
Ann. Funct. Anal. 8 (2017), no. 4, 547–556

http://dx.doi.org/10.1215/20088752-2017-0036

ISSN: 2008-8752 (electronic)

http://projecteuclid.org/afa

INVOLUTIONS IN ALGEBRAS RELATED TO SECOND DUALS
OF HYPERGROUP ALGEBRAS

ALIREZA MEDGHALCHI and RAMIN RAMEZANI*

Communicated by K. F. Taylor

Abstract. Let K be a hypergroup. The purpose of this article is to study the
question of involutions on algebras M(K)∗∗, L(K)∗∗, and Lc(K)∗∗. We show
that the natural involution of M(K) has the canonical extension to M(K)∗∗

if and only if the natural involution of L(K) has the canonical extension to
L(K)∗∗. Also, we give necessary and sufficient conditions for M(K)∗∗ and
L(K)∗∗ to admit an involution extending the natural involution of M(K) when
K is left amenable. Finally, we find the necessary and sufficient conditions for
Lc(K)∗∗ to admit an involution.

1. Introduction and preliminaries

For a locally compact Hausdorff space K, let M(K) be the Banach space of
all bounded complex regular Borel measures on K. For x ∈ K, δx will denote
the unit point mass at x. Let Mp(K) be the set of all probability measures on
K, and let Cb(K) be the Banach space of all continuous bounded complex-valued
functions on K. We denote by C0(K) the space of all continuous functions on K
vanishing at infinity, and we note by Cc(K) the space of all continuous functions
on K with compact support.

The space K is called a hypergroup if there is a map λ : K × K −→ Mp(K)
with the following properties:

(i) for every x, y ∈ K, the measure λ(x,y) (the value of λ at (x, y)) has a
compact support;
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(ii) for each ψ ∈ Cc(K), the map (x, y) 7−→
∫
K
ψ(t) dλ(x,y)(t) is in Cb(K×K),

and x 7−→
∫
K
ψ(t) dλ(x,y)(t) is in Cc(K), for every y ∈ K;

(iii) the convolution (µ, ν) 7−→ µ ∗ ν of measures defined by∫
K

ψ(t) d(µ ∗ ν)(t) =
∫
K

∫
K

∫
K

ψ(t) dλ(x,y)(t) dµ(x) dν(y)

is associative, where µ, ν ∈M(K), ψ ∈ C0(K) (note that λ(x,y) = δx ∗ δy);
(iv) there is a unique point e ∈ K such that λ(x,e) = δx, for all x ∈ K.

When λ(x,y) = λ(y,x), we say that K is a commutative hypergroup (for more details
see [4], [13]). We do not assume that K has a Haar measure. We define

L(K) =
{
µ
∣∣ µ ∈M(K), x 7→ |µ| ∗ δx, x 7→ δx ∗ |µ| are norm-continuous

}
,

which is an ideal in M(K), and we let K be foundation; that is, K =
cl(

⋃
µ∈L(K) suppµ). Also, if K admits an invariant measure (Haar measure m),

then L(K) = L1(K,m) (see [13]).
An involution on a hypergroup K is a homeomorphism x 7→ x̃ in K such that

˜̃x = x and e ∈ suppλ(x,x̃), for all x ∈ K. There exist many hypergroups with an
involution that are not group (see [4, Examples 4.4, 4.5]). For each µ ∈ M(K),

define µ̃ ∈ M(K) by µ̃(A) = µ(Ã); that is,
∫
K
f(x) dµ̃(x) =

∫
K
f(x̃) dµ(x), for

each f ∈ Cc(K). Then µ −→ µ̃ is an involution on M(K) such that M(K)

and L(K) are Banach∗-algebras (see [7]) and λ̃(x,y) = λ(ỹ,x̃), whenever x, y ∈ K
(see [4]).

Let B = L(K)∗L(K). In [13], it was shown that B∗ (dual of B) is a Banach
algebra by an Arens-type product and that L(K) ⊆ B∗. If K admits an invariant
measure (Haar measure) m, then

B = LUC(K) =
{
f ∈ Cb(K)

∣∣ x→ lxf from K into Cb(K) is continuous
}
,

where lxf(y) = f(x ∗ y) =
∫
K
f(t) dλ(x,y), for y ∈ K. Most of our notation

in this paper comes from [13], where E ∈ L(K)∗∗ is the weak∗-limit of (eα),
a bounded approximate identity in L(K), and E is in fact a right identity for
L(K)∗∗. Also, ε(K) = π−1(δe) and ε1(K) = {E ∈ ε(K) | ‖E‖ = 1}, where
π : L(K)∗∗ −→ B∗ is the adjoint of the embedding of B in L(K)∗. Following [13,
Definition 8] a compact set Z ⊆ K is called a compact carrier for m ∈ L(K)∗∗ if
for all f ∈ L(K)∗, 〈m, f〉 = 〈m, fχz〉, where fχz is defined by 〈fχz, µ〉 = 〈f, χzµ〉,
for all µ ∈ L(K). Now, let

Lc(K)∗∗ = clL(K)∗∗
{
m

∣∣ m ∈ L(K)∗∗,m has a compact carrier
}
.

If K = G is a locally compact group, then Lc(K)∗∗ = L∞
0 (G)∗, where L∞

0 (G) is
the closed ideal of L∞(G) consisting of all f ∈ L∞(G) such that, for given ε > 0,
there exists a compact set K ⊂ G such that ‖f‖G\K < ε.

This paper is organized as follows. In Section 2, by Theorem 2.2, we extend
the result of Grosser [12, Theorem 2] to hypergroups. We show that the nat-
ural involution of M(K) has the canonical extension to M(K)∗∗ if and only if
the natural involution of L(K) has the canonical extension to L(K)∗∗ (see The-
orem 2.4). In Theorem 2.5, we also find the necessary and sufficient conditions
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for Lc(K)∗∗ to admit an involution, and, as an application, we answer in the
affirmative a question raised by Farhadi and Ghahramani [5, Problem 5.3] when
we replace L1(G)

∗∗ by L∞
0 (G)∗. Also, in Theoerm 2.9, we prove that M(K)∗∗

has an involution extending the natural involution of M(K) (say, γ) such that
γ(Lc(K)∗∗) = Lc(K)∗∗ if and only if L(K)∗∗ has an involution extending the nat-
ural involution of L(K) whenK is left amenable. Indeed, we show that the second
dual algebra L(K)∗∗ and M(K)∗∗ do not admit an involution extending the nat-
ural involution of M(K) when K is an infinite amenable. Thus, for the above
classes of hypergroups we answer in the negative a question raised by Duncan
and Hosseiniun [3]. Finally, in Section 3, we give some sufficient conditions under
which second dual Banach algebras L(K)∗∗ and Lc(K)∗∗ admit trivolutions.

2. Existence of involutions L(K)∗∗ and Lc(K)∗∗

Throughout this paper, K is a foundation hypergroup without a Haar measure
and the second dual L(K)∗∗ with the first Arens product denoted by (L(K)∗∗,�).

In this section, we investigate the existence of involutions on L(K)∗∗ and
Lc(K)∗∗. The starting point of this section is the following proposition, which
is an assistance for the proof of results of this paper.

Proposition 2.1. Let K be a hypergroup. Then L(K)∗∗ with the first Arens
product has an identity if and only if K is discrete.

Proof. Suppose that L(K)∗∗ with the first Arens product has an identity E. Since
L(K) has a bounded approximate identity, we have L(K)∗ = L(K)∗L(K) = B
(see [10, Proposition 2.2]). It follows that the natural embedding of B in L(K)∗

is the identity map and so is π, and, consequently, M(K) = E � Lc(K)∗∗ by [13,
Proposition 13(a), Theorem 14(b)]. Therefore, by [13, Theorem 14(c)], we have

M(K) =
⋂

E∈ε1(K)

E � Lc(K)∗∗ = L(K).

So, M(K) = L(K); that is, δe ∈ L(K). Thus K is discrete.
Conversely, if K is discrete, then L(K) has an identity and so L(K)∗∗ has an

identity. �

In [12, Theorem 2], Grosser showed that for the group algebra L1(G), a neces-
sary condition for L1(G)∗∗ to have an involution is that G is discrete. The next
theorem is a generalization of Grosser’s theorem for hypergroups.

Theorem 2.2. Suppose that K is a hypergroup. If L(K)∗∗ admits an involution
with respect to the first Arens product, then K is discrete.

Proof. Since L(K)∗∗ admits an involution and L(K) has a bounded approximate
identity, L(K)∗L(K) = L(K)∗ (see [12, Theorem 1]), and, consequently, L(K)∗∗

has an identity (see [10, Proposition 2.2]). Therefore, by Proposition 2.1, K is
discrete. �

Definition 2.3. Let A be a Banach algebra with an involution ρ : A −→ A. Then
the second adjoint ρ∗∗ : A∗∗ −→ A∗∗ is called the canonical extension of ρ if ρ∗∗

is an involution on A∗∗ (with respect to either of the Arens products).
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Now, we give a necessary and sufficient condition for the existence of a canonical
extension of the natural involution of L(K) and M(K).

Theorem 2.4. Let K be a hypergroup with an involution ∼ : K → K. Then the
following statements are equivalent:

(i) The natural involution of M(K) has the canonical extension to M(K)∗∗.
(ii) K is finite.
(iii) The natural involution of L(K) has the canonical extension to L(K)∗∗.

Proof. (i) ⇒ (ii). Since the natural involution of M(K) has the canonical exten-
sion to M(K)∗∗, M(K) is Arens regular by [1, Theorem 6.2], and, hence, e is
isolated in K = suppL(K) by [9, Theorem 3.1], because the convolution on
M(K) is weak ∗ separately continuous in σ(M(K), C0(K)) and M(K) is Arens-
regular. Therefore, there exists an element µ ∈ L(K) such that e ∈ suppµ and
|µ|({e}) 6= 0 (since the set {e} is open in K). Define

ν =
χe|µ|

|µ|({e})
.

We see that ν ∈ L(K) and is a multiple of δe. It follows that K is discrete.
In this case, the concept of Jewett’s hypergroup [7] and the concept of Dunkl’s
hypergroup coincide. So, K has a Haar measure, and L1(K) = M(K) (see [7,
Theorem 7.1.A]). Now, since L1(K) =M(K) is Arens-regular, K is finite (see [8,
Corollary 4.2.7]).

(ii) ⇒ (iii). Since K is finite, L1(K) = L(K) is finite-dimensional. Thus,
L(K) = L(K)∗∗, and this completes the proof.

(iii) ⇒ (i). From Theorem 2.2, K is discrete, and, consequently, (i) is proved.
�

In general, since A is not norm dense in A∗∗, involutions on A may have exten-
sions to A∗∗ which are different from the canonical extension. By the following
theorem, we obtain sufficient and necessary conditions for Lc(K)∗∗ to have an
involution extending the natural involution of L(K).

Theorem 2.5. Let K be a hypergroup with an involution ∼ : K → K and endow
Lc(K)∗∗ with the first Arens product. Then the following assertions are equivalent.

(i) The algebra Lc(K)∗∗ has an involution extending the natural involution of
L(K).

(ii) K is discrete.
(iii) Lc(K)∗∗ is semisimple.

Proof. (i) ⇒ (ii). By assumption, let ρ be an involution on Lc(K)∗∗. If K is com-
pact, then Lc(K)∗∗ = L(K)∗∗. So, ρ is an involution on L(K)∗∗, and, consequently,
by Theorem 2.2, K is discrete.

Now, suppose thatK is noncompact. L(K) has a bounded approximate identity
(eα)α with ‖eα‖ = 1 [13]. Let E be a weak ∗ cluster point of (eα)α in L(K)∗∗; it
is clear that E is a right identity for L(K)∗∗ and ‖E‖ = 1 (see [13, Lemma 5]).
By [13, Theorem 14(a)], E ∈ Lc(K)∗∗. On the other hand, ρ(E) is a left identity
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for Lc(K)∗∗ and ρ(E) = E. So, E is an identity for Lc(K)∗∗. Therefore, by [13,
Theorem 14(e)], we have

E ∈ Zt

(
Lc(K)∗∗

)
= L(K),

where Zt(Lc(K)∗∗) = {F ∈ Lc(K)∗∗ | m → F � m is weak∗–weak∗ continuous}.
Hence, L(K) has an identity and so K is discrete.

(ii) ⇒ (i). Let K be a discrete hypergroup. Then the natural embedding of B
in L(K)∗ is the identity map and so is π, and, consequently, Lc(K)∗∗ =M(K) =
L(K) (see [13, Proposition 13(a)]). It follows that Lc(K)∗∗ has a natural involu-
tion.

(ii) ⇒ (iii). Let K be a discrete hypergroup. Thus, Lc(K)∗∗ =M(K) = L(K),
and K has a Haar measure. Now, the mapping

T :M(K) −→ B
(
L2(K)

)
,

µ 7−→ Tµ,

where Tµ(f) = µ∗f , for all f ∈ L2(K). By [7, Theorem 6.2I], T is a faithful norm-
decreasing unital ∗-representation of M(K). It follows that Lc(K)∗∗ = M(K) is
semisimple, because, by [2, Theorem 3.1.17], Lc(K)∗∗ = M(K) is ∗-semisimple,
and, consequently, it is semisimple (see [2, p. 347]).

(iii) ⇒ (ii). Let Lc(K)∗∗ be semisimple. Let E ∈ ε1(K) ⊆ Lc(K)∗∗. Now, define
the mapping

ϕ : Lc(K)∗∗ −→ E � Lc(K)∗∗,

m 7−→ E � m.

Let m ∈ kerϕ, so E � m = 0. Now,

n � m = n � E � m = 0,

for all n ∈ Lc(K)∗∗. Hence, Lc(K)∗∗ � m = {0} and so

Lc(K)∗∗ � m ⊆ q − Inv
(
Lc(K)∗∗

)
,

the set of all quasi-invertible elements of Lc(K)∗∗. Therefore,

m ∈ rad
(
Lc(K)∗∗

)
,

the intersection of the kernels of the irreducible representations of Lc(K)∗∗; this
is because

rad
(
Lc(K)∗∗

)
=

{
n ∈ Lc(K)∗∗

∣∣ Lc(K)∗∗ � n ⊆ q − Inv
(
Lc(K)∗∗

)}
.

Thus, m = 0. It follows that ϕ is an isomorphism. Therefore,

Lc(K)∗∗ = E � Lc(K)∗∗.

By [13, Theorem 14(c)], we have

Lc(K)∗∗ =
⋂

E∈ε1(K)

E � Lc(K)∗∗ = L(K).

Thus, L(K) has a right identity. It follows that K is discrete. �

In [5, Problem 5.3], Farhadi and Ghahramani ask the following question.
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Question 2.6. Let G be discrete, and suppose that l1(G)∗∗ admits an involution
that extends the natural involution of l1(G). Does it then follow that
rad(l1(G)∗∗) = {0}?

Although we have not answered the above question, we are able to show the
following.

Corollary 2.7. Let G be a locally compact group. Then, rad(L∞
0 (G)∗) = {0} if

and only if G is discrete.

Let f ∈ B. Then, f = gµ (g ∈ L∗(K), µ ∈ L(K)). For x ∈ K, we define the
function lxf by 〈lxf, ν〉 = 〈f, δx ∗ ν〉, whenever ν ∈ L(K). We have

〈lxf, ν〉 = 〈gµ, δx ∗ ν〉 = 〈g, µ ∗ δx ∗ ν〉 =
〈
g(µ ∗ δx), ν

〉
.

Hence, lxf = g(µ ∗ δx). It follows that lxf ∈ B. Also, by [13, Proposition 2],
1 ∈ B, where 1 is the constant function.

Definition 2.8. Let K be a hypergroup. A linear functional m : B −→ C is called
a mean if m(1) = ‖m‖ = 1. A mean on B is called a left invariant mean if
m(lxf) = m(f), for f ∈ B and x ∈ K. A hypergroup K is called left amenable if
there exists a left invariant mean on B.

Theorem 2.9. Suppose that K is a left amenable hypergroup with an involution
∼ : K → K. Then the following are equivalent:

(i) M(K)∗∗ has an involution extending the natural involution of M(K) (say,
γ) such that γ(Lc(K)∗∗) = Lc(K)∗∗.

(ii) L(K)∗∗ has an involution extending the natural involution of L(K).
(iii) K is finite.

Proof. (i) ⇒ (ii). Since γ|Lc(K)∗∗ : Lc(K)∗∗ → Lc(K)∗∗ is an involution, by Theo-
rem 2.5, K is discrete, and, consequently, M(K) = L(K). Therefore, L(K)∗∗ has
an involution extending the natural involution of L(K).

(ii) ⇒ (iii). Since K is a hypergroup with an involution, L(K) is a ∗-Banach
algebra (with involution ρ(µ) = µ̃). Let

γ : L(K)∗∗ → L(K)∗∗

be an involution on L(K)∗∗ extending the natural involution of L(K). Thus,
by Theorem 2.2, K is discrete, and so K has a Haar measure (see [7, Theo-
rem 7.1.A]). Therefore, L1(K) = L(K) and B = L∞(K). Let K be a noncompact
hypergroup. Since K is amenable, by [15, Theorem 3.2], TIM (L∞(K)) 6= ∅ (topo-
logical two-sided invariant means on L∞(K)). Let m be a topological two-sided
invariant mean on L∞(K). By [15, Lemma 3.1], m is a two-sided invariant mean
on L∞(K). For x ∈ K and µ ∈M(K) = L1(K), we have

δ̂x � γ(m) = γ(δ̂x̃) � γ(m) = γ(m � δ̂x̃) = γ(m), (4.1)

and also,

γ(m) � δ̂x = γ(m) � γ(δ̂x̃) = γ(δ̂x̃ � m) = γ(m).

It means that γ(m) is two-sided translation invariant.
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On the other hand, since ‖m‖ = 1, m ≥ 0 and L1(K)∗∗ has an identity, by [13,
Theorem 18(d)], there exists a net (µα) ⊆ M(K) = L1(K) such that µ̂α −→ m
in σ(L1(K)∗∗, L∞(K)), where

µα =
tα∑
i=1

λi,αδxi,α
,

tα∑
i=1

λi,α = 1.

Now, for all f ∈ L∞(K),〈
m � γ(m), f

〉
=

〈
m, γ(m).f

〉
= lim

α

〈
µ̂α, γ(m).f

〉
= lim

α

〈 tα∑
i=1

λi,αδ̂xi,α
, γ(m).f

〉
= lim

α

〈( tα∑
i=1

λi,αδ̂xi,α

)
� γ(m), f

〉
= lim

α

〈 tα∑
i=1

λi,αγ(m), f
〉

=
〈
γ(m), f

〉
.

Thus, m � γ(m) = γ(m). So,

m � γ(m) = γ
(
m � γ(m)

)
= γ

(
γ(m)

)
= m.

It follows that for all two-sided topological invariant means m on L∞(K), we have

γ(m) = m.

Let m1 and m2 be any pair of two-sided topological invariant means on L∞(K).

Since δ̂x � m2 = m2, by a similar argument as above, one can show that

m1 � m2 = m2.

Thus, γ(m1 � m2) = γ(m2) = m2. Therefore, we have

m2 = m1 � m2 = γ(m1 � m2) = γ(m2) � γ(m1) = m2 � m1 = m1.

Thus, |TIM (L∞(K))| = 1. On the other hand, by [15, Theorem 5.5],

|TIM (L∞(K))| = 22
d
. Hence, this is a contradiction. Therefore, K is compact.

Now, since K is compact and discrete, K is finite.
(ii) ⇒ (i). By assumption, K is finite. Hence, Lc(K)∗∗ = L(K) and M(K) =

L(K) =M(K)∗∗. This completes the proof. �

Duncan and Hosseiniun [3] ask whether there is an involution on L1(G)∗∗

extending the natural involution of L1(G). The following corollary shows that
if K is an infinite amenable hypergroup, the answer to this question is negative.

Corollary 2.10. Let K be an infinite amenable hypergroup with an involution;
then L(K)∗∗ does not admit an involution extending the natural involution of
L(K).
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Now, we are in a position to state and prove our other result. Parts of our
proofs are adapted from [11, Theorem 1.3].

Theorem 2.11. Let K be a hypergroup with an involution ∼ : K → K. Then
the following assertions are equivalent:

(i) L(K)∗∗ is amenable.
(ii) K is finite.
(iii) L(K) is Arens-regular.

Proof. (i) ⇒ (ii): Since L(K)∗∗ is amenable, L(K)∗∗ has a bounded approximate
identity. Thus, by [11, Lemma 1.1], L(K)∗∗ has an identity. Therefore, by Proposi-
tion 2.1,K is discrete, and, consequently, L(K) =M(K) = ELc(K)∗∗ = Lc(K)∗∗.
Now, since L(K)∗∗ = B∗ = L(K) ⊕ C0(K)⊥ and L(K)∗∗ is amenable, C0(K)⊥

is amenable, and, therefore, C0(K)⊥ has a bounded approximate identity (eα).
Let eα −→ e in σ(L(K)∗∗, L(K)∗). Since (eβ) is a bounded approximate iden-
tity, eα � m −→ m in norm and eα � m −→ e � m in σ(L(K)∗∗, L(K)∗),
for all m ∈ C0(K)⊥. It follows that e � m = m, and, consequently, e is
a left identity for C0(K)⊥. Therefore, e is an identity for C0(K)⊥. Now, let
n ∈ L(K)∗∗. Since C0(K)⊥ is a closed ideal of L(K)∗∗, e � n, n � e ∈ C0(K)⊥

and e � n = (e � n) � e = e � (n � e) = n � e. Thus, e ∈ Zt(L(K)∗∗). On
the other hand, since K is discrete, Zt(L(K)∗∗) = L(K) = M(K) (see [8, Theo-
rem 4.2.5]). It follows that e ∈M(K)∩C0(K)⊥ = {0}. Therefore, C0(K)⊥ = {0},
and, consequently, L(K)∗∗ = L(K) = Lc(K)∗∗. Thus, by [13, Theorem 14(f)], K
is compact. So, K is finite.

(ii) ⇒ (iii). It is trivial.
(iii) ⇒ (ii). Let L(K) be Arens-regular. By [1, Theorem 6.2], the natural invo-

lution of L(K) has the canonical extension to L(K)∗∗. Therefore, by Theorem 2.4,
K is finite.

(ii) ⇒ (i): SinceK is discrete and compact, L(K)∗∗ = Lc(K)∗∗, L(K)∗∗ is finite-
dimensional, and, by Theorem 2.5, L(K)∗∗ is semisimple. Now, by theWedderburn
structure theorem (see [2, Theorem 1.5.9]), we have

L(K)∗∗ ∼=
N⊙
j=1

Mnj
,

where Mnj
is an (nj × nj)-matrix. By [14, Theorem 2.2.4, Example 2.2.3], each

Mnj
is amenable. A simple argument regarding adjoining the (virtual) diago-

nals together implies that the product
⊙N

j=1Mnj
is amenable. Thus, L(K)∗∗ is

amenable. �

3. Existence of trivolution

In [6], Filali, Sangani Monfared, and Singh defined a trivolution on a complex
algebra A. They obtained characterizations of trivolutions and showed with exam-
ples that they appear naturally on many Banach algebras, particularly those aris-
ing from group algebras. In this section, we give some sufficient conditions under
which second dual Banach algebras L(K)∗∗ and Lc(K)∗∗ admit trivolutions.
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Definition 3.1. A trivolution on a complex algebra A is a nonzero, conjugate
linear, antihomomorphism τ : A −→ A, such that τ 3 = τ ◦ τ ◦ τ = τ . When A is
a normed algebra, we shall assume that ‖τ‖ = 1. The pair (A, τ) will be called a
trivolutive algebra.

It follows from the definition that every involution on a nonzero complex algebra
is a trivolution. Conversely, a trivolution which is either injective or surjective is
an involution (for more details see [6]).

Theorem 3.2. Let K be a compact hypergroup with an involution. Then for each
E ∈ ε(K), there are trivolutions of L(K)∗∗ onto E � L(K)∗∗.

Proof. Let E ∈ ε(K). The compactness of K implies that

L(K)∗∗ = Lc(K)∗∗ and M(K) = B∗.

Thus,B∗ has an involution. Let ρ be any involution onB∗, and let σ = π |E�L(K)∗∗ .
It follows from [13, Theorem 14(c)] that

ρ′ = σ−1 ◦ ρ ◦ σ

is an involution on EL(K)∗∗. Define

ϕ : L(K)∗∗ −→ E � L(K)∗∗,

m 7−→ E � m.

By [6, Theorem 2.8(iii)],

θ := ρ′ ◦ ϕ

is a trivolution of L(K)∗∗ onto E � L(K)∗∗. �

Theorem 3.3. Let K be a hypergroup with an involution. Then, for each E ∈
ε1(K), there exists a trivolution of Lc(K)∗∗ onto E � Lc(K)∗∗.

Proof. By [13, Theorem 14], ε1(K) ⊆ Lc(K)∗∗, and E � Lc(K)∗∗ is isometrically
isomorphic to M(K). Now, let ρ be an involution on M(K). Thus,

ρ′ := (π|Lc(K)∗∗)
−1 ◦ ρ ◦ (π|Lc(K)∗∗)

is an involution on Lc(K)∗∗, and, consequently, by [6, Theorem 2.8(iii)],

θ := ρ′ ◦ ϕ

is a trivolution of Lc(K)∗∗ onto E � Lc(K)∗∗, where

ϕ : Lc(K)∗∗ −→ E � Lc(K)∗∗,

m 7−→ E � m.

�
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