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Abstract. We demonstrate that any surjective isometry T : A → B not
assumed to be linear between unital, completely regular subspaces of complex-
valued, continuous functions on compact Hausdorff spaces is of the form

T (f) = T (0) + Re
[
µ · (f ◦ τ)

]
+ i Im

[
ν · (f ◦ ρ)

]
,

where µ and ν are continuous and unimodular, there exists a clopen set K with
ν = µ on K and ν = −µ on Kc, and τ and ρ are homeomorphisms.

1. Introduction

When investigating a mathematical object, it is worthwhile to study mappings
that leave the relevant structures undisturbed. For example, the collection C(X)
of complex-valued, continuous functions on a compact Hausdorff space X is a
normed vector space under the uniform norm ‖ · ‖, and so it is of interest to
characterize the surjective, complex-linear isometries T : C(X) → C(Y ). This
was done by both Banach [2] and Stone [10], and such mappings are of the form

T (f) = µ · (f ◦ τ), (1.1)

where |µ(y)| = 1 for all y ∈ Y and where τ : Y → X is a homeomorphism.
This classic result has been extended to mappings between subspaces of C(X)

and C(Y ), and a general survey of such results can be found in [4]. We note one in
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particular: Myers [9] analyzed linear isometries between completely regular sub-
spaces ; that is, for subspaces A such that, given x ∈ X and an open neighborhood
U of x, there is an f ∈ A with 1 = |f(x)| = ‖f‖ and |f | < 1 on X \ U .

For a general surjective isometry T between subspaces of continuous functions,
the Mazur–Ulam theorem [7, théorème] ensures that T − T (0) is real-linear, and
so it is a natural extension to characterize such mappings. There has been recent
interest in this problem (see [8]), and the typical conclusion is that there is a
clopen set K such that T (f)|K satisfies (1.1) and T (f) is its conjugate on the
complement Kc. However, there are other possibilities; for example, define A and
T : A → A by

A =
{
f(z) = az + b : a, b ∈ C, |z| = 1

}
and T (az + b) = az + b.

It is known (see [6, Example 6.2]) that T is an isometry that cannot be of this
form; however, note that A is completely regular and that T satisfies

T (az + b) = Re[az + b] + i Im
[
−
(
a(−z) + b

)]
,

which suggests a possibility for the general isometries between such spaces.
The goal of this work is to give a complete characterization of surjective isome-

tries T : A → B between completely regular subspaces. It is worth noting that
a similar problem was recently investigated by Jamshidi and Sady [5]; however,
our approach is significantly different. Instead of using the mapping T to induce
a mapping T ∗ : B∗ → A∗ between the dual spaces and then investigating the
extreme points of the unit ball thereof, we adapt Eilenberg’s [3, Theorem 7.2]
proof of the Banach–Stone theorem, whose arguments hinge on the fact that the
maximal convex subsets of the unit sphere of C(X) are essentially in a one-to-one
correspondence with X.

We begin in Section 2 by demonstrating that this correspondence still holds
for completely regular subspaces; in fact, it is shown that this is a necessary and
sufficient condition for a subspace to be completely regular. Then we prove the
following in Section 3.

Main Theorem. Let A ⊂ C(X) and B ⊂ C(Y ) be unital, completely regular
spaces, and let T : A → B be a surjective mapping such that∥∥T (f)− T (g)

∥∥ = ‖f − g‖

holds for all f ∈ A. Then there exist continuous functions µ, ν : Y → C with
|µ(y)| = |ν(y)| = 1 for all y ∈ Y , a (potentially empty) clopen set K ⊂ Y such
that ν(y) = µ(y) for y ∈ K and ν(y) = −µ(y) for y ∈ Y \ K, and (possibly
distinct) homeomorphisms τ, ρ : Y → X such that

T (f) = T (0) + Re
[
µ · (f ◦ τ)

]
+ i Im

[
ν · (f ◦ ρ)

]
for all f ∈ A.
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2. Maximal convex sets of the unit sphere

Throughout this section, X is a compact Hausdorff space, C(X) is the Banach
space of complex-valued and continuous functions on X, and A ⊂ C(X) is a
subspace. Specifically, A is nonempty and αf + βg ∈ A for any f, g ∈ A and
α, β ∈ C. Given f ∈ A, we denote the maximizing set of f by

M(f) =
{
x ∈ X :

∣∣f(x)∣∣ = ‖f‖
}
,

and we note thatM(f) is nonempty since X is compact. Similarly, for any subset
F ⊂ A, we define its maximizing set as

M(F) =
⋂
f∈F

M(f),

which is potentially empty.
Denote the unit sphere of A by

SA =
{
f ∈ A : ‖f‖ = 1

}
,

and denote the unit circle of C by

T =
{
z ∈ C : |z| = 1

}
.

The following lemmas regarding convex combinations in the unit sphere are
straightforward to verify; however, they are essential for characterizing the max-
imal convex subsets of SA, and so we include their proofs for completeness.

Lemma 2.1. Let f1, . . . , fn ∈ SA, and let f =
∑n

k=1 fk/n ∈ SA. Then M(f) ⊂⋂n
k=1M(fj).

Proof. Let z ∈M(f). Then |f(z)| = ‖f‖ = 1 since f ∈ SA, and we have

1 =
∣∣f(z)∣∣ = ∣∣∣ n∑

k=1

fk(z)

n

∣∣∣ ≤ 1

n

n∑
k=1

∣∣fk(z)∣∣.
As f1, . . . , fn ∈ SA, it must be that |fk(z0)| ≤ 1 holds for each 1 ≤ k ≤ n. Suppose
that |fk(z)| < 1 for some k; then

1 ≤ 1

n

(∣∣f1(z)∣∣+ · · ·+
∣∣fn(z)∣∣) < 1,

which is a contradiction. Therefore, ‖fk‖ = 1 = |fk(z)| holds for all 1 ≤ k ≤ n,
and so z ∈

⋂n
k=1M(fk). �

Lemma 2.2. Let f, g ∈ SA be such that (1/2)[f + g] ∈ SA. Then f(x) = g(x) for
any x ∈M((1/2)[f + g]).

Proof. Let h = (1/2)[f + g], and let x ∈ M(h). Then Lemma 2.1 implies that
x ∈M(f)∩M(g), and so |f(x)| = |g(x)| = 1. Since h(x) is a convex combination
of f(x) and g(x) and h(x) ∈ T, it follows that g(x) = f(x). �
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Given an x ∈ X, we denote the collection of f ∈ SA that maximize at x by

SA(x) =
{
f ∈ SA :

∣∣f(x)∣∣ = 1
}

and with value α ∈ T by

SA(x, α) =
{
f ∈ SA : f(x) = α

}
.

Note that SA(x, α) is a convex subset of SA, and this fact yields the following.

Lemma 2.3. Let x, y ∈ X, and let α ∈ T be such that SA(x, α) ⊂ SA(y). Then
there exists a β ∈ T such that SA(x, α) ⊂ SA(y, β).

Proof. First, we note that y ∈ M(f) must hold for all f ∈ SA(x, α). Now, fix
f0 ∈ SA(x, α), and set β = f0(y) ∈ T. Given f ∈ SA(x, α), the convexity of this set
implies that (1/2)(f0 + f) ∈ SA(x, α) ⊂ SA(y). Therefore, y ∈M((1/2)[f0 + f ]),
and Lemma 2.2 implies that f(y) = f0(y) = β. �

Furthermore, by the next lemma, any convex subset of SA is contained in a set
of the form SA(x, α).

Lemma 2.4. Let C ⊂ SA be convex. Then there exists an x ∈ X and an α ∈ T
such that C ⊂ SA(x, α).

Proof. For any f1, . . . , fn ∈ C, the convexity of C yields that
∑n

k=1 fk/n ∈ C, and
so Lemma 2.1 implies that

⋂n
k=1M(fk) is nonempty. By the finite intersection

property, we then have M(C) 6= ∅. Fix x ∈ M(C), f0 ∈ C, and set α = f0(x).
Given any f ∈ C, we have (1/2)[f0 + f ] ∈ C, and so x ∈ M((1/2)[f0 + f ]).
Therefore, as C ⊂ SA, Lemma 2.2 implies that f(x) = f0(x) = α, and thus
C ⊂ SA(x, α). �

In light of this, any maximal (with respect to inclusion) convex subset of SA is
of the form SA(x, α) for some x ∈ X and α ∈ T. We say X is in correspondence
with the maximal convex subsets of SA if, given x, y ∈ X and α, β ∈ T with

SA(x, α) ⊂ SA(y, β),

it holds that x = y. Note that α = β follows, and so SA(x, α) = SA(y, β);
furthermore, this condition yields that SA(x, α) is maximal for each x ∈ X and
α ∈ T.

Lemma 2.5. Let X be in correspondence with the maximal convex subsets of SA,
and let x ∈ X and α ∈ T. Then SA(x, α) is a maximal convex subset of SA.

Proof. Let C be a convex subset of SA with SA(x, α) ⊂ C. Lemma 2.4 implies
that C ⊂ SA(y, β) for some y ∈ Y and β ∈ T, and so SA(x, α) = SA(y, β) must
hold. Therefore, SA(x, α) = C, and so SA(x, α) must be maximal. �

Furthermore, this condition is equivalent to requiring that A be completely
regular.

Lemma 2.6. The subspace A is completely regular if and only if X is in corre-
spondence with the maximal convex subsets of SA.
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Proof. Suppose that A is completely regular. Let x, y ∈ X and α, β ∈ T be
such that SA(x, α) ⊂ SA(y, β). If x 6= y, then there exists an open neighborhood
U of x with y /∈ U . As A is completely regular, there is an f ∈ A such that
1 = |f(x)| = ‖f‖ and |f(z)| < 1 for all z ∈ X \ U . We may assume that

f(x) = α; otherwise, f is replaced with αf(x)f . Thus f ∈ SA(x, α) ⊂ SA(y, β),
which yields the contradictory fact that 1 = |f(y)| < 1.

Now, suppose that A is not completely regular. Then there exists an x ∈ X and
an open neighborhood U such that M(f)∩ (X \U) 6= ∅ holds for all f ∈ SA(x).
We claim that the collection

F =
{
M(f) ∩ (X \ U) : f ∈ SA(x)

}
of closed sets has the finite intersection property. Indeed, let f1, . . . , fn ∈ SA(x).
Set

f =
n∑

k=1

fk(x)fk
n

.

Then f ∈ SA(x) holds. Consequently, Lemma 2.1 implies that

∅ 6=M(f) ∩ (X \ U) ⊂
( n⋂
k=1

M
(
fk(x)fk

))
∩ (X \ U) =

n⋂
k=1

[
M(fk) ∩ (X \ U)

]
.

Consequently, there exists a y ∈ M(f) ∩ (X \ U) for all f ∈ SA(x), and we
note that x 6= y and SA(x, 1) ⊂ SA(y) hold. Therefore, Lemma 2.3 implies that
there exists a β ∈ T such that SA(x, 1) ⊂ SA(y, β), and so X fails to be in
correspondence with the maximal convex subsets of SA. �

We conclude this section with a result that we will repeatedly use, which is
inspired by arguments made by Araujo and Font in [1, Lemma 2.3].

Lemma 2.7. Let A be completely regular, x0 ∈ X, f ∈ A, α ∈ T, and let ε > 0
be such that |f(x0)| < ε. Then there exist an h ∈ SA(x0, α) and an M > 0 such
that ‖f +Mh‖ < ε+M .

Proof. Let U = {x ∈ X : |f(x)| < ε}. Since A is completely regular, there exists
an h ∈ A such that 1 = |h(x0)| = ‖h‖ and M(h) ⊂ U . We can assume that
h ∈ SA(x0, α). As X \ U is compact, there is an s < 1 with

s = sup
{∣∣h(x)∣∣ : x ∈ X \ U

}
.

Choose M > 0 such that ‖f‖ < ε +M(1 − s). Then ‖f‖ +Ms < ε +M . For
x ∈ U , we have ∣∣f(x) +Mh(x)

∣∣ < ε+M,

and for x ∈ X \ U , it must be that∣∣f(x) +Mh(x)
∣∣ < ‖f‖+Ms < ε+M. �
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3. Nonlinear isometries between completely regular subspaces

In this section,X and Y are compact Hausdorff spaces, andA ⊂ C(X) and B ⊂
C(Y ) are unital (the constant function 1 belongs to both A and B), completely
regular subspaces. Moreover, T : A → B is a surjective isometry that is real-linear,
which is to say that

T (rf + sg) = rT (f) + sT (g) and
∥∥T (f)− T (g)

∥∥ = ‖f − g‖

hold for all r, s ∈ R and f, g ∈ A. We will prove the following result regarding
such mappings.

Theorem 3.1. There exist continuous functions µ, ν : Y → T and a clopen set
K ⊂ Y with ν(y) = µ(y) for y ∈ K and ν(y) = −µ(y) for y ∈ Y \K, and there
exist homeomorphisms τ, ρ : Y → X such that

T (f) = Re
[
µ · (f ◦ τ)

]
+ i Im

[
ν · (f ◦ ρ)

]
(3.1)

for all f ∈ A.

The main theorem is thus a corollary of this theorem combined with the Mazur–
Ulam theorem, and we will prove Theorem 3.1 via a sequence of lemmas.

As T is a surjective, real-linear isometry, it must be bijective and its inverse T−1

is also a real-linear isometry. As B is completely regular, Lemma 2.5 yields that
T−1[SB(y, λ)] is a maximal convex subset of SA, where y ∈ Y and λ ∈ T. More-
over, Lemma 2.4 implies that there exist x ∈ X and α ∈ T with T−1[SB(y, λ)] =
SA(x, α), and Lemma 2.6 yields that these must be unique.

For each λ ∈ T, we define mappings ψλ : Y → X and ϕλ : Y → T by

T−1
[
SB(y, λ)

]
= SA

(
ψλ(y), ϕλ(y)

)
. (3.2)

We begin by demonstrating that each ψλ : Y → X is a continuous bijection. As
Y is compact and X is Hausdorff, it then follows that ψλ is a homeomorphism.

Lemma 3.2. Let λ ∈ T. Then the mapping ψλ : Y → X is injective.

Proof. Let y, z ∈ Y be such that ψλ(z) = ψλ(y). The constant function λ belongs
to both SB(z, λ) and SB(y, λ), and so (3.2) implies that

T−1(λ) ∈ SA
(
ψλ(z), ϕλ(z)

)
and T−1(λ) ∈ SA

(
ψλ(y), ϕλ(y)

)
,

which implies that

ϕλ(z) = T−1(λ)
(
ψλ(z)

)
= T−1(λ)

(
ψλ(y)

)
= ϕλ(y)

must hold. Now, if z 6= y, then the complete regularity of B yields the exis-
tence of a k ∈ SB(z, λ) such that |k(y)| < 1. By (3.2), we have T−1(k) ∈
SA(ψλ(z), ϕλ(z)) = SA(ψλ(y), ϕλ(y)), which yields the contradictory k ∈ SB(y, λ).
Therefore, we must have z = y. �

Lemma 3.3. Let λ ∈ T. Then the mapping ψλ : Y → X is surjective.
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Proof. Let x ∈ X. Since T is a real-linear isometry, Lemmas 2.4, 2.5, and 2.6
yield the existence of y ∈ Y and α ∈ T with

T
[
SA(x, 1)

]
= SB(y, α).

Similarly,

T
[
SA(x, αλ)

]
= SB(w, β) and T

[
SA(x, αλ)

]
= SB(z, γ)

for some w, z ∈ Y and β, γ ∈ T. Set f = T−1(α), and note that αλf ∈ SA(x, αλ)
and αλf ∈ SA(x, αλ). As such, we arrive at the following inequalities:

|1 + αβ| = |α + β| =
∣∣α + T (αλf)(w)

∣∣ ≤ ∥∥α + T (αλf)
∥∥

= ‖f + αλf‖ = |1 + αλ|,
|1− αβ| = |α− β| =

∣∣α− T (αλf)(w)
∣∣ ≤ ∥∥α− T (αλf)

∥∥
= ‖f − αλf‖ = |1− αλ|,

|1 + αγ| = |α + γ| =
∣∣α + T (αλf)(z)

∣∣ ≤ ∥∥α + T (αλf)
∥∥

= ‖f + αλf‖ = |1 + αλ|,
|1− αγ| = |α− γ| =

∣∣α− T (αλf)(z)
∣∣ ≤ ∥∥α− T (αλf)

∥∥
= ‖f − αλf‖ = |1− αλ|.

These inequalities force

Re(αβ) = Re(αλ) = Re(αγ).

And since {αβ, αλ, αγ} ⊂ T, it follows via the pigeonhole principle that at least
two of these complex numbers must be equal. As such, there are three cases to
consider.

If αβ = αλ, then β = λ, and so (3.2) implies that

SA(x, αλ) = T−1
[
SB(w, β)

]
= T−1

[
SB(w, λ)

]
= SA

(
ψλ(w), ϕλ(w)

)
,

x = ψλ(w).
Similarly, if αλ = αγ, then λ = γ , and so

SA(x, αλ) = T−1
[
SB(z, γ)

]
= T−1

[
SB(z, λ)

]
= SA

(
ψλ(z), ϕλ(z)

)
,

which gives x = ψλ(z).
Finally, suppose that αβ = αγ. Then β = γ, and so

β ∈ SB(w, β) = T
[
SA(x, αλ)

]
and

β ∈ SB(z, β) = SB(z, γ) = T
[
SA(x, αλ)

]
hold. It follows that αλ = αλ = αλ holds, and thus αλ ∈ R. As |αλ| = 1, we
either have λ = α or λ = −α. In the former case, we have

SA(x, 1) = T−1
[
SB(y, α)

]
= T−1

[
SB(y, λ)

]
= SA

(
ψλ(y), ϕλ(y)

)
,

and so x = ψλ(y). For the latter case, note that for any f ∈ SA(x,−1), we have
−f ∈ SA(x, 1), and so T (−f) ∈ SB(y, α), which implies that T (f) ∈ SB(y,−α) =
SB(y, λ). Therefore, SA(x,−1) ⊂ T−1[SB(y, λ)] = SA(ψλ(y), ϕλ(y)), and so x =
ψλ(y) follows from Lemma 2.6. �



NONLINEAR ISOMETRIES 467

Lemma 3.4. Let λ ∈ T. Then the mapping ψλ : Y → X is continuous.

Proof. Let U ⊂ X be open, and fix y0 ∈ ψ−1
λ [U ]. As ψλ(y0) ∈ U , the complete

regularity of A yields the existence of an h ∈ SA(ψλ(y0), ϕλ(y0)) with M(h) ⊂ U .
Set

ε = sup
{∣∣h(x)∣∣ : x ∈ X \ U

}
,

and define

W =
{
y ∈ Y : ε < Re

[
λT (h)(y)

]}
.

Note that ε < 1 = Re[λT (h)(y0)] holds, and so W is an open neighborhood of y0.
We claim that W ⊂ ψ−1

λ [U ], and thus ψ−1
λ [U ] must be open. Indeed, let z ∈ W . If

ψλ(z) ∈ X \ U , then |h(ψλ(z))| < ε, and so Lemma 2.7 implies that there exists
anM > 0 and a k ∈ SA(ψλ(z), ϕλ(z)) such that ‖h+Mk‖ < ε+M . Since z ∈ W ,
it follows that

ε+M < Re
[
λT (h)(z) +M

]
≤

∣∣λT (h)(z) +M
∣∣

=
∣∣T (h)(z) +Mλ

∣∣
=

∣∣T (h)(z) +MT (k)(z)
∣∣

≤
∥∥T (h) +MT (k)

∥∥
= ‖h+Mk‖ < ε+M,

which is contradictory. Therefore, it must be that ψλ(z) ∈ U , and so z ∈ ψ−1
λ [U ].

�

Let us now prove a zero preservation property.

Lemma 3.5. Let y ∈ Y , λ ∈ T, and f ∈ A be such that f(ψλ(y)) = 0. Then
Re[λT (f)(y)] = 0.

Proof. Suppose that Re[λT (f)(y)] 6= 0. We can assume that Re[λT (f)(y)] = 1; if
not, then f is adjusted by an appropriate real scalar.

Since |f(ψλ(y))| < 1, Lemma 2.7 yields the existence of an h ∈ SA(ψλ(y), ϕλ(y))
and an M > 0 with ‖f +Mh‖ < 1 +M . As (3.2) gives T (h) ∈ SB(y, λ), we have

1 +M = Re
[
λT (f)(y) +M

]
≤

∣∣λT (f)(y) +M
∣∣

=
∣∣T (f)(y) +Mλ

∣∣
=

∣∣T (f)(y) +MT (h)(y)
∣∣

≤
∥∥T (f) +MT (h)

∥∥
= ‖f +Mh‖ < 1 +M,

which is a contradiction. �

Next, we verify that ϕ1 and ϕi differ by a scaling of ±i.

Lemma 3.6. Let y ∈ Y . Then ϕi(y) = ±iϕ1(y).
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Proof. First, we demonstrate that the function

T
(ϕ1(y) + ϕi(y)√

2

)
has norm less than or equal to 1. Indeed, the constant function ϕ1(y) belongs
to SA(ψ1(y), ϕ1(y)), and thus (3.2) implies that T (ϕ1(y)) ∈ SB(y, 1). Let g =
T−1(iT (ϕ1(y))). Then T (g) ∈ SB(y, i), and so g ∈ SA(ψi(y), ϕi(y)). The fact that
T is a real-linear isometry then yields∣∣ϕ1(y) + ϕi(y)

∣∣ = ∣∣ϕ1(y) + g
(
ψi(y)

)∣∣
≤

∥∥ϕ1(y) + g
∥∥

=
∥∥T(ϕ1(y)

)
+ T (g)

∥∥
=

∥∥(1 + i)T
(
ϕ1(y)

)∥∥ =
√
2,

and so ∥∥∥T(ϕ1(y) + ϕi(y)√
2

)∥∥∥ =
∥∥∥ϕ1(y) + ϕi(y)√

2

∥∥∥ ≤ 1.

Now, let α = (1/
√
2)[1+ i]. By (3.2), we have that the constant function ϕi(y)

satisfies T (ϕi(y)) ∈ SB(y, i), and thus the real linearity of T then implies that

T
(ϕ1(y) + ϕi(y)√

2

)
(y) =

T (ϕ1(y))(y) + T (ϕi(y))(y)√
2

=
1 + i√

2
,

which forces

T
(ϕ1(y) + ϕi(y)√

2

)
∈ SB(y, α)

to hold. Appealing to (3.2) again implies that (1/
√
2)[ϕ1(y) + ϕi(y)] belongs to

SA(ψα(y), ϕα(y)). This yields
√
2ϕα(y) = ϕ1(y) + ϕi(y).

Therefore, |ϕ1(y) + ϕi(y)| =
√
2, and thus ϕi(y) = ±iϕ1(y) follows. �

Define the set

K =
{
y ∈ Y : ϕi(y) = iϕ1(y)

}
. (3.3)

Note that Lemma 3.6 implies that

Y \K =
{
y ∈ Y : ϕi(y) = −iϕ1(y)

}
.

Our next task is to prove that K is clopen. To do so, we need some auxiliary
results.

Lemma 3.7. Let y ∈ Y , let λ ∈ T, and let f ∈ A. Then

Re
[
λT (f)(y)

]
= Re

[
λT (1)(y)

]
· Re

[
f
(
ψλ(y)

)]
+Re

[
λT (i)(y)

]
· Im

[
f
(
ψλ(y)

)]
.

In particular,

ReT (f)(y) = ReT (1)(y) Re f
(
ψ1(y)

)
+ReT (i)(y) Im f

(
ψ1(y)

)
,

ImT (f)(y) = ImT (1)(y) Re f
(
ψi(y)

)
+ ImT (i)(y) Im f

(
ψi(y)

)
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and

1 = ReT (1)(y) Reϕ1(y) + ReT (i)(y) Imϕ1(y),

1 = ImT (1)(y) Reϕi(y) + ImT (i)(y) Imϕi(y).

Proof. Let g = f−f(ψλ(y)), and denote f(ψλ(y)) = a+bi. Then the real linearity
of T implies that

T (g) = T (f)− T (a+ bi) = T (f)− aT (1)− bT (i).

Since g(ψλ(y)) = 0, Lemma 3.5 implies that

0 = Re
(
λT (g)(y)

)
= Re

(
λ
[
T (f)(y)− aT (1)(y)− bT (i)(y)

])
,

and so

Re
[
λT (f)(y)

]
= aRe

[
λT (1)(y)

]
+ bRe

[
λT (i)(y)

]
= Re

[
λT (1)(y)

]
· Re

[
f
(
ψλ(y)

)]
+Re

[
λT (i)(y)

]
· Im

[
f
(
ψλ(y)

)]
. �

Lemma 3.8. Let y ∈ Y .

(i) Let y ∈ K. Then T (1)(y) = ϕ1(y) and T (i)(y) = iT (1)(y).
(ii) Let y ∈ Y \K. Then T (1)(y) = ϕ1(y) and T (i)(y) = −iT (1)(y).

Proof. (i) As y ∈ K, (3.3) yields that ϕi(y) = iϕ1(y), and so

Reϕi(y) = − Imϕ1(y) and Imϕi(y) = Reϕ1(y).

By Lemma 3.7, it must be that

1 = ReT (1)(y) Reϕ1(y) + ReT (i)(y) Imϕ1(y),

1 = ImT (i)(y) Reϕ1(y)− ImT (1)(y) Imϕ1(y).

Adding these produces

2 = ReT (1)(y) Reϕ1(y)− ImT (1)(y) Imϕ1(y)

+ ReT (i)(y) Imϕ1(y) + ImT (i)(y) Reϕ1(y)

= Re
[
T (1)(y)ϕ1(y)

]
+ Im

[
T (i)(y)ϕ1(y)

]
.

As T is norm-preserving, we have that |T (1)(y)ϕ1(y)| and |T (i)(y)ϕ1(y)| are less
than 1, and so it follows that

1 = T (1)(y)ϕ1(y) and i = T (i)(y)ϕ1(y).

Therefore,

T (1)(y) = ϕ1(y) and T (i)(y) = iϕ1(y).

(ii) Since y ∈ Y \K, we have that ϕi(y) = −iϕ1(y), and so

Reϕi(y) = Imϕ1(y) and Imϕi(y) = −Reϕ1(y).

Appealing to Lemma 3.7 again gives

1 = ReT (1)(y) Reϕ1(y) + ReT (i)(y) Imϕ1(y),

1 = ImT (1)(y) Imϕ1(y)− ImT (i)(y) Reϕ1(y).
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Adding the above two equations yields

2 = ReT (1)(y) Reϕ1(y) + ImT (1)(y) Imϕ1(y)

+ ReT (i)(y) Imϕ1(y)− ImT (i)(y) Reϕ1(y)

= Re
[
T (1)(y)ϕ1(y)

]
+ Im

[
T (i)(y) ·

(
−ϕ1(y)

)]
.

From this, we have that

1 = T (1)(y)ϕ1(y) and i = T (i)(y) ·
(
−ϕ1(y)

)
,

and so

T (1)(y) = ϕ1(y) and T (i)(y) = −iϕ1(y). �

Using these, we can now demonstrate that the set K defined by (3.3) is clopen.

Lemma 3.9. The set K satisfies

K =
{
y ∈ Y : T (i)(y) = iT (1)(y)

}
,

Y \K =
{
y ∈ Y : T (i)(y) = −iT (1)(y)

}
.

Consequently, K is clopen and the mapping ϕ1 : Y → T is continuous.

Proof. In light of Lemma 3.8, we have the following inclusions:

K ⊂
{
y ∈ Y : T (i)(y) = iT (1)(y)

}
and

Y \K ⊂
{
y ∈ Y : T (i)(y) = −iT (1)(y)

}
.

Thus we need only prove the reverse inclusions.
Indeed, let y ∈ Y satisfy T (i)(y) = iT (1)(y). Then Lemma 3.7 implies that

1 = ReT (1)(y) Reϕ1(y) + ReT (i)(y) Imϕ1(y)

= ReT (1)(y) Reϕ1(y)− ImT (1)(y) Imϕ1(y) = Re
[
T (1)(y)ϕ1(y)

]
,

1 = ImT (1)(y) Reϕi(y) + ImT (i)(y) Imϕi(y)

= ImT (1)(y) Reϕi(y) + ReT (1)(y) Imϕi(y) = Im
[
T (1)(y)ϕi(y)

]
.

This yields

1 = T (1)(y)ϕ1(y) and i = T (1)(y)ϕi(y),

and so

ϕi(y) = iT (1)(y) = iϕ1(y).

Consequently, y ∈ K.
Now, let y ∈ Y be such that T (i)(y) = −iT (1)(y). Lemma 3.7 then gives

1 = ReT (1)(y) Reϕ1(y) + ReT (i)(y) Imϕ1(y)

= ReT (1)(y) Reϕ1(y) + ImT (1)(y) Imϕ1(y) = Re
[
T (1)(y)ϕ1(y)

]
and

1 = ImT (1)(y) Reϕi(y) + ImT (i)(y) Imϕi(y)

= ImT (1)(y) Reϕi(y)− ReT (1)(y) Imϕi(y) = Im
[
T (1)(y)ϕi(y)

]
,
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and thus 1 = T (1)(y)ϕ1(y) and i = T (1)(y)ϕi(y). In light of this, we have

ϕi(y) = −iT (1)(y) = −iϕ1(y),

which yields y ∈ Y \K. Finally, we note that

K =
{
y ∈ Y :

(
T (i)− iT (1)

)
(y) = 0

}
,

Y \K =
{
y ∈ Y :

(
T (i) + iT (1)

)
(y) = 0

}
.

Thus both K and Y \ K are closed; consequently, K is clopen. Note that

Lemma 3.8 yields that ϕ1|K = T (1)|K and ϕ1|Y \K = T (1)|Y \K . Since K and
Y \K are disjoint closed sets and T (1) is continuous, it follows that ϕ1 is contin-
uous. �

Define the mappings τ, ρ : Y → X, and µ, ν : Y → T as follows:

τ = ψ1, ρ = ψi, µ = ϕ1, ν(y) =

{
µ(y), y ∈ K,

−µ(y), y ∈ Y \K.

By Lemma 3.9, we have that µ and ν are continuous, and Lemmas 3.2, 3.3, and 3.4
imply that τ and ρ are homeomorphisms. To complete the proof of Theorem 3.1,
it is only left to demonstrate that these mappings satisfy (3.1).

Lemma 3.10. Let y ∈ Y , and let f ∈ A. Then

T (f)(y) = Re
[
µ(y)f

(
τ(y)

)]
+ i Im

[
ν(y)f

(
ρ(y)

)]
.

Proof. Suppose that y ∈ K. Lemma 3.8 implies that both T (1)(y) = ϕ1(y) =
µ(y) = ν(y) and T (i)(y) = iµ(y) = iν(y) hold. From Lemma 3.7, we know that

ReT (f)(y) = ReT (1)(y) Re f
(
τ(y)

)
+ReT (i)(y) Im f

(
τ(y)

)
= Reµ(y) Re f

(
τ(y)

)
+Re

[
iµ(y)

]
Im f

(
τ(z)

)
= Reµ(y) Re f

(
τ(y)

)
− Imµ(y) Im f

(
τ(y)

)
= Re

[
µ(y)f

(
τ(y)

)]
and that

ImT (f)(y) = ImT (1)(y) Re f
(
ρ(y)

)
+ ImT (i)(y) Im f

(
ρ(y)

)
= Im ν(y) Re f

(
ρ(y)

)
+ Im

[
iν(y)

]
Im f

(
ρ(y)

)
= Im ν(y) Re f

(
ρ(y)

)
+Re ν(y) Im f

(
ρ(y)

)
= Im

[
ν(y)f

(
ρ(y)

)]
.

Consequently,

T (f)(y) = ReT (f)(y) + i ImT (f)(y) = Re
[
µ(y)f

(
τ(y)

)]
+ i Im

[
ν(y)f

(
ρ(y)

)]
.

Now, let y ∈ Y \ K. Then T (1)(y) = ϕ1(y) = µ(y) = −ν(y) and T (i)(y) =

−iµ(y) = iν(y). As such, Lemma 3.7 gives

ReT (f)(y) = ReT (1)(y) Re f
(
τ(y)

)
+ReT (i)(y) Im f

(
τ(y)

)
= Reµ(y) Re f

(
τ(y)

)
+Re

[
−iµ(y)

]
Im f

(
τ(z)

)
= Reµ(y) Re f

(
τ(y)

)
− Imµ(y) Im f

(
τ(y)

)
= Re

[
µ(y)f

(
τ(y)

)]
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and

ImT (f)(y) = ImT (1)(y) Re f
(
ρ(y)

)
+ ImT (i)(y) Im f

(
ρ(y)

)
= Im

[
−ν(y)

]
Re f

(
ρ(y)

)
+ Im

[
iν(y)

]
Im f

(
ρ(y)

)
= Im ν(y) Re f

(
ρ(y)

)
+Re ν(y) Im f

(
ρ(y)

)
= Im

[
ν(y)f

(
ρ(y)

)]
.

Therefore,

T (f)(y) = ReT (f)(y) + i ImT (f)(y)

= Re
[
µ(y)f

(
τ(y)

)]
+ i Im

[
ν(y)f

(
ρ(y)

)]
. �
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