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Abstract. This note aims to present some operator inequalities for unitarily
invariant norms. First, a Zhan-type inequality for unitarily invariant norms is
given. Moreover, some operator inequalities for the Cauchy–Schwarz type are
also established.

1. Introduction

Throughout this article, let B(H) be the algebra of all bounded linear operators
on a complex separable Hilbert space (H, 〈, 〉). For self-adjoint operators A, B, the
order relation A ≤ B means that 〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ H. In particular,
if 0 ≤ (<) A, then A is called positive (invertible positive). Here |‖ · |‖ denotes a
unitarily invariant norm defined on a two-sided ideal K|‖·|‖ that is included in C∞
(the set of compact operators), which has the basic property |‖UAV |‖ = |‖A|‖
for every A ∈ K|‖·|‖ and all unitary operators U, V ∈ B(H). If dimH = n, then
we identify B(H) with the algebra Mn of all n× n matrices with entries in C.

Bhatia and Davis [2] proved the following: Let A, B, X ∈ Mn with A, B > 0.
Then the inequality

2|‖A
1
2XB

1
2 |‖ ≤ |‖AvXB1−v + A1−vXBv|‖ ≤ |‖AX +XB|‖ (1.1)
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holds for every unitarily invariant norm |‖· |‖ and v ∈ [0, 1]. The second inequality
in (1.1) is one of the most essential inequalities in operator theory, which is often
called the Heinz inequality.

Replacing A and B by A2 and B2 in inequality (1.1), respectively, let r = 2v
for v ∈ [0, 1]. Then the Heinz inequality gives

|‖ArXB2−r + A2−rXBr|‖ ≤ |‖A2X +XB2|‖. (1.2)

In [10], Zhan proved the following result by introducing two parameters r and t.
Let A, B, X ∈ Mn with A, B > 0. Then

(2 + t)|‖ArXB2−r + A2−rXBr|‖ ≤ 2|‖A2X + tAXB +XB2|‖ (1.3)

holds for any unitarily invariant norm |‖ · |‖ and (t, r) ∈ (−2, 2]× [1
2
, 3
2
]. Obviously,

inequality (1.3) is a generalization of inequality (1.2) when dimH = n and r ∈
[1
2
, 3
2
]. The tool used for proving this result was based on the induced Schur

product norm.
Another important norm inequality is the well-known norm inequalities of the

Cauchy–Schwarz type obtained by Hiai and Zhan [5, Theorem 1], which says the
following. Let A, B, X ∈ Mn with A, B > 0. For every positive real number r
and every unitarily invariant norm |‖ · |‖, the function

g(t) =
∣∣∥∥|AtXB1−t|r

∣∣∥∥ ·
∣∣∥∥|A1−tXBt|r

∣∣∥∥
is convex on the interval [0, 1] and attains its minimum at t = 1

2
. Consequently, it

is decreasing on [0, 1
2
] and increasing on [1

2
, 1]. Hence the following norm inequality

holds (see [5, Corollary 2]):∣∣∥∥|A 1
2XB

1
2 |r

∥∥2 ≤
∣∣∥∥|AtXB1−t|r

∣∣∥∥ ·
∣∣∥∥|A1−tXBt|r

∣∣∥∥
≤

∣∣∥∥|AX|r
∣∣∥∥ ·

∣∣∥∥|XB|r
∣∣∥∥. (1.4)

It should be mentioned that inequality (1.4) also holds for operators, where
A, B, X ∈ B(H) with A, B ≥ 0 and X ∈ K|‖·|‖. Indeed, the key inequality

|‖|A 1
2XB

1
2 |r‖2 ≤ |‖|AX|r|‖ · |‖|XB|r|‖ obtained by Bhatia and Davis [3, Theo-

rem 1] and used to prove the convexity of g(t) = |‖|AtXB1−t|r|‖ · |‖|A1−tXBt|r|‖
(see [5, Theorem 1]) holds for operators, where A, B, X ∈ B(H) with A, B ≥ 0
and X ∈ K|‖·|‖. Therefore, Hiai and Zhan [5, Corollary 2] actually proved that
inequality (1.4) holds for operators. Let p and q be two nonnegative real numbers
with p > 0 or q > 0. Putting t = p

p+q
, and replacing A and B by Ap+q and Bp+q

in inequality (1.4), respectively, we have∣∣∥∥|ApXBq|r
∣∣∥∥ ·

∣∣∥∥|AqXBp|r
∣∣∥∥ ≤

∣∣∥∥|Ap+qX|r
∣∣∥∥ ·

∣∣∥∥|XBp+q|r
∣∣∥∥, (1.5)

where A, B, X ∈ B(H) with A, B ≥ 0 and X ∈ K|‖·|‖.
Recently, unitarily invariant norms of Heinz inequality for matrices and Hilbert

space operators have been obtained. These forms can be found in [7], [6], and the
references therein. The related Cauchy–Schwarz inequality has been given in [1]
and [4, Theorems 2, 3, and 4], respectively.
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In this note, we study operator inequalities for unitarily invariant norms. Pre-
cisely, we present a generalization of inequality (1.3) for operators. Moreover, we
also give some operator inequalities for the Cauchy–Schwarz type.

2. Zhan-type inequality for operators

In this section, we present a generalization of Zhan’s inequality for unitarily
invariant norms. To achieve our goal, we need the following lemmas; the first
lemma was obtained by Kittaneh [8, Corollary 1], which is often called the gen-
eralized version of the CPR inequality.

Lemma 2.1. Let R, S, T ∈ B(H) with R and S invertible and T ∈ K|‖·|‖. Then,
for every unitarily invariant norm |‖ · |‖, inequality

2|‖T |‖ ≤ |‖R∗TS−1 +R−1TS∗|‖ (2.1)

holds, where R∗ is the conjugate transpose operator of R.

The matrix version of the next lemma was obtained by Sababheh in [9, Theo-
rem 2.8]; we point out that it is also true for operators.

Lemma 2.2. Let |‖ · |‖ be any unitarily invariant norm on K|‖·|‖, and A, B,
X ∈ B(H) with A, B ≥ 0 and X ∈ K|‖·|‖. Then, for every unitarily invariant
norm |‖ · |‖ and p ≥ q ≥ r ≥ 0,

|‖ApXBq + AqXBp|‖ ≤ |‖Ap+rXBq−r + Aq−rXBp+r|‖. (2.2)

Proof. The proof is the same as that of [9, Theorem 2.8]. For the reader’s conve-
nience, we give its proof again. When p = 0, the result holds obviously, and so
we only need to prove it holds for p > 0. By inequality (1.5), we get

|‖ApXBq + AqXBp|‖ ≤ |‖Ap+qX +XBp+q|‖.

Hence we obtain

|‖ApXBq + AqXBp|‖ = |‖Ap−q+r(Aq−rXBq−r)Br + Ar(Aq−rXBq−r)Bp−q+r|‖
≤ |‖Ap−q+2r(Aq−rXBq−r) + (Aq−rXBq−r)Bp−q+2r|‖
= |‖Ap+rXBq−r + Aq−rXBp+r|‖.

This completes the proof. �

Later in this article we present a Zhan-type inequality for unitarily invariant
norms.

Theorem 2.3. Let A, B, X ∈ B(H) with A, B > 0 and X ∈ K|‖·|‖ and p ≥ q ≥
r ≥ 0. Then inequality

(t+ 2)|‖A
3p+q

2 XB
3q+p

2 + A
3q+p

2 XB
3p+q

2 |‖
≤ 4|‖A

3p+q+2r
2 XB

3q+p−2r
2 + A

3q+p−2r
2 XB

3p+q+2r
2 |‖ − 2(2− t)|‖Ap+qXBp+q|‖

≤ |‖A2(p+q)X +XB2(p+q) + tAp+qXBp+q|‖ (2.3)

holds for any unitarily invariant norm |‖ · |‖ and t ∈ (−2, 2].
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Proof. Thanks to inequality (2.2),

|‖ApXBq + AqXBp|‖ ≤ |‖Ap+rXBq−r + Aq−rXBp+r|‖,
and the Heinz inequality

|‖ApXBq + AqXBp|‖ ≤ |‖Ap+qX +XBp+q|‖,
we have

|‖ApXBq + AqXBp|‖ ≤ |‖Ap+rXBq−r + Aq−rXBp+r|‖
≤ |‖Ap+qX +XBp+q|‖. (2.4)

Replacing X by A− p+q
2 XB− p+q

2 in inequality (2.4), we obtain

|‖A
p−q
2 XB

q−p
2 + A

q−p
2 XB

p−q
2 |‖ ≤ |‖A

p−q+2r
2 XB

q−p−2r
2 + A

q−p−2r
2 XB

p−q+2r

|‖

≤ |‖A
p+q
2 XB− p+q

2 + A− p+q
2 XB

p+q
2 |‖. (2.5)

Thanks to

A
p+q
2 (A

p+q
2 XB− p+q

2 + A− p+q
2 XB

p+q
2 )B− p+q

2

+ A− p+q
2 (A

p+q
2 XB− p+q

2 + A− p+q
2 XB

p+q
2 )B

p+q
2

= Ap+qXB−(p+q) + A−(p+q)XBp+q + 2X

and the generalized version of the C-P-R inequality (2.1), 2|‖X|‖ ≤ |‖S−1XT +
SXT−1|‖, where S and T are two invertible self-adjoint operators and X ∈ K|‖·|‖,
we deduce that

2|‖A
p+q
2 XB− p+q

2 + A− p+q
2 XB

p+q
2 |‖

≤ |‖Ap+qXB−(p+q) + A−(p+q)XBp+q + 2X|‖. (2.6)

Relations (2.5) and (2.6) give

2|‖A
p−q
2 XB

q−p
2 + A

q−p
2 XB

p−q
2 |‖

≤ 2|‖A
p−q+2r

2 XB
q−p−2r

2 + A
q−p−2r

2 XB
p−q+2r

2 |‖
≤ |‖Ap+qXB−(p+q) + A−(p+q)XBp+q + 2X|‖. (2.7)

On the other hand, due to

Ap+qXB−(p+q) + A−(p+q)XBp+q + 2X

= Ap+qXB−(p+q) + A−(p+q)XBp+q + tX + (2− t)X,

we have

|‖Ap+qXB−(p+q) + A−(p+q)XBp+q + 2X|‖
≤ |‖Ap+qXB−(p+q) + A−(p+q)XBp+q + tX|‖+ (2− t)|‖X|‖. (2.8)

Combining (2.7) with (2.8), we get

4|‖A
p−q
2 XB

q−p
2 + A

q−p
2 XB

p−q
2 |‖ − 2(2− t)|‖X|‖

≤ 2|‖A
p−q+2r

2 XB
q−p−2r

2 + A
q−p−2r

2 XB
p−q+2r

2 |‖ − 2(2− t)|‖X|‖
≤ 2|‖Ap+qXB−(p+q) + A−(p+q)XBp+q + tX|‖. (2.9)
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Once again, using the generalized version of the C-P-R inequality, we have

(t+ 2)|‖A
p−q
2 XB

q−p
2 + A

q−p
2 XB

p−q
2 |‖

≤ 4|‖A
p−q
2 XB

q−p
2 + A

q−p
2 XB

p−q
2 |‖−2(2− t)|‖X|‖. (2.10)

It follows from inequalities (2.9) and (2.10) that

(t+ 2)|‖A
p−q
2 XB

q−p
2 + A

q−p
2 XB

p−q
2 |‖

≤ 2|‖A
p−q+2r

2 XB
q−p−2r

2 + A
q−p−2r

2 XB
p−q+2r

2 |‖−2(2− t)|‖X|‖
≤ 2|‖Ap+qXB−(p+q) + A−(p+q)XBp+q + tX|‖. (2.11)

Replacing X by Ap+qXBp+q in inequality (2.11), we get the desired result (2.3).
This completes the proof. �

Remark 2.4. By Theorem 2.3, we also have the following result. Let A, B, X ∈
B(H) with A, B > 0 and X ∈ K|‖·|‖ and q ≥ p ≥ r ≥ 0. Then inequality

(t+ 2)|‖A
3q+p

2 XB
3p+q

2 + A
3p+q

2 XB
3q+p

2 |‖
≤ 4|‖A

3q+p+2r
2 XB

3p+q−2r
2 + A

3p+q−2r
2 XB

3q+p+2r
2 |‖−2(2− t)|‖Aq+pXBq+p|‖

≤ 2|‖A2(q+p)X +XB2(q+p) + tAq+pXBq+p|‖

holds for any unitarily invariant norm |‖ · |‖ and t ∈ (−2, 2].

Based on Theorem 2.3 and Remark 2.4, we obtain the following operator
inequality.

Corollary 2.5. Let A, B, X ∈ B(H) with A, B > 0 and X ∈ K|‖·|‖ and p, q > 0.
Then inequality

(t+ 2)|‖A
3p+q

2 XB
3q+p

2 + A
3q+p

2 XB
3p+q

2 |‖
≤ 2|‖A2(p+q)X +XB2(p+q) + tAp+qXBp+q|‖ (2.12)

holds for any unitarily invariant norm |‖ · |‖ and t ∈ (−2, 2].

Remark 2.6. Putting p+q = 1 and r1 =
3q+p
2

, then 2−r1 =
3p+q
2

and r1 =
1
2
+q ∈

[1
2
, 3
2
], inequality (2.12) becomes (1.3). Thus inequality (2.12) is a generalization

of inequality (1.3) for operators.

Remark 2.7. By Corollary 2.5, when t = 1, we get

|‖A
3p+q

2 XB
3q+p

2 + A
3q+p

2 XB
3p+q

2 |‖ ≤ |‖A2(p+q)X +XB2(p+q)|‖; (2.13)

hence, when p = q = 1
2
, by inequality (2.13), we get

2|‖AXB|‖ ≤ |‖A2X +XB2|‖.

This is just the well-known arithmetic–geometric norm inequality due to Bhatia
and Davis [2].



SOME OPERATOR INEQUALITIES FOR UNITARILY INVARIANT NORMS 245

3. Cauchy–Schwarz-type inequality for operators

In this section, we mainly present some Cauchy–Schwarz operator inequalities
for unitarily invariant norms. First, we have the following theorem.

Theorem 3.1. Let A, B, X ∈ B(H) with A, B > 0 and X ∈ K|‖·|‖ and p ≥ q ≥
s ≥ 0. Then inequality∣∣∥∥|ApXBq|r

∣∣∥∥ ·
∣∣∥∥|AqXBp|r

∣∣∥∥ ≤
∣∣∥∥|Ap+sXBq−s|r

∣∣∥∥ ·
∣∣∥∥|Aq−sXBp+s|r

∣∣∥∥ (3.1)

holds for any unitarily invariant norm |‖ · |‖ and r > 0.

Proof. By inequality (1.5), we get∣∣∥∥|ApXBq|r
∣∣∥∥ ·

∣∣∥∥|AqXBp|r
∣∣∥∥

=
∣∣∥∥∣∣Ap−q+s(Aq−sXBq−s)Bs

∣∣r∣∣∥∥ ·
∣∣∥∥∣∣As(Aq−sXBq−s)Bp−q+s

∣∣r∣∣∥∥
≤

∣∣∥∥∣∣Ap−q+2s(Aq−sXBq−s)
∣∣r∣∣∥∥ ·

∣∣∥∥∣∣(Aq−sXBq−s)Bp−q+2s
∣∣r∣∣∥∥

=
∣∣∥∥|Ap+sXBq−s|r

∣∣∥∥ ·
∣∣∥∥|Aq−sXBp+s|r

∣∣∥∥.
This completes the proof. �

Remark 3.2. By inequality (3.1), we have∣∣∥∥|ApXBq|r
∣∣∥∥ ·

∣∣∥∥|AqXBp|r
∣∣∥∥ ≤

∣∣∥∥|Aq+sXBp−s|r
∣∣∥∥ ·

∣∣∥∥|Ap−sXBq+s|r
∣∣∥∥ (3.2)

for q ≥ p ≥ s ≥ 0. By inequality (1.5), we easily see that inequalities (3.1) and
(3.2) are the refinements of inequality (1.5).

Based on Theorem 3.1, we obtain the following result.

Theorem 3.3. Let A, B, X ∈ B(H) with A, B > 0 and X ∈ K|‖·|‖, p ≥ q ≥ s ≥ 0
and r > 0. Then the function

f(s) =
∣∣∥∥|Ap+sXBq−s|r

∣∣∥∥ ·
∣∣∥∥|Aq−sXBp+s|r

∣∣∥∥
is increasing on [0, q].

Proof. Let 0 ≤ s1 < s2 ≤ q. Then, by inequality (3.1), we have

f(s1) =
∣∣∥∥|Ap+s1XBq−s1 |r

∣∣∥∥ ·
∣∣∥∥|Aq−s1XBp+s1|r

∣∣∥∥
≤

∣∣∥∥|Ap+s1+(s2−s1)XBq−s1−(s2−s2)|r
∣∣∥∥

×
∣∣∥∥|Aq−s1−(s2−s2)XBp+s1+(s2−s1)|r

∣∣∥∥
=

∣∣∥∥|Ap+s2XBq−s2 |r
∣∣∥∥ ·

∣∣∥∥|Aq−s2XBp+s2|r
∣∣∥∥

= f(s2).

This completes the proof. �

Remark 3.4. Noting that

f(0) =
∣∣∥∥|ApXBq|r

∣∣∥∥ ·
∣∣∥∥|AqXBp|r

∣∣∥∥
and

f(q) =
∣∣∥∥|Ap+qX|r

∣∣∥∥ ·
∣∣∥∥|XBp+q|r

∣∣∥∥,
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then inequality (1.5) can be written as f(0) ≤ f(q). However, by Theorem 3.3, we
have f(0) ≤ f(r) ≤ f(q) for 0 < r < q. This implies the intermediate inequality
interpolate the Cauchy–Schwarz inequality increasingly.

The following corollary is a consequence of Theorem 3.3.

Corollary 3.5. Let A, B, X ∈ B(H) with A, B > 0 and X ∈ K|‖·|‖, t ∈ [0, 1]
and r > 0. Then the function

g(t) =
∣∣∥∥|AtXB1−t|r

∣∣∥∥ ·
∣∣∥∥|A1−tXBt|r

∣∣∥∥
is decreasing on [0, 1

2
] and increasing on [1

2
, 1].

Proof. If 0 ≤ t ≤ 1
2
, then

g(t) =
∣∣∥∥|A 1

2
−( 1

2
−t)XB

1
2
+( 1

2
−t)|r

∣∣∥∥ ·
∣∣∥∥|A 1

2
+( 1

2
−t)XB

1
2
−( 1

2
−t)|r

∣∣∥∥
can be viewed as |‖|Ap+sXBq−s|r|‖·|‖|Aq−sXBp+s|r‖ with p = q = 1

2
and s = 1

2
−t;

thus g(t) is decreasing on [0, 1
2
] due to the increasing of f(s) by Theorem 3.3. As

with the proof of the increasing of g(s) on [1
2
, 1], the details are omitted here.

This completes the proof. �
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