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ABSTRACT. We demonstrate that any surjective isometry 7: A — B not
assumed to be linear between unital, completely regular subspaces of complex-
valued, continuous functions on compact Hausdorff spaces is of the form

T(f) =T(0)+Re[pu- (for)] +ilm[v-(fop)],

where p and v are continuous and unimodular, there exists a clopen set K with
v=pon K and v = —p on K¢ and 7 and p are homeomorphisms.

1. INTRODUCTION

When investigating a mathematical object, it is worthwhile to study mappings
that leave the relevant structures undisturbed. For example, the collection C'(X)
of complex-valued, continuous functions on a compact Hausdorff space X is a
normed vector space under the uniform norm || - ||, and so it is of interest to
characterize the surjective, complex-linear isometries T: C(X) — C(Y). This
was done by both Banach [2] and Stone [10], and such mappings are of the form

T(f)=p-(for), (1.1)

where |u(y)| =1 for all y € Y and where 7: Y — X is a homeomorphism.
This classic result has been extended to mappings between subspaces of C'(X)
and C(Y), and a general survey of such results can be found in [4]. We note one in
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particular: Myers [9] analyzed linear isometries between completely reqular sub-
spaces; that is, for subspaces A such that, given z € X and an open neighborhood
U of z, there is an f € A with 1 = |f(z)| = ||f]| and |f| <1 on X \ U.

For a general surjective isometry T" between subspaces of continuous functions,
the Mazur—Ulam theorem [7, théoreme| ensures that 7" — T'(0) is real-linear, and
so it is a natural extension to characterize such mappings. There has been recent
interest in this problem (see [8]), and the typical conclusion is that there is a
clopen set K such that T'(f)|x satisfies (1.1) and T'(f) is its conjugate on the
complement K°¢. However, there are other possibilities; for example, define A and
T: A— Aby

A={f(z)=az+b:a,beC,|z| =1} and  T(az+0b) =az+b.

It is known (see [6, Example 6.2]) that T is an isometry that cannot be of this
form; however, note that A is completely regular and that T satisfies

T(az + b) = Relaz + b] + i Im[—(a(—2) + b)],

which suggests a possibility for the general isometries between such spaces.

The goal of this work is to give a complete characterization of surjective isome-
tries T: A — B between completely regular subspaces. It is worth noting that
a similar problem was recently investigated by Jamshidi and Sady [5]; however,
our approach is significantly different. Instead of using the mapping T to induce
a mapping T%: B* — A" between the dual spaces and then investigating the
extreme points of the unit ball thereof, we adapt Eilenberg’s [3, Theorem 7.2]
proof of the Banach—Stone theorem, whose arguments hinge on the fact that the
maximal convex subsets of the unit sphere of C'(X) are essentially in a one-to-one
correspondence with X.

We begin in Section 2 by demonstrating that this correspondence still holds
for completely regular subspaces; in fact, it is shown that this is a necessary and
sufficient condition for a subspace to be completely regular. Then we prove the
following in Section 3.

Main Theorem. Let A C C(X) and B C C(Y) be unital, completely regular
spaces, and let T: A — B be a surjective mapping such that

|7(f) =T ()| =IIf - gll

holds for all f € A. Then there exist continuous functions p,v:Y — C with
lu(y)| = v(y)| =1 for ally € Y, a (potentially empty) clopen set K C'Y such
that v(y) = p(y) fory € K and v(y) = —uly) fory € Y\ K, and (possibly
distinct) homeomorphisms 7,p: Y — X such that

T(f) =T(0)+Re[p-(for)] +ilm[v- (fop)]

for all f € A.
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2. MAXIMAL CONVEX SETS OF THE UNIT SPHERE

Throughout this section, X is a compact Hausdorff space, C'(X) is the Banach
space of complex-valued and continuous functions on X, and A C C(X) is a
subspace. Specifically, A is nonempty and «f + fg € A for any f,g € A and
a, 5 € C. Given f € A, we denote the maximizing set of f by

M(f) = {z € X: [f(=)] = I},

and we note that M (f) is nonempty since X is compact. Similarly, for any subset
F C A, we define its maximizing set as

M(F) = () M(f),
feF

which is potentially empty.
Denote the unit sphere of A by

Sa={feA:|fll=1},
and denote the unit circle of C by
T={zeC:|z|=1}.

The following lemmas regarding convex combinations in the unit sphere are
straightforward to verify; however, they are essential for characterizing the max-
imal convex subsets of S 4, and so we include their proofs for completeness.

Lemma 2.1. Let f1,..., f, € Sa, and let f = >, fi/n € Sa. Then M(f) C
Mkt M(f5)-
Proof. Let z € M(f). Then |f(z)| = ||f|| = 1 since f € S4, and we have

1= 1) = [ 22 < Lyl

As f1,..., fn € Sa, it must be that | fx(20)| < 1 holds for each 1 < k < n. Suppose
that | fi(2)| < 1 for some k; then

1< (A 1) <1

which is a contradiction. Therefore, ||fx|]| = 1 = |fx(z)] holds for all 1 < k < n,
and so z € (_; M(fx)- O

Lemma 2.2. Let f,g € Sy be such that (1/2)[f +g] € Sa. Then f(z) = g(z) for
any x € M((1/2)[f + g]).

Proof. Let h = (1/2)[f + ¢, and let x € M(h). Then Lemma 2.1 implies that
x € M(f)NM(g), and so |f(z)] = |g(z)| = 1. Since h(x) is a convex combination
of f(x) and g(x) and h(z) € T, it follows that g(z) = f(x). O
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Given an = € X, we denote the collection of f € S4 that maximize at x by

Sa(z) ={f € Sa: |f(x)| =1}

and with value o € T by
Sa(z,a)={f € Sa: f(z) =a}.

Note that S4(z, @) is a convex subset of Sy, and this fact yields the following.

Lemma 2.3. Let z,y € X, and let o € T be such that Sa(x,a) C Sy(y). Then
there exists a f € T such that Sa(x,a) C Sa(y, 5).

Proof. First, we note that y € M(f) must hold for all f € Sy(z,«). Now, fix
fo € Sa(z,a), and set 8 = fo(y) € T. Given f € Sy(z, @), the convexity of this set
implies that (1/2)(fo + f) € Sa(z,a) C Sa(y). Therefore, y € M((1/2)[fo + f]).
and Lemma 2.2 implies that f(y) = fo(y) = B. O

Furthermore, by the next lemma, any convex subset of S4 is contained in a set
of the form Sa(x,a).

Lemma 2.4. Let C C S4 be convex. Then there exists an x € X and an o € T
such that C C Sy(z, ).

Proof. For any fi,..., f, € C, the convexity of C yields that >",_, fi/n € C, and
so Lemma 2.1 implies that (,_, M(fi) is nonempty. By the finite intersection
property, we then have M(C) # @. Fix x € M(C), fo € C, and set a = fy(z).
Given any f € C, we have (1/2)[fo + f] € C, and so x € M((1/2)[fo + f]).
Therefore, as C C Sy, Lemma 2.2 implies that f(z) = fo(z) = «, and thus
C C Sy(z,a). O

In light of this, any maximal (with respect to inclusion) convex subset of S 4 is
of the form Sy (z,a) for some z € X and a € T. We say X is in correspondence
with the maximal convex subsets of S 4 if, given z,y € X and o, f € T with

Salx,a) C Saly, B),

it holds that = = y. Note that a = f follows, and so Sa(z,a) = Sa(y,B);
furthermore, this condition yields that S4(z,a) is maximal for each z € X and
acT.

Lemma 2.5. Let X be in correspondence with the mazximal convex subsets of Sy,
and let v € X and a € T. Then Sy(x, ) is a mazimal convex subset of S 4.

Proof. Let C be a convex subset of Sy with Sy(z,«a) C C. Lemma 2.4 implies
that C C Sa(y, ) for some y € Y and g € T, and so Sy(z,«) = Sa(y, 5) must
hold. Therefore, S4(z,a) = C, and so S4(x, @) must be maximal. O

Furthermore, this condition is equivalent to requiring that A be completely
regular.

Lemma 2.6. The subspace A is completely reqular if and only if X is in corre-
spondence with the mazimal convex subsets of S 4.
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Proof. Suppose that A is completely regular. Let z,y € X and o, € T be
such that S4(x, ) C Sa(y, B). If © # y, then there exists an open neighborhood
U of x with y ¢ U. As A is completely regular, there is an f € A such that

= |f(x)] = ||f]| and |f(2)] < 1 for all z € X \ U. We may assume that
f(z) = a; otherwise, f is replaced with af(x)f. Thus f € Sa(z,a) C Sa(y,B),
which yields the contradictory fact that 1 = |f(y)| < 1.

Now, suppose that A is not completely regular. Then there exists an z € X and
an open neighborhood U such that M (f) N (X \ U) # @ holds for all f € Sy(z).
We claim that the collection

F={M(f)N(X\U): f € Sa(x)}

of closed sets has the finite intersection property. Indeed, let fi,..., f, € Sa(z).
Set
o - Je(@) fr
PP

Then f € S4(x) holds. Consequently, Lemma 2.1 implies that

3

@4 M(f)N(X\U) C (ﬂMfk ) (X\U) = ﬂ N X\ U)].

Consequently, there exists a y € M(f) N (X \ U) for all f € Sy(z), and we
note that  # y and Sy(z,1) C S4(y) hold. Therefore, Lemma 2.3 implies that
there exists a § € T such that Sy(z,1) C Su(y, ), and so X fails to be in
correspondence with the maximal convex subsets of S 4. O

We conclude this section with a result that we will repeatedly use, which is
inspired by arguments made by Araujo and Font in [I, Lemma 2.3].

Lemma 2.7. Let A be completely reqular, o € X, f € A, a € T, and let ¢ > 0
be such that |f(xo)| < €. Then there exist an h € Sy(xg, ) and an M > 0 such
that || f + Mh| < e+ M.

Proof. Let U = {x € X: |f(x)| < €}. Since A is completely regular, there exists
an h € A such that 1 = |h(zo)| = ||h|| and M(h) C U. We can assume that
h € Sa(zo, ). As X \ U is compact, there is an s < 1 with

s =sup{|h(z)|: x € X \U}.

Choose M > 0 such that ||f|| < e+ M(1 —s). Then [|f|| + Ms < ¢ + M. For
r € U, we have

|f(x) —i—Mh(x)} <e+ M,
and for z € X \ U, it must be that

| f(z) + Mh(z)| < ||f|| + Ms < e+ M. O
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3. NONLINEAR ISOMETRIES BETWEEN COMPLETELY REGULAR SUBSPACES

In this section, X and Y are compact Hausdorff spaces, and A C C(X) and B C
C(Y) are unital (the constant function 1 belongs to both .4 and B), completely
regular subspaces. Moreover, T': A — B is a surjective isometry that is real-linear,
which is to say that

T(rf+sg)=rT(f)+sT(g) and  ||T(f)—T(g)| = Ilf — gl

hold for all r;s € R and f,g € A. We will prove the following result regarding
such mappings.

Theorem 3.1. There exist continuous functions p,v: Y — T and a clopen set
K CY with v(y) = uly) fory € K and v(y) = —u(y) fory € Y \ K, and there
exist homeomorphisms 7,p: Y — X such that

T(f)=Re[p-(for)| +ilm[v-(fop)] (3.1)
for all f € A.

The main theorem is thus a corollary of this theorem combined with the Mazur—
Ulam theorem, and we will prove Theorem 3.1 via a sequence of lemmas.

As T is a surjective, real-linear isometry, it must be bijective and its inverse 7!
is also a real-linear isometry. As B is completely regular, Lemma 2.5 yields that
T71[Ss(y, \)] is a maximal convex subset of S4, where y € Y and A € T. More-
over, Lemma 2.4 implies that there exist z € X and o € T with T-![Sg(y, \)] =

Sa(x, ), and Lemma 2.6 yields that these must be unique.
For each A € T, we define mappings ¢,: Y — X and ¢,: Y — T by

T[Sy, \)] = Sa(valy), ex(v)). (3.2)

We begin by demonstrating that each v,: Y — X is a continuous bijection. As
Y is compact and X is Hausdorff, it then follows that 1) is a homeomorphism.

Lemma 3.2. Let A € T. Then the mapping ¥: Y — X 1is injective.

Proof. Let y,z € Y be such that ¢,(z) = ¥(y). The constant function A belongs
to both Sg(z,\) and Sg(y, A), and so (3.2) implies that

THA) € Sa(¥a(2),a(2))  and  T7'(A) € Sa(va(y), oa(y)),

which implies that

ox(2) =T N (Ua(2) =T V) (A (y) = ea(y)

must hold. Now, if z # y, then the complete regularity of B yields the exis-
tence of a k € Sp(z,\) such that |k(y)] < 1. By (3.2), we have T-(k) €
S4(tr(2), 92(2)) = Sa(¥a(y), a(y)), which yields the contradictory k € Su(y, \).

Therefore, we must have z = y. O

Lemma 3.3. Let A € T. Then the mapping ¥: Y — X is surjective.
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Proof. Let x € X. Since T is a real-linear isometry, Lemmas 2.4, 2.5, and 2.6
yield the existence of y € Y and o € T with

T[Sa(z,1)] = Sp(y, ).
Similarly,
T[Sa(z,aN)] = Sg(w, B) and T[Sz, aX)] = Sp(z,7)
for some w,z € Y and 3,7 € T. Set f = T~ !(a), and note that a\f € Sy(x,al)
and aAf € Sy(x,a)). As such, we arrive at the following inequalities:
1+af|=|a+p| = ‘a—l—T(&)\f)(w)] < Ha+T(a)\f)H
= If + AT = |1+ @
1= aB| = |a - 8] = |a - T@\f)(w)| < [la - T@)|
=|f—aArf| =[1—aAl
1+ay| =|a+|= ‘oz + T(aXf)(z)‘ < Ha + T(aXf)H
= |If +arfll = [1+a]],
1 —ay] =]a =7 =|a—=T(@rf)(2)] < [|a = T(aAf)|
—If = aXfll = |1 - X,
These inequalities force
Re(apB) = Re(aX) = Re(ay).
And since {@p,a\, @y} C T, it follows via the pigeonhole principle that at least
two of these complex numbers must be equal. As such, there are three cases to
consider.
If @f = @A, then = A, and so (3.2) implies that
Sa(z,a)\) =T"" [Sg(w,ﬁ)} =71 [Sg(w, /\)} = SA(Q/J)\(UJ), gp,\(w)),
x = Yy (w).
Similarly, if @\ = @y, then A = v , and so

Sa(z,aX) =T " [Sp(z,7)] =T [S8(2,A)] = Sa(¥r(2), ¢r(2)),
which gives = = ¥, (2).
Finally, suppose that @8 = a. Then § = v, and so
B € Sp(w, B) = T[Salz,aN)] and
B € Sp(z,B8) = Sp(z,7) = T[Sa(x, a))]
hold. It follows that @\ = aX = @A holds, and thus @\ € R. As |[@)\| = 1, we

either have A = a or A = —a. In the former case, we have

Salz, 1) =T [Sp(y, )] = T7'[Ss(y, A)] = Sa(¥a(y), er(y)),

and so x = ¥, (y). For the latter case, note that for any f € Sy(z,—1), we have
—f € Sa(z,1),and so T'(—f) € Sg(y, ), which implies that T'(f) € Sg(y, —a) =
S(y, A). Therefore, S1(z, ~1) € T[S(y, A)] = Sa(tr(s), @x(»)). and s0 7 =
¥ (y) follows from Lemma 2.6. O
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Lemma 3.4. Let A € T. Then the mapping ¥y: Y — X is continuous.

Proof. Let U C X be open, and fix yo € 1, '[U]. As ¥x(yo) € U, the complete
regularity of A yields the existence of an h € S4(¥x(yo), px(y0)) with M (h) C U.
Set

e = sup{|h(z)|: 2 € X \ U},
and define
W={yeY:e<Re[AT(h)(y)]}.

Note that ¢ < 1 = Re[AT(h)(yo)] holds, and so W is an open neighborhood of ;.
We claim that W C ¢ '[U], and thus ¥ ' [U] must be open. Indeed, let z € W. If
¥a(z) € X \ U, then |h(¢A(2))| < €, and so Lemma 2.7 implies that there exists
an M > 0and a k € S4(¥r(2), pa(2)) such that |h+ MEk| < e+ M. Since z € W,
it follows that

e+ M < Re[AT'(h)(z) + M|
< [AT(h)(2) + M|
= |T(h)(z) + M|
— |T(h)(2) + MT(k)(2)]
<||T(h) + MT (k)|
= ||h+ Mk| <+ M,

which is contradictory. Therefore, it must be that ¥, (z) € U, and so z € 9, [U].
]

Let us now prove a zero preservation property.

Lemma 3.5. Lety € Y, A € T, and f € A be such that f(¢a(y)) = 0. Then
Re[AT(f)(y)] = 0.

Proof. Suppose that Re[AT'(f)(y)] # 0. We can assume that Re[AT'(f)(y)] = 1; if
not, then f is adjusted by an appropriate real scalar.

Since | f(¥A(y))] < 1, Lemma 2.7 yields the existence of an h € S4(¥A(y), ex(y))
and an M > 0 with ||f + Mh|| <1+ M. As (3.2) gives T'(h) € Sg(y, \), we have

1+ M =Re[AT(f)(y) + M]
< [AT(f)(y) + M|
= |T(f)(y) + M|
= |T(f)(y) + MT(h)(y)|
<||T(f)+ MT(h)|
—||f + Mh|| <1+ M,
which is a contradiction. O
Next, we verify that ¢, and ; differ by a scaling of .
Lemma 3.6. Lety € Y. Then ¢;(y) = Lip1(y).
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Proof. First, we demonstrate that the function

T(@l(y) +90i(y>>

V2
has norm less than or equal to 1. Indeed, the constant function ¢;(y) belongs
to Sa(v1(y), v1(y)), and thus (3.2) implies that T(p1(y)) € Sg(y,1). Let g =

T=1(iT(p1(y))). Then T(g) € Sp(y, i), and so g € Sa(¥;(y), pi(y)). The fact that
T is a real-linear isometry then yields

o1 () + @i(W)| = o1 (y) + 9(i(v)|
< |le1(y) + 9|
= ||T(e1(v) + T(9)|
=@+ )T (1) = V2,
and so

<1

HT<801(9) +soz-(y)>” _ Hsol(y) +¢i(y) H
V2 V2
Now, let o = (1/v/2)[1 +1]. By (3.2), we have that the constant function ¢;(y)
satisfies T'(p;(y)) € Sg(y, i), and thus the real linearity of 7" then implies that

1Y)+, Tlei)y) +T(eily)(y) 1+
T<T> (y) = NG = Nl
which forces . ”
1Y) +pily
T<T> € Sp(y, a)

to hold. Appealing to (3.2) again implies that (1/\/5) [©1(y) + ¢i(y)] belongs to
SA(Va(y), pa(y)). This yields

V20u(y) = 01(y) + @iy).
Therefore, |p1(y) + i(y)| = V2, and thus o;(y) = Fig,(y) follows. O
Define the set
K={yeY: iy =ip(y)} (33)
Note that Lemma 3.6 implies that
Y\K = {y eY: gy = —igpl(y)}.

Our next task is to prove that K is clopen. To do so, we need some auxiliary
results.

Lemma 3.7. Lety €Y, let A\ € T, and let f € A. Then
Re[AT(f)(y)] = Re[AT(1)(y)] - Re[f (¢¥a(y))] + Re[AT(i)(y)] - Im[f (¢a(y))]-
In particular,

ReT(f)(y) =ReT(1)(y) Re f (¥1(y)) + Re T (i) (y) Im f (¢1(y)),
ImT(f)(y) = ImT(1)(y) Re f(¥i(y)) + ImT(i)(y) Im f (i (y))

—
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and
1=ReT(1)(y) Repi(y) + ReT'(i)(y) Im ¢1(y),
1=ImT(1)(y) Re pi(y) + Im T (i) (y) Im p;(y).

Proof. Let g = f— f(¥x(y)), and denote f(1x(y)) = a+bi. Then the real linearity
of T implies that

T(g)=T(f)—T(a+bi) =T(f) —aT(1) = bT(0).
Since g(¢x(y)) = 0, Lemma 3.5 implies that
0=Re(AT(9)(y)) = Re(A[T(f)(y) — aT(1)(y) — bT(i)(y)]).
and so
Re[AT(f)(y)] = aRe[AT(1)(y)] +bRe[)\T(z)( )]
= Re[)\T (D)(y)] - Re[f (valy))]
+Re[AT(i)(y)] - Im[f (¥a(y))]- O

Lemma 3.8. Lety € Y.
(i) Let y € K. Then T(1)(y) = ¢1(y) and T(i)(y) =T (1)(y).
(i) Lety € Y\ K. Then T(1)(y) = r(y) and T(3)(y) = —T(1)(y).
Proof. (i) As y € K, (3.3) yields that ¢;(y) = ip1(y), and so
Regi(y) = —Impi(y)  and  Imgi(y) = Repi(y).
By Lemma 3.7, it must be that
1=ReT(1)(y) Re 1(y) + ReT(i)(y) Im ¢4 (y),
1 =ImT(i)(y) Re 1(y) — Im T(1)(y) Im 1 (y).
Adding these produces
2=ReT(1)(y) Re1(y) — ImT(1)(y) Im ¢1 (y)
+ ReT'(i)(y) Im 1 (y) + Im T(i) (y) Re ¢1(y)
= Re[T(1)(y)¢1(y)] + Im[T(0)(y) 1 (y)].

As T is norm-preserving, we have that |T'(1)(y)e1(y)| and |T(7)(y)e1(y)| are less
than 1, and so it follows that

1=TM)(y)er(y) and i =T()(y)e1(y)

Therefore,
T()(y) =¢ily)  and  T(i)(y) =i (y).
(ii) Since y € Y\ K, we have that ¢;(y) = —ip;(y), and so
Rewi(y) =Imei(y)  and  Imgpi(y) = —Repi(y).
Appealing to Lemma 3.7 again gives

1=ReT(1)(y) Rep1(y) + ReT(i)(y) Im p1(y),
1=ImT(1)(y) Im 1 (y) — ImT(i)(y) Re p1(y).
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Adding the above two equations yields

2=ReT(1)(y) Rep:1(y) + ImT(1)(y) Im 1 (y)
+ReT'(i)(y) Im 1 (y) — Im T(i)(y) Re p1(y)
]

= Re[T(1)(y)¢1(y)] + m[T(i)(y) - (—1(y))]-

From this, we have that

L=TW)(yei(y) and  i=T(0)(y) (1Y),

and so
T()(y) =wily)  and  T()(y) = —igi(y). O
Using these, we can now demonstrate that the set K defined by (3.3) is clopen.
Lemma 3.9. The set K satisfies
K={yeY:T(i)(y) =iT(1)(y)},
Y\K={yeY:T>)(y) = —T(1)(y)}.
Consequently, K 1is clopen and the mapping p1: Y — T is continuous.
Proof. In light of Lemma 3.8, we have the following inclusions:
Kc{yeY:T(@)(y)=iT(1)(y)} and
Y\K C{yeY:TG)(y) = —T(1)(y)}

Thus we need only prove the reverse inclusions.
Indeed, let y € Y satisfy T'(¢)(y) = ¢7'(1)(y). Then Lemma 3.7 implies that

1=ReT(1)(y) Repr(y) + ReT(i)(y) Im ¢4 (y)

=ReT(1)(y) Re1(y) — Im T (1)(y) Im @1 (y) = Re[T(1) (1)1 ()],
1=ImT(1)(y) Repi(y) + ImT(i)(y) Im ¢;(y)

=ImT(1)(y) Rei(y) + Re T(1)(y) Im @;(y) = Im [T(1)(y) s (y)] .

This yields
1=TMW)(y)e1(y) and  i=T(1)(y)ei(y),

and so

vi(y) = iT(1)(y) = i1 (y).
Consequently, y € K.
Now, let y € Y be such that 7'(i)(y) = —¢T'(1)(y). Lemma 3.7 then gives

1=ReT(1)(y) Repi(y) + ReT(i)(y) Im o1 (y) -
=ReT(1)(y) Regr(y) + Im T (1)(y) Im 1 (y) = Re[T(1)(y)¢1(y)]

and

1=ImT(1)(y) Rewi(y) + Im T'(i)(y) Im ¢;(y)
=ImT(1)(y) Reg;(y) — Re T(1)(y) Im ¢;(y) = Im [T'(1)(y) i ()],
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and thus 1 =T(1)(y)e1(y) and i = T'(1)(y)e;i(y). In light of this, we have

wiy) = —iT(1)(y) = —iga(y),
which yields y € Y\ K. Finally, we note that
K={yeY: (T —iT(1))(y) =0},
Y\K={yeY: (T@)+iT(1))(y) =0}.
Thus both K and Y \ K are closed; consequently, K is clopen. Note that
Lemma 3.8 yields that ¢1|x = T(1)|x and 1|y x = T(1)|y\x. Since K and

Y \ K are disjoint closed sets and T'(1) is continuous, it follows that ¢ is contin-
uous. O

Define the mappings 7,p: Y — X, and p,v: Y — T as follows:

K
T =1, p =i, =91, V(y)_{/i(y)’ yen,

By Lemma 3.9, we have that p and v are continuous, and Lemmas 3.2, 3.3, and 3.4
imply that 7 and p are homeomorphisms. To complete the proof of Theorem 3.1,
it is only left to demonstrate that these mappings satisfy (3.1).

Lemma 3.10. Lety €Y, and let f € A. Then

T(f)(y) = Re[u(y)f(7(y))] +iIm[v(y) f(p(y))]-

Proof. Suppose that y € K. Lemma 3.8 implies that both T'(1)(y) = ¢1(y) =
w(y) = v(y) and T'(i)(y) = iu(y) = iv(y) hold. From Lemma 3.7, we know that

ReT(f)(y) = ReT(1)(y) Re f(7(y)) + ReT(i)(y) Im f(7(y))
= Repu(y) Re f(7(y)) + Reliu(y)] Im f(7(2))
= Re pu(y) Re f(7(y)) — Im p(y) Im f(7(y)) = Re[u(y)f(7(y))]
and that

Im T(f)(y) = Im T(1)(y) Re f (p(y)) + Im T(i)(y) Im f (p(y))

=Imv(y) Re f(p(y)) + Im[iv(y)] Tm f (p(y))
=Imv(y) Re f(p(y)) + Rev(y) Im f(p(y))
=Im([v(y)f(p(y))]-

Consequently,

T(f)(y) =ReT(f)(y) +iImT(f)(y) = Re[u(y) f(7(y))] +iTm[v(y)f(p(y))].
Now, let y € Y\ K. Then T(1)(y) = ¢1(y) = ply) = —v(y) and T(i)(y) =
—ip(y) = iv(y). As such, Lemma 3.7 gives
ReT(f)(y) =ReT(1)(y) Re f(7(y)) + ReT(i)(y) Im f(7(y))
=Reu(y) Re f(7(y)) + Re[—iu(y)] Im f(7(2))
= Repu(y) Re f(7(y)) — Im p(y) Im f(7(y)) = Re|u(y)f(7(y))]
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and
ImT(f)(y) = ImT(1)(y) Re f(p(y)) + Im T (i) (y) Im f (p(y))
= Im[—v(y)] Re f(p(y)) + Im [iv(y)] Tm f (p(y))
=Tmv(y)Re f(p(y)) + Rev(y) Im f(p(y))
=Im[v(y)f(p(v))].
Therefore,

T(f)(y) =ReT(f)(y) +ilmT(f)(y)
=Re[u(y)f(r(y))] +ilm[v(y)f(p(y))]- O
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