TRIPLE SOLUTIONS FOR QUASILINEAR ONE-DIMENSIONAL p-LAPLACIAN ELLIPTIC EQUATIONS IN THE WHOLE SPACE

GABRIELE BONANNO,,$^{1 *}$ DONAL O'REGAN, ${ }^{2}$ and FRANCESCA VETRO ${ }^{3}$

Communicated by S. Barza

Abstract

In this paper, we establish the existence of three possibly nontrivial solutions for a Dirichlet problem on the real line without assuming on the nonlinearity asymptotic conditions at infinity. As a particular case, when the nonlinearity is superlinear at zero and sublinear at infinity, the existence of two nontrivial solutions is obtained. This approach is based on variational methods and, more precisely, a critical points theorem, which assumes a more general condition than the classical Palais-Smale condition, is exploited.

1. Introduction

Quasilinear elliptic equations in the whole space, as well as in the special case, on infinite intervals occur naturally in a variety of settings in physics and engineering, as in, for example, the study of non-Newtonian fluid flows, nonlinear mechanics, the theory of plasma, and electrical potential theory (see [2], [3], [8], and [12]). In particular, it highlights that they occur in dissipative quantum mechanics (see [7]), in condensed matter theory (see [11]), and in the theory of Heisenberg ferromagnets (see [13]). It is well known that the study of such equations presents great difficulties because of the lack of compactness of the involved operators. Indeed, in such cases the operators which solve the problem are not regular enough in comparison to operators which arise in problems on bounded domains. To be more precise, if we use operator theory and fixed point methods, then standard results

[^0]c and d with $c<d$ such that
$$
\frac{\int_{0}^{c} g(\xi) d \xi}{c^{2}}<\left(\frac{2}{7} \frac{\int_{-1}^{1} \alpha(x) d x}{\int_{-\infty}^{+\infty} \alpha(x) d x}\right) \frac{\int_{0}^{d} g(\xi) d \xi}{d^{2}}
$$
and
$$
\lim _{\xi \rightarrow+\infty} \frac{g(\xi)}{\xi}=0
$$

Then, for each $\lambda \in] \frac{1}{\int_{-1}^{1} \alpha(x) d x} \frac{7}{2} \frac{d^{2}}{\int_{0}^{d} g(\xi) d \xi}, \frac{1}{\int_{-\infty}^{+\infty} \alpha(x) d x} \frac{c^{2}}{\int_{0}^{c} g(\xi) d \xi}[$, the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\lambda \alpha(x) g(u) \quad x \in \mathbb{R}, \\
u(-\infty)=u(+\infty)=0
\end{array}\right.
$$

admits at least three distinct nontrivial classical solutions.
This article is organized as follows. In Section 2, we recall some preliminary results. In particular, we recall a critical points theorem proved in [4] that we will use to prove the main result of the paper. In Section 3, we present our main result (Theorems 3.1), and we point out a special case (Corollary 3.4). Furthermore, we give some examples to illustrate Theorem 3.1 and Corollary 3.4 (Examples 3.3 and 3.5).

2. Preliminaries

In this section, we introduce the notation and terminology, and we collect some well-known facts that we will use in the sequel.

Let $(X,\|\cdot\|)$ be a real Banach space, and let X^{*} be the dual space of X. A function $I: X \rightarrow \mathbb{R}$ is Gâteaux differentiable at $u \in X$ if there is a $I^{\prime}(u) \in X^{*}$ such that

$$
\lim _{t \rightarrow 0^{+}} \frac{I(u+t v)-I(u)}{t}=I^{\prime}(u)(v)
$$

for each $v \in X$. The function I is continuously Gâteaux differentiable if it is Gâteaux differentiable for any $u \in X$ and the function $u \rightarrow I^{\prime}(u)$ is a continuous map from X to its dual X^{*}.

Let $\Phi, \Psi: X \rightarrow \mathbb{R}$ be two continuously Gâteaux differentiable functions, let λ be a real positive parameter, and let $I_{\lambda}=\Phi-\lambda \Psi$. Fix $\left.\left.r \in\right]-\infty,+\infty\right]$.
Definition 2.1. The function I_{λ} satisfies the Palais-Smale condition (in short, the $(P S)$-condition) if any sequence $\left\{u_{n}\right\}$ such that
(i) $I_{\lambda}\left(u_{n}\right)$ is bounded,
(ii) $\lim _{n \rightarrow+\infty}\left\|I_{\lambda}^{\prime}\left(u_{n}\right)\right\|_{X^{*}}=0$
has a convergent subsequence.
Definition 2.2. The function I_{λ} satisfies the Palais-Smale condition cutoff upper at r (in short, the $(P S)^{[r]}$-condition) if any sequence $\left\{u_{n}\right\}$ that satisfies (i), (ii), and
(iii) $\Phi\left(u_{n}\right)<r$
has a convergent subsequence.

Definition 2.3. An element $u \in X$ is a critical point of I_{λ} if $I_{\lambda}^{\prime}(u)=0_{X^{*}}$; that is, $I_{\lambda}^{\prime}(u)(v)=0$ for each $v \in X$.

Let $|\cdot|$ and $|\cdot|_{t}$ be the usual norms on \mathbb{R} and $L^{t}(\mathbb{R})$ where $t \in[1,+\infty]$, respectively. Here, we denote by $W_{0}^{1, p}(\mathbb{R})$ the closure of $C_{0}^{\infty}(\mathbb{R})$ in $W^{1, p}(\mathbb{R})$ with respect to the norm

$$
\|u\|_{1, p}:=\left(\left|u^{\prime}\right|_{p}^{p}+|u|_{p}^{p}\right)^{\frac{1}{p}}
$$

and we consider $W^{1, p}(\mathbb{R})$ endowed with the norm

$$
\|u\|=\left(\int_{\mathbb{R}}\left(\left|u^{\prime}(x)\right|^{p}+B|u(x)|^{p}\right) d x\right)^{\frac{1}{p}} .
$$

We note that $W^{1, p}(\mathbb{R}) \equiv W_{0}^{1, p}(\mathbb{R})$ and $W^{1, p}(\mathbb{R})$ is embedded in $L^{t}(\mathbb{R})$ for any $t \in[p,+\infty]$. Let $G: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
G(t)=\int_{0}^{t} g(\xi) d \xi \quad \text { for all } t \in \mathbb{R}
$$

We note that the hypotheses on g guarantee that $G \in C^{1}(\mathbb{R})$ and $G^{\prime}(t)=$ $g(t) \geq 0$ for all $t \in \mathbb{R}$, and so the function G is nondecreasing.

Now, let us denote by $\Phi, \Psi: W^{1, p}(\mathbb{R}) \rightarrow \mathbb{R}$ the functions defined by

$$
\begin{equation*}
\Phi(u)=\frac{1}{p}\|u\|^{p} \quad \text { and } \quad \Psi(u)=\int_{\mathbb{R}} \alpha(x) G(u(x)) d x \tag{2.1}
\end{equation*}
$$

for all $u \in W^{1, p}(\mathbb{R})$. Moreover, by $I_{\lambda}: W^{1, p}(\mathbb{R}) \rightarrow \mathbb{R}$, we denote the energy function related to the problem $\left(P_{\lambda}\right)$. Then, for each $u \in W^{1, p}(\mathbb{R}), I_{\lambda}$ is defined by

$$
I_{\lambda}(u)=\Phi(u)-\lambda \Psi(u)
$$

with Φ and Ψ given by (2.1).
We recall that it is well known that Φ and Ψ are continuously Gâteaux differentiable. Furthermore, if u is a critical point of I_{λ}, then $I_{\lambda}^{\prime}(u) \equiv 0$; that is,

$$
\int_{\mathbb{R}}\left(\left|u^{\prime}(x)\right|^{p-2} u^{\prime}(x) v^{\prime}(x)+B|u(x)|^{p-2} u(x) v(x)-\lambda \alpha(x) g(u(x)) v(x)\right) d x=0
$$

for all $v \in W^{1, p}(\mathbb{R})$, and hence u is a weak solution to $\left(P_{\lambda}\right)$. Clearly, if in addition $\alpha \in C(\mathbb{R})$, then u is a classical solution to $\left(P_{\lambda}\right)$.

We conclude this section with some results proved in [5] and [4] which we will need to prove the existence of three solutions to the problem $\left(P_{\lambda}\right)$.
Proposition 2.4 ([5], Proposition 2.2). One has

$$
|u|_{\infty} \leq c_{B}\|u\|
$$

for all $u \in W^{1, p}(\mathbb{R})$, where

$$
c_{B}=2^{\frac{p-2}{p}}\left(\frac{p-1}{p}\right)^{\frac{p-1}{p}}\left(\frac{1}{B}\right)^{\frac{p-1}{p^{2}}} .
$$

Lemma 2.5 ([5], Lemma 2.8). Let Φ and Ψ be as defined in (2.1), and fix $\lambda>0$. Then $I_{\lambda}=\Phi-\lambda \Psi$ satisfies the $(P S)^{[r]}$-condition for any $r>0$.

Finally, we state in a convenient form a three critical points theorem proved in [4].

Theorem 2.6 ([4], Theorem 7.3). Let X be a real Banach space, and let Φ, Ψ : $X \rightarrow \mathbb{R}$ be two continuously Gâteaux differentiable functions with Φ bounded from below and convex such that

$$
\inf _{X} \Phi=\Phi(0)=\Psi(0)=0 .
$$

Assume that there exist two positive constants r_{1}, r_{2} and $\bar{u} \in X$ with $2 r_{1}<\Phi(\bar{u})<$ $\frac{r_{2}}{2}$ such that
(i) $\frac{\sup _{u \in \Phi-1}\left(\|-\infty, r_{1} \mathrm{D}\right)}{r_{1}} \Psi(u)<\frac{2}{3} \frac{\Psi(\bar{u})}{\Phi(\bar{u})}$,
(ii) $\frac{\sup _{u \in \Phi^{-1}\left(\left|-\infty, r_{2}\right|\right.} \Psi(u)}{r_{2}}<\frac{1}{3} \frac{\Psi(\bar{u})}{\Phi(\bar{u})}$.

Assume also that, for each

$$
\lambda \in \Lambda=] \frac{3}{2} \frac{\Phi(\bar{u})}{\Psi(\bar{u})}, \min \left\{\frac{r_{1}}{\sup _{u \in \Phi^{-1}(]-\infty, r_{1}[)} \Psi(u)}, \frac{r_{2}}{2 \sup _{u \in \Phi^{-1}(]-\infty, r_{2}[)} \Psi(u)}\right\}[
$$

the functional I_{λ} satisfies the $(P S)^{\left[r_{2}\right]}$-condition and

$$
\inf _{t \in[0,1]} \Psi\left(t u_{1}+(1-t) u_{2}\right) \geq 0
$$

for each $u_{1}, u_{2} \in X$, which are local minima for the functional I_{λ} with $\Psi\left(u_{1}\right) \geq 0$ and $\Psi\left(u_{2}\right) \geq 0$.

Then, for each $\lambda \in \Lambda$, the functional I_{λ} admits at least three critical points which lie in $\Phi^{-1}(]-\infty, r_{2}[)$.

We recall that a first version of a three critical points theorem for differentiable functionals depending on a real parameter was given by Ricceri in [14]. In that case, contrary to Theorem 2.6, regularity properties of the functional with respect to the weak topology are requested.

3. Main Result

In this section we state and prove the main result of the paper. We also point out a special case of our main result, and we give some illustrative examples.

In the sequel, Φ and Ψ are the functions defined in (2.1), and we put

$$
k=\frac{1}{3 c_{B}^{p}\left(1+B+\frac{B}{p+1}\right)} \frac{\alpha_{0}}{|\alpha|_{1}},
$$

where $\alpha_{0}=\int_{-1}^{1} \alpha(x) d x$ and c_{B} is given in Proposition 2.4.
Theorem 3.1. Assume that there exist three positive constants c_{1}, c_{2}, d with $2 c_{1}<$ $d<c_{2}$ such that
(j) $\frac{G\left(c_{1}\right)}{c_{1}^{p}}<k \frac{G(d)}{d^{p}}$,
(jj) $\frac{G\left(c_{2}\right)}{c_{2}^{p}}<\frac{k}{2} \frac{G(d)}{d^{p}}$.

Then, for each

$$
\lambda \in \bar{\Lambda}=] \frac{1}{p c_{B}^{p}|\alpha|_{1}} \frac{1}{k} \frac{d^{p}}{G(d)}, \frac{1}{p c_{B}^{p}|\alpha|_{1}} \min \left\{\frac{c_{1}^{p}}{G\left(c_{1}\right)}, \frac{c_{2}^{p}}{2 G\left(c_{2}\right)}\right\}[,
$$

the problem $\left(P_{\lambda}\right)$ has at least three distinct weak solutions $u_{i} \in W^{1, p}(\mathbb{R})$ such that $\left|u_{i}\right|_{\infty}<c_{2}, i=1,2,3$.

Proof. We will apply Theorem 2.6. Fix three positive constants c_{1}, c_{2}, and d as in the statement. Then put $r_{1}=\frac{1}{p}\left(\frac{c_{1}}{c_{B}}\right)^{p}, r_{2}=\frac{1}{p}\left(\frac{c_{2}}{c_{B}}\right)^{p}$, and

$$
\bar{u}(x)= \begin{cases}0 & \text { if } x \in \mathbb{R} \backslash]-2,2[\\ d & \text { if } x \in[-1,1] \\ d(2-|x|) & \text { if } x \in[-2,-1[\cup] 1,2]\end{cases}
$$

We notice that the regularity assumptions of Theorem 2.6 on Φ and Ψ are satisfied, and we have

$$
\begin{aligned}
\Phi(\bar{u}) & =\frac{1}{p}\|\bar{u}\|^{p}=\frac{1}{p} \int_{-2}^{2}\left|\bar{u}(x)^{\prime}\right|^{p} d x+\frac{B}{p} \int_{-2}^{2}|\bar{u}(x)|^{p} d x \\
& =\frac{2}{p} \int_{1}^{2} d^{p} d x+\frac{2 B}{p}\left[\int_{0}^{1} d^{p} d x+\int_{1}^{2} d^{p}(2-x)^{p} d x\right] \\
& =\frac{2}{p} d^{p}\left(1+B+\frac{B}{p+1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\Psi(\bar{u}) & =\int_{\mathbb{R}} \alpha(x) G(\bar{u}(x)) d x \\
& \geq \int_{-1}^{1} \alpha(x) G(d) d x \\
& =\alpha_{0} G(d)
\end{aligned}
$$

Now, taking into account that

$$
\begin{aligned}
\left(\frac{1}{B}\right)^{\frac{p-1}{p^{2}}}\left(1+B+\frac{B}{p+1}\right)^{\frac{1}{p}} & =\left(\left(\frac{1}{B}\right)^{\frac{p-1}{p}}+\frac{p+2}{p+1} B^{\frac{1}{p}}\right)^{\frac{1}{p}} \\
& \geq\left(\left(\frac{p+2}{p^{2}-1}\right)^{\frac{p-1}{p}}+\frac{p+2}{p+1}\left(\frac{p^{2}-1}{p+2}\right)^{\frac{1}{p}}\right)^{\frac{1}{p}}
\end{aligned}
$$

one has

$$
c_{B}\left(1+B+\frac{B}{p+1}\right)^{\frac{1}{p}} \geq L(p)
$$

where

$$
L(p)=2^{\frac{p-2}{p}}\left(\frac{p-1}{p}\right)^{\frac{p-1}{p}}\left(\left(\frac{p+2}{p^{2}-1}\right)^{\frac{p-1}{p}}+\frac{p+2}{p+1}\left(\frac{p^{2}-1}{p+2}\right)^{\frac{1}{p}}\right)^{\frac{1}{p}} .
$$

Since $L(p)>\frac{1}{2}$ for all $p>1$, one has

$$
c_{B}\left(1+B+\frac{B}{p+1}\right)^{\frac{1}{p}}>\frac{1}{2},
$$

and then from $2 c_{1}<d$ we obtain

$$
\frac{1}{c_{B}\left(1+B+\frac{B}{p+1}\right)^{\frac{1}{p}}} c_{1}<d .
$$

Thus it follows that

$$
2 \frac{1}{p} \frac{c_{1}^{p}}{c_{B}^{p}}<\frac{2}{p}\left(1+B+\frac{B}{p+1}\right) d^{p} ;
$$

that is, $2 r_{1}<\Phi(\bar{u})$. Moreover, from (jj) taking into account that $G(d) \leq G\left(c_{2}\right)$, one has

$$
\frac{1}{c_{2}^{p}}<\frac{k}{2} \frac{G(d)}{G\left(c_{2}\right)} \frac{1}{d^{p}} \leq \frac{1}{6 c_{B}^{p}\left(1+B+\frac{B}{p+1}\right)} \frac{\alpha_{0}}{|\alpha|_{1}} \frac{1}{d^{p}}<\frac{1}{4 c_{B}^{p}\left(1+B+\frac{B}{p+1}\right)} \frac{1}{d^{p}} .
$$

Therefore, one has $\frac{2}{p}\left(1+B+\frac{B}{p+1}\right) d^{p}<\frac{1}{2}\left(\frac{1}{p} \frac{c_{2}^{p}}{c_{B}^{p}}\right)$; that is, $\Phi(\bar{u})<\frac{r_{2}}{2}$. Hence one has

$$
2 r_{1}<\Phi(\bar{u})<\frac{r_{2}}{2} .
$$

Now, we notice that if $u \in W^{1, p}(\mathbb{R})$ is such that $\Phi(u)<r_{i}$, then from

$$
\Phi(u)=\frac{1}{p}\|u\|^{p}<r_{i}=\frac{1}{p}\left(\frac{c_{i}}{c_{B}}\right)^{p}
$$

we obtain that $c_{B}\|u\|<c_{i}$, and hence, by Proposition 2.4, we also obtain that $|u|_{\infty}<c_{i}$. Taking this into account, from (j) we have

$$
\begin{aligned}
\frac{1}{r_{1}} \sup _{\Phi(u)<r_{1}} \Psi(u) & =\frac{1}{r_{1}} \sup _{\Phi(u)<r_{1}} \int_{\mathbb{R}} \alpha(x) G(u(x)) d x \\
& \leq \frac{1}{r_{1}} \int_{\mathbb{R}} \alpha(x) \max _{|t| \leq c_{1}} G(t) d x \\
& =p c_{B}^{p}|\alpha|_{1} \frac{G\left(c_{1}\right)}{c_{1}^{p}} \\
& <|\alpha|_{1} p c_{B}^{p} \frac{\alpha_{0}}{3 c_{B}^{p}|\alpha|_{1}\left(1+B+\frac{B}{p+1}\right)} \frac{G(d)}{d^{p}} \\
& \leq \frac{2}{3} \frac{\Psi(\bar{u})}{\Phi(\bar{u})} .
\end{aligned}
$$

Analogously, from (jj) we get

$$
\begin{aligned}
\frac{1}{r_{2}} \sup _{\Phi(u)<r_{2}} \Psi(u) & \leq \frac{1}{r_{2}} \int_{\mathbb{R}} \alpha(x) \max _{|t| \leq c_{2}} G(t) d x \\
& =p c_{B}^{p}|\alpha|_{1} \frac{G\left(c_{2}\right)}{c_{2}^{p}}
\end{aligned}
$$

$$
\begin{aligned}
& <\frac{1}{2}|\alpha|_{1} p c_{B}^{p} \frac{\alpha_{0}}{3 c_{B}^{p}|\alpha|_{1}\left(1+B+\frac{B}{p+1}\right)} \frac{G(d)}{d^{p}} \\
& \leq \frac{1}{3} \frac{\Psi(\bar{u})}{\Phi(\bar{u})}
\end{aligned}
$$

Therefore, conditions (i) and (ii) of Theorem 2.6 are satisfied. In addition, we observe that

$$
\bar{\Lambda}=] \frac{1}{p c_{B}^{p}|\alpha|_{1}} \frac{1}{k} \frac{d^{p}}{G(d)}, \frac{1}{p c_{B}^{p}|\alpha|_{1}} \min \left\{\frac{c_{1}^{p}}{G\left(c_{1}\right)}, \frac{c_{2}^{p}}{2 G\left(c_{2}\right)}\right\}[\subset \Lambda,
$$

and, furthermore, by Lemma 2.5, the functional I_{λ} satisfies the $(P S)^{\left[r_{2}\right]}$-condition for each $\lambda \in \bar{\Lambda}$.

Now, let u be a local minima of I_{λ}. We notice that $u(x) \geq 0$ for each x. In fact, since u is a critical point of I_{λ}, we have that

$$
\int_{\mathbb{R}}\left(\left|u^{\prime}(x)\right|^{p-2} u^{\prime}(x) v^{\prime}(x)+B|u(x)|^{p-2} u(x) v(x)\right) d x-\int_{\mathbb{R}} \lambda \alpha(x) g(u(x)) v(x) d x=0
$$

for all $v \in W^{1, p}(\mathbb{R})$. Then, if we choose $v(x)=\max \{-u(x), 0\}$, we have

$$
\begin{aligned}
0 & =\int_{\mathbb{R}} \lambda \alpha(x) g(u(x)) v(x) d x-\int_{\mathbb{R}}\left(\left|u^{\prime}(x)\right|^{p-2} u^{\prime}(x) v^{\prime}(x)+B|u(x)|^{p-2} u(x) v(x)\right) d x \\
& =\int_{\mathbb{R}} \lambda \alpha(x) g(u(x)) v(x) d x-\int_{\mathbb{R}}\left(-\left|v^{\prime}(x)\right|^{p-2}\left(v^{\prime}(x)\right)^{2}-B|v(x)|^{p-2}(v(x))^{2}\right) d x \\
& =\int_{\mathbb{R}} \lambda \alpha(x) g(u(x)) v(x) d x+\int_{\mathbb{R}}\left(\left|v^{\prime}(x)\right|^{p}+B|v(x)|^{p}\right) d x \\
& =\int_{\mathbb{R}} \lambda \alpha(x) g(u(x)) v(x) d x+\|v\|^{p} \\
& \geq\|v\|^{p} .
\end{aligned}
$$

From the previous inequality it follows that $v(x)=0$ for each x and, consequently, $u(x) \geq 0$ for each x.

Finally, let $u_{1}, u_{2} \in W^{1, p}(\mathbb{R})$ be two local minima of the functional I_{λ} with $\Psi\left(u_{1}\right) \geq 0$ and $\Psi\left(u_{2}\right) \geq 0$. Since u_{1}, u_{2}, as seen before, are nonnegative, we get

$$
\min _{t \in[0,1]} \Psi\left(t u_{1}+(1-t) u_{2}\right) \geq 0
$$

Then we can apply Theorem 2.6. Thus, for each $\lambda \in \bar{\Lambda}$, the functional I_{λ} admits at least three critical points u_{i} which lie in $\Phi^{-1}(]-\infty, r_{2}[)$, and hence problem $\left(P_{\lambda}\right)$ has three weak solutions u_{i} such that $\left|u_{i}\right|_{\infty}<c_{2}, i=1,2,3$.

Remark 3.2. If $p \geq 2$, then in Theorem 3.1 it is enough to assume that there exist three positive constants c_{1}, d, c_{2}, with $c_{1}<d<c_{2}$ such that (j) and (jj) hold true. Indeed, a simple computation shows that $L(p)>1$ for all $p \geq 2$, and from the same proof in Theorem 3.1 our assertion is proved.

We now give an example to illustrate Theorem 3.1.

Example 3.3. Let $\alpha, g: \mathbb{R} \rightarrow \mathbb{R}$ be the functions defined as follows:

$$
\alpha(x)= \begin{cases}1 & \text { if } x \in[-1,1] \\ \frac{1}{x^{2}} & \text { otherwise }\end{cases}
$$

and

$$
g(t)= \begin{cases}1 & \text { if } t \in]-\infty, 1] \\ t^{7} & \text { if } t \in] 1,2] \\ 2^{7} & \text { if } t \in] 2,300] \\ \bar{g}(t) & \text { if } t \in] 300,+\infty[,\end{cases}
$$

where $\bar{g}(t):] 300,+\infty[\rightarrow \mathbb{R}$ is an arbitrary function. Therefore, Theorem 3.1 ensures that the problem

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+u=\lambda \alpha(x) g(u) \quad x \in \mathbb{R}, \\
u(-\infty)=u(+\infty)=0
\end{array}\right.
$$

admits at least three distinct nontrivial classical solutions whose norms in $C^{0}(\mathbb{R})$ are less than 300 for each $\lambda \in] \frac{56}{263}, \frac{1}{4}\left[\right.$. In fact, it is sufficient to choose $p=2, c_{1}=$ $1, d=2$, and $c_{2}=300$ in order to apply Theorem 3.1 (see also Remark 3.2), and so we obtain the conclusion.

Next, we present a consequence of Theorem 3.1.
Corollary 3.4. Assume that $\alpha_{0} \neq 0$ and $g \not \equiv 0$. Moreover, assume that

$$
\lim _{\xi \rightarrow 0^{+}} \frac{g(\xi)}{\xi^{p-1}}=0 \quad \text { and } \quad \lim _{\xi \rightarrow+\infty} \frac{g(\xi)}{\xi^{p-1}}=0
$$

Then, for each $\lambda \in]_{\frac{1}{p c_{B}^{p}|\alpha| 1}} \frac{1}{k} \inf _{d>0} \frac{d^{p}}{\int_{0}^{d} g(\xi) d \xi},+\infty\left[\right.$, problem $\left(P_{\lambda}\right)$ admits at least two distinct nontrivial weak solutions.

Proof. First observe that $\frac{1}{p c_{B}^{p}|\alpha|_{1}} \frac{1}{k} \inf _{d>0} \frac{d^{p}}{G(d)}<+\infty$ since $\alpha_{0} \neq 0$ and $g \not \equiv 0$. Then fix $\lambda>\frac{1}{p c_{B}^{p}|\alpha| 1} \frac{1}{k} \inf _{d>0} \frac{d^{p}}{G(d)}$. Now, let d be a positive constant such that

$$
\begin{equation*}
\lambda>\frac{1}{p c_{B}^{p}|\alpha|_{1}} \frac{1}{k} \frac{d^{p}}{G(d)} . \tag{3.1}
\end{equation*}
$$

Therefore, from $\lim _{\xi \rightarrow 0^{+}} p c_{B}^{p}|\alpha|_{1} \frac{G(\xi)}{\xi^{p}}=0<\frac{1}{\lambda}$, there exists $c_{1}>0$ with $c_{1}<\frac{1}{2} d$ such that

$$
\begin{equation*}
p c_{B}^{p}|\alpha|_{1} \frac{G\left(c_{1}\right)}{c_{1}^{p}}<\frac{1}{\lambda} \tag{3.2}
\end{equation*}
$$

Moreover, from $\lim _{\xi \rightarrow+\infty} p c_{B}^{p}|\alpha|_{1} \frac{2 G(\xi)}{\xi^{p}}=0<\frac{1}{\lambda}$, there exists $c_{2}>d$ such that

$$
\begin{equation*}
p c_{B}^{p}|\alpha|_{1} \frac{2 G\left(c_{2}\right)}{c_{2}^{p}}<\frac{1}{\lambda} \tag{3.3}
\end{equation*}
$$

Hence, taking (3.1), (3.2), and (3.3) into account, from Theorem 3.1 we have the result.

Example 3.5. The problem

$$
\left\{\begin{array}{l}
-\left(\left|u^{\prime}\right| u^{\prime}\right)^{\prime}+|u| u=15 \frac{e^{-u} u^{3}}{1+x^{2}} \quad x \in \mathbb{R}, \\
u(-\infty)=u(+\infty)=0
\end{array}\right.
$$

admits at least two nontrivial classical solutions. It is enough to apply Corollary 3.4 by choosing $p=3, g(u)=e^{-u} u^{3}, \alpha(x)=\frac{1}{1+x^{2}}$ and by observing that $G(u)=6-e^{-u}\left(u^{3}+3 u^{2}+6 u+6\right)$ and $15>\frac{1}{p c_{B}^{p}|\alpha|_{1}} \frac{1}{k} \frac{1^{p}}{G(1)}=\frac{9}{2 \pi} \frac{e}{6 e-16}$.
Remark 3.6. Theorem 1.1 in the Introduction is a consequence of Theorem 3.1. Indeed, it is enough to choose $p=2$, taking Remark 3.2 into account, and to argue as in the proof of Corollary 3.4 to prove (jj). Therefore, Theorem 3.1 ensures the existence of three weak solutions which, since $g(0) \neq 0$ and $\alpha \in C(\mathbb{R})$, are nontrivial classical solutions.

Remark 3.7. We recall that existence of at least one nontrivial nonnegative solution for problem $\left(P_{\lambda}\right)$ without requiring any asymptotic condition on g either at zero or at infinity was established in [5]. In that case the requested condition is of an opposite type with respect to (j) of Theorem 3.1. Also, in [5], under a suitable condition at infinity on g, the authors guaranteed the existence of two nontrivial solutions for problem $\left(P_{\lambda}\right)$.
Acknowledgments. The first author is a member of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INDAM). The third author is a member of the Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni (GNSAGA) of the Istituto Nazionale di Alta Matematica (INDAM).

References

1. R. P. Agarwal and D. O'Regan, Infinite Interval Problems for Differential, Difference and Integral Equations, Kluwer Academic, Dordrecht, 2001. Zbl 0988.34002. MR1845855. DOI 10.1007/978-94-010-0718-4. 249
2. R. P. Agarwal and D. O'Regan, Infinite interval problems arising in non-linear mechanics and non-Newtonian fluid flows, Internat. J. Non-Linear Mech. 38 (2003), no. 9, 1369-1376. Zbl 1348.34053. MR1991507. DOI 10.1016/S0020-7462(02)00076-8. 248
3. A. Ambrosetti and Z.-Q. Wang, Positive solutions to a class of quasilinear elliptic equations on \mathbb{R}, Discrete Contin. Dyn. Syst. 9 (2003), no. 1, 55-68. Zbl 1023.35033. MR1951313. DOI 10.3934/dcds.2003.9.55. 248, 249
4. G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal. 75 (2012), no. 5, 2992-3007. Zbl 1239.58011. MR2878492. DOI 10.1016/j.na.2011.12.003. 249, 250, 251, 252
5. G. Bonanno, G. Barletta, and D. O'Regan, A variational approach to multiplicity results for boundary value problems on the real line, Proc. Roy. Soc. Edinburgh Sect. A 145 (2015), no. 1, 13-29. Zbl 1314.34060. MR3304573. DOI 10.1017/S0308210513001200. 251, 257
6. A. Constantin, On an infinite interval value problem, Ann. Mat. Pura Appl. (4) 176 (1999), 379-394. Zbl 0969.34024. MR1746548. DOI 10.1007/BF02506002. 249
7. R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Physik B 37 (1980), no. 1, 83-87. MR0563644. DOI 10.1007/BF01325508. 248
8. S. Kurihura, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan 50 (1981), 3262-3267. 248
9. R. Ma, Existence of positive solutions for second-order boundary value problems on infinity intervals, Appl. Math. Lett. 16 (2003), no. 1, 33-39. Zbl 1046.34045. MR1938189. DOI 10.1016/S0893-9659(02)00141-6. 249
10. L. Ma and X. Xu, Positive solutions of a logistical equation on unbounded intervals, Proc. Amer. Math. Soc. 130 (2002), no. 10, 2947-2958. Zbl 1013.34025. MR1908918. DOI 10.1090/S0002-9939-02-06405-5. 249
11. V. G. Makhankov and V. K. Fedyanin, Non-linear effects in quasi-one-dimensional models of condensed matter theory, Phys. Rep. 104 (1984), no. 1, 1-86. MR0740342. DOI 10.1016/ 0370-1573(84)90106-6. 248
12. M. Poppenberg, On the local well posedness of quasilinear Schrödinger equations in arbitrary space dimension, J. Differential Equations 172 (2001), no. 1, 83-115. Zbl 1014.35020. MR1824086. DOI 10.1006/jdeq.2000.3853. 248, 249
13. G. R. W. Quispel and H. W. Capel, Equation of motion for the Heisenberg spin chain, Phys. A 110 (1982), no. 1-2, 41-80. MR0647411. DOI 10.1016/0378-4371(82)90104-2. 248
14. B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000), no. 3, 220-226. Zbl 0979.35040. MR1780585. DOI 10.1007/s000130050496. 252
15. M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl. 24, Birkhäuser, Berlin, 1996. Zbl 0856.49001. MR1400007. DOI 10.1007/978-1-4612-4146-1. 249
16. L. Zima, On positive solutions of boundary value problems on the half line, J. Math. Anal. Appl. 259 (2001), no. 1, 127-136. Zbl 1003.34024. MR1836449. DOI 10.1006/ jmaa.2000.7399. 249
${ }^{1}$ Department of Engineering, University of Messina, C.da Di Dio, Sant'Agata, 98166, Messina, Italy.

E-mail address: bonanno@unime.it
${ }^{2}$ School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland.

E-mail address: donal.oregan@nuigalway.ie
${ }^{3}$ Department of Energy, Information Engineering and Mathematical Models (DEIM), University of Palermo, Viale delle Scienze ed. 8, 90128, Palermo, Italy. E-mail address: francesca.vetro@unipa.it

[^0]: Copyright 2017 by the Tusi Mathematical Research Group.
 Received Aug. 2, 2016; Accepted Sep. 16, 2016.

 * Corresponding author.

 2010 Mathematics Subject Classification. Primary 34B40; Secondary 47H14, 49J40.
 Keywords. nonlinear differential problems in unbounded domains, operators without compactness, critical points, three solutions.

