hyperplane of Ωn) of lower dimensions. Let Vm be
the maximum value of the vertices of polytopes formed by any p supporting
hyperplanes in Rm. We show

Vm ≤ 1

m

(
p

m− 1

)
=

1

n3

(
n3 + 6n2 − 6n+ 2

n3 − 1

)
.

For m = 8 (i.e., n = 2), this is easy to check since Ω2 has only two vertices.
Assume that the upper bound inequality holds for the polytopes in the spaces
Rk, k < m. So Ωn is formed by p supporting hyperplanes Ht = {x | ht(x) = u},
t = 1, . . . , p. Since Ht is a face of Ωn, the vertices of Ωn lying in Ht are the vertices
of Ht. As Ht has smaller dimension than Ωn (see [2, p. 32]) and it is formed by
at most p − 1 hyperplanes, by the induction hypothesis, Ht has at most Vm−1

vertices, each of which lies in at least m hyperplanes. We arrive at

v(Ωn) ≤
1

m

p∑
t=1

v(Ht)

≤ p

m
· Vm−1

=
p

m
· 1

m− 1
·
(
p− 1

m− 2

)
=

1

m

(
p

m− 1

)
=

1

n3

(
n3 + 6n2 − 6n+ 2

n3 − 1

)
. �
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