Ann. Funct. Anal. 8 (2017), no. 2, 240-247
http://dx.doi.org/10.1215/20088752-0000009X
ISSN: 2008-8752 (electronic)

SOME OPERATOR INEQUALITIES FOR UNITARILY INVARIANT NORMS

JIANGUO ZHAO ${ }^{1 *}$ and and JUNLIANG WU ${ }^{2}$
Communicated by Y. Seo

Abstract

This note aims to present some operator inequalities for unitarily invariant norms. First, a Zhan-type inequality for unitarily invariant norms is given. Moreover, some operator inequalities for the Cauchy-Schwarz type are also established.

1. Introduction

Throughout this article, let $\mathbf{B}(\mathcal{H})$ be the algebra of all bounded linear operators on a complex separable Hilbert space $(\mathcal{H},\langle\rangle$,$) . For self-adjoint operators A, B$, the order relation $A \leq B$ means that $\langle A x, x\rangle \leq\langle B x, x\rangle$ for all $x \in \mathcal{H}$. In particular, if $0 \leq(<) A$, then A is called positive (invertible positive). Here $|\|\cdot\|| \mid$ denotes a unitarily invariant norm defined on a two-sided ideal $K_{\|\cdot\|} \cdot \|$ that is included in C_{∞} (the set of compact operators), which has the basic property $\|\|U A V\|\|=\|A A\|$ for every $A \in K_{\|\cdot\| \|}$ and all unitary operators $U, V \in \mathbf{B}(\mathcal{H})$. If $\operatorname{dim} \mathcal{H}=n$, then we identify $\mathbf{B}(\mathcal{H})$ with the algebra M_{n} of all $n \times n$ matrices with entries in \mathbb{C}.

Bhatia and Davis [2] proved the following: Let $A, B, X \in M_{n}$ with $A, B>0$. Then the inequality

$$
\begin{equation*}
2\left\|\left\|A^{\frac{1}{2}} X B^{\frac{1}{2}}\right\|\right\| \leq\left\|A^{v} X B^{1-v}+A^{1-v} X B^{v}\right\| \leq\|A X+X B\| \tag{1.1}
\end{equation*}
$$

[^0]In this note, we study operator inequalities for unitarily invariant norms. Precisely, we present a generalization of inequality (1.3) for operators. Moreover, we also give some operator inequalities for the Cauchy-Schwarz type.

2. Zhan-TYPe inequality for operators

In this section, we present a generalization of Zhan's inequality for unitarily invariant norms. To achieve our goal, we need the following lemmas; the first lemma was obtained by Kittaneh [8, Corollary 1], which is often called the generalized version of the CPR inequality.

Lemma 2.1. Let $R, S, T \in \mathbf{B}(\mathcal{H})$ with R and S invertible and $T \in \mathrm{~K}_{\| \| \cdot \| \cdot}$. Then, for every unitarily invariant norm $\|\|\cdot\|\|$, inequality

$$
\begin{equation*}
2\|\|T\| \leq\|\left\|R^{*} T S^{-1}+R^{-1} T S^{*}\right\| \| \tag{2.1}
\end{equation*}
$$

holds, where R^{*} is the conjugate transpose operator of R.
The matrix version of the next lemma was obtained by Sababheh in [9, Theorem 2.8]; we point out that it is also true for operators.

Lemma 2.2. Let $|\| \cdot|\left|\mid\right.$ be any unitarily invariant norm on $\mathrm{K}_{\|\cdot\| \|}$, and A, B, $X \in \mathbf{B}(\mathcal{H})$ with $A, B \geq 0$ and $X \in \mathrm{~K}_{\|\cdot\| \cdot \|}$. Then, for every unitarily invariant norm $|\|\cdot\||$ and $p \geq q \geq r \geq 0$,

$$
\begin{equation*}
\left\|A^{p} X B^{q}+A^{q} X B^{p}\right\| \leq \mid\left\|A^{p+r} X B^{q-r}+A^{q-r} X B^{p+r}\right\| \| . \tag{2.2}
\end{equation*}
$$

Proof. The proof is the same as that of [9, Theorem 2.8]. For the reader's convenience, we give its proof again. When $p=0$, the result holds obviously, and so we only need to prove it holds for $p>0$. By inequality (1.5), we get

$$
\left\|\left\|A^{p} X B^{q}+A^{q} X B^{p}\right\| \mid \leq\right\| A^{p+q} X+X B^{p+q}\| \| .
$$

Hence we obtain

$$
\begin{aligned}
\left\|A^{p} X B^{q}+A^{q} X B^{p}\right\| & =\left\|A^{p-q+r}\left(A^{q-r} X B^{q-r}\right) B^{r}+A^{r}\left(A^{q-r} X B^{q-r}\right) B^{p-q+r}\right\| \| \\
& \leq\left\|A^{p-q+2 r}\left(A^{q-r} X B^{q-r}\right)+\left(A^{q-r} X B^{q-r}\right) B^{p-q+2 r}\right\| \| \\
& =\left\|A^{p+r} X B^{q-r}+A^{q-r} X B^{p+r}\right\| \| .
\end{aligned}
$$

This completes the proof.
Later in this article we present a Zhan-type inequality for unitarily invariant norms.

Theorem 2.3. Let $A, B, X \in \mathbf{B}(\mathcal{H})$ with $A, B>0$ and $X \in \mathrm{~K}_{\|\cdot\| \mid}$ and $p \geq q \geq$ $r \geq 0$. Then inequality

$$
\begin{align*}
& (t+2)\left\|\left\|A^{\frac{3 p+q}{2}} X B^{\frac{3 q+p}{2}}+A^{\frac{3 q+p}{2}} X B^{\frac{3 p+q}{2}}\right\|\right\| \\
& \quad \leq 4\| \| A^{\frac{3 p+q+2 r}{2}} X B^{\frac{3 q+p-2 r}{2}}+A^{\frac{3 q+p-2 r}{2}} X B^{\frac{3 p+q+2 r}{2}}\| \|-2(2-t)\left\|A^{p+q} X B^{p+q}\right\| \| \\
& \quad \leq\left\|A^{2(p+q)} X+X B^{2(p+q)}+t A^{p+q} X B^{p+q}\right\| \| \tag{2.3}
\end{align*}
$$

holds for any unitarily invariant norm $||\cdot|| \mid$ and $t \in(-2,2]$.

Proof. Thanks to inequality (2.2),

$$
\left\|A^{p} X B^{q}+A^{q} X B^{p}\right\| \leq\left\|A^{p+r} X B^{q-r}+A^{q-r} X B^{p+r}\right\| \|
$$

and the Heinz inequality

$$
\left\|\left\|A^{p} X B^{q}+A^{q} X B^{p}\right\| \leq \leq\right\| A^{p+q} X+X B^{p+q}\| \|
$$

we have

$$
\begin{align*}
\left\|A^{p} X B^{q}+A^{q} X B^{p}\right\| \| & \leq\left\|A^{p+r} X B^{q-r}+A^{q-r} X B^{p+r}\right\| \| \\
& \leq\left\|A^{p+q} X+X B^{p+q}\right\| \tag{2.4}
\end{align*}
$$

Replacing X by $A^{-\frac{p+q}{2}} X B^{-\frac{p+q}{2}}$ in inequality (2.4), we obtain

$$
\begin{align*}
\left\|A^{\frac{p-q}{2}} X B^{\frac{q-p}{2}}+A^{\frac{q-p}{2}} X B^{\frac{p-q}{2}}\right\| \| & \leq\left\|A^{\frac{p-q+2 r}{2}} X B^{\frac{q-p-2 r}{2}}+A^{\frac{q-p-2 r}{2}} X B^{\frac{p-q+2 r}{}}\right\| \| \\
& \leq\left\|A^{\frac{p+q}{2}} X B^{-\frac{p+q}{2}}+A^{-\frac{p+q}{2}} X B^{\frac{p+q}{2}}\right\| \| \tag{2.5}
\end{align*}
$$

Thanks to

$$
\begin{aligned}
& A^{\frac{p+q}{2}}\left(A^{\frac{p+q}{2}} X B^{-\frac{p+q}{2}}+A^{-\frac{p+q}{2}} X B^{\frac{p+q}{2}}\right) B^{-\frac{p+q}{2}} \\
& \quad+A^{-\frac{p+q}{2}}\left(A^{\frac{p+q}{2}} X B^{-\frac{p+q}{2}}+A^{-\frac{p+q}{2}} X B^{\frac{p+q}{2}}\right) B^{\frac{p+q}{2}} \\
&= A^{p+q} X B^{-(p+q)}+A^{-(p+q)} X B^{p+q}+2 X
\end{aligned}
$$

and the generalized version of the C-P-R inequality (2.1), $2\|\|X\| \leq\| \| S^{-1} X T+$ $S X T^{-1}\| \|$, where S and T are two invertible self-adjoint operators and $X \in K_{\|\cdot\| \|}$, we deduce that

$$
\begin{align*}
& 2\left\|\left\|A^{\frac{p+q}{2}} X B^{-\frac{p+q}{2}}+A^{-\frac{p+q}{2}} X B^{\frac{p+q}{2}}\right\|\right\| \\
& \quad \leq\left\|\left|A^{p+q} X B^{-(p+q)}+A^{-(p+q)} X B^{p+q}+2 X\right|\right\| \tag{2.6}
\end{align*}
$$

Relations (2.5) and (2.6) give

$$
\begin{align*}
& 2\left\|\left\|A^{\frac{p-q}{2}} X B^{\frac{q-p}{2}}+A^{\frac{q-p}{2}} X B^{\frac{p-q}{2}}\right\|\right\| \\
& \quad \leq 2\left\|A^{\frac{p-q+2 r}{2}} X B^{\frac{q-p-2 r}{2}}+A^{\frac{q-p-2 r}{2}} X B^{\frac{p-q+2 r}{2}}\right\| \| \\
& \quad \leq\| \| A^{p+q} X B^{-(p+q)}+A^{-(p+q)} X B^{p+q}+2 X \| . \tag{2.7}
\end{align*}
$$

On the other hand, due to

$$
\begin{aligned}
& A^{p+q} X B^{-(p+q)}+A^{-(p+q)} X B^{p+q}+2 X \\
& \quad=A^{p+q} X B^{-(p+q)}+A^{-(p+q)} X B^{p+q}+t X+(2-t) X
\end{aligned}
$$

we have

$$
\begin{align*}
& \left\|\left\|A^{p+q} X B^{-(p+q)}+A^{-(p+q)} X B^{p+q}+2 X\right\|\right. \\
& \quad \leq\| \| A^{p+q} X B^{-(p+q)}+A^{-(p+q)} X B^{p+q}+t X\|+(2-t)\| X \| . \tag{2.8}
\end{align*}
$$

Combining (2.7) with (2.8), we get

$$
\begin{align*}
& 4\left\|A^{\frac{p-q}{2}} X B^{\frac{q-p}{2}}+A^{\frac{q-p}{2}} X B^{\frac{p-q}{2}}\right\|\|-2(2-t)\| X\|\| \\
& \quad \leq 2\left\|A^{\frac{p-q+2 r}{2}} X B^{\frac{q-p-2 r}{2}}+A^{\frac{q-p-2 r}{2}} X B^{\frac{p-q+2 r}{2}}\right\|\|-2(2-t)\| X\| \| \\
& \quad \leq 2\left\|A^{p+q} X B^{-(p+q)}+A^{-(p+q)} X B^{p+q}+t X\right\| \tag{2.9}
\end{align*}
$$

Once again, using the generalized version of the C-P-R inequality, we have

$$
\begin{align*}
& (t+2)\left\|\left\|A^{\frac{p-q}{2}} X B^{\frac{q-p}{2}}+A^{\frac{q-p}{2}} X B^{\frac{p-q}{2}}\right\|\right\| \\
& \quad \leq 4\left\|A^{\frac{p-q}{2}} X B^{\frac{q-p}{2}}+A^{\frac{q-p}{2}} X B^{\frac{p-q}{2}}\right\|\|-2(2-t)\| X\|.\| . \tag{2.10}
\end{align*}
$$

It follows from inequalities (2.9) and (2.10) that

$$
\begin{align*}
& (t+2)\left\|A^{\frac{p-q}{2}} X B^{\frac{q-p}{2}}+A^{\frac{q-p}{2}} X B^{\frac{p-q}{2}}\right\| \\
& \quad \leq 2\left\|A^{\frac{p-q+2 r}{2}} X B^{\frac{q-p-2 r}{2}}+A^{\frac{q-p-2 r}{2}} X B^{\frac{p-q+2 r}{2}}\right\|\|-2(2-t)\| X\| \| \\
& \quad \leq 2\left\|A^{p+q} X B^{-(p+q)}+A^{-(p+q)} X B^{p+q}+t X\right\| \tag{2.11}
\end{align*}
$$

Replacing X by $A^{p+q} X B^{p+q}$ in inequality (2.11), we get the desired result (2.3).
This completes the proof.
Remark 2.4. By Theorem 2.3, we also have the following result. Let $A, B, X \in$ $\mathbf{B}(\mathcal{H})$ with $A, B>0$ and $X \in K_{\|\mid \cdot\|}$ and $q \geq p \geq r \geq 0$. Then inequality

$$
\begin{aligned}
& (t+2)\left\|A^{\frac{3 q+p}{2}} X B^{\frac{3 p+q}{2}}+A^{\frac{3 p+q}{2}} X B^{\frac{3 q+p}{2}}\right\| \\
& \quad \leq 4\left\|A^{\frac{3 q+p+2 r}{2}} X B^{\frac{3 p+q-2 r}{2}}+A^{\frac{3 p+q-2 r}{2}} X B^{\frac{3 q+p+2 r}{2}}\right\|\|-2(2-t)\| A^{q+p} X B^{q+p} \| \\
& \quad \leq 2\left\|A^{2(q+p)} X+X B^{2(q+p)}+t A^{q+p} X B^{q+p}\right\|
\end{aligned}
$$

holds for any unitarily invariant norm $\|\|\cdot\|\|$ and $t \in(-2,2]$.
Based on Theorem 2.3 and Remark 2.4, we obtain the following operator inequality.

Corollary 2.5. Let $A, B, X \in \mathbf{B}(\mathcal{H})$ with $A, B>0$ and $X \in \mathrm{~K}_{\| \| \cdot \| \mid}$ and $p, q>0$. Then inequality

$$
\begin{align*}
& (t+2)\left\|A^{\frac{3 p+q}{2}} X B^{\frac{3 q+p}{2}}+A^{\frac{3 q+p}{2}} X B^{\frac{3 p+q}{2}}\right\| \| \\
& \quad \leq 2\left\|A^{2(p+q)} X+X B^{2(p+q)}+t A^{p+q} X B^{p+q}\right\| \tag{2.12}
\end{align*}
$$

holds for any unitarily invariant norm $|||\cdot|||$ and $t \in(-2,2]$.
Remark 2.6. Putting $p+q=1$ and $r_{1}=\frac{3 q+p}{2}$, then $2-r_{1}=\frac{3 p+q}{2}$ and $r_{1}=\frac{1}{2}+q \in$ $\left[\frac{1}{2}, \frac{3}{2}\right]$, inequality (2.12) becomes (1.3). Thus inequality (2.12) is a generalization of inequality (1.3) for operators.

Remark 2.7. By Corollary 2.5, when $t=1$, we get

$$
\begin{equation*}
\left\|\left\|A^{\frac{3 p+q}{2}} X B^{\frac{3 q+p}{2}}+A^{\frac{3 q+p}{2}} X B^{\frac{3 p+q}{2}}\right\|\right\| \leq\left\|A^{2(p+q)} X+X B^{2(p+q)}\right\| \tag{2.13}
\end{equation*}
$$

hence, when $p=q=\frac{1}{2}$, by inequality (2.13), we get

$$
2\|\|A X B\|\| \leq\left\|A^{2} X+X B^{2}\right\| \|
$$

This is just the well-known arithmetic-geometric norm inequality due to Bhatia and Davis [2].

3. Cauchy-Schwarz-TYpe inequality for operators

In this section, we mainly present some Cauchy-Schwarz operator inequalities for unitarily invariant norms. First, we have the following theorem.

Theorem 3.1. Let $A, B, X \in \mathbf{B}(\mathcal{H})$ with $A, B>0$ and $X \in \mathrm{~K}_{\|\cdot\| \|}$ and $p \geq q \geq$ $s \geq 0$. Then inequality

$$
\begin{equation*}
\left|\left\|| A ^ { p } X B ^ { q } | ^ { r } \left|\left\|\cdot \left|\left\|| A ^ { q } X B ^ { p } | ^ { r } \left|\left\|\leq\left|\left\|| A ^ { p + s } X B ^ { q - s } | ^ { r } \left|\left\|\cdot \left|\left\|\left|A^{q-s} X B^{p+s}\right|^{r} \mid\right\|\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right. \tag{3.1}
\end{equation*}
$$

holds for any unitarily invariant norm $|||\cdot|||$ and $r>0$.
Proof. By inequality (1.5), we get

$$
\begin{aligned}
& \left\|\left\|| A ^ { p } X B ^ { q } | ^ { r } \left|\left\|\cdot \left|\left\|\left|A^{q} X B^{p}\right|^{r} \mid\right\|\right.\right.\right.\right.\right. \\
& \quad=\left|\left\|| A ^ { p - q + s } (A ^ { q - s } X B ^ { q - s }) B ^ { s } | ^ { r } \left|\left\|\cdot \left|\left\|\left|A^{s}\left(A^{q-s} X B^{q-s}\right) B^{p-q+s}\right|^{r} \mid\right\|\right.\right.\right.\right.\right. \\
& \quad \leq\| \|\left|A^{p-q+2 s}\left(A^{q-s} X B^{q-s}\right)\right|^{r}\left|\left\|\cdot \left|\left\|\left|\left(A^{q-s} X B^{q-s}\right) B^{p-q+2 s}\right|^{r} \mid\right\|\right.\right.\right. \\
& \quad=\| \|\left|A^{p+s} X B^{q-s}\right|^{r}\left|\left\|\cdot \left|\left\|\left|A^{q-s} X B^{p+s}\right|^{r} \mid\right\| .\right.\right.\right.
\end{aligned}
$$

This completes the proof.
Remark 3.2. By inequality (3.1), we have

$$
\begin{equation*}
\left|\left\|| A ^ { p } X B ^ { q } | ^ { r } \left|\left\|\cdot \left|\| | A ^ { q } X B ^ { p } | ^ { r } \| \left\|\leq\left|\left\|| A ^ { q + s } X B ^ { p - s } | ^ { r } \left|\left\|\cdot \left|\left\|\left|A^{p-s} X B^{q+s}\right|^{r} \mid\right\|\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.\right. \tag{3.2}
\end{equation*}
$$

for $q \geq p \geq s \geq 0$. By inequality (1.5), we easily see that inequalities (3.1) and (3.2) are the refinements of inequality (1.5).

Based on Theorem 3.1, we obtain the following result.
Theorem 3.3. Let $A, B, X \in \mathbf{B}(\mathcal{H})$ with $A, B>0$ and $X \in \mathrm{~K}_{\|\cdot\| \|}, p \geq q \geq s \geq 0$ and $r>0$. Then the function

$$
f(s)=\| \|\left|A^{p+s} X B^{q-s}\right|^{r}\left|\|\cdot\|\left\|\left|A^{q-s} X B^{p+s}\right|^{r} \mid\right\|\right.
$$

is increasing on $[0, q]$.
Proof. Let $0 \leq s_{1}<s_{2} \leq q$. Then, by inequality (3.1), we have

$$
\begin{aligned}
f\left(s_{1}\right)= & \left|\left\|\left|\left|A^{p+s_{1}} X B^{q-s_{1}}\right|^{r}\right|\right\| \cdot\right|\left\|\left|A^{q-s_{1}} X B^{p+s_{1}}\right|^{r} \mid\right\| \\
\leq & \left\|\left\|\left|A^{p+s_{1}+\left(s_{2}-s_{1}\right)} X B^{q-s_{1}-\left(s_{2}-s_{2}\right)}\right|^{r} \mid\right\|\right. \\
& \times\left|\left\|\left|A^{q-s_{1}-\left(s_{2}-s_{2}\right)} X B^{p+s_{1}+\left(s_{2}-s_{1}\right)}\right|^{r} \mid\right\|\right. \\
= & \left|\left\|| A ^ { p + s _ { 2 } } X B ^ { q - s _ { 2 } } | ^ { r } \left|\left\|\cdot \left|\left\|\left|A^{q-s_{2}} X B^{p+s_{2}}\right|^{r} \mid\right\|\right.\right.\right.\right.\right. \\
= & f\left(s_{2}\right) .
\end{aligned}
$$

This completes the proof.
Remark 3.4. Noting that

$$
f(0)=\left|\left\|| A ^ { p } X B ^ { q } | ^ { r } \left|\|\cdot\|\left\|\left|A^{q} X B^{p}\right|^{r} \mid\right\|\right.\right.\right.
$$

and

$$
f(q)=\left|\left\|| A ^ { p + q } X | ^ { r } \left|\left\|\cdot \left|\left\|\left|X B^{p+q}\right|^{r} \mid\right\|,\right.\right.\right.\right.\right.
$$

then inequality (1.5) can be written as $f(0) \leq f(q)$. However, by Theorem 3.3, we have $f(0) \leq f(r) \leq f(q)$ for $0<r<q$. This implies the intermediate inequality interpolate the Cauchy-Schwarz inequality increasingly.

The following corollary is a consequence of Theorem 3.3.
Corollary 3.5. Let $A, B, X \in \mathbf{B}(\mathcal{H})$ with $A, B>0$ and $X \in \mathrm{~K}_{\|\cdot\| \|}, t \in[0,1]$ and $r>0$. Then the function

$$
g(t)=\left|\left\|| A ^ { t } X B ^ { 1 - t } | ^ { r } \left|\left\|\cdot \left|\left\|\left|A^{1-t} X B^{t}\right|^{r} \mid\right\|\right.\right.\right.\right.\right.
$$

is decreasing on $\left[0, \frac{1}{2}\right]$ and increasing on $\left[\frac{1}{2}, 1\right]$.
Proof. If $0 \leq t \leq \frac{1}{2}$, then

$$
g(t)=\left|\left\|| A ^ { \frac { 1 } { 2 } - (\frac { 1 } { 2 } - t) } X B ^ { \frac { 1 } { 2 } + (\frac { 1 } { 2 } - t) } | ^ { r } \left|\left\|\cdot \left|\left\|\left.\left|A^{\frac{1}{2}+\left(\frac{1}{2}-t\right)} X B^{\frac{1}{2}-\left(\frac{1}{2}-t\right)}\right|^{r} \right\rvert\,\right\|\right.\right.\right.\right.\right.
$$

can be viewed as $\left|\left|\left|\left|A^{p+s} X B^{q-s}\right|^{r}\right|\left\|\cdot\left|\left\|\left|\left|A^{q-s} X B^{p+s}\right|^{r} \|\right.\right.\right.\right.\right.\right.$ with $p=q=\frac{1}{2}$ and $s=\frac{1}{2}-t$; thus $g(t)$ is decreasing on $\left[0, \frac{1}{2}\right]$ due to the increasing of $f(s)$ by Theorem 3.3. As with the proof of the increasing of $g(s)$ on $\left[\frac{1}{2}, 1\right]$, the details are omitted here.

This completes the proof.
Acknowledgments. The authors would like to express their thanks to the editor and reviewer(s) for their valuable comments and suggestions on our revised manuscript.

The authors' work was partially supported by the National Natural Science Foundation of China (NSFC) grant 11161040.

References

1. J. Aldaz, S. Barza, M. Fujii, and M. Moslehian, Advances in operator Cauchy-Schwarz inequalities and their reverses, Ann. Funct. Anal. 6 (2015), no. 3, 275-295. Zbl 1312.47022. MR3336919. DOI 10.15352/afa/06-3-20. 241
2. R. Bhatia and C. Davis, More matrix forms of the arithmetic-geometric mean inequality, SIAM J. Matrix Anal. Appl. 14 (1993), no. 1, 132-136. Zbl 0767.15012. MR1199551. DOI 10.1137/0614012. 240, 244
3. R. Bhatia and C. Davis, A Cauchy-Schwarz inequality for operators, Linear Algebra Appl. 223/224 (1995), 119-129. Zbl 0824.47006. MR1340688. DOI 10.1016/ 0024-3795(94)00344-D. 241
4. A. Burqan, Improved Cauchy-Schwarz norm inequality for operators, J. Math. Inequal. 10 (2016), no. 1, 205-211. Zbl 06551741. MR3455315. DOI 10.7153/jmi-10-17. 241
5. F. Hiai and X. Zhan, Inequalities involving unitarily invariant norms and operator monotone functions, Linear Algebra Appl. 341 (2002), 151-169. Zbl 0994.15024. MR1873616. DOI 10.1016/S0024-3795(01)00353-6. 241
6. Y. Kapil and M. Singh, Contractive maps on operator ideals and norm inequalities, Linear Algebra Appl. 459 (2014), 475-492. Zbl 1309.47059. MR3247239. DOI 10.1016/ j.laa.2014.06.055. 241
7. R. Kaur, M. Moslehian, M. Singh, and C. Conde, Further refinements of the Heinz inequality, Linear Algebra Appl. 447 (2014), 26-37. Zbl 1291.15056. MR3200204. DOI 10.1016/ j.laa.2013.01.012. 241
8. F. Kittaneh, On some operator inequalities, Linear Algebra Appl. 208/209 (1994), 19-28. Zbl 0803.47019. MR1287336. DOI 10.1016/0024-3795(94)90427-8. 242
9. M. Sababheh, Interpolated inequalities of the Heinz means as convex functions, Linear Algebra Appl. 475 (2015), 240-250. Zbl 1312.15022. MR3325230. DOI 10.1016/ j.laa.2015.02.026. 242
10. X. Zhan, Inequalities for unitarily invariant norms, SIAM J. Matrix Anal. Appl. 20 (1998), no. 2, 466-470. Zbl 0921.15011. MR1662421. DOI 10.1137/S0895479898323823. 241
${ }^{1}$ College of Science, Shihezi University, Shinezi, 832003, People's Republic of China.

E-mail address: jgzhao_dj@163.com
${ }^{2}$ College of Mathematics and Statistics, Chongqing University, Chongqing, 401331, People's Republic of China.

E-mail address: jlwu678@163.com

[^0]: Copyright 2017 by the Tusi Mathematical Research Group.
 Received Apr. 22, 2016; Accepted Sep. 15, 2016.
 *Corresponding author.
 2010 Mathematics Subject Classification. Primary 47A30; Secondary 47A63, 15A60.
 Keywords. Zhan's inequality, positive operators, unitarily invariant norms, Cauchy-Schwarz inequality.

