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Abstract. Assume that K is a closed convex subset of a uniformly convex
Banach space E, and assume that {T (s)}s>0 is a nonexpansive semigroup on
K. By using the following implicit iteration sequence {xn} defined by

xn = (1− αn)xn−1 + αn · 1

tn

∫ tn

0

T (s)xn ds, ∀n ≥ 1,

the main purpose of this paper is to establish a weak convergence theorem for
the nonexpansive semigroup {T (s)}s>0 in uniformly convex Banach spaces with-
out the Opial property. Our results are different from some recently announced
results.

1. Introduction

Suppose that E is a real Banach space and that K is a nonempty subset of E.
A 1-parameter family T = {T (t) : 0 ≤ t < ∞} of Lipschitz operators from K
into itself is said to be a semigroup of Lipschitz operators on K if it satisfies the
following conditions:

(i) T (0)x = x, ∀x ∈ K;
(ii) T (t+ s)x = T (t)T (s)(x) for each t, s ≥ 0 and x ∈ K;
(iii) for each x ∈ K, the mapping t 7→ T (t)x is continuous on [0,∞);
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(iv) for τ > 0 there exists Lτ > 0 such that ‖T (t)x− T (t)y‖ ≤ Lτ‖x− y‖ for
each t ∈ [0, τ ] and x, y ∈ K.

A Lipschitz semigroup T is said to be nonexpansive if Lτ = 1 for all τ > 0. Let
F (T) be the common fixed point set of the semigroup T; that is, F (T) = {x ∈
K : T (s)x = x, ∀s > 0}.

The fixed point method has a large number of applications in many areas,
such as in optimization theory, control theory, economics, and nonlinear analysis.
Iterative approximation construction of fixed points is vigorously proposed and
analyzed for various classes of maps in different spaces. We point out that an
implicit process is generally desirable when no explicit scheme is available. Such
a process is generally used as a “tool” to establish the convergence of an explicit
scheme. Additionally, implicit algorithms provide better approximation of fixed
points than explicit algorithms (see [12], [13]).

Iterative approximation techniques of fixed points of nonexpansive mappings
(and of common fixed points of nonexpansive semigroups) is an important subject
in nonlinear operator theory and its applications, in particular, in image recovery
and signal processing (see [3], [9]).

Several authors (e.g., see Khan et al. [8], Yang et al. [14], and Zeidler [15])
discussed the weak or strong convergence of implicit iterative approximation for
nonlinear mappings. Under a real uniformly convex Banach space with the Opial
property or with a Fréchet differentiable norm, Khan et al. [8], Yang et al. [14],
and Zeidler [15] studied the weak convergence in mean ergodic theorems. However,
many important spaces like Lp for 1 ≤ p 6= 2 do not possess the Opial property.

Inspired and motivated by the above results, we aim in this paper to better
understand the weak convergence of an implicit iteration approximation for non-
expansive semigroups {T (t) : 0 ≤ t < ∞} in uniformly convex Banach spaces
without Opial property. Hence the present article opens a new research direction.

First, we will collect some well-known concepts and results. Let E be a Banach
space with dimension E ≥ 2, and let E∗ be its dual. The modulus of convexity
of E is the function δE : (0, 2] → [0, 1] defined by

δE(ε) = inf
{
1− 1

2
‖x+ y‖ : ‖x‖ = ‖y‖ = 1, ‖x− y‖ = ε

}
.

A Banach space E is uniformly convex if and only if δE(ε) > 0 for all ε ∈ (0, 2].
A sequence {xn} in a normed linear space E is said to converge weakly to x if

lim
n→∞

f(xn) = f(x)

for every f in the dual space E∗ of E. This relation is indicated by xn ⇀ x. Let
$w({xn}) = {x : ∃xnj

⇀ x} denote the weak limit set of {xn} and xnj
⊂ {xn}.

A Banach space is said to have the Kadec–Klee property (see [6]) if, whenever
x ∈ $w({xn}) with limn→∞ ‖xn‖ = ‖x‖, it then follows that limn→∞ xn = x
strongly.

Lemma 1.1 ([4, Lemma 2.7]). Suppose that K is a closed convex subset of a
uniformly convex Banach space E. Let T = {T (t) : 0 ≤ t < ∞} be a nonexpansive
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semigroup on K such that F (T) is nonempty. Then for each r > 0 and h > 0,

lim
t→∞

sup
x∈K∩Br

∥∥∥1
t

∫ t

0

T (s)x ds− T (h)
1

t

∫ t

0

T (s)x ds
∥∥∥ = 0,

where Br denotes the closed ball in E with center 0 and radius r.

Lemma 1.2 (see [10]). Let E be a uniformly convex Banach space, and let a, b be
two constants with 0 < a < b < 1. Suppose that {αn} is a real sequence in [a, b]
and that {ρn}, {τn} are two sequences in E such that

lim supn→∞ ‖ρn‖ ≤ c,

lim supn→∞ ‖τn‖ ≤ c,

limn→∞ ‖αnρn + (1− αn)τn‖ = c.

Then limn→∞ ‖ρn − τn‖ = 0, where c ≥ 0 is some constant.

Lemma 1.3 ([7, Lemma 2]). Assume that E is a real reflexive Banach space such
that its dual E∗ has the Kadec–Klee property. Let {xn} be a bounded sequence in
E, with p1, p2 ∈ $w({xn}). Suppose that limn→∞ ‖αxn + (1 − α)p1 − p2‖ exists
for all α ∈ [0, 1]. Then p1 = p2.

Lemma 1.4 ([11, Lemma 2]). Let two fixed real numbers be q > 1 and D > 0.
Then a Banach space E is uniformly convex if and only if there is a strictly
increasing, continuous, and convex function g : [0,∞) → [0,∞), g(0) = 0 such
that ∥∥λx+ (1− λ)y

∥∥q ≤ λ‖x‖q + (1− λ)‖y‖q − ωq(λ)g
(
‖x− y‖

)
for all x, y ∈ BD and λ ∈ [0, 1], where BD is the closed ball with center zero and
radius D, ωq(λ) = λ(1− λ)q + λq(1− λ).

Lemma 1.5 ([1, Theorem 2.3.7]). Let E be a Banach space with modulus of

convexity of δE. Then
δE(s)

s
is a nondecreasing function on (0, 2].

Lemma 1.6 (see [2]). Let E be a real uniformly convex Banach space, let K be a
nonempty closed convex subset of E, and let T be a nonexpansive mapping of K
into itself with F (T ) 6= φ. Let {xn} ⊂ K be a sequence such that limn→∞ ‖xn −
Txn‖ = 0 and {xn} converges weakly to z. Then z is a fixed point of T .

2. Implicit iterative approximation

Let K be a closed convex subset of a uniformly convex Banach space E, and let
T = {T (t) : 0 ≤ t < ∞} be a nonexpansive semigroup on K. For x0 ∈ K, n ≥ 1,
compute the implicit iteration process {xn} defined by the following formula:

xn = (1− αn)xn−1 + αn ·
1

tn

∫ tn

0

T (s)xn ds, (2.1)

where {αn} ⊂ (0, 1) is bounded away from 0 and 1 and {tn} ⊂ (0,∞).
For n ∈ N = {1, 2, . . .}, u, v ∈ K, define

Qv
n(u) = (1− αn)v + αn ·

1

tn

∫ tn

0

T (s)u ds. (2.2)
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For u1, u2 ∈ K, we have∥∥Qv
n(u1)−Qv

n(u2)
∥∥ =

∥∥∥αn ·
1

tn

∫ tn

0

(
T (s)u1 − T (s)u2

)
ds
∥∥∥

≤ αn ·
1

tn

∫ tn

0

∥∥T (s)u1 − T (s)u2

∥∥ ds
≤ αn‖u1 − u2‖.

This implies that each Qv
n(u) : K → K is a contraction. It follows from the

Banach contraction principle that each xn in (2.1) is uniquely defined.
The next two results deal with the general behavior of the implicit iterative

processes of (2.1).

Lemma 2.1. Let E be a Banach space, let K be a nonempty convex subset of
E, and let a, b be two constants with 0 < a < b < 1. Let T be a nonexpansive
semigroup on K, and let F (T) 6= ∅. Suppose that {xn} is defined by (2.1) with
a ≤ αn ≤ b for all n ≥ 1, tn → ∞ as n → ∞ and p ∈ F (T). Then

(i) there exists c ≥ 0 such that limn→∞ ‖xn − p‖ = c,
(ii) limn→∞ ‖xn − T (s)xn‖ = 0 for every s > 0.

Proof. (i) It follows from (2.1) that

‖xn − p‖ =
∥∥∥(1− αn)(xn−1 − p) + αn ·

1

tn

∫ tn

0

(
T (s)xn − T (s)p

)
ds
∥∥∥

≤ (1− αn)‖xn−1 − p‖+ αn ·
1

tn

∫ tn

0

∥∥T (s)xn − T (s)p
∥∥ ds

≤ (1− αn)‖xn−1 − p‖+ αn‖xn − p‖. (2.3)

It follows from (2.3) that ‖xn − p‖ ≤ ‖xn−1 − p‖. Therefore, there exists c ≥ 0
such that limn→∞ ‖xn − p‖ = c.

(ii) Let K1 = {z ∈ K : ‖z − p‖ ≤ τ0}. Then K1 is a nonempty bounded closed
convex subset of K, and T (s)-invariant. Since {xn} ⊂ K1 and K1 is bounded,
there exists τ > 0 such that K1 ⊂ Bτ . It follows from Lemma 1.1 that

lim
n→∞

∥∥∥T (s) 1
tn

∫ tn

0

T (s)xn ds−
1

tn

∫ tn

0

T (s)xn ds
∥∥∥ = 0. (2.4)

Since ∥∥∥ 1

tn

∫ tn

0

T (s)xn ds− p
∥∥∥ =

∥∥∥ 1

tn

∫ tn

0

(
T (s)xn − T (s)p

)
ds
∥∥∥

≤ 1

tn

∫ tn

0

∥∥T (s)xn − T (s)p
∥∥ ds

≤ ‖xn − p‖,

then

lim sup
n→∞

∥∥∥ 1

tn

∫ tn

0

T (s)xn ds− p
∥∥∥ ≤ c. (2.5)



WEAK CONVERGENCE THEOREM FOR NONEXPANSIVE SEMIGROUPS 345

Since limn→∞ ‖xn−p‖ = limn→∞ ‖αn(xn−1−p)+(1−αn)(
1
tn

∫ tn
0

T (s)xn ds−p)‖ = c

and observe limn→∞ ‖xn−1 − p‖ = c, it follows from (2.5) and Lemma 1.2 that

lim
n→∞

∥∥∥ 1

tn

∫ tn

0

T (s)xn ds− xn−1

∥∥∥ = 0. (2.6)

Note that xn − xn−1 = (1− αn)(
1
tn

∫ tn
0

T (s)xn ds− xn−1). Therefore, by (2.6) we
can conclude that

lim
n→∞

‖xn − xn−1‖ = 0. (2.7)

Since

lim
n→∞

∥∥∥ 1

tn

∫ tn

0

T (s)xn ds− xn

∥∥∥ ≤ lim
n→∞

∥∥∥ 1

tn

∫ tn

0

T (s)xn ds− xn−1

∥∥∥
+ lim

n→∞
‖xn−1 − xn‖,

it follows from (2.6) and (2.7) that we have

lim
n→∞

∥∥∥ 1

tn

∫ tn

0

T (s)xn ds− xn

∥∥∥ = 0. (2.8)

Note that∥∥xn − T (s)xn

∥∥
=

∥∥∥(xn −
1

tn

∫ tn

0

T (s)xn ds
)
+
( 1

tn

∫ tn

0

T (s)xn ds− T (s)
1

tn

∫ tn

0

T (s)xn ds
)

+
(
T (s)

1

tn

∫ tn

0

T (s)xn ds− T (s)xn

)∥∥∥
≤

∥∥∥xn −
1

tn

∫ tn

0

T (s)xn ds
∥∥∥+

∥∥∥ 1

tn

∫ tn

0

T (s)xn ds− T (s)
1

tn

∫ tn

0

T (s)xn ds
∥∥∥

+
∥∥∥T (s) 1

tn

∫ tn

0

T (s)xn ds− T (s)xn

∥∥∥
≤ 2

∥∥∥xn −
1

tn

∫ tn

0

T (s)xn ds
∥∥∥

+
∥∥∥ 1

tn

∫ tn

0

T (s)xn ds− T (s)
1

tn

∫ tn

0

T (s)xn ds
∥∥∥.

Then it follows from (2.4) and (2.8) that limn→∞ ‖xn − T (s)xn‖ = 0. This com-
pletes the proof. �

3. Main results

In this section, we will first prove the demiclosed principle for a nonexpan-
sive semigroup in uniformly convex Banach spaces. Since the dual of reflexive
Banach spaces with the Opial property or a Fréchet differentiable norm has the
Kadec–Klee property, our theorems generalize the known ones.



346 R. YAO and L. YANG

Lemma 3.1. Let K be a closed and convex subset of a uniformly convex Banach
space E, and let a, b be two constants with 0 < a < b < 1. Let T be a nonexpansive
semigroup on K, F (T) 6= ∅, and let {xn} be defined by (2.1) with a ≤ αn ≤ b for
all n ≥ 1, tn → ∞ as n → ∞. Then for ω1, ω2 ∈ F (T), the limit limn→∞ ‖txn +
(1− t)ω1 − ω2‖ exists for all t ∈ [0, 1].

Proof. Let an(t) = ‖txn+(1− t)ω1−ω2‖. Then limn→∞ an(0) = ‖ω1−ω2‖ exists.
It follows from Lemma 2.1(i) that limn→∞ an(1) = limn→∞ ‖xn − ω2‖ exists. It
now remains to prove the lemma for t ∈ (0, 1). Define

Qω
n(u) = αn ·

1

tn

∫ tn

0

T (s)u ds+ (1− αn)ω,

where n ∈ N, u ∈ K, ω ∈ K. Since Qω
n : K → K is a contraction, by the Banach

contraction principle there exists a unique un,ω ∈ K such that Qω
n(un,ω) = un,ω.

Thus, for any natural number n, we can define the mapping An : K → K by
An(ω) = un,ω for each ω ∈ K. And we have xn+1 = An(xn) for all n ∈ N. Note
that An(vi) = ui if and only if

ui = αn ·
1

tn

∫ tn

0

T (s)ui ds+ (1− αn)vi.

For any v1, v2 ∈ K, we have∥∥An(v1)− An(v2)
∥∥ = ‖u1 − u2‖

≤ αn ·
1

tn

∥∥∥∫ tn

0

(
T (s)u1 − T (s)u2

)
ds
∥∥∥+ (1− αn)‖v1 − v2‖

≤ αn ·
1

tn

∫ tn

0

∥∥T (s)u1 − T (s)u2

∥∥ ds+ (1− αn)‖v1 − v2‖

≤ αn‖u1 − u2‖+ (1− αn)‖v1 − v2‖;
that is

‖u1 − u2‖ ≤ αn‖u1 − u2‖+ (1− αn)‖v1 − v2‖,
which implies that∥∥An(v1)− An(v2)

∥∥ = ‖u1 − u2‖ ≤ ‖v1 − v2‖.

Therefore, each An is a nonexpansive mapping. Let ω ∈ F (T). This means
T (s)ω = ω, and hence

αn ·
1

tn

∫ tn

0

T (s)ω ds+ (1− αn)ω = ω.

This implies that F (T) ⊂
⋂∞

n=1 F (An). Set

Un,m = An+m−1 ◦ An+m−2 ◦ · · · ◦ An for m ≥ 1.

Then Un,m : K → K is a nonexpansive mapping, and Un,m(ω) = ω, Un,mxn =
xn+m for ω ∈ F (T), m, n ∈ N. If ‖xn − ω1‖ = 0 for some n0 ∈ N, then we have
xn = ω1 for all n ∈ N. Indeed, if n < n0, then it follows from (2.1) that we have
xn0−1 = xn0−2 = · · · = x1 = ω1. If n > n0, since the sequence {‖xn − ω1‖} is
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nonincreasing, then we also have xn = ω1. Thus we may assume that ‖xn−ω1‖ > 0
for all n ∈ N. Set

bn,m = Un,m

(
txn + (1− t)ω1

)
− tUn,mxn − (1− t)Un,mω1,

Ln = t(1− t)‖xn − ω1‖,

Wn,m =
Un,mω1 − Un,m(txn + (1− t)ω1)

t‖xn − ω1‖
,

Dn,m =
Un,m(txn + (1− t)ω1)− Un,mxn

(1− t)‖xn − ω1‖
.

Since Un,m : K → K is a nonexpansive mapping, then we have ‖Wn,m‖ ≤ 1 and
‖Dn,m‖ ≤ 1. Note that E is a uniformly convex space, and we have∥∥tx+ (1− t)y

∥∥ ≤ 1− 2min{t, 1− t}δE
(
‖x− y‖

)
≤ 1− 2t(1− t)δE

(
‖x− y‖

)
(3.1)

for all t ∈ [0, 1] and x, y ∈ E such that ‖x‖ ≤ 1 and ‖y‖ ≤ 1. Therefore, it follows
from (3.1) that

2t(1− t)δE
(
‖Wn,m −Dn,m‖

)
≤ 1−

∥∥tWn,m + (1− t)Dn,m

∥∥. (3.2)

Note that ∥∥Wn,m −Dn,m

∥∥ =
‖bn,m‖
Ln

,∥∥tWn,m + (1− t)Dn,m

∥∥ =
‖Un,mxn − Un,mω1‖

‖xn − ω1‖
=

‖xn+m − ω1‖
‖xn − ω1‖

.

Then it follows from (3.2) that

2LnδE

(‖bn,m‖
Ln

)
≤ ‖xn − ω1‖ − ‖xn+m − ω1‖. (3.3)

It follows from Lemma 1.5 that δE(s)
s

is nondecreasing. Note that limn→∞ ‖xn −
ω1‖ = limn→∞ ‖xn+m − ω1‖ and δE(0) = 0. The continuity of δE gives from
inequality (3.3) that lim infn(lim supm ‖bn,m‖) = 0 uniformly for all m; that is

lim inf
n

(
lim sup

m

∥∥Un,m

(
txn + (1− t)ω1

)
− tUn,mxn − (1− t)Un,mω1

∥∥) = 0.

On the other hand, we have

an+m(t) ≤
∥∥txn+m + (1− t)ω1 − ω2

+
(
Un,m

(
txn + (1− t)ω1

)
− tUn,mxn − (1− t)Un,mω1

)∥∥
+
∥∥−(

Un,m

(
txn + (1− t)ω1

)
+ tUn,mxn + (1− t)Un,mω1

)∥∥
=

∥∥Un,m

(
txn + (1− t)ω1

)
− ω2

∥∥
+
∥∥Un,m

(
txn + (1− t)ω1

)
− tUn,mxn − (1− t)Un,mω1

∥∥
≤ an(t) +

∥∥Un,m

(
txn + (1− t)ω1

)
− tUn,mxn − (1− t)Un,mω1

∥∥.
Therefore, lim supn→∞ an(t) ≤ lim infn→∞ an(t). This implies that limn→∞ an(t)
exits for all t ∈ [0, 1]. This completes the proof. �



348 R. YAO and L. YANG

Now, we prove the weak convergence of the implicit iterative processes (2.1)
for nonexpansive semigroups.

Theorem 3.2. Let E be a uniformly convex Banach space such that its dual
E∗ has the Kadec–Klee property and K is a nonempty closed convex subset of
E. Let T be a nonexpansive semigroup on K, and let a, b be two constants with
0 < a < b < 1. Let {xn} be defined by (2.1) satisfying {αn} ⊂ [a, b] for all n ≥ 1
and tn → ∞ as n → ∞. Then there exists a common fixed point w ∈ F (T) such
that xn ⇀ w.

Proof. By Lemma 2.1(i), we get that {xn} is bounded. Since E is a uniformly
convex Banach space, {xn} has a weakly convergent subsequence {xnk

}. Assume
that {xnk

} converges weakly to w for k → ∞. Note that {xn} ⊂ K and K is
weakly closed. Then w ∈ K. By Lemma 2.1(ii), we get limn→∞ ‖xn−T (s)xn‖ = 0.
By Lemma 1.6, we have w ∈ F (T). Assume that {xn} does not converge weakly
to w. Then ∃{xnj

} ⊂ {xn} such that {xnj
} converges weakly to some p 6= w. As

in the case of w, we must have p ∈ K and p ∈ F (T). It follows from Lemma 3.1
that limn→∞ ‖txn + (1− t)w− p‖ exists for all t ∈ [0, 1]. By Lemma 1.3, we have
that p = w. Hence {xn} converges weakly to w. This completes the proof. �

Remark 3.3. The result of Theorem 3.2 is different from Theorem 3.4 of [5]. In
this paper, T is a nonexpansive semigroup, but in Theorem 3.4 of [5] T1, T2, . . . , Tm

are a finite family of asymptotically nonexpansive mappings. Additionally, the
iterative process {xn} defined by (2.1) in this article is different from {xn} defined
by (3.1) of [5].
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