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Abstract. We introduce the notion of a positive spectral measure on a
σ-algebra, taking values in the positive projections on a Banach lattice. Such a
measure generates a bounded positive representation of the bounded measur-
able functions. If X is a locally compact Hausdorff space and if π is a positive
representation of C0(X) on a KB-space, then π is the restriction to C0(X) of
such a representation generated by a unique regular positive spectral measure
on the Borel σ-algebra of X. The relation between a positive representation
of C0(X) on a Banach lattice and—if it exists—a generating positive spectral
measure on the Borel σ-algebra are further investigated; here and elsewhere,
phenomena occur that are specific for the ordered context.

1. Introduction and overview

Suppose that X is a locally compact Hausdorff space, with C0(X) denoting
the ordered Banach algebra of all real-valued continuous functions vanishing at
infinity. Positive representations of such an algebra C0(X) on a Banach lattice E,
that is, representations such that positive functions act as positive operators on
E, are quite common. Rather trivially, C0(X) acts positively by multiplication
on many Banach lattices of (equivalence classes of) functions on X. Somewhat
in disguise, since the center Z(E) of an arbitrary Banach lattice is such a space
for compact X, there is also a positive representation of this type associated with
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every Banach lattice. Such positive representations also occur in a very general
context where ordering is not present from the start: if E is an arbitrary Banach
space, X is compact, and π is a bounded unital representation of C0(X) on E,
then every cyclic closed subspace of E can be supplied with an ordering and
an equivalent norm so that it becomes a Banach lattice on which C0(X) acts
positively (see [2, Lemma 4.6] or [16, Proposition 2.5]); according to [2, proof of
Lemma 4.6] this result goes back to [13].

Given the ubiquity of their occurrence, it is natural to ask which positive rep-
resentations of C0(X) on a Banach lattice E are generated by a (regular) positive
spectral measure on the Borel σ-algebra Ω of X; here positive refers to the fact
that the measure takes values in the positive projections on E. It is one of our
main results that this is always the case if E is a KB-space (see Theorem 5.6).

The study of positive spectral measures and of positive representations of
C0(X) (and also that of positive representations of algebras of bounded mea-
surable functions) appears to be new. The main related results in the literature
that we are aware of are concerned with bounded unital representations of C0(X)
for compact X on a Banach space. Thus the class of representation spaces is more
general, but the class of representations is more restrictive: our X need not be
compact, and, even if it is, our representation need not be unital. Of course, one
can extend a bounded representation π of C0(X) for noncompact X to a bounded
unital representation π∞ of C0(X∞), where X∞ is the one-point compactification
of X. Thus one places oneself in the convenient unital and compact framework,
but removing (and hence also masking) all possible nondegeneracy of the orig-
inal representation from the very start seemed counterproductive to us. Hence
we have considered the most general case, which for positive representations in
Banach lattices turns out to be feasible.

The presence of ordered structures brings about several new phenomena as
compared to the Banach space context, some of them already at a very basic level.
For example, boundedness of positive representations tends to be automatic, and
it is often possible to give exact expressions for their norms (see Propositions 4.5,
5.1, and 5.10). Furthermore, relations of a type that is particular to the ordered
context make their appearance. For example, if P is a positive spectral measure
on Ω that is regular in the (usual) sense of Definition 5.2, and if ∆ is a Borel set,
then

P (∆) = inf
{
P (V ) : V open and ∆ ⊂ V

}
in the regular operators on E (see Proposition 5.3). Therefore P is outer regular
as a map from the Ω to the regular operators on E; likewise, P is inner regular in
this sense. In a similar vein, if π is a positive representation of C0(X) on E that
has a generating regular positive spectral measure P on Ω, and V is open, then

P (V ) = sup
{
π(φ) : φ ∈ Cc(X), suppφ ⊂ V, 0 ≤ φ ≤ 1X

}
in the regular operators on E (see Theorem 5.12 for this and related results).
As in the previous example, this statement, which is reminiscent of (and stems
from) a well-known formula in the circle of ideas around the Riesz representation
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theorem, is only meaningful in an ordered context, as it tells us how to determine
P from π in a purely order-theoretical manner.

The reader who is familiar with the theory of spectral measures in Banach
spaces will without difficulty recognize several ideas and techniques employed in
this article. We have, nevertheless, still included the detailed proofs of our results,
as these proofs are inspired by, but not identical to, those in the general case.
The ordered context has its own peculiarities from the very start, and it seemed
to us that the only way to exploit this extra information to its full potential,
while still producing a readable summary was to make a fresh start and give
precise arguments. This way has the additional advantage that it makes the paper
essentially self-contained. We have given pertinent references to the general theory
to the best of our abilities.

This paper is organized in the following form.
Section 2 contains the notation and terminology, as well as an overview of

material around the Riesz representation theorem. We need more than the mere
existence of measures representing bounded linear functionals, and we have in-
cluded what we need for the ease of reference, and also to establish terminology
(which is not uniform throughout the literature).

Section 3 introduces positive spectral measures on arbitrary σ-algebras and
contains some first basic results.

In Section 4 a bounded positive representation of the bounded measurable
functions on a measurable space is constructed from a positive spectral measure.
Any positive representation of this algebra is, in fact, always bounded, but when
is there an underlying positive spectral measure? If E has σ-order continuous
norm, then we can characterize the positive representations thus obtained: they
are precisely the σ-order continuous ones. It is not true that an arbitrary positive
representation of the bounded measurable functions has a generating positive
spectral measure on the pertinent σ-algebra; this will be taken up in [7].

Section 5 focuses on the topological context of a locally compact Hausdorff
space X. We are concerned with automatic continuity of positive representations
of C0(X), and we show that every positive representation of C0(X) on a KB-space
has a generating regular positive spectral measure on Ω (see Theorem 5.6). It is
indicated in Remark 5.7 how this result can also be derived using Banach space
results and Banach space properties of KB-spaces. This alternative approach is
more involved and lacks the order-theoretical flavor of ours. Additional regularity
properties of a regular positive spectral measures are investigated, as well as
the relation between a positive representation of C0(X) and—if there is one—a
generating possibly regular positive spectral measure on Ω for that representation.

This paper, which we consider to be part of the groundwork for the theory
of positive representations of C0(X), is expected to have a sequel [7]. There are
still several issues to be investigated. The relation between the degeneracy of the
representation of π and the projection corresponding to the element X of Ω is
one of these, and Remarks 2.2 and 4.6 contain additional ones. Furthermore, it
is interesting to turn the tables: if E is a Banach lattice such that every positive
representation of every C0(X)-space (where X is a locally compact Hausdorff
space) on E has a generating regular positive spectral measure on the pertinent
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Borel σ-algebra, then what can one say about E? Must E be a KB-space; that
is, is Theorem 5.6 optimal?

For a currently, more distant perspective, we recall that the spectral theorem
for representations of commutative C∗-algebras on Hilbert spaces underlies, in the
end, a structure theorem (even a classification theorem) for an arbitrary normal
operator on a separable Hilbert space (see [6, Theorem IX.10.1]). Although still a
considerable effort would be needed, and success is not guaranteed (presumably
one would need a reasonable analogue of von Neumann algebras), it could be
hoped that, analogously, Theorem 5.6 could be the basis for a structure theorem
for an arbitrary orthomorphism on suitable KB-spaces.

2. Preliminaries

We start by collecting some basic notation and facts, as well as giving a precise
overview of the Riesz representation theorem and the facts surrounding it.

2.1. Basics. All vector spaces in this paper are over the real numbers. If V is
an ordered vector space, then we write V+ and V− for its positive and negative
cones, respectively.

If E is a Banach space, then E ′ denotes its norm dual. We write L(E) for
the bounded linear operators on E, and idE for the identity map on E. If E is
a Banach lattice, then Lr(E) will denote the vector space of regular operators
on E, that is, the linear operators on E that can be written as a difference of
two positive linear operators on E. It is well known that every positive linear
operator on E is bounded, so that Lr(E) ⊂ L(E), and that, for T ≥ 0, ‖T‖ =
sup{‖Tx‖ : x ∈ E+, ‖x‖ ≤ 1}, where E+ is the positive cone of E (see [14,
Proposition 1.3.5]). Consequently, the operator norm is monotone on the positive
cone Lr(E)+ of Lr(E): if T1, T2 ∈ Lr(E) and 0 ≤ T1 ≤ T2, then ‖T1‖ ≤ ‖T2‖.

If E is a Dedekind complete Banach lattice, then Lr(E) is a Dedekind complete
Banach lattice when supplied with the natural ordering and the regular norm
‖ · ‖r, defined by ‖T‖r = ‖|T |‖ (T ∈ Lr(E)) (see [5, Theorem 4.74]). If E 6= {0},
then the inclusion map (Lr(E), ‖ · ‖r) ↪→ (L(E), ‖ · ‖) has norm 1 (see [5, p. 255]).

If F is a normed space and E is a Banach lattice, then the norm of a bounded
linear map π : F → (L(E), ‖ · ‖) or π : F → (Lr(E), ‖ · ‖) will be denoted by
‖π‖. If E is Dedekind complete, then the norm of a bounded linear map π : F →
(Lr(E), ‖ · ‖r) will be denoted by ‖π‖r.

Definition 2.1. If A is an ordered algebra and E is a Banach lattice, then a
positive representation of A on E is an algebra homomorphism π : A → L(E)
such that π(A+) ⊂ Lr(E)+. If A is normed, then we do not require π to be
bounded. If A is unital, then we do not require π to be unital. The linear span of
{π(a)x : a ∈ A, x ∈ E} need not be dense in E; that is, the representation can
be degenerate.

Remark 2.2. In the cases of our interest, the ordered algebra A is in fact a lattice,
so that a positive representation of A on E maps A into Lr(E). If E is Dedekind
complete, then Lr(E) is also a lattice, and it is meaningful to require that π : A→
Lr(E) is a lattice homomorphism. We emphasize that this is not required in the
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present paper, but in [7] we shall investigate to which extent this is automatically
the case.

If V is a not necessarily order complete ordered vector space, and if (vn)
∞
n=1 ⊂

V , then we will write vn ↑ v if vn ≤ vn+1 (n ≥ 1) and v = supn vn.
If X is a set, then 1X will denote the constant function 1 on X. If Ω is a

σ-algebra of subsets of X, then B(X) will denote the bounded Ω-measurable
functions on X. It is a Banach lattice algebra, and we let S(X) denote the lattice
subalgebra of simple functions. The order bounded subsets of B(X) are precisely
the norm-bounded ones. If (φn)

∞
n=1 ⊂ B(X) and φ ∈ B(X), then φn ↑ φ in B(X)

if and only if φn(ξ) ↑ φ(ξ) for all ξ ∈ X.
The supremum norm of φ ∈ B(X) is written as ‖φ‖.

2.2. Regular Borel measures. If X is a locally compact Hausdorff space, then
we let Ω denote the Borel σ-algebra generated by the open sets and we let B(X)
be the Banach lattice algebra of bounded Borel measurable functions on X. We
write Cc(X) for the normed lattice algebra of continuous functions on X with
compact support, and we write C0(X) for the Banach lattice algebra of continuous
functions vanishing at infinity. If X is compact, then we still write C0(X) rather
than C(X) for the sake of uniform terminology and notation.

The results in Section 5 rely heavily on the Riesz representation theorem and
the general theory of regular Borel measures on locally compact Hausdorff spaces.
Since the terminology in this field is not entirely standardized and we need a bit
more than the bare minimum, we give precise definitions and an overview of what
we need.

Adapting the terminology from [3, p. 352], we say that a measure µ : Ω → [0,∞]
is

(1) a Borel measure if µ(K) <∞ for all compact K ⊂ X;
(2) outer regular on ∆ ∈ Ω if µ(∆) = inf{µ(V ) : V open and ∆ ⊂ V };
(3) inner regular on ∆ ∈ Ω if µ(∆) = sup{µ(K) : K compact and K ⊂ ∆};
(4) a regular Borel measure if it is a Borel measure that is outer regular on

all ∆ ∈ Ω and inner regular on all open subsets of X.

The nomenclature is not uniform in the literature; sometimes the inner regularity
on all elements of Ω rather than on just the compact subsets is incorporated in
the definition of a regular Borel measure, as in [12, p. 212]. In [12, p. 212] our
regular Borel measures are Radon measures.

We let Mb(X) be the regular finite signed Borel measures on Ω, that is, the
finite signed measures on Ω that can be written as a difference of two regular
finite Borel measures. Then Mb(X) is a Banach lattice when supplied with the
natural ordering and the total variation norm. If µ ∈ Mb(X), then the linear
functional Iµ : C0(X) → R, defined by Iµ(φ) =

∫
X
φ dµ (φ ∈ C0(X)), is bounded.

Most of the results we need are collected in the following overview theorem.
Part (1) is the combination of [3, Theorem 38.7] and [12, Theorem 7.17]; part (2)
follows from [12, Corollary 7.6]; and part (3) is contained in [12, Theorem 7.2].

Theorem 2.3. Let X be a locally compact Hausdorff space with Borel σ-algebra Ω.
Then we have the following:
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(1) (Riesz representation theorem) The map µ 7→ Iµ is an isometric order
isomorphism between the Banach lattices Mb(X) and C0(X)′.

(2) If µ ∈Mb(X)+, then µ is inner regular on all elements of Ω.
(3) If µ : Ω → [0,∞] is a regular Borel measure on Ω and if V is an open

subset of X, then

µ(V ) = sup
{∫

X

φ dµ : φ ∈ Cc(X), suppφ ⊂ V, 0 ≤ φ ≤ 1X

}
, (2.1)

and if K is a compact subset of X, then

µ(K) = inf
{∫

X

φ dµ : φ ∈ Cc(X), φ ≥ χK

}
. (2.2)

In (2.2), and analogously elsewhere, χK denotes the characteristic function of
the subset K of X.

The following fact is implied by [4, Problem 38.12].

Lemma 2.4. Let X be a locally compact Hausdorff space with Borel σ-algebra Ω.
Let µ ∈ Mb(X) and ψ ∈ B(X), and define µψ : Ω → R by µψ(∆) =

∫
∆
ψ dµ

(∆ ∈ Ω). Then µψ ∈Mb(X).

The following consequence of Lemma 2.4 will be used in the proof of Theo-
rem 5.6.

Lemma 2.5. Let X be a locally compact Hausdorff space with Borel σ-algebra Ω,
and let ψ ∈ B(X). Suppose that µ, ν ∈Mb(X) are such that∫

X

φψ dµ =

∫
φ dν (2.3)

for all φ ∈ C0(X). Then (2.3) holds for all φ ∈ B(X).

Proof. If we let µψ(∆) =
∫
∆
ψ dµ (∆ ∈ Ω), then (2.3) implies that

∫
X
φ dµψ =∫

X
φψ dµ =

∫
X
φ dν for all φ ∈ C0(X). Since Lemma 2.4 asserts that µψ is again

a regular finite signed Borel measure, the uniqueness statement in the Riesz rep-
resentation theorem shows that µψ = ν. But then

∫
X
φ dµψ =

∫
X
φ dν for all

φ ∈ B(X); that is, (2.3) holds for all φ ∈ B(X). �

2.3. Consequence of a monotone class theorem. In the proof of Theo-
rem 5.6 we will need the following special case of a monotone class theorem
from measure theory (see [20, Theorem 3.14]).

Theorem 2.6. Let X be a locally compact Hausdorff space with Borel σ-algebra Ω.
Suppose that L is a vector space of bounded functions on X such that

(1) χV ∈ L for all open subsets V of X;
(2) if φn is a sequence of functions in L, and if φ is a bounded function on X

such that 0 ≤ φn(ξ) ↑ φ(ξ) for all ξ ∈ X, then φ ∈ L.

Then B(X) ⊂ L.
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3. Positive spectral measures

In this section we introduce the notion of a positive spectral measure on a
general σ-algebra and establish some basic properties.

Definition 3.1. Let X be a set, let Ω be a σ-algebra of subsets of X, and let E
be a Banach lattice. A map P : Ω → Lr(E) ⊂ L(E) is called a positive spectral
measure on Ω when it has the following properties:

(1) for each ∆ in Ω, P (∆) is a positive projection;
(2) P (∅) = 0;
(3) P (∆1 ∩∆2) = P (∆1)P (∆2) for ∆1,∆2 ∈ Ω;
(4) P is σ-additive for the strong operator topology on L(E), that is, if

(∆n)
∞
n=1 are pairwise disjoint elements of Ω, and x ∈ E, then

P
( ∞⋃
n=1

∆n

)
x =

∞∑
n=1

P (∆n)x,

where the series converges in the norm topology.

If P (X) = idE, then P is called unital.

Remark 3.2. It is instrumental for the proof of Theorems 4.8 and 5.6 that, as
an immediate consequence of a theorem of Pettis [9, Theorem IV.10.1] (see also
[17, Lemma III.2]), the combination of (1), (2), (3), and (4) is equivalent to the
combination of (1), (2), (3), and (4′), where

(4′) P is σ-additive for the weak operator topology on L(E); that is, if (∆n)
∞
n=1

are pairwise disjoint elements of Ω, and x ∈ E, x′ ∈ E ′, then〈
P
( ∞⋃
n=1

∆n

)
x, x′

〉
=

∞∑
n=1

〈
P (∆n)x, x

′〉.
Remark 3.3.

(1) There are several variants of the definition of spectral measures (or reso-
lutions of the identity) to be found in the literature.
(a) In [6, Definition IX.1.1], [18, Definition 12.17] (both in the context of

Hilbert spaces), and [17, Definition III.4] (in the context of Banach
spaces), a spectral measure is required to be σ-additive in the strong
operator topology (or, equivalently, in the weak operator topology),
as we do. Contrary to our definition, however, it is required to be
unital.

(b) In the context of Banach spaces, a spectral measure is defined on
a Boolean algebra of subsets of a set in [11, Definition XV.2.1]. A
spectral measure in that sense on a σ-algebra is required to be only
finitely additive, whereas we require σ-additivity. Contrary to our
definition, it is required to be unital.

(2) Using the terminology of [8, p. 1], a positive spectral measure on Ω as in
our definition is a map P : Ω → Lr(E) such that it takes values in the
positive projections on E, P (∆1 ∩∆2) = P (∆1)P (∆2) (∆1,∆2 ∈ Ω), and



POSITIVE REPRESENTATIONS OF C0(X) 187

such that, for all x ∈ E, the map ∆ 7→ P (∆)x (∆ ∈ Ω) is a countably
additive vector measure on Ω with values in E.

It follows easily from Definition 3.1 that a positive spectral measure is finitely
additive, and the following lemma on monotonicity and uniform boundedness is
then clear.

Lemma 3.4. Let P : Ω → Lr(E) be a positive spectral measure. Then P is
monotone; that is, if ∆1,∆2 ∈ Ω and ∆1 ⊂ ∆2, then 0 ≤ P (∆1) ≤ P (∆2).
Consequently, ‖P (∆1)‖ ≤ ‖P (∆2)‖ for such ∆1,∆2, and in particular ‖P (∆)‖ ≤
‖P (X)‖ for all ∆ ∈ Ω.

Remark 3.5.

(1) As a consequence of the uniform boundedness principle, a (σ-additive)
spectral measure taking values in the bounded projections on a Banach
space is always uniformly bounded (see [17, Lemma III.3]; the proof also
applies if the spectral measure is not unital). The point in Lemma 3.4 is,
therefore, the explicit and sharp uniform upper bound ‖P (X)‖.

(2) If P is unital, then P (Ω) is a σ-complete Boolean algebra of bounded
projections on the Banach space E. In that case, [11, Lemma XVII.3.3]
also implies that P (Ω) is uniformly bounded.

If P : Ω → Lr(E) is a positive spectral measure, and x ∈ E, x′ ∈ E ′, we define
µx,x′ : Ω → R by µx,x′(∆) = 〈P (∆)x, x′〉 (x ∈ E, x′ ∈ E ′); our notation µx,x′
follows Schaefer (see [19, proof of Proposition V.3.2]). It is clear that µx,x′ is a
finite signed measure and that µx,x′ is positive when x ∈ E+, x

′ ∈ E ′
+. By a

standard argument (see [9, p. 97]), we have ‖µx,x′‖ ≤ 2 sup∆∈Ω |µx,x′(∆)|, so that
‖µx,x′‖ ≤ 2‖P (X)‖‖x‖‖x′‖ (x ∈ E, x′ ∈ E ′). The factor 2 can be removed here,
as is stated in the following result, which is even more precise.

Lemma 3.6. Let P : Ω → Lr(E) be a positive spectral measure, and let x ∈
E, x′ ∈ E ′. Then ‖µx,x′‖ ≤ 〈P (X)|x|, |x′|〉. Equality holds if x ∈ E+ ∪ E− and
x′ ∈ E ′

+ ∪ E ′
−.

For all x ∈ E, x′ ∈ E ′, ‖µx,x′‖ ≤ ‖P (X)‖‖x‖‖x′‖.

Proof. Let x ∈ E+, x
′ ∈ E ′

+. If X =
⋃n
i=1 ∆i is a measurable disjoint partition of

X, then, using the fact that the P (∆i) are positive, we see that

n∑
i=1

∣∣µx,x′(∆i)
∣∣ = n∑

i=1

∣∣〈P (∆i)x, x
′〉∣∣

=
n∑
i=1

〈
P (∆i)x, x

′〉
=

〈 n∑
i=1

P (∆i)x, x
′
〉

=
〈
P (X)x, x′

〉
.
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Hence ‖µx,x′‖ = 〈P (X)x, x′〉 for x ∈ E+ and x′ ∈ E ′
+. This implies that ‖µx,x′‖ =

〈P (X)|x|, |x′|〉 if x ∈ E+∪E− and x′ ∈ E ′
+∪E ′

−. The rest of the lemma follows by
splitting arbitrary x ∈ E and x′ ∈ E ′ into their positive and negative parts. �

The following fact will be needed in the proof of Proposition 5.3, where it is
shown that regular positive spectral measures on the Borel σ-algebra of a locally
compact Hausdorff space are also regular in a natural sense that is specific for
the ordered context.

Lemma 3.7. Let Ω be a σ-algebra of subsets of a set X, let E be a Banach lattice,
and let P : Ω → Lr(E) be a positive spectral measure with associated finite signed
measures µx,x′ (x ∈ E, x′ ∈ E ′)on Ω.

(1) Suppose that ∆,∆i ∈ I (i ∈ I)are elements of Ω such that
(a) ∆ ⊂ ∆i (i ∈ I);
(b) µx,x′(∆) = infi∈I µx,x′(∆i) for all x ∈ E+, x

′ ∈ E ′
+.

Then P (∆) = infi∈I P (∆i) in Lr(E).
(2) Suppose that ∆,∆i ∈ I (i ∈ I)are elements of Ω such that

(a) ∆ ⊃ ∆i (i ∈ I);
(b) µx,x′(∆) = supi∈I µx,x′(∆i) for all x ∈ E+, x

′ ∈ E ′
+.

Then P (∆) = supi∈I P (∆i) in Lr(E).

Note that we do not assume that E is Dedekind complete, and hence the
existence of the infimum and supremum is not automatic.

Proof. We prove part (1); the proof of part (2) is similar. Since P is mono-
tone, P (∆) ≤ P (∆i) (i ∈ I). Let T ∈ Lr(E) and T ≤ P (∆i) (i ∈ I). Let
x ∈ E+, x

′ ∈ E ′
+. Then 〈Tx, x′〉 ≤ 〈P (∆i)x, x

′〉 = µx,x′(∆i) (i ∈ I), so that
〈Tx, x′〉 ≤ infi∈I µx,x′(∆i) = µx,x′(∆) = 〈P (∆)x, x′〉. Hence T ≤ P (∆). �

4. Positive B(X)-representations generated by positive spectral
measures

Since we know from Lemma 3.4 that a positive spectral measure is uniformly
bounded, one can employ a standard method (see [10, p. 891–892], [17, p. 13–14])
to construct a representation of the bounded measurable functions B(X) on X
from this measure. In the first part of this section, we study the basic properties
of the representations thus obtained. In the second part, we turn the tables and
ask ourselves which positive representations of B(X) arise in this fashion.

Starting with a positive spectral measure P : Ω → Lr(E) on a σ-algebra Ω
of subsets of a set X, the associated representation πP : B(X) → Lr(E) is con-
structed as follows. If φ =

∑n
i=1 αiχ∆i

∈ B(X) is a simple function, with the ∆i

not necessarily disjoint, then let πP (φ) =
∑n

i=1 αiP (∆i) ∈ Lr(E). This is well
defined, and one thus obtains a representation πP of the simple functions S(X)
on E that is clearly a positive representation of the ordered algebra S(X). Tak-
ing the ∆i in φ =

∑n
i=1 αiχ∆i

to be a measurable disjoint partition of X, and
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invoking Lemma 3.6 in the penultimate step, we see that∥∥πP (φ)∥∥ = sup
{∣∣∣〈 n∑

i=1

αiP (∆i)x, x
′
〉∣∣∣ : x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1

}
≤ sup

{ n∑
i=1

|αi|
∣∣〈P (∆i)x, x

′〉∣∣ : x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1
}

≤ ‖φ‖ sup
{ n∑
i=1

∣∣〈P (∆i)x, x
′〉∣∣ : x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1

}
≤ ‖φ‖ sup

{
‖µx,x′‖ : x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1

}
≤ ‖φ‖

∥∥P (X)
∥∥

= ‖φ‖
∥∥π(1X)∥∥.

We conclude that πP : S(X) → (Lr(E), ‖ · ‖) ⊂ (L(E), ‖ · ‖) is bounded with
norm ‖P (X)‖. Since S(X) is dense in B(X), πP extends uniquely to a bounded
representation πP : B(X) → (L(E), ‖ · ‖). Furthermore, since S(X)+ is dense in
B(X)+ and E+ is closed in E, we see that actually πP (B(X)+) ⊂ Lr(E)+. Hence
πP : B(X) → (Lr(E), ‖ · ‖) is a positive representation with norm ‖P (X)‖.

If E is Dedekind complete, then the regular norm is defined on Lr(E). Since
πP is positive, ‖ · ‖ is monotone on Lr(E)+, and |φ| ≤ ‖φ‖1X for φ ∈ B(X), we
have ‖πP (φ)‖r = ‖|πP (φ)|‖ ≤ ‖πP (|φ|)‖ ≤ ‖πP (‖φ‖1X)‖ = ‖P (X)‖‖φ‖. We see
that πP : B(X) → (Lr(E), ‖ · ‖r) is also bounded and that ‖πP‖r = ‖P (X)‖.

We collect our first results and a few more or less standard properties of πP in
the following theorem. At the moment of writing, it is an open question whether
the common subalgebra in part (7)(b) can be a proper subalgebra of the common
subalgebra in part (5).

Theorem 4.1. Let Ω be a σ-algebra of subsets of a set X, let E be a Banach
lattice, and let P : Ω → Lr(E) be a positive spectral measure.

(1) The map πP : S(X) → (Lr(E), ‖ · ‖), defined on the simple functions by
πP (

∑n
i=1 αjχ∆i

) =
∑n

i=1 αjP (∆i), extends uniquely to a bounded linear
map πP : B(X) → (L(E), ‖ · ‖). This extension is a positive representation
πP : B(X) → (Lr(E), ‖ · ‖) with norm ‖πP‖ = ‖P (X)‖ = ‖πP (1X)‖.

(2) Also, πP is unital if and only if P is unital.
(3) For φ ∈ B(X), πP (φ) ∈ Lr(E) is the unique element of L(E) such that,

for all x ∈ E, x′ ∈ E ′,〈
πP (φ)x, x

′〉 = ∫
X

φ dµx,x′ . (4.1)

(4) If φ ∈ B(X) and if (φ)∞n=1 ⊂ B(X) is a bounded sequence in B(X) such
that limn→∞ φn(ξ) = φ(ξ) for all ξ ∈ X, then πP (φ) = WOT- limn πP (φn).

(5) The closed subalgebras of (L(E), ‖ · ‖) generated by P (Ω), πP (S(X)), and
πP (B(X)) are equal.

(6) The commutants P (Ω)′, πP (S(X))′, and πP (B(X))′ in L(E) are equal.
(7) If E is Dedekind complete, then
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(a) πP : B(X) → (Lr(E), ‖ · ‖r) is bounded, and ‖πP‖r = ‖P (X)‖ =
‖πP (1X)‖;

(b) the closed subalgebras of (Lr(E), ‖ · ‖r) generated by P (Ω), πP (S(X)),
and πP (B(X)) are equal, and this common subalgebra is contained in
the common subalgebra in part (5).

Proof. For part (3), we note that (4.1) holds by construction if φ ∈ S(X). Since,
for fixed x ∈ E, x′ ∈ E ′, both sides in (4.1) are bounded linear functionals on
B(X), the general case follows by continuity. The uniqueness statement in part
(3) is clear, and part (4) is immediate from an application of the dominated
convergence theorem. The remaining statements follow easily from the discussion
preceding the theorem. �

Remark 4.2.

(1) The standard estimate (for the real case; see [10, p. 892]) yields that
‖πP‖ ≤ 2 sup∆∈Ω ‖P (∆)‖, and combination with Lemma 3.4 then implies
that we know a priori that ‖πP‖ ≤ 2‖P (X)‖. Part (1) therefore shows
that, in the ordered context, one can remove the factor 2 and obtain
equality.

(2) If E is Dedekind complete, then the positive map π : B(X) → (Lr(E),
‖ · ‖r) is automatically bounded (and then so is π : B(X) → (Lr(E), ‖ · ‖).
The point in part (7)(a) is the value of ‖πP‖r.

(3) If E is Dedekind complete, then there is a seemingly alternative way of
obtaining a positive representation of B(X) on E. Indeed, one can also
view πP on S(X) as a bounded map πP : S(X) → (Lr(E), ‖ · ‖r), where
the codomain is now likewise a Banach space. Extending by continuity,
we obtain a bounded positive representation πr

P : S(X) → (Lr(E), ‖ · ‖r).
Since the inclusion map (Lr(E), ‖ · ‖r) ↪→ (L(E), ‖ · ‖) is bounded, a mo-
ment’s thought shows that actually πP = πr

P . Hence there is no ambiguity.

The first statement in the next result is specific for the ordered context. We do
not assume that E is Dedekind complete, and hence the existence of supn πP (φn)
is not automatic. By [1, Lemma 1.24], it implies that πP is a σ-order continuous
map between the ordered vector spaces B(X) and Lr(E).

Proposition 4.3. Let Ω be a σ-algebra of subsets of a set X, let E be a Banach
lattice, and let P : Ω → Lr(E) be a positive spectral measure. If φ ∈ B(X) and
(φ)∞n=1 ⊂ B(X) is a bounded sequence in B(X) such that φn ↑ φ in B(X), then
πP (φn) ↑ πP (φ) in Lr(E), and πP (φ) = WOT- limn πP (φn).

Proof. Clearly πP (φ) ≥ πP (φn) for all n. Suppose T ∈ Lr(E) and T ≥ πP (φn) for
all n. Then, for x ∈ E+, x

′ ∈ E ′
+, we have 〈Tx, x′〉 ≥ 〈πP (φn)x, x′〉 =

∫
X
φn dµx,x′

for all n. The dominated convergence theorem yields 〈Tx, x′〉 ≥
∫
X
φ dµx,x′ =

〈πP (φ)x, x′〉. Hence T ≥ πP (φ). We have shown that π(φn) ↑ π(φ); the second
statement follows from part (4) of Theorem 4.1. �

Since P (∆) = πP (χ∆) (∆ ∈ Ω), the map P 7→ πP is injective. This validates
the choice of the definite article in the following definition.
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Definition 4.4. Let Ω be a σ-algebra of subsets of a set X, let E be a Banach
lattice, let P : Ω → Lr(E) be a positive spectral measure, and let πP : B(X) →
Lr(E) be the positive representation of B(X) on E as constructed above. Then we
shall say that πP is generated by P and that P is the generating positive spectral
measure of πP on Ω.

We will now concentrate on the question as to which positive representations of
B(X) on Banach lattices have a generating positive spectral measure on Ω. This
is not always the case (see [7]). A positive representation that has a generating
positive spectral measure is bounded according to Theorem 4.1, but this is not
necessarily a distinguishing feature, as is shown by the next result on automatic
boundedness.

Proposition 4.5. Let Ω be a σ-algebra of subsets of a set X, let E be a Banach
lattice, and let π : B(X) → Lr(E) be a positive representation. Then

(1) π : B(X) → (Lr(E), ‖ · ‖) is bounded, and ‖π‖ = ‖π(1X)‖;
(2) if E is Dedekind complete, then π : B(X) → (Lr(E), ‖ · ‖r) is bounded, and

‖π‖ = ‖π‖r = ‖π(1X)‖.

Proof. As to (1), let φ ∈ B(X)+. Since 0 ≤ φ ≤ ‖φ‖1X and π is positive, we have
0 ≤ π(φ) ≤ ‖φ‖π(1X). Hence ‖π(φ)‖ ≤ ‖π(1X)‖‖φ‖. For general φ = φ+ − φ− ∈
B(X), this implies that ‖π(φ)‖ ≤ ‖π(1X)‖(‖φ+‖ + ‖φ−‖) ≤ 2‖π(1X)‖‖φ‖. In
particular, π : B(X) → (Lr(E), ‖ · ‖) is bounded. For the statement concerning
‖π‖, it is sufficient to show that ‖π(φ)‖ ≤ ‖π(1X)‖‖φ‖ for all φ in the dense
subspace S(X) of B(X). As to this, we first note that the map ∆ 7→ π(χ∆) is
a positive operator-valued finitely additive measure on Ω. Proceeding as in the
proof of Lemma 3.6, one then sees that

∑n
i=1 |〈π(χ∆i

)x, x′〉| ≤ 〈π(1X)|x|, |x′|〉 ≤
‖π(1X)‖‖x‖‖x′‖ for all measurable disjoint partitions X =

⋃n
i=1∆i of X and all

x ∈ E, x′ ∈ E ′. Taking the ∆i in φ =
∑n

i=1 αiχ∆i
∈ B(X) to be a measurable

disjoint partition of X, this implies, as in the discussion preceding Theorem 4.1,
that∥∥π(φ)∥∥ = sup

{∣∣∣〈 n∑
i=1

αiπ(χ∆i
)x, x′

〉∣∣∣ : x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1
}

≤ sup
{ n∑
i=1

|αi|
∣∣〈π(χ∆i

)x, x′
〉∣∣ : x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1

}
≤ ‖φ‖ sup

{ n∑
i=1

∣∣〈π(χ∆i
)x, x′

〉∣∣ : x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1
}

≤ ‖φ‖
∥∥π(1X)∥∥.

For part (2), let φ ∈ B(X). Since |φ| ≤ ‖φ‖1X , we have π(|φ|) ≤ ‖φ‖π(1X).
Therefore 0 ≤ |π(φ)| ≤ π(|φ|) ≤ ‖φ‖π(1X), implying that ‖π(φ)‖r = ‖|π(φ)|‖ ≤
‖‖φ‖π(1X)‖ = ‖π(1X)‖‖φ‖. Hence π : B(X) → (Lr(E), ‖ · ‖r) is bounded (which
also follows from the automatic continuity of positive maps between Banach lat-
tices), and ‖π‖r = ‖π(1X)‖. �
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Remark 4.6. If E is Dedekind complete, then it is well known that the operator
norm and the regular norm coincide on the center Z(E) of E. If π(B(X)) ⊂ Z(E),
the equality of ‖π‖ and ‖π‖r, as asserted in Proposition 4.5, is then a priori
clear. For general (not necessarily central) positive representations of B(X), this
equality may seem somewhat surprising, but also in this case more can be said
(see [7]).

With the automatic boundedness available from Proposition 4.5, we can now
give a description of the positive representations of B(X) that have a generating
positive spectral measure on Ω.

Proposition 4.7. Let Ω be a σ-algebra of subsets of a set X, let E be a Banach
lattice, and let π : B(X) → Lr(E) be a positive representation. Then the following
are equivalent:

(1) π has a generating positive spectral measure on Ω;
(2) if (∆n)

∞
n=1 are pairwise disjoint elements of Ω, and x ∈ E+, then

π(χ⋃∞
n=1 ∆n)x =

∞∑
n=1

π(χ∆n)x,

where the series converges in the norm topology;
(3) if (∆n)

∞
n=1 are pairwise disjoint elements of Ω, and x ∈ E+, x

′ ∈ E ′
+, then〈

π(χ⋃∞
n=1 ∆n)x, x

′〉 = ∞∑
n=1

〈
π(χ∆n)x, x

′〉.
In that case, the generating positive spectral measure P on Ω of π is given by
P (∆) = π(χ∆) (∆ ∈ Ω).

Proof. Since the only possible generating positive spectral measure P for π on Ω
must be given by P (∆) = π(χ∆) (∆ ∈ Ω), it is clear that (1) implies (2). Clearly
(2) implies (3). Assuming (3), we first observe that the equality in (3) then holds
for all x ∈ E, x′ ∈ E ′. We define P (∆) = π(χ∆) (∆ ∈ Ω). Then P : Ω → Lr(E)
satisfies (1), (2), (3), and (4′) in Definition 3.1 and Remark 3.2, and hence is a
positive spectral measure on Ω. It is clear that the positive representation πP
of B(X) on E that is generated by P agrees with π on S(X). Since both are
bounded according to Proposition 4.5, πP = π. �

For a fairly large practical class of lattices, the criterion for the existence of a
generating positive spectral measure is particularly easy, and completely order-
theoretical.

Theorem 4.8. Let Ω be a σ-algebra of subsets of a set X, let E be a σ-Dedekind
complete Banach lattice, and let π : Ω → Lr(E) be a positive representation. If
E ′ consists of σ-order continuous linear functionals only (equivalently: if E has
σ-order continuous norm), then the following are equivalent:

(1) π has a generating positive spectral measure on Ω,
(2) π is σ-order continuous.
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Proof. We had already observed preceding Proposition 4.3 that part (1) implies
part (2), even without any further assumptions on E. For the converse impli-
cation, we verify the condition in part (3) of Proposition 4.7. In the pertinent

notation, we let ψ = χ⋃∞
n=1 ∆n and ψN =

∑N
n=1 χ∆n (N ≥ 1). Then ψN ↑ ψ in

B(X), so π(ψN) ↑ π(ψ) in Lr(E) by the σ-order continuity of π. By a straightfor-
ward modification of the proof of [5, Theorem 1.18], the σ-Dedekind completeness
of E implies that π(ψN)x ↑ π(ψ)x for all x ∈ E+. By the assumption on E ′ this
implies that 〈π(ψN)x, x′〉 ↑ 〈π(ψ)x, x′〉 for all x ∈ E+, x

′ ∈ E ′
+. That is, the

condition in part (3) of Proposition 4.7 is satisfied. �

Remark 4.9.

(1) Theorem 4.8 applies, in particular, to all Dedekind complete Banach lat-
tices with order continuous norm. A class of Banach lattice with a σ-order
continuous norm that is not order continuous can be found in [21, Exam-
ple 7, p. 46].

(2) The equivalence involving the σ-order continuity can be found in [22,
p. 336].

5. Positive C0(X)-representations generated by positive spectral
measures

In this section, X is a locally compact Hausdorff space. We will investigate
the relation between positive representations of C0(X) on a Banach lattice E and
Lr(E)-valued positive spectral measures on the Borel σ-algebra Ω ofX. One of our
main results here, Theorems 5.6, is concerned with the existence of a generating
regular positive spectral measure for such a representation. In most of the other
results, such as Theorem 5.12, the existence of a generating (regular) positive
spectral measure is merely assumed, and the relation between the representation
and the spectral measure is studied.

We start with the following result on automatic boundedness of positive rep-
resentations of C0(X), in the same vein as Proposition 4.5.

Proposition 5.1. Let X be a locally compact Hausdorff space, let E be a Banach
lattice, and let π : C0(X) → Lr(E) be a positive representation.

(1) If X is compact, and E is not necessarily Dedekind complete, then
(a) ‖π(φ)‖ ≤ ‖π(1X)‖(‖φ+‖+ ‖φ−‖) (φ ∈ C0(X));
(b) π : C0(X) → (Lr(E), ‖ · ‖) is bounded, and ‖π‖ ≤ 2‖π(1X)‖.

(2) If X is not necessarily compact, and E is Dedekind complete, then the
maps π : C0(X) → (Lr(E), ‖ · ‖) and π : C0(X) → (Lr(E), ‖ · ‖r) are both
bounded, and ‖π‖ ≤ ‖π‖r.

(3) If X is compact, and E is Dedekind complete, then the maps π : C0(X) →
(Lr(E), ‖ · ‖) and π : C0(X) → (Lr(E), ‖ · ‖r) are both bounded, and ‖π‖ =
‖π‖r = ‖π(1X)‖.

Proof. Part (1) follows as in the beginning of the proof of part (1) of Proposi-
tion 4.5.

As to part (2), if E is Dedekind complete, then (Lr(E), ‖ · ‖r) is a Banach
lattice. Hence the positive map π : C0(X) → (Lr(E), ‖ · ‖r) is automatically
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bounded. Using the contractivity of the inclusion map (Lr(E), ‖ · ‖r) ↪→ (Lr(E),
‖ · ‖) completes the proof of part (2).

As to part (3), it follows as in the proof of part (2) of Proposition 4.5 that
π : C0(X) → (Lr(E), ‖ · ‖r) is bounded and that ‖π‖r = ‖π(1X)‖. The con-
tractivity of the inclusion map (Lr(E), ‖ · ‖r) ↪→ (Lr(E), ‖ · ‖) then implies that
‖π‖ = ‖π(1X)‖. �

At the time of writing we have no information for the case where X is not com-
pact and E is not Dedekind complete, unless we assume that π has a generating
positive spectral measure (see Proposition 5.10).

The following definition is the usual one.

Definition 5.2. Let X be a locally compact Hausdorff space with Borel σ-algebra
Ω, let E be a Banach lattice, and let P : Ω → Lr(E) be a positive spectral
measure. Then P is regular if the finite signed measure µx,x′ : Ω → R, defined by
µx,x′(∆) = 〈P (∆)x, x′〉 (∆ ∈ Ω), is a regular finite signed Borel measure for all
x ∈ E, x′ ∈ E ′.

Interestingly enough, a regular positive spectral measure is also inner and outer
regular on all elements of Ω in a natural sense that is meaningful only in an ordered
context.

Proposition 5.3. Let X be a locally compact Hausdorff space with Borel σ-algebra
Ω, let E be a Banach lattice, and let P : Ω → Lr(E) be a regular positive spectral
measure. Then, for all ∆ ∈ Ω,

(1) P (∆) = inf{P (V ) : V open and ∆ ⊂ V } in Lr(E);
(2) P (∆) = sup{P (K) : K compact and K ⊂ ∆} in Lr(E).

We do not assume that E is Dedekind complete, and hence the existence of
the infimum and supremum is not automatic.

Proof. If x ∈ E+, x
′ ∈ E ′

+, then the finite measure µx,x′ is a regular Borel measure
by assumption. Part (2) of Theorem 2.3 shows that it is not only outer regular
on all elements of Ω, but also inner regular on all elements of Ω. An appeal to
Lemma 3.7 then finishes the proof. �

In view of the results in Section 4, the following usual definition is natural.

Definition 5.4. Let X be a locally compact Hausdorff space with Borel σ-algebra
Ω, let E be a Banach lattice, and let π : C0(X) → Lr(E) be a positive represen-
tation of C0(X) on E. If P : Ω → Lr(E) is a positive spectral measure on Ω, then
Section 4 furnishes the positive representation πP : B(X) → Lr(E) of B(X) on E
that is generated by P . We say that P generates π if π is the restriction of πP
to C0(X). If P is a regular positive spectral measure on Ω generating π, we say
that π has a generating regular positive spectral measure on Ω.

Remark 5.5.

(1) If π has a generating regular positive spectral measure on Ω, then it is
unique. This is immediate from (4.1) and the uniqueness statement in the
Riesz representation theorem.
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(2) For the sake of completeness, we note that every Borel measure is auto-
matically both outer and inner regular on all elements of Ω if every open
subset of X is σ-compact (i.e., if it is the countable union of compact
subsets of X; see [12, Theorem 7.8]). For such spaces (in particular, for all
second countable spaces), every positive spectral measure on Ω is therefore
automatically regular.

We will now establish an existence result for generating regular positive spectral
measures.

Recall that a Banach lattice is a KB-space if every nonnegative increasing
norm-bounded sequence is norm-convergent. Reflexive Banach lattices and AL-
spaces are KB-spaces (see [5, p. 232]). A KB-space has order continuous norm
(see [14, Theorem 2.4.2]), and hence is Dedekind complete, and a Banach lattice
E is a KB-space if and only if E is a band of E ′′ (see [5, Theorem 4.60]). The
latter property is what makes our proof of the following theorem work.

Theorem 5.6. Let X be a locally compact Hausdorff space with Borel σ-algebra
Ω, let E be a KB-space, and let π : C0(X) → Lr(E) be a positive representation.

Then π has a unique generating regular positive spectral measure P on Ω.

Proof. The uniqueness of a generating regular positive spectral measure was al-
ready observed in the first part of Remark 5.5.

For its existence, we combine Theorem 2.6 with ideas employed in the litera-
ture for unital representations of commutative C∗-algebras on Hilbert spaces (see
[6, Theorem IX.1.4], [18, Theorem 12.22]), and for bounded unital representa-
tions of C0(X) (where X is compact) on Banach spaces [17, Theorem III.3]. The
strategy is, as usual, to construct a (positive) representation π̃ : B(X) → Lr(E)
that extends π, and then show that π̃ has a generating regular (positive) spectral
measure P on Ω, so that one can actually write π̃ = πP .

We start with the construction of π̃.
Since we had already observed that the KB-space E is Dedekind complete, part

(2) of Proposition 5.1 implies that π : C0(X) → (Lr(E), ‖ · ‖) is bounded.
Let x ∈ E, x′ ∈ E ′, and consider the linear functional φ 7→ 〈π(φ)x, x′〉 on

C0(X). We have∣∣〈π(φ)x, x′〉∣∣ ≤ ‖π‖‖φ‖‖x‖‖x′‖
(
φ ∈ C0(X), x ∈ E, x′ ∈ E ′).

Consequently, this functional is bounded and has norm at most ‖π‖‖x‖‖x′‖. The
Riesz representation theorem furnishes a regular finite signed Borel measure µx,x′
such that 〈

π(φ)x, x′
〉
=

∫
X

φ dµx,x′
(
φ ∈ C0(X), x ∈ E, x′ ∈ E ′). (5.1)

Moreover, ‖µx,x′‖ ≤ ‖π‖‖x‖‖x′‖, and if x ∈ E+, x
′ ∈ E ′

+, then µx,x′ ≥ 0 as a
consequence of the positivity of π. As a consequence of the uniqueness statement
in the Riesz representation theorem, the map (x, x′) 7→ µx,x′ is bilinear. This
implies that, for fixed φ ∈ B(X), the form [·, ·]φ on E × E ′, defined by

[x, x′]φ =

∫
X

φ dµx,x′ (x ∈ E, x′ ∈ E ′),
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is also bilinear. Moreover, |[x, x′]φ| ≤ ‖φ‖‖µx,x′‖ ≤ ‖φ‖‖π‖‖x‖‖x′‖. Hence [·, ·]φ
is a bounded bilinear form on E ×E ′, and this implies that there exists a unique
operator π̃(φ) ∈ L(E,E ′′) such that 〈π̃(φ)x, x′〉 = [x, x′]φ for all x ∈ E, x′ ∈ E ′.
Hence 〈

π̃(φ)x, x′
〉
=

∫
X

φ dµx,x′
(
φ ∈ B(X), x ∈ E, x′ ∈ E ′). (5.2)

We now use the fact that E is a band of E ′′ and Theorem 2.6 to see that
actually π̃(φ)(E) ⊂ E (rather than E ′′) for all φ ∈ B(X).

To start, since µx,x′ ≥ 0 for x ∈ E+, x
′ ∈ E ′

+, (5.2) shows that π̃(φ)x ≥ 0
if φ ≥ 0 and x ∈ E+. This implies that π̃(φ) ∈ Lr(E,E

′′) (φ ∈ B(X)), and
that π̃ : B(X) → Lr(E,E

′′) is a (clearly linear) positive map. Furthermore, com-
paring (5.1) and (5.2), we see that π̃ : B(X) → Lr(E,E

′′) extends π : C0(X) →
Lr(E), where we identify Lr(E) with the canonically corresponding subspace of
Lr(E,E

′′). We let

L =
{
φ ∈ B(X) : π̃(φ)(E) ⊂ E

}
.

Since π̃ extends π, we already know that C0(X) ⊂ L. We proceed to show that
L satisfies the two hypotheses in Theorem 2.6, so that actually L = B(X). As to
the first hypothesis, we need to show that π̃(χV )(E) ⊂ E for all open subsets V
of X. We may assume that V 6= ∅, and in that case we claim that

π̃(χV ) = sup
{
π̃(φ) : φ ∈ Cc(X), suppφ ⊂ V, 0 ≤ φ ≤ 1X

}
, (5.3)

where the right-hand side is the supremum in the Dedekind complete Banach
lattice Lr(E,E

′′). Since π̃ ≥ 0, it is clear that π̃(χV ) ≥ π̃(φ) if φ ∈ Cc(X),
suppφ ⊂ V , and 0 ≤ φ ≤ 1X . Suppose that T ∈ Lr(E,E

′′) and that T ≥ π̃(φ)
for all φ ∈ Cc(X) such that suppφ ⊂ V and 0 ≤ φ ≤ 1X . Then from (5.2) we
have, for all such φ, and all x ∈ E+, x

′ ∈ E ′
+,

〈Tx, x′〉 ≥
〈
π̃(φ)x, x′

〉
=

∫
X

φ dµx,x′ .

Therefore, for all x ∈ E+, x
′ ∈ E ′

+,

〈Tx, x′〉 ≥ sup
{∫

X

φ dµx,x′ : φ ∈ Cc(X), suppφ ⊂ V, 0 ≤ φ ≤ 1X

}
.

Now (2.1) shows that the right-hand side in this equation equals µx,x′(V ). We
conclude that, for x ∈ E+, x

′ ∈ E ′
+,

〈Tx, x′〉 ≥ µx,x′(V )

=

∫
X

χV dµx,x′

=
〈
π̃(χV )x, x

′〉.
Hence T ≥ π̃(χV ), and our claim in (5.3) has been established.

Since {φ : φ ∈ Cc(X), suppφ ⊂ V, 0 ≤ φ ≤ 1X} is directed upward and π̃ is
positive, {π̃(φ) : φ ∈ Cc(X), suppφ ⊂ V, 0 ≤ φ ≤ 1X} is a subset of Lr(E,E

′′)
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that is directed upward. Hence its supremum π̃(χV ) can be determined pointwise
on the positive cone of E (see [5, Theorem 1.19]), and we conclude that

π̃(χV )x = sup
{
π̃(φ)x : φ ∈ Cc(X), suppφ ⊂ V, 0 ≤ φ ≤ 1X

}
(x ∈ E+),

where the supremum is in E ′′. However, since we had already observed that
C0(X) ⊂ L, we know that {π̃(φ)x : φ ∈ Cc(X), suppφ ⊂ V, 0 ≤ φ ≤ 1X} ⊂ E
(x ∈ E+). Since E is a band of E ′′, the supremum of this set in E ′′ is actually
in E. We conclude that π̃(χV )x ∈ E (x ∈ E+), and it follows that χV ∈ L, as
required in the first hypothesis in Theorem 2.6.

As to the second hypothesis, suppose that φn is a sequence of functions in L
and that φ is a bounded function on X such that 0 ≤ φn(ξ) ↑ φ(ξ) for all ξ ∈ X.
Then certainly φ ∈ B(X), and we are left with showing that π̃(φ)(E) ⊂ E. The
proof of this bears some similarity to the above proof that π̃(χV )(E) ∈ L for
every open subset V of X. We claim that π̃(φn) ↑ π̃(φ) in Lr(E,E

′′). First, it
is clear from the positivity of π̃ that π̃(φn) ↑ and that π̃(φ) ≥ π̃(φn) for all n.
Second, if T ∈ Lr(E,E

′′) and T ≥ π̃(φn) for all n, then, for x ∈ E+, x
′ ∈ E ′

+, and
n ∈ N,

〈Tx, x′〉 ≥
〈
π̃(φn)x, x

′〉
=

∫
X

φn dµx,x′ .
(5.4)

Applying the monotone convergence theorem to (5.4) yields 〈Tx, x′〉 ≥ 〈π̃(φ)x, x′〉
(x ∈ E+, x

′ ∈ E ′
+); hence T ≥ π̃(φ). This establishes our claim. A pointwise

argument on E+ as for π̃(χV ) now implies that φ ∈ L, as required in the second
hypothesis in Theorem 2.6.

Theorem 2.6 now shows that B(X) ⊂ L, and we have finally established that
π̃(φ)(E) ⊂ E for all φ ∈ B(X). Hence we can view π̃ as a positive linear map
π̃ : B(X) → L(E) with codomain Lr(E) rather than Lr(E,E

′′).
We will now proceed to show that π̃ is a positive representation of B(X) and

that it has a generating regular positive spectral measure on Ω.
For the multiplicativity of π̃, we argue as follows. Let φ, ψ ∈ C0(X), and let

x ∈ E, x′ ∈ E ′. Using (5.2) twice, we have∫
X

φψ dµx,x′ =
〈
π(φψ)x, x′

〉
=

〈
π(φ)π(ψ)x, x′

〉
=

∫
X

φ dµπ(ψ)x,x′ .

Lemma 2.5 then shows that∫
X

φψ dµx,x′ =

∫
X

φ dµπ(ψ)x,x′ ,



198 M. DE JEU and F. RUOFF

for all φ ∈ B(X), ψ ∈ C0(X), and x ∈ E, x′ ∈ E ′. This implies, using (5.2) in the
second and fourth step, that∫

X

φψ dµx,x′ =

∫
X

φ dµπ(ψ)x,x′

=
〈
π̃(φ)π(ψ)x, x′

〉
=

〈
π(ψ)x, π̃(φ)′x′

〉
=

∫
X

ψ dµx,π̃(φ)′x′ ,

for all φ ∈ B(X), ψ ∈ C0(X), and x ∈ E, x′ ∈ E ′. Lemma 2.5 now shows that∫
X

φψ dµx,x′ =

∫
X

ψ dµx,π̃(φ)′x′ ,

for all φ, ψ ∈ B(X) and x ∈ E, x′ ∈ E ′. Using (5.2) in the second step, we then
see that ∫

X

φψ dµx,x′ =

∫
X

ψ dµx,π̃(φ)′x′

=
〈
π̃(ψ)x, π̃(φ)′x′

〉
(5.5)

=
〈
π̃(φ)π̃(ψ)x, x′

〉
,

for all φ, ψ ∈ B(X) and x ∈ E, x′ ∈ E ′. On the other hand, (5.2) shows that∫
X

φψ dµx,x′ =
〈
π̃(φψ)x, x′

〉
,

for all φ, ψ ∈ B(X) and x ∈ E, x′ ∈ E ′. Comparing this with (5.5), we conclude
that π̃(φψ) = π̃(φ)π̃(ψ) for all φ, ψ ∈ B(X). Hence π̃ : B(X) → Lr(E) is a positive
representation of B(X) on E.

To show that π̃ has a generating positive spectral measure on Ω, we will ver-
ify condition (3) in Proposition 4.7. Let x ∈ E+, x

′ ∈ E ′
+, and let (∆n)

∞
n=1

be pairwise disjoint elements of Ω. We must show that 〈π̃(χ⋃∞
n=1 ∆n)x, x

′〉 =∑∞
n=1〈π̃(χ∆n)x, x

′〉. Using the monotone convergence theorem in the second step,
we see that 〈

π̃(χ⋃∞
n=1 ∆n)x, x

′〉 = ∫
X

χ⋃∞
n=1 ∆n dµx,x′

=
∞∑
n=1

∫
X

χ∆n dµx,x′

=
∞∑
n=1

〈
π̃(χ∆n)x, x

′〉.
Hence we conclude from Proposition 4.7 that π̃ has a generating positive spectral
P measure on Ω that is given by P (∆) = π̃(χ∆). In order to conclude that P is



POSITIVE REPRESENTATIONS OF C0(X) 199

regular, we consider its associated signed measures, denoted temporarily by µPx,x′
(x ∈ E, x′ ∈ E ′). For ∆ ∈ Ω, we have, using (5.2) in the third step,

µPx,x′(∆) =
〈
P (∆)x, x′

〉
=

〈
π̃(χ∆)x, x

′〉
=

∫
X

χ∆ dµx,x′

= µx,x′(∆).

Hence µPx,x′ = µx,x′ (x ∈ E, x′ ∈ E ′), which is known to be regular. �

Remark 5.7. The above proof of Theorem 5.6 makes it clear what is the essential
feature of a KB-space E in this context: it is a band of E ′′. Since we are con-
cerned with positive representations, such an order-theoretical property and its
ensuing role in the proof seem natural. It should be noted, however, that it is also
possible to obtain the existence part in Theorem 5.6 using various Banach space
characterizations of KB-spaces, along the following lines.

We first note that, by part (2) of Proposition 5.1, the Dedekind completeness
of the KB-space E implies that π : C0(X) → (L(E), ‖ · ‖) is bounded. Even if X
is compact, so that C0(X) has a unit, we can still consider the augmented algebra
C0(X)1 = R × C0(X) of C0(X) (which is the usual unitization of C0(X) if X is
not compact), with norm ‖(λ, φ)‖ = |λ| + ‖φ‖ (λ ∈ R, φ ∈ C0(X)). Then the
representation π∞ : C0(X)1 → (L(E), ‖ · ‖), defined by π∞((λ, φ)) = λ idE +π(φ)
(λ ∈ R, φ ∈ C0(X)), is a unital representation of C0(X)1 on E that is also
bounded.

Next, also ifX is already compact, we letX∞ = X∪{∞} be the one-point com-
pactification of X. The algebras C0(X∞) and C0(X)1 are canonically isomorphic
as abstract algebras, and although the pertinent isomorphism is not necessar-
ily isometric, it is still a linear homeomorphism. Hence π∞ can be viewed as a
bounded unital representation of C0(X∞) on E that extends π.

There are now various ways to proceed:

(1) A Banach lattice E is a KB-space if and only if it does not contain a
subspace linearly homeomorphic to c0 (see [21, Theorem 7.1]). For Banach
spaces that do not contain such a subspace, [17, Theorem III.4] provides
a generating regular spectral measure for bounded unital representations
of C0(X)-spaces (for compact X) on them. In particular, this applies to
the bounded unital representation π∞ of C0(X∞) on E.

(2) A Banach lattice E is a KB-space if and only if it is weakly sequentially
complete (see [21, Theorem 7.1]). For weakly sequentially complete Ba-
nach spaces, [11, Theorem XVII.2.5] provides a generating regular spectral
measure for bounded unital representations of C0(X)-spaces (for compact
X) on them. Again, this applies, in particular, to the bounded unital
representation π∞ of C0(X∞) on E.

(3) Since E does not contain a subspace linearly homeomorphic to c0, every
continuous linear map from C0(X) (for compact X) into E is weakly
compact (see [17, Theorem I.14]). In particular, for all x ∈ E, the map
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f 7→ π∞(f)x (f ∈ C0(X∞)) is weakly compact. Hence [15, Theorem 3]
applies, and provides a generating spectral measure for π∞.

Once we have concluded that there exists a regular spectral measure P∞ on the
Borel σ-algebra Ω∞ of X∞ such that〈

π∞(φ)x, x′
〉
=

∫
X∞

φ dµP∞
x,x′

(
φ ∈ C0(X∞), x ∈ E, x′ ∈ E ′), (5.6)

where µP∞
x,x′(∆) = 〈P∞(∆)x, x′〉 (∆ ∈ Ω∞, x ∈ E, x′ ∈ E ′), we define P : Ω →

Lr(E) by P (∆) = P∞(∆) (∆ ∈ Ω ⊂ Ω∞). It is routine to check that P is a
regular spectral measure on Ω, and we let µx,x′ (x ∈ E, x′ ∈ E ′) denote the
usual associated regular finite signed Borel measures on Ω. If φ ∈ C0(X), then
φ(∞) = 0, so (5.6) implies that〈

π(φ)x, x′
〉
=

∫
X

φ dµx,x′
(
φ ∈ C0(X), x ∈ E, x′ ∈ E ′). (5.7)

Since π is positive, the order statement in the Riesz representation theorem im-
plies that all measures µx,x′ (x ∈ E+, x

′ ∈ E ′
+) are positive, which shows that P

takes its values in the positive projections on E. Comparison of (5.7) with (4.1)
yields that the positive representation πP : B(X) → Lr(E) that is generated by
P restricts to π on C0(X), as required. This concludes the alternative Banach
space proof of Theorem 5.6.

The reader may verify that each of the three aforementioned existence results
for generating spectral measures uses a substantial amount of theory of Boolean
algebras of projections, as well as general Banach space theory. Since, in addi-
tion, these existence results can only be applied once the pertinent Banach space
property of a KB-space has been established, we feel that our proof of the exis-
tence part in Theorem 5.6, which exploits only order-theoretical properties, is not
only more natural in this context, but also considerably simpler than the above
alternatives.

Remark 5.8. If X is compact, then additional existence results for regular positive
spectral measures generating so-called R-bounded unital positive representations
of C0(X) can be obtained using [16, Proposition 2.17].

After these remarks regarding Theorem 5.6, we continue with a consequence
thereof that is clear.

Corollary 5.9. Let X be a locally compact Hausdorff space with Borel σ-algebra
Ω, and let E be a KB-space. Then the map P → πP �C0(X), sending an Lr(E)-
valued positive spectral measure on Ω to the restriction of πP : B(X) → Lr(E) to
C0(X) ⊂ B(X), restricts to a bijection between the Lr(E)-valued regular positive
spectral measures on Ω and the positive representations of C0(X) on E.

If X is compact, then πP �C0(X) is unital if and only if P is unital.

We will now concentrate on the implications of the existence of a generating
(regular) positive spectral measure for π. To start with, we have the following
result. Note that it also covers the “missing” case in Proposition 5.1, but only
under the hypothesis of the existence of a generating positive spectral measure.



POSITIVE REPRESENTATIONS OF C0(X) 201

Proposition 5.10. Let X be a locally compact Hausdorff space with Borel
σ-algebra Ω, let E be a Banach lattice, and let π : C0(X) → Lr(E) be a positive
representation. Suppose that π has a generating positive spectral measure P on Ω,
and let πP : B(X) → Lr(E) denote the generated bounded positive representation
of B(X) on E extending π. Then we have the following:

(1) π : C0(X) → (Lr(E), ‖ · ‖) is bounded, and ‖π‖ ≤ ‖πP‖ = ‖P (X)‖;
(2) if P is regular, then ‖π‖ = ‖πP‖ = P (X);
(3) if P is regular and E is Dedekind complete, then the maps π : C0(X) →

(Lr(E), ‖ · ‖), π : C0(X) → (Lr(E), ‖ · ‖r), πP : B(X) → (Lr(E), ‖ · ‖),
and πP : B(X) → (Lr(E), ‖ · ‖r) are all bounded, and ‖π‖ = ‖π‖r =
‖πP‖ = ‖πP‖r = ‖P (X)‖.

Proof. We know from part (1) of Theorem 4.1 that ‖πP‖ = ‖P (X)‖. Certainly
the restriction π of πP to C0(X) is also bounded, and ‖π‖ ≤ ‖πP‖; this establishes
part (1). For the converse inequality that is needed for part (2) if P is regular,
we use (4.1) and the isometry statement in the Riesz representation theorem to
see that

‖πP‖
= sup

{∣∣〈π(φ)x, x′〉∣∣ : φ ∈ B(X), ‖φ‖ ≤ 1, x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1
}

= sup
{∣∣∣∫

X

φ dµx,x′
∣∣∣ : φ ∈ B(X), ‖φ‖ ≤ 1, x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1

}
≤ sup

{
‖µx,x′‖ : x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1

}
= sup

{∣∣∣∫
X

φ dµx,x′
∣∣∣ : φ ∈ C0(X), ‖φ‖ ≤ 1, x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1

}
= sup

{∣∣〈π(φ)x, x′〉∣∣ : φ ∈ C0(X), ‖φ‖ ≤ 1, x ∈ E, ‖x‖ ≤ 1, x′ ∈ E ′, ‖x′‖ ≤ 1
}

= ‖π‖.

Turning to (3), we note that for Dedekind complete E, the positive maps
π : C0(X) → (Lr(E), ‖ · ‖r) and πP : B(X) → (Lr(E), ‖ · ‖r) between Banach lat-
tices are bounded; then the contractivity of the inclusion map (Lr(E), ‖ · ‖r) ↪→
(L(E), ‖ · ‖) implies that the other two maps are bounded as well. Furthermore,
parts (7)(a) and (1) of Theorem 4.1 show that ‖πP‖r = ‖πP‖ = ‖P (X)‖. We
also know from part (2) of Proposition 5.1 that ‖π‖ ≤ ‖π‖r. In addition, we have
‖π‖r ≤ ‖πP‖r, since πP extends π. If P is regular, then we have already estab-
lished in part (2) that ‖πP‖ = ‖π‖. Combining all this, we see that, for regular
P and Dedekind complete E,

‖πP‖r = ‖πP‖ = ‖π‖ ≤ ‖π‖r ≤ ‖πP‖r,

and the proof is complete. �

We collect a few further consequences (some of them of course familiar from
the nonordered context) of the existence of a generating positive spectral measure
for π : C0(X) → Lr(E) in our next result.
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Proposition 5.11. Let X be a locally compact Hausdorff space with Borel
σ-algebra Ω, let E be a Banach lattice, and let π : C0(X) → Lr(E) be a positive
representation. Suppose that π has a generating positive spectral measure P on Ω,
and let πP : B(X) → Lr(E) denote the generated bounded positive representation
of B(X) on E extending π. Then we have the following.

(1) If φ ∈ C0(X), then there is a sequence of linear combinations of elements
of P (Ω) that converges to π(φ) in (Lr(E), ‖ · ‖). If E is Dedekind complete,
then there exists such a sequence converging to π(φ) in (Lr(E), ‖ · ‖r). If
φ ∈ C0(X)+, then the coefficients occurring in these linear combinations
can be taken nonnegative.

(2) If φ ∈ C0(X), and if (φ)∞n=1 ⊂ C0(X) is a norm-bounded sequence such
that limn→∞ φn(ξ) = φ(ξ) for all ξ ∈ X, then π(φ) = WOT- limn π(φn).

(3) If φ ∈ C0(X) and if (φ)∞n=1 ⊂ C0(X) is a norm-bounded sequence such
that φn(ξ) ↑ φ(ξ) for all ξ ∈ X, then π(φn) ↑ π(φ) in Lr(E).

If P is regular, then

(4) the commutants P (Ω)′, πP (S(X))′, πP (B(X))′, and π(C0(X))′ in L(E)
are equal, and, consequently, P (Ω) ⊂ π(C0(X))′′.

Proof. For part (1), we take a sequence of simple functions converging uniformly
to φ in B(X) and apply parts (1) and (7)(a) of Theorem 4.1.

Part (2) is a specialization of part (4) of Theorem 4.1.
Part (3) is a specialization of Proposition 4.3.
As to part (4), from part (6) of Theorem 4.1 we already know that the com-

mutants P (Ω)′, πP (S(X))′, and πP (B(X))′ in L(E) are equal. We will show
that π(C0(X))′ = P (Ω)′. Let T ∈ L(E). Then T ∈ π(C0(X))′ if and only if
〈Tπ(φ)x, x′〉 = 〈π(φ)Tx, x′〉 for all φ ∈ C0(X) and x ∈ E, x′ ∈ E ′. Now note that〈

Tπ(φ)x, x′
〉
=

〈
π(φ)x, T ′x′

〉
=

∫
X

φ dµx,T ′x′ ,

and that 〈
π(φ)Tx, x′

〉
=

∫
X

φ dµTx,x′ .

Thus T ∈ π(C0(X))′ if and only if∫
X

φ dµx,T ′x′ =

∫
X

φ dµTx,x′ ,

for all φ ∈ C0(X) and x ∈ E, x′ ∈ E ′. By the uniqueness statement in the
Riesz representation theorem, this is the case if and only if µx,T ′x′ = µTx,x′ for
all x ∈ E, x′ ∈ E ′. That is, if and only if 〈P (∆)x, T ′x′〉 = 〈P (∆)Tx, x′〉 for all
∆ ∈ Ω, x ∈ E, x′ ∈ E ′. This, in turn, is equivalent to T ∈ P (Ω)′.

The folklore final statement is immediate from P (Ω) ⊂ P (Ω)′′ = π(C0(X))′′.
�



POSITIVE REPRESENTATIONS OF C0(X) 203

We conclude by showing how the generating regular positive spectral measure
P of π, if it exists, can be determined directly from π in terms of the ordering
on Lr(E). By the first part of Proposition 5.3, it is sufficient to know P (V ) for
all open subsets V of X, and part (1) of the next result shows how P (V ) can be
found from π(C0(X)). Likewise, the second part of Proposition 5.3 shows that it
is sufficient to know P (K) for all compact subsets K of X, and part (2) of the
next result shows how to retrieve these from π(C0(X)).

As in similar previous results, we do not assume that E is Dedekind com-
plete, and hence the existence of the various suprema and infima in Lr(E) is not
automatic.

Theorem 5.12. Let X be a locally compact Hausdorff space with Borel σ-algebra
Ω, let E be a Banach lattice, and let π : C0(X) → Lr(E) be a positive repre-
sentation. Suppose that π has a generating regular positive spectral measure P
on Ω.

(1) Let V be an open subset of X. Then

P (V ) = sup
{
π(φ) : φ ∈ Cc(X), suppφ ⊂ V, 0 ≤ φ ≤ 1X

}
.

(2) Let K be a compact subset of X. Then

P (K) = inf
{
π(φ) : φ ∈ Cc(X), φ ≥ χK

}
.

(3) In addition to the expression for P (X) as obtained from part (1), we also
have

P (X) = sup
{
π(φ) : φ ∈ C0(X), 0 ≤ φ ≤ 1X

}
.

(4) Let V be an open subset of X. Then V is σ-compact if and only if there
exists a sequence (φn)

∞
n=1 in Cc(X) such that suppφn ⊂ V (n ≥ 1) and

supn φn = χV in B(X). In that case, there exists a sequence (φn)
∞
n=1 in

Cc(X) such that suppφn ⊂ V and 0 ≤ φn ≤ 1X (n ≥ 1), and φn ↑ χV in
B(X). For any norm-bounded sequence (φ)∞n=1 in Cc(X) such that φn ↑ χV
in B(X), we have π(φn) ↑ P (V ) in Lr(E) and P (V ) = WOT- limn φn.

(5) X is σ-compact if and only if there exists a sequence (φn)
∞
n=1 in C0(X)

such that 0 ≤ φn ≤ 1X (n ≥ 1) and supn φn = 1X in B(X). In that
case, there exists a sequence (φn)

∞
n=1 in Cc(X) such that 0 ≤ φn ≤ 1X

(n ≥ 1), and φn ↑ 1X in B(X). For any norm-bounded sequence (φn)
∞
n=1

in C0(X) such that φn ↑ 1X in B(X), we have π(φn) ↑ P (X) in Lr(E)
and P (X) = WOT- limn φn.

Proof. Let πP : B(X) → Lr(E) denote the positive representation of B(X) on E
that is generated by P and that extends π, with associated regular finite signed
Borel measures µx,x′ (x ∈ E, x′ ∈ E ′). Starting with part (1), if φ ∈ Cc(X),
suppφ ⊂ V , and 0 ≤ φ ≤ 1X , then π(φ) = πP (φ) ≤ πP (χV ) = P (V ). Hence
P (V ) is an upper bound for{

π(φ) : φ ∈ Cc(X), suppφ ⊂ V, 0 ≤ φ ≤ 1X
}
.
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If T ∈ Lr(E) is also an upper bound for this set, then, for all φ ∈ Cc(X) with
suppφ ⊂ V and 0 ≤ φ ≤ 1X , and all x ∈ E+, x

′ ∈ E ′
+, we have

〈Tx, x′〉 ≥
〈
π(φ)x, x′

〉
=

∫
X

φ dµx,x′ ,

where (4.1) was used. Therefore, for all x ∈ E+, x
′ ∈ E ′

+,

〈Tx, x′〉 ≥ sup
{∫

X

φ dµx,x′ : φ ∈ Cc(X), suppφ ⊂ V, 0 ≤ φ ≤ 1X

}
.

Since by (2.1) the right-hand side in this equation equals µx,x′(V ) = 〈P (V )x, x′〉,
we conclude that 〈Tx, x′〉 ≥ 〈P (V )x, x′〉 for all x ∈ E+, x

′ ∈ E ′
+. Hence T ≥

P (V ).
The proof of part (2) is similar, based on (2.2).
For part (3), the same line of reasoning shows that P (X) ≥ π(φ) for all φ ∈

C0(X) with 0 ≤ φ ≤ 1X . If T ≥ π(φ) for all such φ, then, for all x ∈ E+, x
′ ∈ E ′

+,
we find

〈Tx, x′〉 ≥ sup
{∫

X

φ dµx,x′ : φ ∈ C0(X), 0 ≤ φ ≤ 1X

}
.

But the right-hand side is the norm of the positive functional φ 7→
∫
X
φ dµx,x′

on C0(X), which by the isometry statement in the Riesz representation theorem
equals ‖µx,x′‖ = µx,x′(X) = 〈P (X)x, x′〉. Therefore T ≥ P (X).

For part (4), if such a sequence exists, then V =
⋃
n{ξ ∈ X : φn(ξ) > 0} is a

countable union of σ-compact subsets of X, and hence σ-compact. Conversely, if
V is σ-compact, then we may assume that V =

⋃
nKn where Kn ⊂ Kn+1 for all

n. By [12, Corollary 4.32], we can choose ψn ∈ Cc(X) such that 0 ≤ ψn ≤ 1X ,
ψn(ξ) = 1 for ξ ∈ Kn and supp(ψn) ⊂ V . Let φn =

∨n
k=1 ψk. Then the sequence

(φn)
∞
n=1 is as required. An appeal to Proposition 4.3 concludes the proof of part

(4).
The proof of part (5) is similar to that of part (4). �
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