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Abstract. We introduce a family T consisting of invertible matrices with
exactly one nonzero entry in each row and each column. The elements of T are
possibly mutually noncommuting, and they need not be normal or self-adjoint.
We consider an operator-valued unilateral weighted shift W with a uniformly
bounded sequence of weights belonging to T , and we describe its minimal
reducing subspaces.

1. Introduction

If K is a separable complex Hilbert space with orthonormal basis {en}∞n=0,
and {αn}∞n=0 is a bounded sequence of scalars, then the operator T defined by
Ten = αnen+1 is called a scalar shift with weight sequence {αn}∞n=0. Now let
l2(K) =

⊕∞
0 K be the orthogonal sum of ℵo copies of the Hilbert space K with

a scalar product defined by

〈f, g〉 =
∞∑
n=0

〈fn, gn〉, f = (f0, f1, . . . ) ∈ l2(K), g = (g0, g1, . . . ) ∈ l2(K).

Let {An}∞n=0 be a uniformly bounded sequence of linear operators on K. The
operator W on l2(K) defined by

W (x0, x1, . . . ) = (0, A0x0, A1x1, . . . )
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is called an operator-valued unilateral weighted shift with weights {An}∞n=0. Clearly,
W is bounded, and ‖W‖ = supn ‖An‖. If each An is invertible, then W is an
invertibly weighted operator shift (see [9]).

Operator-weighted shifts were introduced by N. K. Nikol’skii [11] in 1967. These
are generalizations of the scalar-weighted shifts; however, this generalization is
not just formal. For example, by means of an operator-weighted shift, Pearcy and
Petrovic [12] proved that an n-normal operator is power bounded if and only if it
is similar to a contraction. Since their introduction, operator-weighted shifts have
been widely studied. A general understanding of their various properties can be
found in a number of sources (see [1], [3], [6], [8]–[11]).

Our interest is to determine the minimal reducing subspaces of an invertibly
weighted operator shift W on l2(K). A subspace M of l2(K) is invariant under
W if W (M) ⊆M . If M is invariant under both W and W ∗, then M is said to be
reducing for W . A reducing subspace M is said to be minimal-reducing if it does
not contain any proper nonzero reducing subspace.

The invariant and reducing subspaces of specific types of invertibly weighted
operator shifts are known from [4], [5], [9], [11], [13], [15]. However, we observe
that, in all these cases, W is an operator-weighted shift with weight sequence
{An}∞n=0 where it is either assumed that the An’s are commuting normal operators
or it is assumed that each An is positive diagonal. In this paper we consider an
operator-weighted shift W with weights {An}∞n=0 such that the An’s are neither
normal nor commuting.

For this, let B(K) denote the set of all bounded linear operators on the sepa-
rable complex Hilbert space K with orthonormal basis {en}∞n=0, and let T be the
subset of B(K) defined as follows: T := T ∈ B(K) | T is invertible in B(K), and
the matrix of T with respect to {en}∞0 has exactly one nonzero entry in each row
and each column.

We observe the following:

(i) If T1, T2 ∈ T , then T1T2 ∈ T ; however, T1 and T2 need not commute.
Hence elements of T are not simultaneously diagonalizable with respect
to {en}∞0 .

(ii) If T ∈ T , then its Hilbert adjoint T ∗ and inverse T−1 are also in T .
(iii) Elements of T may not be self-adjoint or normal.

In this paper, we determine the minimal reducing subspaces of the unilateral
operator-weighted shift W with weight sequence {An}∞n=0, where An ∈ T ∀n ≥ 0.

2. Unitary equivalence

Let K be a separable complex Hilbert space, and let B(K) denote the space
of all bounded linear operators on K with norm defined as ‖T‖ = sup‖x‖=1 ‖Tx‖
for T ∈ B(K).

Let {ei}∞i=0 be an orthonormal basis for K. Also, for i, j = 0, 1, 2, . . ., let gi,j :=
(0, . . . , ei, 0, . . .) where ei occurs at the jth position. If N0 := {0, 1, 2, . . .}, then
{gi,j}i,j∈N0 is an orthonormal basis for l2(K).

Let us now consider the operator-weighted sequence space l2B(K). To define
l2B(K), let B = {Bn}∞n=0 be a sequence of invertible bounded linear operators on
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K, let l2B(K) := {(f0, f1, . . .) : fi ∈ K, and
∑∞

i=0 ‖Bifi‖2 <∞}. For f = (fi) and
g = (gi) in l

2
B(K), we have

〈f, g〉B :=
∞∑
i=0

〈Bifi, Bigi〉 and ‖f‖2B =
∞∑
i=0

‖Bifi‖2.

Since ‖gi,j‖B = ‖Bjei‖, therefore if fi,j := gi,j
‖Bjei‖ , then {fi,j}i,j∈N0 is an orthonor-

mal basis for the Hilbert space l2B(K). If dimK = 1, then each Bn is a nonzero
scalar βn, and l

2
B(K) is the scalar-weighted sequence space l2β defined in [14, Sec-

tion 3]. The unilateral shift S on l2B(K) is defined as S(f0, f1, . . .) = (0, f0, f1, . . .),

and S is bounded if and only if supi,j
‖Bj+1ei‖
‖Bjei‖ < ∞. The meaning of the above

terms and notation will remain unchanged throughout this article unless specifi-
cally stated otherwise.

Theorem 2.1. Let S be the unilateral shift on l2B(K), and for each n ∈ N0 we

define operator An on K as Anei = (‖Bn+1ei‖
‖Bnei‖ )ei. Then S is unitarily equivalent to

the operator-weighted shift W on l2(K) with weight sequence {An}n∈N0.

Proof. Let V : l2B(K) → l2(K) be defined as V fi,j = gi,j for all i, j ∈ N0, and let it
extend linearly. Then V is unitary, and V ∗gi,j = fi,j. We claim that S = V ∗WV .
To establish our claim, choose i, j ∈ N0. Then

Sfi,j =
1

‖Bjei‖
Sgi,j =

gi,j+1

‖Bjei‖
=

‖Bj+1ei‖
‖Bjei‖

fi,j+1.

Also,

V ∗WV fi,j = V ∗Wgi,j

= V ∗W (0, 0, . . . , ei, 0, . . .)

= V ∗(0, 0, . . . , Ajei, 0, . . .)

=
‖Bj+1ei‖
‖Bjei‖

V ∗gi,j+1

=
‖Bj+1ei‖
‖Bjei‖

fi,j+1.

Hence V ∗WV = S. �

For the converse, we consider a sequence {An}∞n=0 of bounded linear opera-
tors on K such that supn ‖An‖ < ∞. We first consider the case where An’s are
simultaneously diagonalizable with respect to {ei}∞i=0.

Theorem 2.2. For n ∈ N0, let An be an invertible bounded linear operator on

K such that the matrix of An with respect to {ei}∞i=0 is diag(δ
(n)
0 , δ

(n)
1 , δ

(n)
2 , . . . ).

Also let supn ‖An‖ < ∞. If W is the operator-weighted shift on l2(K) with
weight sequence {An}∞n=0, then W is unitarily equivalent to the unilateral shift
S on l2B(K), where B denotes the sequence {Bn}∞n=0 with B0 := I and Bn+1 :=
AnAn−1An−2 . . . A0 for n ∈ N0.
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Proof. By [9, Theorem 3.4] we may assume that each An is positive. If V :
l2B(K) → l2(K) is defined linearly such that V fi,j = gi,j for all i, j ∈ N0, then
V is unitary. Let B0 := I, and let Bn+1 := AnAn−1An−2 . . . A0 for n ∈ N0. Then

‖Bn+1ei‖ = δ
(n)
i δ

(n−1)
i . . . δ

(0)
i for all i, n ∈ N0 so that ‖Bn+1ei‖

‖Bnei‖ = δ
(n)
i . Then as in

Theorem 2.1, it can be shown that V ∗WV = S. �

Next we consider the case where each An is in T . Now elements of T have a
specific type of matrix representation with respect to {ei}i∈N0 . Let T ∈ T , and
for j ∈ N0 let γj denote the nonzero entry occurring in the jth column of the
matrix of T with respect to {ei}∞i=0. Then there exists a unique bijective map
ψ : N0 → N0 such that γj occurs at the ψ(j)th row. Thus if [ai,j] (i, j ∈ N0)
denotes the matrix of T with respect to {ei}∞i=0, then

ai,j :=

{
γj if i = ψ(j),

0 otherwise.

Thus for each j ∈ N0, Tej = γjeψ(j), and ‖T‖ = supj |γj|.
Since T is invertible in B(K), γj 6= 0 for each j, and T−1eψ(j) =

1
γj
ej. Hence if

ϕ := ψ−1, then for each i ∈ N0,

T−1ei =
1

γϕ(i)
eϕ(i), and ‖T−1‖ = sup

i

1

|γϕ(i)|
=

1

infi |γϕ(i)|
=

1

infj |γj|
.

If βi denotes the nonzero entry in the ith row of [ai,j], then for x =
∑

i xiei ∈ K,

T (x0, x1, x2, . . . ) = (β0xϕ(0), β1xϕ(1), . . . ). (2.1)

Theorem 2.3. Let {An}∞n=0 be a sequence in T , and let supn ‖An‖ < ∞. Then
there exists a sequence B = {Bn}∞n=0 of positive invertible diagonal bounded linear
operators on K such that the operator-weighted shift W on l2(K) with weight
sequence {An}∞n=0 is unitarily equivalent to the unilateral shift S on l2B(K).

To prove the above theorem, we first prove the following lemma.

Lemma 2.4. Let {An}∞n=0 be a sequence in T with supn ‖An‖ < ∞, and let W
be an operator-weighted shift on l2(K) with weight sequence {An}∞n=0. Then there
exists a sequence {Dn}∞n=0 of positive invertible diagonal operators on K such that
W is unitarily equivalent to the operator-weighted shift T on l2(K) with weight
sequence {Dn}∞n=0.

Proof. For each n ∈ N0 there exists a bijective map ψn : N0 → N0 such that

Anei = γ
(n)
i eψn(i) for nonzero scalars γ

(n)
i and i ∈ N0.

Let An = UnPn be the polar decomposition of An. Then Pn ≥ 0 is invertible

diagonal, and Pnei = |γ(n)i |ei for all i ∈ N0. Also, Un is unitary with Unei =
γ
(n)
i

|γ(n)
i |
eψn(i) for all i ∈ N0. Define P,U, U+ : l2(K) → l2(K) as follows:

P (x0, x1, . . . ) = (P0x0, P1x1, . . . ),

U(x0, x1, . . . ) = (U0x0, U1x1, . . . ),

U+(x0, x1, . . . ) = (0, x0, x1, . . . ).
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Then W = (U+U)P , which is in fact the polar decomposition of W . Let V0 =
I, and let Vn+1 = UnVn for all n ∈ N0. Then each Vn is unitary on K. Let
V : l2(K) → l2(K) be defined as V (x0, x1, . . . ) = (V0x0, V1x1, . . . ). Then V is
unitary, and U+U = V U+V

∗. Thus W = U+UP = V U+V
∗P = V (U+V

∗PV )V ∗.
Moreover, V is unitary, and hence W is unitarily equivalent to U+V

∗PV . Let
Dn := V ∗

nPnVn for all n ∈ N0. For each x ∈ K, 〈Dnx, x〉 = 〈V ∗
nPnVnx, x〉 =

〈PnVnx, Vnx〉 ≥ 0. This implies that Dn ≥ 0. Also, the fact that Pn is diagonal
and Vn is unitary implies that Dn is diagonal.

If T = U+V
∗PV , then T (x0, x1, . . . ) = (0, D0x0, D1x1, . . . ); that is, T is an

operator-weighted shift on l2(K) with weight sequence {Dn}∞n=0 of positive invert-
ible diagonal operators on K. �

Proof of Theorem 2.3. By Lemma 2.4, there exists a sequence {Dn}∞n=0 of positive
invertible diagonal operators on K and an operator-weighted shift T on l2(K)
with weight sequence {Dn}∞n=0 such that W is unitarily equivalent to T . By
Theorem 2.2, T is unitarily equivalent to the unilateral shift S on l2B(K) with
B = {Bn}∞n=0, where B0 := I, and Bn := DnDn−1 . . . D0 for n ∈ N0. Thus W is
also unitarily equivalent to S on l2B(K). �

Remark 2.5. The Dn’s, as given in Lemma 2.4, are defined as follows: if for each

n ∈ N0, ψn : N0 → N0 is the bijective map such that Anei = γ
(n)
i eψn(i), then each

Dn is given as

D0 = diag
(
|γ(0)0 |, |γ(0)1 |, |γ(0)2 |, . . .

)
for n = 0,

Dn = diag
(
|γ(n)ψn−1ψn−2...ψ0(0)

|, |γ(n)ψn−1ψn−2...ψ0(1)
|, |γ(n)ψn−1ψn−2...ψ0(2)

|, . . .
)

for n > 0.

The minimal reducing subspaces of S on l2B(K) are determined in [5], where it
is assumed that B represents a uniformly bounded sequence of invertible diagonal
operators onK. So in view of Theorem 2.3 and [5], we should be able to determine
the minimal reducing subspaces of the operator-weighted shift W on l2(K) with
weights {An} in T . However, because of the complex transformations involved in
the process, it is quite difficult to easily appreciate the end result. Hence in the
present article, we adopt a different approach.

For operator-valued weighted shift W with nondiagonal operator weights, we
first try representing W as a direct sum of scalar-weighted shift operators, as
suggested in [13]. In this respect we have a theorem from [9].

Theorem 2.6 ([9, Theorem 3.9]). The operator-weighted shift W on l2(K) with
operator weights {An}∞n=0 is a direct sum of scalar-weighted shifts if and only if
the weakly closed ∗ algebra generated by {I, A0, A1, . . .} is diagonalizable.

Note that an algebra B of operators is regarded as diagonalizable if there is
an orthonormal basis for the underlying space such that each operator in B is
diagonal with respect to this basis. We consider the operator-weighted shift W
on l2(K) with weights An in T . In view of Lemma 2.4 and Theorem 3.1, it is
possible to expressW as a direct sum of scalar-weighted shift operators. Based on
these scalar-weighted shifts, we then proceed to determine the minimal reducing
subspaces of W .
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3. Direct sum of scalar shifts

Since K is assumed to be a separable complex Hilbert space, K ∼= l2, where
l2 = {x = (x0, x1, . . . ) : xi ∈ C and

∑
i |xi|2 < ∞}. Let {ξi}i∈N0 denote the

standard orthonormal basis for l2. If µi,j := (0, 0, . . . , ξj, 0, . . .) where ξj occurs at
the ith place, then {µi,j}i,j∈N0 is an orthonormal basis for l2 ⊕ l2 ⊕ . . . .

Theorem 3.1. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weight sequence {An}n∈N0, where each An is positive invertible diagonal
with respect to the orthonormal basis {ei}i∈N0 of K. Then there exists scalar-
weighted shift operators S0, S1, . . . on l

2 such that W on l2(K) is unitarily equiv-
alent to S0 ⊕ S1 ⊕ . . . on l2 ⊕ l2 ⊕ . . . .

Proof. For n ∈ N0, let An with respect to {ei}i∈N0 be the diagonal matrix

diag(δ
(n)
0 , δ

(n)
1 , . . . ). Define Sn to be the scalar-weighted shift on l2 with weight

sequence {δ(j)n }j∈N0 . Then Snξj = δ
(j)
n ξj+1 for all j ∈ N0. Therefore,

(S0 ⊕ S1 ⊕ . . . )µi,j = δ
(j)
i µi,j+1.

Also, Wgi,j = W (0, 0, . . . , ei, 0, . . . ) = (0, 0, . . . , 0, Ajei, 0, . . . ) = δ
(j)
i gi,j+1. If

V : l2(K) → l2 ⊕ l2 ⊕ . . . is defined by V gi,j = µi,j, then V is unitary, and

VWV ∗µi,j = VWgi,j = δ
(j)
i V gi,j+1 = δ

(j)
i µi,j+1 = (S0 ⊕ S1 ⊕ . . . )µi,j.

Thus W on l2(K) is unitarily equivalent to S0 ⊕ S1 ⊕ . . . on l2 ⊕ l2 ⊕ . . . . �

Remark 3.2. If dimK < ∞, then the above result can also be deduced using
Lemma 2.1 from [10].

Theorem 3.3. Let W be an operator-weighted shift on l2(K) with uniformly
bounded operator weights {An}n∈N0, where each An ∈ T . Then there exist scalar-
weighted shift operators S0, S1, . . . on l

2 such that W on l2(K) is unitarily equiv-
alent to S0 ⊕ S1 ⊕ . . . on l2 ⊕ l2 ⊕ . . . .

The proof follows immediately from Lemma 2.4 and Theorem 3.1; however, we
include an independent proof so that the structure of Sn, which is often used in
later sections, is explicitly given.

Proof. For each An ∈ T , there exists a unique bijective map ψn on N0 such that

Anej = γ
(n)
j eψn(j) for all j ∈ N0.

Let U : l2(K) → l2 ⊕ l2 ⊕ . . . be linearly defined such that

Ugi,j :=

{
µi,0 if j = 0,

µψ−1
0 ψ−1

1 ...ψ−1
j−1(i),j

if j > 0.

Then U is unitary. For n ∈ N0, let Sn be a scalar-weighted shift on l2 with weight

sequence {γ(0)n , γ
(1)
ψ0(n)

, γ
(2)
ψ1ψ0(n)

, . . . }; that is,

Snξj :=

{
γ
(0)
n ξ1 if j = 0,

γ
(j)
ψj−1ψj−2...ψ0(n)

ξj+1 if j > 0.
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Hence

(S0 ⊕ S1 ⊕ . . . )µi,j =

{
γ
(0)
i µi,1 if j = 0,

γ
(j)
ψj−1ψj−2...ψ0(i)

µi,j+1 if j > 0,

= UWU∗µi,j. �

In view of Theorem 3.3, we now propose the following definitions.

Definition 3.4. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . Let S0, S1, . . . be scalar-weighted shifts on l2 such
thatW is unitarily equivalent to S0⊕S1⊕ . . . . For n,m ∈ N0, we say ‘n is related
to m with respect to W ’ denoted by n ∼W m if Sn and Sm are identical. Clearly
∼W is an equivalence relation on N0.

Definition 3.5. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weight sequence {An}n∈N0 in T . Let S0, S1, . . . be scalar-weighted shifts
on l2 such thatW is unitarily equivalent to S0⊕S1⊕. . . . Note thatW is considered
to be of Type I if no two Sn’s are identical. Otherwise W is said to be of Type
II. Thus W is of Type II if and only if there exist distinct nonnegative integers n
and m such that Sn and Sm are identical. An operator-weighted shift W of Type
II is said to be of Type III if ∼W partitions N0 into a finite number of equivalence
classes.

The above definition is motivated by similar definitions given in [15, Section 1].
In fact for dimK = N <∞, the two definitions refer to the same idea, as can be
seen from the following. In [15] the minimal reducing subspaces ofMN

z (N > 1) on
the space H2

w := {f(z) =
∑∞

k=0 akz
k : ‖f‖2w =

∑
wk|ak|2 < ∞} are determined,

where w = {w0, w1, . . . } is a sequence of positive numbers.
If in the present study we consider dimK = N , and for each n ∈ N0, we

define Bn = diag(
√
wnN ,

√
wnN+1, . . . ,

√
w(n+1)N−1), then M

N
z on H2

w is unitarily

equivalent to the unilateral shift S on l2B(K).
Again, if for each n ∈ N0 we define

An = diag
(√w(n+1)N

wnN
,

√
w(n+1)N+1

wnN+1

, . . . ,

√
w(n+2)N−1

w(n+1)N−1

)
,

and we consider W to be the operator-weighted shift on l2(K) with weights
{An}n∈N0 , then S is unitarily equivalent to W , as in Theorem 2.1. Thus MN

z on
H2
w is unitarily equivalent to operator-weighted shift W on l2(K) with weights

{An}n∈N0 .
For 0 ≤ n ≤ N − 1, let Sn be the scalar-weighted shift on l2 with weight

sequence {
√

wn+N

wn
,
√

wn+2N

wn+N
,
√

wn+3N

wn+2N
, . . . }. Then the operator-weighted shift W

on l2(K) with weights {An}n∈N0 is unitarily equivalent to S0 ⊕ · · · ⊕ SN−1 on
l2 ⊕ · · · ⊕ l2 (N copies), as in Theorem 3.1.

By Definition 3.5, W is of Type I if no two Sn’s are identical. This means that
for each 0 ≤ n ≤ N − 1 and 0 ≤ m ≤ N − 1 with n 6= m, there exists l > 0

such that
√

wn+lN

wn+(l−1)N
6=

√
wm+lN

wm+(l−1)N
. If k is the smallest positive integer for which
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wn+kN

wn+(k−1)N
6=

√
wm+kN

wm+(k−1)N
, then wn+kN

wn
6= wm+kN

wm
. So W is of Type I if, for each

0 ≤ n ≤ N − 1 and 0 ≤ m ≤ N − 1 with n 6= m, there exists k > 0 such that
wn+kN

wn
6= wm+kN

wm
, and this implies that the sequence w is of Type I (see [15]).

4. Extremal functions of reducing subspaces

We begin the section by introducing a few definitions and notation which are
to be used in subsequent results.

Definition 4.1. Let F =
∑

i∈N0
αigi,0 be a nonzero vector in l2(K). The order of

F , denoted as o(F ), is defined as the smallest nonnegative integer m such that
αm 6= 0.

Definition 4.2. If f =
∑

i∈N0
αiei is a nonzero vector in K, then the order of f ,

denoted as o(f), is defined to be the smallest nonnegative integer m such that
αm 6= 0.

Definition 4.3. If f =
∑

i∈N0
αiei ∈ K, then we define Ff in l2(K) as Ff =∑

i∈N0
αigi,0. It follows that if f 6= 0, then o(f) = o(Ff ).

Definition 4.4. Let Y be a nonzero nonempty subset of K. Then the order of
Y , denoted as o(Y ), is defined to be the nonnegative integer m satisfying the
following conditions:

(i) o(f) ≥ m for all f ∈ Y ,

(ii) there exists f̃ ∈ Y such that o(f̃) = m.

Definition 4.5. Let X be a subset of l2(K), and let LX := {f0 : (f0, f1, . . .) ∈ X}.
If LX is a nonzero subset of K, then the order of X, denoted as o(X), is defined
as o(LX).

Definition 4.6. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An}n∈N0 in T . A linear expression F =

∑
i∈N0

αigi,0 is said to

be W -transparent if, for every pair of nonzero scalars αi and αj, we have i ∼W j.

Definition 4.7. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An}n∈N0 in T , and let S be the vector space of all finite lin-
ear combinations of finite products of W and W ∗. For nonzero F ∈ l2(K), let
SF := {TF : T ∈ S}. Then the closure of SF in l2(K) is a reducing subspace
of W , denoted by XF . Clearly, XF is the smallest reducing subspace of l2(K)
containing F .

Lemma 4.8. Let {An}n∈N0 be a uniformly bounded sequence of operators in T ,
and let W be the operator-weighted shift on l2(K) with weight sequence {An}n∈N0.

Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j) with

γ
(n)
j > 0. The following will hold:

(i) for each n ∈ N0, A
∗
nei = γ

(n)

ψ−1
n (i)

eψ−1
n (i) for all i ∈ N0,

(ii) W ∗(f0, f1, . . .) = (A∗
0f1, A

∗
1f2, . . .) for (f0, f1, . . .) ∈ l2(K).
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(iii) For i, j ∈ N0, Wgi,j = γ
(j)
i gψj(i),j+1, and

W ∗gi,j =

{
0 if j = 0,

γ
(j−1)

ψ−1
j−1(i)

gψ−1
j−1(i),j−1 if j > 0.

(iv) For i, j ∈ N0,

(W ∗)kW kgi,j =

{
[γ

(j)
i ]2gi,j if k = 1,

[γ
(j)
i γ

(j+1)
ψj(i)

. . . γ
(j+k−1)
ψj+k−2...ψj(i)

]2gi,j if k > 1.

(v) For distinct nonnegative integers n and m, if n ∼W m, then it holds that
‖(W ∗)kW kgn,0‖ = ‖(W ∗)kW kgm,0‖ for each k ∈ N.

Proof. (i) For f =
∑

j∈N0
αjej ∈ K, and n ∈ N0, 〈Anf, ei〉 =

∑
j αj〈γ

(n)
j eψn(j),

ei〉 = αψ−1
n (i)γ

(n)

ψ−1
n (i)

= 〈f, γ(n)
ψ−1
n (i)

eψ−1
n (i)〉. Hence A∗

nei = γ
(n)

ψ−1
n (i)

eψ−1
n (i) for all i ∈ N0.

(ii) For g = (g0, g1, . . . ) ∈ l2(K), 〈Wg, f〉 =
∑∞

i=0〈Aigi, fi+1〉 =
∑∞

i=0〈gi,
A∗
i fi+1〉 = 〈g, (A∗

0f1, A
∗
1f2, . . . )〉, and so W ∗(f0, f1, . . .) = (A∗

0f1, A
∗
1f2, . . .) for

f = (f0, f1, . . .) ∈ l2(K).
(iii) This follows from (i) and (ii), and (iv) follows from (iii).
(v) For n ∈ N0, let Sn be the scalar-weighted shift on l2 with weight sequence

{γ(0)n , γ
(1)
ψ0(n)

, γ
(2)
ψ1ψ0(n)

, . . . }. Then by Theorem 3.3, W is unitarily equivalent to

S0 ⊕ S1 ⊕ . . . . As n ∼W m, Sn and Sm are identical according to Definition 3.4.

Therefore, γ
(0)
n = γ

(0)
m , and γ

(k+1)
ψkψk−1...ψ0(n)

= γ
(k+1)
ψkψk−1...ψ0(m) ∀k ≥ 0. The result now

follows immediately from (iv). �

Lemma 4.9. Let {An}n∈N0 be a uniformly bounded sequence of operators in T and
let W be the operator-weighted shift on l2(K) with weight sequence {An}n∈N0.

Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j) with

γ
(n)
j > 0. Let F =

∑
i∈N0

αigi,0 be W -transparent in l2(K) with o(F ) = m.
If

F̃k :=

{
F if k = 0,∑

i∈N0
αigψk−1ψk−2...ψ0(i),k if k > 1,

then the following will hold:

(i)

(W ∗)kW kF =

{
[γ

(0)
m ]2F if k = 1,

[γ
(0)
m γ

(1)
ψ0(m) . . . γ

(k−1)
ψk−2...ψ0(m)]

2F if k > 1.

(ii)

WF̃k =

{
γ
(0)
m F̃1 if k = 0,

γ
(k)
ψk−1...ψ0(m)F̃k+1 if k > 0.



540 M. HAZARIKA and P. S. GOGOI

(iii)

W ∗F̃k =


0 for k = 0,

γ
(0)
m F̃0 for k = 1,

γ
(k−1)
ψk−2...ψ0(m)F̃k−1 for k > 1,

(iv) XF is the closed linear span of {F̃k : k ∈ N0}.

Proof. As F =
∑

i∈N0
αigi,0 is W -transparent in l2(K) with o(F ) = m, the fol-

lowing must hold:

(a) αm 6= 0, and αi = 0 for 0 ≤ i < m;
(b) if αi 6= 0, and αj 6= 0, then i ∼W j.

Thus we must have i ∼W m for all i ∈ N0 with αi 6= 0. Hence

γ
(0)
i = γ(0)m and γ

(k+1)
ψkψk−1...ψ0(i)

= γ
(k+1)
ψkψk−1...ψ0(m) ∀k ≥ 0. (4.1)

(i) This follows from 4.1 and Lemma 4.8(iv).

(ii) Here WF̃0 = WF =
∑

i αiWgi,0 =
∑

i αiγ
(0)
i gψ0(i),1 = γ

(0)
m F̃1.

For k > 0,

WF̃k =
∑
i

αiWgψk−1...ψ0(i),k

=
∑
i

αiγ
(k)
ψk−1...ψ0(i)

gψk...ψ0(i),k+1

= γ
(k)
ψk−1...ψ0(m)F̃k+1.

(iii) This can be shown similarly using 4.1 and Lemma 4.8(iii).
(iv) By (ii) and (iii), each F̃k ∈ XF , and the closed linear span{F̃k : k ∈ N0} is

a nonzero reducing subspace of W contained in XF . Thus by minimality
of XF , we have XF = closed linear span{F̃k : k ∈ N0}.

�

Definition 4.10. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . Let Ω1,Ω2, . . . be the disjoint equivalence classes of
N0 under the relation ∼W . Consider F =

∑
i∈N0

αigi,0 ∈ l2(K). For each k, let
qk :=

∑
i∈Ωk

αigi,0. Dropping those qk’s which are zero, the remaining qk’s are
arranged as f1, f2, . . . in such a way that for i < j we have o(fi) < o(fj). The
resulting decomposition F = f1 + f2 + · · · is called the canonical decomposition
of F with respect to W . Clearly, each fi is W -transparent in l2(K).

If there exists a finite positive integer n such that F = f1 + f2 + · · ·+ fn, then
F is said to have a finite canonical decomposition.

Lemma 4.11. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . Let X be a reducing subspace of W , and let F =∑

i∈N0
αigi,0 be in X. If F has a finite canonical decomposition F = f1 + f2 +

· · ·+ fn, then each fi ∈ XF .
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Proof. Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j)

with γ
(n)
j > 0.

Let o(fi) = mi so that m1 < m2 < · · · < mn. Clearly, mi �W mj for i 6= j.

Step I: Since m1 �W mn, either γ
(0)
m1 6= γ

(0)
mn or there exists k > 0 such that

γ
(k)
ψk−1...ψ0(m1)

6= γ
(k)
ψk−1...ψ0(mn)

. In case γ
(0)
m1 = γ

(0)
mn , let k1 be the smallest positive

integer such that γ
(k1)
ψk1−1...ψ0(m1)

6= γ
(k1)
ψk1−1...ψ0(mn)

.

Let

Q1 :=

{
[(γ

(0)
mn)

2 −W ∗W ]F if γ
(0)
m1 6= γ

(0)
mn ,

[(γ
(0)
mnγ

(1)
ψ0(mn)

. . . γ
(k1)
ψk1−1...ψ0(mn)

)2 − (W ∗)k1+1W k1+1]F otherwise.

For 1 ≤ i ≤ n− 1, let β
(1)
i := (γ

(0)
mn)

2 − (γ
(0)
mi )

2 if γ
(0)
m1 6= γ

(0)
mn ; otherwise, let

β
(1)
i := (γ(0)mn

γ
(1)
ψ0(mn)

. . . γ
(k1)
ψk1−1...ψ0(mn)

)2 − (γ(0)mi
γ
(1)
ψ0(mi)

. . . γ
(k1)
ψk1−1...ψ0(mi)

)2.

Then β
(1)
1 6= 0. Also, since each fi is W -transparent, by applying Lemma 4.9(i),

we get Q1 =
∑n−1

i=1 β
(1)
i fi ∈ XF .

Step II: As m1 �W mn−1, either γ
(0)
m1 6= γ

(0)
mn−1 or k2 is the smallest positive

integer such that γ
(k2)
ψk2−1...ψ0(m1)

6= γ
(k2)
ψk2−1...ψ0(mn−1)

.

Let

Q2 :=

{
[(γ

(0)
mn−1)

2 −W ∗W ]Q1 if γ
(0)
m1 6= γ

(0)
mn−1 ,

[(γ
(0)
mn−1γ

(1)
ψ0(mn−1)

. . . γ
(k2)
ψk2−1...ψ0(mn−1)

)2 − (W ∗)k2+1W k2+1]Q1.

For 1 ≤ i ≤ n− 2, let β
(2)
i := (γ

(0)
mn−1)

2 − (γ
(0)
mi )

2 if γ
(0)
m1 6= γ

(0)
mn−1 ; otherwise, let

β
(2)
i := (γ(0)mn−1

γ
(1)
ψ0(mn−1)

. . . γ
(k2)
ψk2−1...ψ0(mn−1)

)2 − (γ(0)mi
γ
(1)
ψ0(mi)

. . . γ
(k2)
ψk2−1...ψ0(mi)

)2.

Then β
(2)
1 6= 0, and Q2 =

∑n−2
i=1 β

(1)
i β

(2)
i fi ∈ XF .

Repeating the above argument n−1 times, we get Qn−1 = β
(1)
1 β

(2)
1 . . . β

(n−1)
1 f1 ∈

XF with β
(i)
1 6= 0 for 1 ≤ i ≤ n − 1. This implies that f1 ∈ XF . By a similar

procedure it can be shown that fi ∈ XF for 1 < i ≤ n. �

Lemma 4.12. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . If X is a reducing subspace of W , then LX = 0
if and only if X = 0.

Proof. Let X = 0 ⇒ LX = 0. Conversely, suppose that X 6= 0, and, if possible,
let LX = 0. Since X 6= 0 we can choose f = (0, f1, f2, . . .) ∈ X with fn 6= 0.
Then by Lemma 4.8(ii), (W ∗)nf = (g1, g2, . . .) where g1 6= 0. As (W ∗)nf ∈ X, so
g1 ∈ LX , a contradiction. Thus X 6= 0 ⇒ LX 6= 0. �

Theorem 4.13. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . Let X be a nonzero reducing subspace of W with
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o(X) = m. Then the extremal problem

sup
{
Reαm : F = (f0, f1, . . .) ∈ X, ‖F‖ ≤ 1, f0 =

∑
i∈N0

αiei.
}

has a unique solution G =
∑

i∈N0
αigi,0 ∈ X with ‖G‖ = 1 and o(G) = m.

Proof. Define ϕ : X → C as ϕ(F ) = αm, where F = (f0, f1, . . .), and f0 =∑
i∈N0

αiei. As X 6= 0, then LX 6= 0, by Lemma 4.12 and in view of Definition 4.5,
o(LX) = m = o(X). Therefore ϕ is a nonzero bounded linear functional on X.
From [2] we know that there exists a unique G ∈ X such that ϕ(G) > 0, ‖G‖ = 1,
and that

ϕ(G) = sup
{
Reϕ(F ) : F ∈ X, ‖F‖ ≤ 1

}
= sup

{
Reαm : F = (f0, f1, . . .) ∈ X, ‖F‖ ≤ 1, f0 =

∑
i∈N0

αiei.
}
.

We will show that G =
∑

i∈N0
αigi,0 and that o(G) = m. For this we consider

G = (g0, g1, . . .).
Claim I: If F ∈ X, and ‖F‖ < 1, then Reϕ(F ) < ϕ(G). If possible, let

Reϕ(F ) = ϕ(G). Let H := F
‖F‖ . Then H ∈ X, ‖H‖ = 1, and Reϕ(H) > ϕ(G),

contradicting the extremality of G. Hence claim I is established.
Now for each F ∈ X, Reϕ(G+WF ) = ϕ(G); hence by claim I, we must have

‖G+WF‖ ≥ 1, which implies that G ⊥ WF . In particular,

〈G,WW ∗G〉 = 0

⇒ A∗
i gi+1 = 0 ∀i ≥ 0, by Lemma 4.8(ii)

⇒ gi+1 = 0 ∀i ≥ 0.

Thus G = (g0, 0, 0, . . . ). Let g0 =
∑

i∈N0
αiei. Since, o(LX) = m, then αi = 0 for

all 0 ≤ i < m. Also, ϕ(G) > 0 implies that αm 6= 0. Thus G =
∑

i∈N0
αigi,0, and

o(G) = m. �

Remark 4.14. The function G in Theorem 4.13 is called the extremal function of
the nonzero reducing subspace X of W .

Theorem 4.15. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . If the extremal function of a nonzero reducing
subspace X of W has a finite canonical decomposition, then it must be
W -transparent.

Proof. Let X be a nonzero reducing subspace of the order m, and let G =∑
i∈N0

αigi,0 be its extremal function. Also let G = g1 + g2 + · · · + gn be the
finite canonical decomposition of G. Then g1 =

∑
i∈N0

βigi,0 such that o(g1) = m,
and βm = αm. Also ‖g1‖ ≤ ‖G‖ = 1. Thus by extremality of G, we must have
G = g1. As g1, by definition, is W -transparent, so G is also W -transparent. �
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5. Minimal reducing subspaces

In this section we identify and study the minimal reducing subspaces of W in
H2(K). It may be noted that in general there are many operators which have
reducing subspaces that do not contain minimal reducing subspaces. One such
operator is the operator of multiplication by z on the Bergman space L2(D, dA),
where D is the unit disk and dA is the area measure (see [7], [16]).

Lemma 5.1. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . Let F be W -transparent, and let o(F ) = m. If
G ∈ XF is such that G is nonzero and G =

∑
i∈N0

αigi,0, then G = λF for
some nonzero scalar λ.

Proof. Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j)

with γ
(n)
j > 0. As G = (g, 0, 0, . . . ) with g 6= 0, and F = (f, 0, 0, . . . ) with f 6= 0,

so by Definition 4.7, G =
∑

k λk(W
∗)kW kF for scalars λk, not all zero.

Let

βk :=

{
(γ

(0)
m )2 if k = 1,

(γ
(0)
m γ

(1)
ψ0(m) . . . γ

(k−1)
ψk−2...ψ0(m))

2 if k > 1.

Then by Lemma 4.9(i), (W ∗)kW kF = βkF , where βk 6= 0 for all k. Therefore,
G = (

∑
k λkβk)F = λF for λ =

∑
k λkβk 6= 0. �

Lemma 5.2. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . Let F =

∑
i∈N0

αigi,0 with o(F ) = m1. If G ∈ XF

such that G is nonzero, and G =
∑

i∈N0
βigi,0, then o(G) ≥ m1.

Proof. Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j)

with γ
(n)
j > 0. Let F = f1 + f2 + · · · be the canonical decomposition of F with

o(fi) = mi. If for each i ∈ N0,

β
(i)
k :=

{
(γ

(0)
mi )

2 if k = 1,

(γ
(0)
miγ

(1)
ψ0(mi)

. . . γ
(k−1)
ψk−2...ψ0(mi)

)2 if k > 1,

then (W ∗)kW kfi = β
(i)
k fi for all k ∈ N0 and i ∈ N. Now G ∈ XF implies

that G =
∑

k λk(W
∗)kW kF =

∑
k λk(

∑
i β

(i)
k fi) =

∑
i(
∑

k λkβ
(i)
k )fi. Therefore

o(G) = o(f1) if
∑

k λkβ
(1)
k 6= 0; otherwise, o(G) > o(f1). Hence o(G) ≥ m1. �

Theorem 5.3. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T , and let X be a minimal reducing subspace of W . If
F =

∑
i∈N0

αigi,0 ∈ X, then F must be W -transparent.

Proof. Let ψn denote the unique bijective map on N0 such that Anej = γ
(n)
j eψn(j)

with γ
(n)
j > 0. If possible, let F not beW -transparent. Then the canonical decom-

position of F = f1 + f2 + · · · will have at least two components, f1 and f2.

If we let o(fi) = ni, then n1 �W n2. Hence either γ
(0)
n1 6= γ

(0)
n2 , or there exists a

positive integer k such that γ
(k)
ψk−1...ψ0(n1)

6= γ
(k)
ψk−1...ψ0(n2)

.
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(i) If γ
(0)
n1 6= γ

(0)
n2 , then define G := W ∗WF − (γ

(0)
n1 )

2F so that G = [(γ
(0)
n2 )

2 −
(γ

(0)
n1 )

2]f2+[(γ
(0)
n3 )

2−(γ
(0)
n1 )

2]f3+· · · , which implies that o(G) = o(f2) = n2.

(ii) If γ
(0)
n1 = γ

(0)
n2 , then let k be the positive integer such that γ

(k)
ψk−1...ψ0(n1)

6=
γ
(k)
ψk−1...ψ0(n2)

, and γ
(i)
ψi−1...ψ0(n1)

= γ
(i)
ψi−1...ψ0(n2)

for all 0 < i < k. Then

G : = (W ∗)k+1W k+1F − (γ(0)n1
γ
(1)
ψ0(n1)

. . . γ
(k)
ψk−1...ψ0(n1)

)2F

=
[
(γ(0)n2

γ
(1)
ψ0(n2)

. . . γ
(k)
ψk−1...ψ0(n2)

)2 − (γ(0)n1
γ
(1)
ψ0(n1)

. . . γ
(k)
ψk−1...ψ0(n1)

)2
]
f2 + · · · ,

which implies that o(G) = o(f2) = n2.

Thus there exists 0 6= G ∈ X such that o(F ) < o(G). Therefore XG is a
nonzero reducing subspace of W contained in X. By minimality of X, we must
haveXG = X. But this implies that F ∈ XG so that, by Lemma 5.2, o(F ) ≥ o(G),
which is a contradiction. Thus, F must be W -transparent. �

Corollary 5.4. Let W be an operator-weighted shift on l2(K) with weights {An}
in T . The extremal function of a minimal reducing subspace of W is always
W -transparent.

Theorem 5.5. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . Let X be a nonzero reducing subspace of W . Then
X is minimal if and only if X = XF , where F ∈ X is W -transparent.

Proof. If X is minimal, then X = XG where G is the extremal function of X.
Also, by Corollary 5.4, G must be W -transparent. Conversely, let X = XF where
F ∈ X is W -transparent. Then by Lemma 4.9, XF is a reducing subspace of W .
Thus we only need to show that XF is minimal-reducing.

For this, let Y be a nonzero reducing subspace of W contained in XF . If G is
the extremal function of Y , then G ∈ XF ; thus by Lemma 5.1, G = λF for a
nonzero scalar λ. This implies that F ∈ Y . Therefore Y = XF , which shows that
XF is minimal. �

Corollary 5.6. Let W be an operator-weighted shift on l2(K) with weights {An}
in T . Every reducing subspace of W in l2(K) whose extremal function has a finite
canonical decomposition must contain a minimal reducing subspace.

The proof follows immediately from Lemma 4.11 and Theorem 5.5.

6. Conclusion

Theorem 6.1. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . If W is of Type I, then Xgn,0 for n ∈ N0 are the only
minimal reducing subspaces of W in l2(K).

Proof. Let X be a minimal reducing subspace of W , and let G be the extremal
function such that X = XG. As W is of type I, the only W -transparent functions
are gn,0 and their scalar multiples. Hence X = Xgn,0 for n ∈ N0. �

Theorem 6.2. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . If W is of Type II, then W has minimal reducing
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subspaces other than Xgn,0 (n ∈ N0). In fact, for every W -transparent F , XF is a
minimal reducing subspace. Hence W will have infinitely many minimal reducing
subspaces in l2(K).

Proof. Let Y be a nonzero reducing subspace of W such that Y ⊆ XF . Let
Y = XG, where G is the extremal function. Then G ∈ XF . By Lemma 5.1,
G = λF , λ 6= 0, which implies that F ∈ Y . Therefore XF = Y . Hence XF is
minimal. �

Theorem 6.3. Let W be an operator-weighted shift on l2(K) with uniformly
bounded weights {An} in T . If W is of Type III, then every reducing subspace of
W must contain a minimal reducing subspace.

Proof. Let X be a nonzero reducing subspace of W . If X = XF for some trans-
parent function F , then X is minimal. Otherwise, let G =

∑
i∈N0

αigi,0 ∈ X, and
let G = f1 + f2 + · · ·+ fm be its canonical decomposition. Then by Lemma 4.11,
each fi ∈ X; hence Xfi is a minimal reducing subspace in X. �
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