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Abstract. Let R(D) be the algebra generated in the Sobolev space W 22(D)
by the rational functions with poles outside the unit disk D. This is called
the Sobolev disk algebra. In this article, the commutant of the multiplication
operator MB(z) on R(D) is studied, where B(z) is an n-Blaschke product.
We prove that an operator A ∈ L(R(D)) is in A′(MB(z)) if and only if A =∑n

i=1 Mhi
M−1

∆(z)Ti, where {hi}ni=1 ⊂ R(D), and Ti ∈ L(R(D)) is given by

(Tig)(z) =
∑n

j=1(−1)i+j∆ij(z)g(Gj−1(z)), i = 1, 2, . . . , n, G0(z) ≡ z.

1. Introduction

Let Ω be an analytic Cauchy domain in the complex plane C, and let W 22(Ω)
denote the Sobolev space

W 22(Ω) =
{
f ∈ L2(Ω, dm) :

the distributional partial derivatives of first
and second order of f belong to L2(Ω, dm)

}
,

where dm denotes the planar Lebesgue measure. For f, g ∈ W 22(Ω), we define

〈f, g〉 =
∑
|α|≤2

∫
DαfDαg dm.
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Then W 22(Ω) is a Hilbert space and a Banach algebra with identity under an
equivalent norm. The space W 22(Ω) can be continuously embedded in the space
C(Ω) of continuous functions on Ω by the Sobolev embedding theorem, where Ω
is the closure of Ω.

Dixmier and Foiaş [3] constructed operator models based on the Sobolev space.
Using these models, Herrero, Taylor, and Wang [5] discussed the variation of
point spectrum under compact perturbation. Jiang and Wang in [6, Chapter 4.5]
obtained some interesting results on strongly irreducible operators. If Ω = D,
the unit disk in C, then let R(D) be the subalgebra of W 22(D) generated by
rational functions with poles outside D. This subalgebra is called the Sobolev disk
algebra (see [6], [8]). In fact, R(D) consists of all analytic functions in W 22(D),
and the Hilbert space R(D) possesses an orthonormal basis {en}∞n=0, en = βnz

n,
βn = [ n+1

(3n4−n2+2n+1)π
]1/2 (n = 0, 1, 2, . . .). A function g(z) =

∑∞
n=0 anz

n analytic on

D belongs to R(D) if and only if
∑∞

n=0 |
an
βn
|2 < ∞. Given g ∈ R(D), the multiplica-

tion operator Mg is given by Mgf = gf , f ∈ R(D). It was proved that A′(Mz) =
{Mg; g ∈ R(D)}, where A′(Mz) is the commutant of Mz (see [6, p. 95]). The
commutant of a bounded linear operator A on the Hilbert space H is defined by

A′(A) =
{
B ∈ L(H);AB = BA

}
,

where L(H) denotes the set of all bounded linear operators on H.
An operator T ∈ L(H) is Fredholm if ranT , the range of T , is closed and

indT = dimkerT − dimkerT ∗ is finite. If g ∈ R(D), σ(Mg) = g(D), σe(Mg) =
σlre(Mg) = g(T), and if z0 ∈ D and g(z0) /∈ g(T), then Mg − g(z0) is a Fredholm
operator and

ind
(
Mg − g(z0)

)
= − dimker

(
Mg − g(z0)

)∗
= −n,

where σ(Mg), σe(Mg), σlre(Mg) denote, respectively, the spectrum, the essential

spectrum, and the Wolf-spectrum of Mg. Here g(D) and g(T) are the images of D
and, respectively, the unit circle T under g and n is the number of zeros (counting
multiplicity) of g(z)−g(z0) in D. (For more details about the Sobolev disk algebra
R(D), see [6].)

It is well known that the commutant of a bounded linear operator or operators
on a complex, separable Hilbert space plays an important role in determining the
structure of this operator or these operators. In [2], Cuckovic investigated the
commutant of Mzn on the Bergman space. The commutant of multiplication by
a univalent function in the disk algebra was discussed in [7]. On the Sobolev disk
algebra, Jiang and Wang [6] and Liu and Wang [8] investigated the commutant
A′(Mzn). Wang, Zhao, and Jin [10, Theorem 1] proved that Mg is similar to Mzn

if and only if g is an n-Blaschke product. The main point of the main theorem of
the present article, Theorem 2.8, is to characterize the commutant A′(MB) of an
n-Blaschke product B(z) = α

∏n
i=1

z−ai
1−aiz

, ai ∈ D, |α| = 1.

2. The commutant of a multiplication operator

Lemma 2.1 ([10, Lemma 1]). Let B(z) = α
∏n

i=1
z−ai
1−aiz

be an n-Blaschke product.

Then the derivative B′(z) of B(z) has no zeros on the unit circle T.
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Lemma 2.2 ([10, Proposition 1]). Let B(z) be a finite Blaschke product, f ∈
R(D). Then f [B(z)] ∈ R(D), and the operator CB defined by CB(f)(z) = f [B(z)]
is bounded.

Without loss of generality, we can assume that α = 1. By Lemma 4.5.9 of [6],
for each z0 ∈ D, we have

B(z)−B(z0) = (z − z0)(z − z1) · · · (z − zn−1)Bz0(z),

where Bz0(z) 6= 0 for z ∈ D. Let Nz0 = {zi}n−1
i=0 , and let

Γ =
⋃{

Nz0 ; there is at least one zi (0 ≤ i ≤ n− 1) such that B′(zi) = 0
}
.

The set Γ is finite.

Lemma 2.3 ([8, Theorem 2.3]). Let f ∈ R(D), let M∗
f be a Cowen–Douglas

operator of index n on Ω, and let D1 = f−1(Ω). Here Ω is the component of
the semi-Fredholm domain ρs−F (Mf ) containing f(z0) for z0 ∈ D, and n is the
number of zeros of f(z) − f(z0) in D. If the set of {z ∈ D1, f

′(z) = 0} is finite,
then there exist analytic functions α1(z), . . . , αn(z) and G1(z), . . . , Gn−1(z) on
D1 \ Γ such that, for each A ∈ A′(Mf ) and g ∈ R(D),

(Ag)(z) = α1(z)g(z) + α2(z)g
(
G1(z)

)
+ · · ·+ αn(z)g

(
Gn−1(z)

)
, z ∈ D1 \ Γ.

For this lemma, we need some explanation. In the proof of Theorem 2.3 of [8],
the authors used an implicit holomorphic function theorem (see [4, Theorem 9.6])
to prove that, for every ω ∈ D1 \ Γ, there is a neighborhood U(ω, δω) where
δω depends on ω, and there are n − 1 functions G1(z), . . . , Gn−1(z) analytic on
U(ω, δω) such that, for v ∈ U(ω, δω),

f(z)− f(v) = (z − v)
(
z −G1(v)

)
· · ·

(
z −Gn−1(v)

)
gv(z), gv(z) 6= 0, z ∈ D.

Obviously, there are at most countable such balls U(ωk, δωk
) that can cover D1\Γ.

In these balls, suppose that U(ωi, δωi
) ∩ U(ωj, δωj) 6= ∅ for i 6= j. For U(ωi, δωi

),
we have n − 1 functions G1, . . . , Gn−1 analytic on U(ωi, δωi

) such that, for v ∈
U(ωi, δωi

),

f(z)−f(v) = (z−v)
(
z−G1(v)

)
· · ·

(
z−Gn−1(v)

)
gv(z), gv(z) 6= 0, z ∈ D. (2.1)

For U(ωj, δωj
), we also have n − 1 functions Z1, . . . , Zn−1 analytic on U(ωj, δωj

)
such that, for v ∈ U(ωj, δωj

), we have

f(z)−f(v) = (z−v)
(
z−G1(v)

)
· · ·

(
z−Gn−1(v)

)
gv(z), gv(z) 6= 0, z ∈ D. (2.2)

Then for v ∈ U(ωi, δωi
) ∩ U(ωj, δωj

), by (2.1) and (2.2), we have {Gm(v)}n−1
m=1 =

{Zm(v)}n−1
m=1, and so we can rearrange the index of Gm′s such that Gm(v) = Zm(v),

m = 1, 2, . . . , n − 1. Since {Gm, Zm}n−1
m=1 are analytic functions on the open set

U(ωi, δωi
) ∩ U(ωj, δωj

), we have Gm(v) = Zm(v) for v ∈ U(ωi, δωi
) ∩ U(ωj, δωj

).
Thus the analytic continuation is possible.

By [8, Theorem 2.3] and the argument in its proof in [8, p. 68–69], there exist
n− 1 functions G1, . . . , Gn−1 analytic on D \ Γ such that
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B(z)−B(z0) = (z − z0)
(
z −G1(z0)

)
· · ·

(
z −Gn−1(z0)

)
Bz0(z).

For these {Gi}n−1
i=1 , we have the following.

Lemma 2.4.

(i) Each Gi (i = 1, 2, . . . , n − 1) is a Blaschke product of order 1; that is,
Gi(z) = αi

z−bi
1−biz

, |αi| = 1, and αi 6= 1;

(ii) Each Gi(z) − z (i = 1, 2, . . . , n − 1) and each Gi(z) − Gj(z) (i 6= j;
i, j = 1, 2, . . . , n− 1) has precisely one zero in D;

(iii) The point z ∈ D is a zero of B′(z) if and only if either z = z0 for some
z0 ∈ D such that Gi(z0) = z0 for some i, or z = Gi(z0) for some z0 ∈ D
such that Gi(z0) = Gj(z0) for some i 6= j.

Proof. (i) For z0 ∈ D and i = 1, 2, . . . , n − 1, |B(Gi(z0))| = |B(z0)| < 1. This
implies that |Gi(z0)| < 1. If z0 ∈ T, then |B(Gi(z0))| = |B(z0)| = 1. Thus
|Gi(z0)| = 1. Since Gi is bounded on D \ Γ and Γ is a finite set, each point in
Γ is a removable singularity (see [1]). We can assume that Gi is analytic on D.
Thus Gi is an inner function. Since |Gi(z)| = 1 at each point of T, Gi(z) is not a
singular inner function (see [9]); that is, Gi(z) is a Blaschke product. Note that
B(z)− B(z0) = 0 has n roots z0, G1(z0), . . . , Gn−1(z0) when z0 ∈ D. Similarly, if
z ∈ D is fixed and we solve for z0, then

B(z)−B(z0) = (z − z0)
(
z −G1(z0)

)
· · ·

(
z −Gn−1(z0)

)
Bz0(z) = 0

has n roots. Thus 1 + k1 + · · · + kn−1 = n, where ki is the order of Gi, i =
1, 2, . . . , n−1. This implies that each Gi is a Blashcke product of order 1. Suppose
Gi(z) = αi

z−bi
1−biz

for some bi with |bi| < 1 and αi with |αi| = 1. If αi = 1, then

a computation shows that Gi(z) − z has two zeros z0 = ±eiθ, where θ is the
argument of bi. Thus B(z) − B(z0) = (z − z0)

2f(z) for some f and B′(z0) = 0,
which contradicts Lemma 2.1.

(ii) Solve the equation Gi(z)− z = 0 or, equivalently,

biz
2 − (1− αi)z − αibi = 0.

Let z1, z2 be the two solutions in C. Then

|z1z2| =
∣∣∣−αibi

bi

∣∣∣ = 1.

If both z1, z2 ∈ T, then B′(z1) = B′(z2) = 0, which contradicts Lemma 2.1. Thus
one of z1, z2 is located in D and the other is out of D.

Solve the equation Gi(z) = Gj(z) (i 6= j) or, equivalently,

cz − cbi

1− biz
=

z − bj

1− bjz
,

where c = αi

αj
. We get

(bi − cbj)z
2 + (c+ cbibj − 1− bibj)z + bj − cbi = 0.
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If the solutions are the complex numbers z1, z2, then

|z1z2| =
∣∣∣bj − cbi

bi − cbj

∣∣∣ = 1.

For the same reason one and only one of z1, z2 is in D.
(iii) If B′(z0) = 0 and z0 ∈ D, then
B(z)−B(z0)

z − z0
=

(
z −G1(z0)

)(
z −G2(z0)

)
· · ·

(
z −Gn−1(z0)

)
Bz0(z) → 0

as z → z0. Since Bz0(z) 6= 0 for all z ∈ D, z −Gi(z0) → 0 at least for one i; that
is, Gi(z0) = z0. Conversely, if Gi(z0) = z0 for some i and z0 ∈ D, then

B(z)−B(z0) = (z − z0)
2f(z)

for some f . Hence B′(z0) = 0.
If Gi(z0) = Gj(z0), then

B(z)−B
(
Gi(z0)

)
= (z − z0)

(
z −Gi(z0)

)2
h(z)

for some h. Thus B′(Gi(z0)) = 0. �

Example 2.5.

(i) Let B(z) = (z−a)(z−b)

(1−az)(1−bz)
. Calculations show that

G(z) = − z − c

1− cz
,

where c = (a+b)−ab(a+b)
1−|ab|2 .

(ii) Let B(z) = ( z−a
1−az

)4. Calculations show that

Gi(z) = αi
z − bi

1− biz
(i = 1, 2, 3),

where α1 = −1, b1 = 2a
1+|a|2 ; α2 = i(1+i|a|2)

1−i|a|2 , b2 = (1+i)a
1+i|a|2 ; α3 = i(|a|2+i)

|a|2−i
,

b3 =
(1+i)a
|a|2+i

.

In what follows, G1, G2, . . . , Gn−1 are the order one Blaschke products associ-
ated with the n-Blaschke product B(z).

Let ∆(z) denote the Vandermonde determinant

∆(z) =

∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z G1 · · · Gn−1

z2 G2
1 · · · G2

n−1
...

... · · · ...
zn−1 Gn−1

1 · · · Gn−1
n−1

∣∣∣∣∣∣∣∣∣∣
.

Let ∆kj(z) be the k, j-algebra cofactor of ∆(z) (k, j = 1, 2, . . . , n−1). It is known
that

∆(z) = (G1 − z)(G2 − z) · · · (Gn−1 − z)(G2 −G1) · · · (Gn−1 −Gn−2),

and that ∆(z) and ∆kj(z) are in R(D).
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Lemma 2.6 (see [6, Proposition 4.5.3]). A function f(z) =
∑∞

n=0 fnz
n analytic

on D belongs to R(D) if and only if
∑∞

n=0 |
fn
βn
|2 < ∞, where βn = [ n+1

(3n4−n2+2n+1)π
]
1
2

and fn ∈ C (n = 0, 1, 2, . . .).

Lemma 2.7.

(i) ranMz−z0 = {f ∈ R(D); f(z0) = 0}, z0 ∈ D;
(ii) Given g ∈ R(D) and g(z) = (Gi(z)− z)f(z) for i (i = 1, 2, . . . , n− 1) and

some function f , then f ∈ R(D), g ∈ ranMGi−z, and f = M−1
Gi−zg;

(iii) Given g ∈ R(D) and g(z) = (Gi(z) − Gj(z))f(z) for i 6= j (i, j =
1, 2, . . . , n − 1) and some function f, then f ∈ R(D), g ∈ ranMGi−Gj

,

and f = M−1
Gi−Gj

g;

(iv) Given g ∈ R(D) and g(z) = ∆(z)f(z) for some function f , then g ∈
ranM∆(z) and f = M−1

∆(z)g.

Proof. (i) Note that Mz−z0 is Fredholm and that

ranMz−z0 =
{
(z − z0)g(z); g ∈ R(D)

}
is always closed. If z0 = 0 and f(0) = 0, then we can suppose that

f(z) =
∞∑
k=1

fkz
k = z

∞∑
k=1

fkz
k−1.

Then, by Lemma 2.6,
∞∑
k=1

∣∣∣ fk
βk−1

∣∣∣2 = ∞∑
k=1

∣∣∣fk
βk

∣∣∣2∣∣∣ βk

βk−1

∣∣∣2 < ∞

implies that h(z) :=
∑∞

k=1 fkz
k−1 ∈ R(D) and f ∈ ranMz. Thus ranMz = {f ∈

R(D); f(0) = 0}.
If z0 6= 0, z0 ∈ D, and f(z0) = 0, then set g(z) = f( z+z0

1+z0z
). By Lemma 2.2,

g ∈ R(D). Since g(0) = 0, g ∈ ranMz, and g(z) = zg1(z), g1(z) ∈ R(D). Hence

f(z) = g
( z − z0
1− z0z

)
= (z − z0)g1

( z − z0
1− z0z

)
(1− z0z)

−1 = (z − z0)h(z),

where

h(z) = g1

( z − z0
1− z0z

)
(1− z0z)

−1 ∈ R(D).

Thus f ∈ ranMz−z0 . The opposite inclusion is obvious.
(ii) Let z0 ∈ D be the only zero of Gi(z)− z in D. Then

Gi(z)− z = (z − z0)Gz0(z), Gz0(z) 6= 0

for z ∈ D, and Gz0 ∈ R(D) by (i). For 0 /∈ Gz0(D) = σ(MGz0
), MGz0

is invertible

and G−1
z0
(z) ∈ R(D). Since g(z0) = 0, we have g(z) = (z−z0)g1(z), and g1 ∈ R(D)

by (i). Hence

g(z) =
(
Gi(z)− z

)
G−1

z0
(z)g1(z)

and

f(z) = G−1
z0
(z)g1(z) ∈ R(D); that is, g ∈ ranMGi−z.
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Note that Gi(z)−z 6= 0 for all z ∈ T, MGi−z is Fredholm, and ranMGi−z is closed.
Also, MGi−z is injective. Therefore,

MGi−z : R(D) → ranMGi−z

is invertible, and f = M−1
Gi−zg.

(iii), (iv) By a similar argument to that used in (ii), we can easily prove (iii).
Using (ii) and (iii), we can easily prove (iv). �

Theorem 2.8. An operator A ∈ L(R(D)) is in A′(MB(z)) if and only if

A =
n∑

i=1

Mhi
M−1

∆(z)Ti,

where {hi}ni=1 ⊂ R(D), Ti ∈ L(R(D)) is given by

(Tig)(z) =
n∑

j=1

(−1)i+j∆ij(z)g
(
Gj−1(z)

)
, i = 1, 2, . . . , n,G0(z) ≡ z.

Proof. Let A ∈ A′(MB(z)). By Lemma 4.5.11 of [6] and Lemma 2.4, we have

(Ag)(z) = α1(z)g(z) + α2(z)g
(
G1(z)

)
+ · · ·+ αn(z)g

(
Gn−1(z)

)
for g ∈ R(D) and z ∈ D \ Γ, where α1, α2, . . . , αn are analytic on D \ Γ and
G1, G2, . . . , Gn−1 are the order one Blaschke products associated with B(z). Take
g = 1, z, z2, . . . , zn−1 sequentially. We get

α1(z) + α2(z) + · · ·+ αn(z) = (A1)(z) = h1(z),

zα1(z) +G1(z)α2(z) + · · ·+Gn−1(z)αn(z) = (Az)(z) = h2(z),
...

zn−1α1(z) +Gn−1
1 (z)α2(z) + · · ·+Gn−1

n−1(z)αn(z) = (Azn−1)(z) = hn(z).

Solving for α1(z), α2(z), . . . , αn(z) by Cramer’s rule, we get

α1(z) =
1

∆(z)

∣∣∣∣∣∣∣∣
h1 1 · · · 1
h2 G1 · · · Gn−1
...

... · · · ...
hn Gn−1

1 · · · Gn−1
n−1

∣∣∣∣∣∣∣∣ ,

α2(z) =
1

∆(z)

∣∣∣∣∣∣∣∣
1 h1 · · · 1
z h2 · · · Gn−1
...

... · · · ...
zn−1 hn · · · Gn−1

n−1

∣∣∣∣∣∣∣∣ ,
. . .

αn(z) =
1

∆(z)

∣∣∣∣∣∣∣∣
1 1 · · · h1

z G1 · · · h2
...

... · · · ...
zn−1 Gn−1

1 · · · hn

∣∣∣∣∣∣∣∣ .
Therefore,
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(Ag)(z) =
h1(z)

∆(z)

[
∆11(z)g(z)−∆12(z)g

(
G1(z)

)
+∆13(z)g

(
G2(z)

)
+ · · ·

+ (−1)1+n∆1n(z)g
(
Gn−1(z)

)]
+

h2(z)

∆(z)

[
−∆21(z)g(z) + ∆22(z)g

(
G1(z)

)
−∆23(z)g

(
G2(z)

)
+ · · ·+ (−1)2+n∆2n(z)g

(
Gn−1(z)

)]
+ · · ·

+
hn(z)

∆(z)

[
(−1)n+1∆n1(z)g(z) + (−1)n+2∆n2(z)g

(
G1(z)

)
+ (−1)n+3∆n3(z)g

(
G2(z)

)
+ · · ·+∆nn(z)g

(
Gn−1(z)

)]
=

n∑
k=1

hk(z)
gk(z)

∆(z)
,

where z ∈ D\Γ and gk(z) =
∑n

j=1(−1)k+j∆kj(z)g(Gj−1(z)). It is clear gk ∈ R(D).
Define Tkg = gk (k = 1, 2, . . . , n). Since R(D) is a Banach algebra under an

equivalent norm, applying Lemma 2.2, we have that Tk is a bounded linear oper-
ator in L(R(D)) and ‖Tkg‖ ≤ M‖g‖ for g ∈ R(D) and k = 1, 2, . . . , n.

Consider the determinant expression of g1,

g1(z) =

∣∣∣∣∣∣∣∣∣∣

g(z) g(G1(z)) · · · g(Gn−1(z))
z G1(z) · · · Gn−1(z)
z2 G2

1(z) · · · G2
n−1(z)

...
... · · · ...

zn−1 Gn−1
1 (z) · · · Gn−1

n−1(z)

∣∣∣∣∣∣∣∣∣∣
,

where g(z) =
∑∞

k=0 akz
k. For any ε > 0, let K be a positive integer such that∥∥∥ ∞∑

i=k

aiz
i
∥∥∥ < ε,

∥∥∥ ∞∑
i=k

aiG
i
1(z)

∥∥∥ < ε, . . . ,
∥∥∥ ∞∑

i=k

aiG
i
n−1(z)

∥∥∥ < ε

for any k ≥ K. Thus

g1(z) =

∣∣∣∣∣∣∣∣∣∣∣

∑k−1
i=0 aiz

i +
∑∞

i=k aiz
i ∑k−1

i=0 aiG
i
1 +

∑∞
i=k aiG

i
1 · · ·

∑k−1
i=0 aiG

i
n−1 +

∑∞
i=k aiG

i
n−1

z G1 · · · Gn−1

z2 G2
1 · · · G2

n−1
...

... · · ·
...

zn−1 Gn−1
1 · · · Gn−1

n−1

∣∣∣∣∣∣∣∣∣∣∣
=

k−1∑
i=0

aiZi +Rk,

where

Zi =

∣∣∣∣∣∣∣∣∣∣

zi Gi
1(z) · · · Gi

n−1(z)
z G1(z) · · · Gn−1(z)
z2 G2

1(z) · · · G2
n−1(z)

...
... · · · ...

zn−1 Gn−1
1 (z) · · · Gn−1

n−1(z)

∣∣∣∣∣∣∣∣∣∣
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and

Rk =

∣∣∣∣∣∣∣∣∣∣

∑∞
i=k aiz

i
∑∞

i=k aiG
i
1 · · ·

∑∞
i=k aiG

i
n−1

z G1 · · · Gn−1

z2 G2
1 · · · G2

n−1
...

... · · · ...
zn−1 Gn−1

1 · · · Gn−1
n−1

∣∣∣∣∣∣∣∣∣∣
.

We have

‖Rk‖ =
∥∥∥∆11(z)

∞∑
i=k

aiz
i −∆12(z)

∞∑
i=k

aiG
i
1 + · · ·+ (−1)1+n∆1n(z)

∞∑
i=k

aiG
i
n−1

∥∥∥
≤

(
‖∆11‖+ ‖∆12‖+ · · ·+ ‖∆1n‖

)
ε = Lε.

Hence g1(z) =
∑∞

k=0 akZk.
It is easy to see that Z0 = ∆(z), Z1 = Z2 = · · · = Zn−1 = 0. When k ≥ n, set

Pk(u) =

∣∣∣∣∣∣∣∣∣∣

uk Gk
1(z) · · · Gk

n−1(z)
u G1(z) · · · Gn−1(z)
u2 G2

1(z) · · · G2
n−1(z)

...
... · · · ...

un−1 Gn−1
1 (z) · · · Gn−1

n−1(z)

∣∣∣∣∣∣∣∣∣∣
.

It is obvious that Pk(z) = Zk. Note that Pk(G1(z)) = 0 since in the determinant
expression the first two columns are the same. This implies that Pk(u) has a
factor u−G1(z). Therefore, Pk(z) = Zk has a factor z−G1(z). Similarly, Zk has
factors z −G2(z), . . . , z −Gn−1(z). If setting

Pk(u) =

∣∣∣∣∣∣∣∣∣∣

zk uk Gk
2(z) · · · Gk

n−1(z)
z u G2(z) · · · Gn−1(z)
z2 u2 G2

2(z) · · · G2
n−1(z)

...
... · · · ...

zn−1 un−1 Gn−1
2 (z) · · · Gn−1

n−1(z)

∣∣∣∣∣∣∣∣∣∣
,

then Pk(G1(z)) = Zk. Since Pk(G2(z)) = 0, Pk(u) has a factor G2(z) − u,
and so Pk(G1(z)) = Zk has a factor G2(z) − G1(z). Similarly, Zk has factors
G3(z) − G1(z), . . . , Gn−1(z) − G1(z). By the same arguments, Zk has factors
G3 − G2, G4 − G2, . . . , Gn−1 − Gn−2. Hence Zk has a factor ∆(z), and g1(z) =
∆(z)f1(z). Lemma 2.7 indicates that f1 ∈ R(D), g1 ∈ ranM∆, and f1 = M−1

∆ g1.
Thus

g1(z)

∆(z)
= (M−1

∆ T1g)(z).

By the same argument,

gk(z)

∆(z)
= (M−1

∆ Tkg)(z) and A =
n∑

k=1

Mhk
M−1

∆ Tk.
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Conversely, for arbitrary h1, h2, . . . , hn in R(D), define A ∈ L(R(D)) by

A =
n∑

k=1

Mhk
M−1

∆ Tk.

For g ∈ R(D),

(AMBg)(z) =
[
A(Bg)

]
(z)

=
n∑

k=1

hk(z)M
−1
∆

( n∑
j=1

(−1)k+j∆kj(z)B
(
Gj−1(z)

)
g
(
Gj−1(z)

))
=

n∑
k=1

hk(z)M
−1
∆

( n∑
j=1

(−1)k+j∆kj(z)B(z)g
(
Gj−1(z)

))
= B(z)

n∑
k=1

hk(z)M
−1
∆

( n∑
j=1

(−1)k+j∆kj(z)g
(
Gj−1(z)

))
=

[
MB

( n∑
k=1

Mhk
M−1

∆ Tk

)
g
]
(z)

= (MBAg)(z).

The third equality is because of B(Gj−1(z)) = B(z) for j = 1, 2, . . . , n. In fact,
by the argument before Lemma 2.4, for each z0 ∈ D,

B(z)−B(z0) = (z − z0)
(
z −G1(z0)

)
· · ·

(
z −Gn−1(z0)

)
Bz0(z),

where Bz0(z) 6= 0 for z ∈ D. If setting z = Gj−1(z0) for j = 1, 2, . . . , n, then
B(Gj−1(z0)) − B(z0) = 0 for each z0 ∈ D; that is, B(z) = B(Gj−1(z)). Hence
AMB = MBA and A ∈ A′(MB). The proof of Theorem 2.8 is complete. �

Remark 2.9. In Theorem 2.8, the zeros of B(z) are not necessarily nonzero. If all
the zeros of B(z) are zero, then we get B(z) = zn, and so Theorem 2.8 generalizes
the result in [8]. If some are zero and others are nonzero, then Theorem 2.8 is
true for the general finite Blaschke product B(z) = αzk

∏m
i=1

z−ai
1−aiz

.
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