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Abstract. This article deals with unbounded composition operators with
infinite matrix symbols acting in L2-spaces with respect to the Gaussian mea-
sure on R∞. We introduce weak cohyponormality classes S∗n,r of unbounded
operators and provide criteria for the aforementioned composition operators to
belong to S∗n,r. Our approach is based on inductive limits of operators.

1. Introduction

Bounded composition operators in L2-spaces are classical objects of investiga-
tion in operator theory (see [26]). Their unbounded counterparts have attracted
attention quite recently, but these have already proved to be a source of interest-
ing problems and results (see [4], [8], [7], [9], [11], [18]). Many of them are related
to subnormality, a subject widely recognized as difficult and important in oper-
ator theory (see [14] concerning bounded subnormal operators, and see [28]–[30]
concerning unbounded ones).

There is no effective general criterion for subnormality of unbounded opera-
tors. As a consequence, the methods of verifying the subnormality of an operator
depend on its properties. In general, the moment problem approach has been very
successful (see [13], [31]), especially for operators with a dense set of C∞-vectors.
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On the other hand, for unbounded composition operators the consistency condi-
tion approach (related to a problem of selecting appropriate probability measures)
is much better (see [9]). This calls for testing various methods when studying the
subject. As shown recently, inductive limit techniques might also be helpful in this
matter, for example, in a case of weighted shifts on directed trees or composition
operators (see [4]–[6]).

In a recent paper [4], we provided a criterion for cosubnormality of unbounded
composition operators induced by finite matrix symbols and also a new proof
of the criterion for subnormality of these operators given in [9]. The inductive
limit method played a pivotal role in the proofs. A natural setting for general-
ization and new area of testing our methods is where finite matrix symbols are
exchanged for infinite ones. Unbounded composition operators with such sym-
bols have already been investigated in [24], [27], and in [11], where we have dealt
with questions of their boundedness and dense definiteness. Motivated by these
previous results and the criterion for subnormality of general unbounded opera-
tors due to Stochel and Szafraniec [29, Theorem 3], we introduce in this article
classes S∗

n,r of unbounded operators closely related to cosubnormal operators (they
resemble, in a sense, weak hyponormality classes studied in the case of bounded
operators; see [23], [21], [15], [16], [20]), and we investigate under what conditions
composition operators with infinite matrix symbols belong to the classes. We use
inductive limits to achieve our goal. This results in three criteria (see Theorem 5.1
and Propositions 5.2 and 5.9). The symbol of a composition operator in the first
of the criteria has unspecified form, whereas in the second and the third one the
symbol is induced by an infinite matrix. Using this type of matrix allowed us
to formulate the criterion in a tractable form, which consequently enabled us to
construct explicit examples. To the best of our knowledge, none of the examples
can be studied without the use of our criteria.

The article is organized as follows. We begin by introducing basic notation and
defining the classes Sn,r and S∗

n,r in Section 2. In Section 3, we provide neces-

sary information about composition operators in L2-spaces and their relatives—
weighted composition operators and partial composition operators. Then, in Sec-
tion 4, we give a brief description of composition operators with finite and infinite
matrix symbols in L2-spaces with respect to the Gaussian measure. The last part
of the article, Section 5, is devoted to the criteria and examples.

2. Preliminaries

Throughout this article, Z+, N, R, and C stand for the set of nonnegative
integers, positive integers, real numbers, and complex numbers, respectively. For
κ ∈ N, Iκ stands for the set {1, 2, . . . , κ}, the Cartesian product of κ-copies of
R is denoted by Rκ, and R∞ denotes the Cartesian product of ℵ0-copies of R.
If t, s ∈ N satisfy s ≥ t, then by πs

t and πt we denote the mappings πs
t : Rs 3

(x1, . . . , xs) 7→ (x1, . . . , xt) ∈ Rt and πt : R∞ 3 (x1, x2, . . .) 7→ (x1, x2, . . . , xt) ∈
Rt. If {Xn}∞n=1 is a sequence of subsets of a set X such that Xk ⊆ Xk+1 for
every k ∈ N and X =

⋃∞
n=1 Xn, then we write Xn ↗ X as n → ∞. The

symmetric difference of sets A and B is denoted by A4B. For a topological space



166 P. BUDZYŃSKI, P. DYMEK, and A. P LANETA

X, B(X) stands for the σ-algebra of all Borel subsets of X. If κ ∈ N and p =
{pn}∞n=1 ⊆ (0,+∞), then `κ(p), or `κ({pn}∞n=1), stands for the weighted `κ-space
{{xn}∞n=1 ∈ R∞ :

∑∞
n=1 |xn|κpn < ∞}; `κ(N) denotes the space `κ({1}∞n=1).

LetH be a (complex) Hilbert space, and let T be an operator inH (all operators
are linear in this article). By D(T ), T , and T ∗, we denote the domain, the closure,
and the adjoint of T , respectively (if they exist). If T is closable and F is a

subspace of D(T ) such that T |F = T , then F is said to be a core of T . If T is
densely defined, D(T ) ⊆ D(T ∗), and ‖T ∗f‖ ≤ ‖Tf‖ for all f ∈ D(T ), then T is
called hyponormal. The operator T is said to be subnormal if D(T ) is dense in H
and there exist a complex Hilbert space K and a normal operator N in K (i.e., N
is closed, densely defined, and satisfies N∗N = NN∗) such that H is isometrically
embedded in K and Sh = Nh for all h ∈ D(S).

Let n ∈ Z+, m ∈ N, and a = {ai,jp,q}
i,j=1,...,m
p,q=0,...,n ⊂ C. Then na denotes the greatest

na ∈ In ∪ {0} satisfying the following condition:

there exist i, j ∈ Im such that |ai,jna,q|+ |ai,jp,na
| > 0 for some p, q ∈ In.

Clearly, ai,jp,q = 0 for all i, j ∈ Im and p, q ∈ In such that p > na and q > na.

Definition 2.1. Let n, r ∈ Z+. We say that a densely defined operator T in a
Hilbert space H belongs to the class Sn,r if and only if for every m ∈ N and every

a = {ai,jp,q}
i,j=1,...,m
p,q=0,...,n ⊂ C,

m∑
i,j=1

na∑
p,q=0

ai,jp,qλ
pλ̄qziz̄j ≥ 0, λ, z1, . . . , zm ∈ C, (2.1)

implies that
m∑

i,j=1

na∑
p,q=0

r∑
k,l=0

ai,jp,q〈T p+kf l
i , T

q+lfk
j 〉 ≥ 0 (2.2)

for every finite sequence {fk
i : i = 1, . . . ,m, k = 0, . . . , r} ⊆ D(T na+r). In turn, we

say that T belongs to S∗
n,r if and only if T ∗ belongs to Sn,r.

Remark 2.2. The case of n = r = 0 is of little interest to us, since every densely
defined linear operator in H belongs to S0,0 (use the classical Schur’s lemma).
Therefore, in the rest of this article, we tacitly assume that n+ r ≥ 1.

The following is essentially contained in [29, Theorem 3] and [13, Theorem 29]
(for the reader’s convenience we give a sketch of the proof).

Proposition 2.3. Let S be an operator in a complex Hilbert space H. Then the
following conditions are satisfied:

(i) if S is subnormal, then S ∈ Sn,r for all n, r ∈ Z+;
(ii) if S ∈ Sn,0 for every n ∈ Z+, then S|D∞(S) is subnormal.

Sketch of the proof. (i) Assume that S is a subnormal operator. Fix n, r ∈ Z+.
For m ∈ N and a = {ai,jp,q}

i,j=1,...,m
p,q=0,...,n ⊂ C such that (2.1) is satisfied, we define the
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polynomials pi,j of two complex variables λ and λ̄ by

pi,j(λ, λ̄) =
na∑

p,q=0

ai,jp,qλ
pλ̄q.

Let N be a normal extension of S in a Hilbert space K. Consider {fk
i }

k=0,...,r
i=1,...,m ⊆

D(Sna+r). Then {fk
i }

k=0,...,r
i=1,...,m ⊆ D(Nna+r). Since D(N∗k) = D(Nk∗) for every k ∈

Z+, we have D(N
na+r) ⊆ D(N∗r) and N∗rD(Nna+r) ⊆ D(Nna). This implies that

gi =
r∑

k=0

N∗kfk
i ∈ D(Nna) for i ∈ Im.

Moreover, since 〈N∗kf,N∗lf ′〉 = 〈N lf,Nkf ′〉 for all f, f ′ ∈ D(Nmax{k,l}) and
k, l ∈ Z+, we get

na∑
p,q=0

r∑
k,l=0

ai,jp,q〈Sp+kf l
i , S

q+lfk
j 〉 =

na∑
p,q=0

r∑
k,l=0

ai,jp,q〈Np+kf l
i , N

q+lfk
j 〉

=
na∑

p,q=0

r∑
k,l=0

ai,jp,q〈NpN∗lf l
i , N

qN∗kfk
j 〉

=
na∑

p,q=0

ai,jp,q〈Npgi, N
qgj〉.

Hence, proving (i) amounts to showing that

m∑
i,j=1

na∑
p,q=0

ai,jp,q〈Npgi, N
qgj〉 ≥ 0.

Let E be the spectral measure of N . For i, j ∈ {1, . . . ,m}, let hi,j be the Radon–
Nikodym derivative of the complex measure 〈E(·)gi, gj〉 with respect to the non-
negative measure µ =

∑m
i=1〈E(·)gi, gi〉. Arguing as in the proof of [29, Theorem 3],

we deduce that
m∑

i,j=1

na∑
p,q=0

ai,jp,q〈Npgi, N
qgj〉 =

m∑
i,j=1

∫
C
pi,j(λ, λ̄)hi,j(λ) dµ(λ) ≥ 0.

This completes the proof of (i).
(ii) This follows directly from [13, Theorem 29]. �

It is worth noting that every operator in Sn,1, n ∈ Z+, belongs to the class of
hyponormal operators, provided that its domain is invariant for the adjoint, in
a sense. This follows from the fact that Sn+s,1 ⊆ Sn,1 for any s ∈ Z+ and the
following.

Proposition 2.4. Let T be densely defined operator such that T ∈ S0,1. If D(T ) ⊆
D(T ∗) and T ∗D(T ) ⊆ D(T ), then T is hyponormal.
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Proof. Note that (2.1) is satisfied with m = 1, n = 0, and a1,10,0 = 1. Then, by (2.2)
with r = 1, we have 〈f, f〉+ 〈g, Tf〉+ 〈Tf, g〉+ 〈Tg, Tg〉 ≥ 0 for all f, g ∈ D(T ).
Substituting f = −T ∗g into this inequality, we get ‖T ∗g‖ ≤ ‖Tg‖ for every
g ∈ D(T ), which completes the proof. �

3. Composition operators

Let (X,A, µ) be a σ-finite measure space. Let A be an A-measurable transfor-
mation of X. Define the measure µ◦A−1 on A by setting µ◦A−1(σ) = µ(A−1(σ)),
σ ∈ A. If A is nonsingular, that is, µ ◦A−1 is absolutely continuous with respect
to µ, then the operator

CA : L2(µ) ⊇ D(CA) → L2(µ)

given by

D(CA) =
{
f ∈ L2(µ) : f ◦A ∈ L2(µ)

}
and CAf = f ◦A for f ∈ D(CA),

is well defined and closed in L2(µ) (see [8, Proposition 1.5]), where L2(µ) =
L2(X,A, µ) denotes the space of all A-measurable C-valued functions such that∫
X
|f |2 dµ < ∞. Call it a composition operator induced by A; then we say that

A is the symbol of CA. If the Radon–Nikodym derivative

hA =
dµ ◦A−1

dµ

belongs to L∞(µ), the space of all essentially bounded A-measurable C-valued
functions onX, then CA is bounded on L2(µ) and ‖CA‖ = ‖hA‖1/2L∞(µ). The reverse

is also true. By the measure transport theorem, we get

D(CA) = L2
(
(1 + hA) dµ

)
.

It follows from [8, Proposition 3.2] that

D(CA) = L2(µ) if and only if hA < ∞ almost every [µ]. (3.1)

As shown below, in the case of finite measure spaces, dense definiteness of CA is
automatic.

Lemma 3.1. If (X,A, µ) is a finite measure space and A is a nonsingular trans-
formation of X, then χσ ∈ D(Cn

A) for every σ ∈ A and n ∈ N. Moreover, D∞(CA)
is dense in L2(µ).

Proof. Since µ(X) < +∞ and χσ ◦A = χA−1(σ), we deduce that χσ ∈ D(Cn
A) for

all σ ∈ A and n ∈ N. Therefore, D(Cn
A) is dense in L2(µ) for every n ∈ Z+. This

and [8, Theorem 4.7] yield the “moreover” part. �

Now we recall some information concerning weighted composition operators.
Let (X,A, ν) be a σ-finite measure space, let A be a nonsingular A-measurable
transformation of X, and let w be an A-measurable C-valued function on X



COMPOSITION OPERATORS VIA INDUCTIVE LIMITS 169

such that the measure (|w|2 dν) ◦A−1 is absolutely continuous with respect to ν.
A weighted composition operator WA,w : L2(ν) ⊇ D(WA,w) → L2(ν) is defined by

D(WA,w) =
{
f ∈ L2(ν) : w · (f ◦A) ∈ L2(ν)

}
,

WA,wf = w · (f ◦A), f ∈ D(WA,w).

Any such operator WA,w is closed. Moreover, WA,w is densely defined if and
only if hA · (EA(|w|2) ◦ A−1) < ∞ almost every [ν], where EA(·) denotes the
conditional expectation operator with respect to the σ-algebra A−1(A) (see [12,
Lemma 6.1]). We refer the reader to [10] for more information on unbounded
weighted composition operators and references therein.

The adjoint of a composition operator induced by an A-bimeasurable transfor-
mation turns out to be the weighted composition operator induced by the inverse
of the symbol (see [8, Corollary 7.3] and [8, Remark 7.4]):

If A is an invertible transformation of X such that both A and

A−1 are A-measurable and nonsingular, then C∗
A = WA−1,hA . (3.2)

If µ is a finite measure, then the above implies immediately the following.

Lemma 3.2. Let n ∈ N. Suppose that (X,A, µ) is a finite measure space and
that A is an invertible transformation of X such that both A and A−1 are
A-measurable and nonsingular. Then the following conditions are satisfied:

(i) D((C∗
A)

n) =
⋂n

k=1 D(C
∗
Ak),

(ii) (C∗
A)

n ⊆ (Cn
A)

∗ = C∗
An,

(iii) (C∗
A)

n = (Cn
A)

∗, whenever D(C∗
An) =

⋂n
k=1D(C

∗
Ak).

Proof. Since Cn
A ⊆ CAn (see [8, (3.3)]), Lemma 3.1 implies that Cn

A and CAn are
densely defined. This together with [8, Corollary 4.2] yields

(Cn
A)

∗ = (Cn
A)

∗ = C∗
An . (3.3)

By [9, Lemma 15], we have

hAn = hA · hA ◦A−1 · hA ◦A−2 · · · hA ◦A−(n−1) almost every [µ], n ∈ N. (3.4)

In view of (3.2) and (3.4), we obtain the equality

D
(
(C∗

A)
n
)
=

n⋂
k=1

{
f ∈ L2(µ) : hAkf ◦A−k ∈ L2(µ)

}
=

n⋂
k=1

D(C∗
Ak). (3.5)

Thus (i) is satisfied.
The fact that (B∗)n ⊆ (Bn)∗ for any operator B in a Hilbert space such that

the adjoints exist implies that

(C∗
A)

n ⊆ (Cn
A)

∗, (3.6)

which, combined with (3.3), proves (ii).
The equality in (iii) follows from (3.3), (3.5), (3.6), and the assumption on

D(C∗
An). �

That the inclusion (C∗
A)

n ⊆ C∗
An in Lemma 3.2 can be proper is shown below.



170 P. BUDZYŃSKI, P. DYMEK, and A. P LANETA

Example 3.3. Let X = [0, 1], A = B([0, 1]), and µ(σ) =
∫
σ

1√
x
dm1, where m1

is the Lebesgue measure on R. Let A(x) = 1 − x. Clearly, A and A−1 are
A-measurable and nonsingular. SinceA2(x) = x for every x ∈ X, we get C∗

A2 = I,
where I denotes the identity operator. On the other hand, by (3.5) we have

D
(
(C∗

A)
2
)
=

{
f ∈ L2(µ) :

∫
X

∣∣f(x)∣∣2√ x

1− x
dµ < ∞

}
6= L2(µ).

This proves that D((C∗
A)

2) 6= D(C∗
A2).

Now we show that certain families generated by characteristic functions form
cores for n-tuples of weighted composition operators (this generalizes [4, Proposi-
tion 3.3]). Given operators T1, . . . , Tn, n ∈ N, in a Hilbert space H and a subspace
F ⊆

⋂n
i=1 D(Ti), we say that F is a core for (T1, . . . , Tn) if F is dense in

⋂n
i=1D(Ti)

with respect to the graph norm ‖f‖2(T1,...,Tn)
:= ‖f‖2 +

∑n
i=1 ‖Tif‖2.

Proposition 3.4. Let (X,A, µ) be a σ-finite measure space, and let B ⊆ A be a
family of sets satisfying the following conditions:

(i) for all A,B ∈ B, A ∩B ∈ B,
(ii) A = σ(B),
(iii) there exists {Xn}∞n=1 ⊆ B such that Xk ⊆ Xk+1 for every k ∈ N and

µ(X \
⋃∞

n=1Xn) = 0.

Let n ∈ N. Suppose that Ai : X → X, i ∈ In, is invertible and that Ai and A−1
i are

A-measurable and nonsingular. Let wi : X → C, i ∈ In, be A-measurable. If F :=
lin{χσ : σ ∈ B} ⊆

⋂n
i=1 D(WAi,wi

), then F is a core of (WA1,w1 , . . . ,WAn,wn).

Proof. Let hAi,wi
, i ∈ In, denote the Radon–Nikodym derivative of the measure

(|wi|2 dµ) ◦ A−1
i with respect to the measure µ. By [4, Lemma 3.2] and [10,

Proposition 10], hAi,wi
< ∞ almost every [µ] for every i ∈ In. Therefore, the

measure (1+ hA1,w1 + · · ·+ hAn,wn) dµ is σ-finite. Combining [4, Lemma 3.2] and
[10, Proposition 9], we see that F is a core of (WA1,w1 , . . . ,WAn,wn) (see also the
proof of [4, Proposition 3.3]). �

It is sometimes convenient to consider composition operators, or even weighted
composition operators, induced by partial transformations ofX, that is, mappings
defined not on the whole of X, but on a subset of X; such composition operators
(resp., weighted composition operators) are occasionally called partial composition
operators (resp., partial weighted composition operators). Suppose that Y ∈ A.
Let B : Y → X and w : Y → C be A-measurable having A-measurable extensions

B̂ : X → X and ŵ : X → C. If the weighted composition operator WB̂,ŵ is well

defined, then we define the operator WB,w : D(WB,w) → L2(µ) by

WB,w = WB̂,χY ŵ.

Clearly, if Y = X, then the above definition agrees with the previous one given for
“everywhere defined” transformations, which justifies the notation. The partial
composition operator comes out of it, when we consider w = χY . Let us note that
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the definition is independent of the choice of extensions (see [10, Proposition 7]).
In particular, we have

If Â : X → X is A-measurable and nonsingular, û : X → C is

A-measurable, and A and u are their restriction to a full measure

µ subset Y of X, then WÂ,û = WA,u. (3.7)

In view of (3.7), we see that Lemma 3.1 is still valid if a composition operator CA is
induced by a (partial) nonsingular measurable transformation A : Y → X defined
on a full measure µ subset Y of X. Moreover, if additionally A is injective, A(Y )
is a set of full measure µ, and A−1 : A(Y ) → X is nonsingular and measurable,
then we get also the claim of Lemma 3.2. That the “partial” counterpart of
Proposition 3.4 is true can be easily proved as well. By (3.2) and (3.7), if µ is
finite, then CA is a densely defined operator in L2(µ) and C∗

A = WÂ−1,hÂ
, where

Â−1 and Â are any A-measurable extensions of A−1 and A, respectively, onto X.
Note that there are transformations, which are invertible and measurable but

not nonsingular.

Example 3.5. Consider X = R∞, A = B(R∞), and µ = µG, where µG denotes the
Gaussian measure on R∞ (see the next section for details). Let A : R∞ → R∞ be
given by A{xn}∞n=1 = { 1

n
xn}∞n=1. It is clear that A is invertible and measurable.

However, A cannot be nonsingular since A−1 transforms `2(N) into `2({1/n2}∞n=1)
and, as we know by [1, Lemma 11] and [1, Theorem 1.3, p. 92], µG(`

2(N)) = 0
while µG(`

2({1/n2}∞n=1)) = 1.

4. Composition operators with matrix symbols

Let κ ∈ N. The κ-dimensional Gaussian measure is the measure µG,κ given by

dµG,κ =
1

(
√
2π)κ

exp
(
−x2

1 + · · ·+ x2
κ

2

)
dmκ,

where mκ denotes the κ-dimensional Lebesgue measure on Rκ. For any linear
transformation A of Rκ, the composition operator CA in L2(µG,κ) is well defined
if and only if A is invertible. If this is the case, then (see [27, (2.1)])

hA(x) = | detA−1| · exp |x|2 − |A−1x|2

2
, x ∈ Rκ. (4.1)

Here, and later on, |·| stands for the Euclidean norm on Rn, n ∈ N. For simplicity,
we use the same dimension-independent symbol for any of the Euclidean norms
on Rn, n ∈ N. Combining (4.1) with (3.1) and [8, Proposition 6.2], we get:

Every invertible linear transformation A of Rκ induces densely

defined and injective composition operator CA in L2(µG,κ). (4.2)

Cosubnormality of CA can be written in terms of the symbol A (see [27, Theo-
rem 2.5] and [4, Theorem 3.8]).
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Theorem 4.1. Let A be an invertible linear transformation of Rκ. If A is normal
in (Rκ, | · |), then CA is cosubnormal. The reverse implication holds whenever CA

is bounded on L2(µG,κ).

The Gaussian measure µG on R∞ is the (infinite) tensor product measure

µG = µG,1 ⊗ µG,1 ⊗ µG,1 ⊗ · · ·
defined onB(R∞). Recall thatB(R∞) is generated by cylindrical sets, that is, sets
of the form σ×R∞, with σ ∈ B(Rn) and n ∈ N; the family of all cylindrical sets
will be denoted by Bc(R∞). For every n ∈ N, the space L2(µG,n) can be naturally
embedded into L2(µG) via the isometry ∆ : L2(µG,n) 3 f 7→ f ◦ πn ∈ L2(µG).
For simplicity, we suppress the explicit dependence on n in the notation. We will
denote by the symbol ‖ · ‖ any of the L2-norms on L2(µG,n), n ∈ N, or L2(µG).
A function f ∈ L2(µG) is called a cylindrical function if f ∈ ∆(L2(µG,n)) for some

n ∈ N. If f ∈ L2(µG) is a cylindrical function and f = ∆f̃ , with f̃ ∈ L2(µG,k) and

k ∈ N, then Σl(f), l ≥ k, denotes the set {x ∈ Rk : f̃(x) 6= 0} × Rl−k.
We are interested in properties of composition operators with symbols induced

by infinite matrices. Such operators were investigated in [11, Corollary 5.1], where
tractable criteria for dense definiteness in case of row-finite matrices were given.
In this article, we need to relax our approach slightly and also consider the non-
row-finite case. This can be done as follows. We take a matrix a = (aij)i,j∈N with
real entries, and we set

Da =
{
{xn}∞n=1 ∈ R∞ :

∞∑
j=1

aijxj ∈ R for every i ∈ N
}
.

Using the Cauchy condition, we see that

Da =
⋂
i∈N

⋂
l∈N

⋃
N∈N

⋂
m≥n≥N

{
{xk}∞k=1 :

∣∣∣ m∑
j=n

aijxj

∣∣∣ < 1

l

}
,

which yields Da ∈ B(R∞). Now, if A : D → R∞, with D ∈ B(R∞) such that
D ⊆ Da, satisfies

A(x1, x2, . . .) =
( ∞∑

j=1

a1jxj,
∞∑
j=1

a2jxj, . . .
)
, {xn}∞n=1 ∈ D,

then we say that A is induced by a, or that a induces A. Such an A is B(R∞)-
measurable. This follows from the fact that sets of the form Rκ−1 × (α, β)×R∞,
with κ ∈ N and α, β ∈ R, generate B(R∞) and

A−1
(
Rκ−1 × (α, β)× R∞)

=
⋃
N∈N

⋂
m≥N

{
{xn}∞n=1 ∈ D: α <

∣∣∣ m∑
j=1

aκjxj

∣∣∣ < β
}
.

The operator CA is defined according to the scheme of defining composition
operators with partial symbols (see Section 3).

It is obvious that Da is a set of full measure µG for every row-finite matrix a.
As shown below, if a is not row-finite, but entries in each row have appropriate
asymptotics, then one can deduce a similar result.



COMPOSITION OPERATORS VIA INDUCTIVE LIMITS 173

Lemma 4.2. Let a = (aij)i,j∈N be a real matrix. If there exist λ ∈ (0, 1) and C > 0
such that |ai,j| ≤ Cλ|i−j| for all i, j ∈ N, then Da is a set of full measure µG.

Proof. By the Cauchy–Schwarz inequality, we have `2({λn}∞n=1) ⊆ Da. Since, by
[1, Lemma 11] and [1, Theorem 1.3, p. 92] µG(`

2({λn}∞n=1)) = 1, we get the
claim. �

Our focus will be on composition operators with block 3-diagonal (or, using
another language, block 1-banded) matrix symbols. For this we need some extra
terminology. Let s = {s(n)}∞n=1 be an increasing sequence of natural numbers.
Let a = (aij)i,j∈N be an infinite matrix such that

aij = aji = 0,

(i, j) ∈
{
s(n− 1) + 1, . . . , s(n)

}
×

{
s(n+ 1) + 1, . . .

}
, n ∈ N, (4.3)

with s(0) := 0. Then, for p, q ∈ N, we define matrices ap = as
p and apq = as

pq by

ap = (aij)
s(p)
i,j=1, app = (aij)

s(p)
i,j=s(p−1)+1,

ap+1,p = (aij)
s(p+1),s(p)
i=s(p)+1,j=s(p−1)+1, ap,p+1 = (aij)

s(p),s(p+1)
i=s(p−1)+1,j=s(p)+1,

and

apq = 0, |p− q| > 1.

With this notation, a is indeed a block 3-diagonal matrix, that is,

a =


a11 a12 0 · · ·
a21 a22 a23 · · ·
0 a32 a33 · · ·
· · · · · · · · · · · ·

 .

If additionally to (4.3), the matrix a satisfies

rank ap,p+1 ∈
{
0, s(p)− s(p− 1)

}
, p ∈ N,

then we say that a belongs to the class F(s).

5. Criteria and examples

In this section, we propose criteria that answer the question of when a compo-
sition operator CA in L2(µG) induced by an infinite matrix is of class S∗

n,r. The
first (see Theorem 5.1 below) is rather general in nature, while the second and
third (see Propositions 5.2 and 5.9) are more concrete, enabling us to construct
explicit examples.

Theorem 5.1. Let n, r ∈ Z+. Let s = {s(k)}∞k=1 ⊆ N be an increasing sequence.
Suppose that

(i) D ∈ B(R∞) satisfies µG(D) = 1,
(ii) A : D → A(D) ⊆ R∞ is a B(R∞)-measurable nonsingular and invertible

transformation such that µG(A(D)) = 1, A−1 is B(R∞)-measurable and
nonsingular,
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(iii) there exist κ ∈ N and {Ωl : l ∈ N} ⊆ B(Rs(κ)) such that Ωl ↗ Rs(κ) as
l → ∞ and χΩk×R∞hAi ∈ L2(µG) for all k ∈ N and i ∈ In+r,

(iv) for every k ∈ N there exists a B(Rs(k))-measurable nonsingular and invert-
ible transformation Ak of Rs(k) such that A−1

k is B(Rs(k))-measurable non-
singular, CAk

is densely defined and cosubnormal in L2(µG,s(k)),
(v) for all i ∈ In+r and k ∈ N,

lim sup
l→∞

∫
Rs(l)

χΩk×Rs(l)−s(κ)h2Ai
l
dµG,s(l) ≤ ‖χΩk×R∞hAi‖2, (5.1)

(vi) for every m ∈ N, there exists p̃ ∈ N such that for all i ∈ In+r and
σ ∈ B(Rm), we have

µG

((
A−i(σ × R∞)

)
4
(
A−i

p (σ × Rs(p)−m)× R∞))
= 0, p ≥ p̃, (5.2)

(vii) for every m ∈ N, σ ∈ B(Rm), and i ∈ In+r, we have

µG

((
Ai(σ × R∞)

)
4
( ∞⋃
k=1

⋂
p≥k

Ai
p(σ × Rs(p)−m)× R∞

))
= 0. (5.3)

Then CA ∈ S∗
n,r.

Proof. We divide the proof into a number of steps.
Step 1. For every m ∈ N, there exists p̃ ∈ N such that for all i ∈ In+r and

ω = ω̃×R∞, with ω̃ ∈ B(Rη) for some η ∈ N, and every f = ∆f̃ ∈ D(CAi), with

f̃ ∈ L2(µG,m), we have∣∣〈CAif, χω〉
∣∣ ≤ ‖f‖

(∫
Rs(l)

χAi
l(ω̃×Rs(l)−m)∩Σs(l)(f)

h2Ai
l
dµG,s(l)

)1/2

, l ≥ p̃. (5.4)

Take σ = σ̃ × R∞ with σ̃ ∈ B(Rk) and k ≥ η. Then, by condition (vi), there
exists p̃ ∈ N such that for all p ≥ p̃ and i ∈ In+r, we have

〈CAiχσ, χω〉 =
∫
R∞

(χσ ◦Ai) · χω dµG

= µG,s(p)

(
A−i

p (σ̃ × Rs(p)−k) ∩ ω̃ × Rs(p)−η
)

=

∫
Rs(p)

χσ̃×Rs(p)−k ◦Ai
p · χω̃×Rs(p)−η dµG,s(p)

=

∫
Rs(p)

χσ̃×Rs(p)−k · χAi
p(ω̃×Rs(p)−η) · hAi

p
dµG,s(p)

≤ ‖χσ‖
(∫

Rs(p)

χσ̃×Rs(p)−k∩Ai
p(ω̃×Rs(p)−η)h

2
Ai

p
dµG,s(p)

)1/2

,

which means that (5.4) holds with f = χσ. If f = ∆f̃ ∈ D(CAi), where f̃ is a
nonnegative step function, then arguing as above we see that

〈CAif, χω〉 =
∫
Rs(p)

∆f̃χAi
p(ω̃×Rs(p)−η)hAi

p
dµG,s(p)

≤ ‖f‖
(∫

Rs(p)

χΣs(p)(f)∩Ai
p(ω̃×Rs(p)−η)h

2
Ai

p
dµG,s(p)

)1/2

, p ≥ p̃, i ∈ In+r.
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In turn, using approximation by step functions, we deduce that (5.4) holds for

every f ∈ D(CAi) that is nonnegative and f = ∆f̃ with f̃ ∈ L2(µG,m). For
every cylindrical C-valued function f ∈ D(CAi), its module is also a cylindrical
function, |f | ∈ D(CAi) and Σs(p)(f) = Σs(p)(|f |). Hence, by the inequality∣∣〈CAif, χω〉

∣∣ ≤ 〈
CAi |f |, χω

〉
,

we get the claim.
Step 2. For all i ∈ In+r, m ∈ N, and ω ∈ B(Rm), if

lim sup
l→∞

∫
Rs(l)

χAi
l(ω×Rs(l)−m)h

2
Ai

l
dµG,s(l) < +∞, (5.5)

then χω×R∞ ∈ D(C∗
Ai). Moreover, if k ∈ N, i ∈ In+r, and σ ∈ B(R∞) satisfy

σ ⊆ A−i(Ωk × R∞), then χσ ∈ D(C∗
Ai).

Fix i ∈ In+r. Let m ∈ N and ω ∈ B(Rm). Then, applying Step 1, inequality
(5.5), and Proposition 3.4, we deduce that χω×R∞ ∈ D(C∗

Ai).
Now fix k ∈ N. It follows from condition (vi) that

µG

((
A−i(Ωk × R∞)

)
4
(
A−i

p (Ωk × Rs(p)−s(κ))× R∞))
= 0, p ≥ p̃,

and thus, by condition (v), we have

lim sup
l→∞

∫
Rs(l)

χAi
l(A

−i
l (Ωk×Rs(l)−s(κ)))h

2
Ai

l
dµG,s(l)

= lim sup
l→∞

∫
Rs(l)

χΩk×Rs(l)−s(κ)h2Ai
l
dµG,s(l) < +∞.

Hence, χA−i(Ωk×R∞) ∈ D(C∗
Ai) by the first part of the claim. Now, that χσ ∈

D(C∗
Ai) follows easily from (3.2) and the definition of the domain of a weighted

composition operator.
Step 3. For all i ∈ In+r and k ∈ N, and {lj}∞j=1 ⊆ N such that limj→∞ lj = ∞,

we have

‖χΩk×R∞hAi‖ ≤ lim sup
j→∞

‖χ
Ωk×Rs(lj)−s(κ)hAi

lj
‖. (5.6)

Fix i ∈ In+r and k ∈ N. By Step 2, χA−i(Ωk×R∞) ∈ D(C∗
Ai), and thus using

(3.2) we get

〈f, χΩk×R∞hAi〉 = 〈f, C∗
AiχA−i(Ωk×R∞)〉

= 〈CAif, χA−i(Ωk×R∞)〉, f ∈ D(CAi). (5.7)

According to Lemma 3.1, equalities in (5.7) are satisfied for every cylindrical step
function f . Moreover, for every cylindrical step function f , by condition (vi) and
Step 1, we have∣∣〈CAif, χA−i(Ωk×R∞)〉

∣∣ ≤ ‖f‖ lim sup
j→∞

(∫
Rs(lj)

χ
Ai

lj
(A−i

lj
(Ωk×Rs(lj)−s(κ)))

h2Ai
lj

dµG,s(lj)

) 1
2
,

which together with (5.7) gives∣∣〈f, χΩk×R∞hAi〉
∣∣ ≤ ‖f‖ lim sup

j→∞
‖χ

Ωk×Rs(lj)−s(κ)hAi
lj
‖



176 P. BUDZYŃSKI, P. DYMEK, and A. P LANETA

for every cylindrical step function f . Since every function in L2(µG) may be
approximated by cylindrical step functions, we get

‖χΩk×R∞hAi‖2 ≤ ‖χΩk×R∞hAi‖ lim sup
j→∞

‖χ
Ωk×Rs(lj)−s(κ)hAi

lj
‖,

which proves (5.6).
Step 4. There exists an injective increasing sequence {lj}∞j=1 ⊆ N such that for

all i ∈ In+r and k ∈ N,

lim
j→∞

∥∥χΩk×R∞(hAi −∆hAi
lj
)
∥∥ = 0. (5.8)

First we prove (5.8) with i = k = 1. In view of (5.6) and (v), there exists an
injective increasing sequence {l1,1j }∞j=1 ⊆ N such that

lim
j→∞

‖χΩ1×R∞∆hA
l
1,1
j

‖ = ‖χΩ1×R∞hA‖.

Thus, by [33, Exercise 4.21(a)], it suffices to show that∫
Ω1×R∞

fhA dµG = lim
j→∞

∫
Ω1×R∞

f∆hA
l
1,1
j

dµG, f ∈ L2(µG). (5.9)

By condition (vi), equality in (5.9) holds when f is a cylindrical step function.
Since supj∈N ‖χΩ1×R∞∆hA

l
1,1
j

‖L2(µG) < ∞ and cylindrical step functions are dense

in L2(µG), we get (5.9) and consequently (5.8) for i = k = 1. Repeating the same
argument (n+ r− 1) times (apply Step 3 to consecutive subsequences), we show
that there exists a subsequence {ln+r,1

j }∞j=1 ⊆ {l1,1j }∞j=1 such that (5.8) is satisfied
with i = 1, . . . , n+r and k = 1. In a similar manner, we show that for any k0 ∈ N
we can find subsequences {ln+r,k0

j }∞j=1 ⊆ · · · ⊆ {ln+r,2
j }∞j=1 ⊆ {ln+r,1

j }∞j=1 such that
(5.8) is satisfied with i = 1, . . . , n+r and k = 1, . . . , k0. Now, the sequence {lj}∞j=1

given by lj = ln+r,j
j does the job.

Step 5. We have CA ∈ S∗
n,r.

In view of Lemma 3.1, (3.2), and (3.7), CA is densely defined in L2(µG) and
C∗

A = WA−1,hA . In turn, by (3.2), for every k ∈ N, C∗
Ak

= WA−1
k ,hAk

. Set

S = WA−1,hA , and Sk = WA−1
lk

,hAlk

, k ∈ N,

where {lk}k∈N is as in Step 4 with the additional requirement that l1 ≥ κ.
We denote by B the family of Borel subsets of R∞ defined as follows: σ ∈ B if

and only if there exists σ̃ ∈ Bc(R∞) such that µG(σ4σ̃) = 0 and either σ̃ = R∞ or
there exists k1, . . . , kn+r ∈ N such that σ̃ ⊆ A−1(Ωk1×R∞)∩· · ·∩A−(n+r)(Ωkn+r×
R∞). According to condition (vi) and the fact that Ωl ↗ Rκ as l → ∞, the family
B satisfies conditions (i)–(iii) of Proposition 3.4. Indeed, conditions (i) and (iii)
are clear. For the proof of (ii) we take m ∈ N and σ ∈ B(Rm), and for every
k ∈ N we consider the sets

ωk = (σ × R∞) ∩
(
A−1(Ωk × R∞) ∩ · · · ∩A−(n+r)(Ωk × R∞)

)
and

ω̃k,p =
(
(σ × Rs(p)−m) ∩A−1

p (Ωk,p) ∩ · · · ∩A−(n+r)
p (Ωk,p)

)
× R∞, p ∈ N,
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where Ωk,p = Ωk × Rs(p)−s(κ). Then, using (vi), we deduce that µG(ωk4ω̃k,p) = 0
for sufficiently large p ∈ N. Hence for every k, p ∈ N, ωk ∈ B and ω̃l,p ↗ σ × R∞

as l → ∞. This and the fact that Bc(R∞) generates B(R∞) prove (ii).
Let X be a family composed of all characteristic functions χσ ∈ L2(µG) of sets

σ ∈ B. Then by Step 2, we have

X ⊆
n+r⋂
i=1

D(C∗
Ai). (5.10)

Thus, by Lemma 3.2(i), X ⊆ D(Sn+r).
For k ∈ N, let Bk denote the family of sets σ ∈ B(Rs(lk)) such that either

σ = Rs(lk), or σ ⊆ A−1
lk
(Ωm1 × Rs(lk)−s(κ)) ∩ · · · ∩A

−(n+r)
lk

(Ωmn+r × Rs(lk)−s(κ)) for
some m1, . . . ,mn+r ∈ N. Applying condition (v), (3.2), and Lemma 3.2 (i), we
show that Xk ⊆ D(Sn+r

k ) for every sufficiently large k ∈ N, where Xk is composed
of all characteristic functions χσ ∈ L2(µG,s(lk)) of sets σ ∈ Bk.

By condition (vi), X =
⋃∞

i=1

⋂∞
k=i ∆Xk. In view of (5.10), (3.2), and Proposi-

tion 3.4, linX is a core for (C∗
A, . . . , C

∗
An+r). Thus, by Lemma 3.2, linX is a

core for (S, . . . , Sn+r). Note that, by condition (vii), for any x ∈ Xm with m ∈ N,
and i ∈ In+r, we have (∆x) ◦ A−i = limp→∞(∆x) ◦ A−i

p . Hence, by Lemma 3.2
and Step 4, we have

Si∆x = hAi · (∆x ◦A−i) = lim
k→∞

∆hAi
lk

· (∆x ◦A−i
lk
)

= lim
k→∞

Si
k∆x, i ∈ In+r and x ∈ Xm,m ∈ N,

which implies that

〈Si∆f, Sj∆g〉 = lim
k→∞

〈Si
k∆f, Sj

k∆g〉, ∆f,∆g ∈ linX and i, j ∈ In+r. (5.11)

By subnormality of Sk and Proposition 2.3, we have Sk ∈ Sn,r for every k ∈ N.
This and (5.11) imply that inequality in (2.2) (with S in place of T ) is satisfied
for all {fk

i : i = 1, . . . ,m, k = 0, . . . , r} ⊆ X . This and the fact that linX is a
core for (S, . . . , Sn+r) imply that CA ∈ S∗

n,r. �

Proposition 5.2. Let n, r ∈ Z+. Let a = (aij)i,j∈N ⊆ R be a matrix such that
µG(Da) = 1, and let s = {s(k)}∞k=1 ⊆ N be an increasing sequence. Assume that

(a) A : Da → A(Da), the transformation induced by a, is nonsingular and
invertible, and µG(A(Da)) = 1,

(b) A−1 is B(R∞)-measurable and nonsingular and induced by a matrix a−1 ∈
F(s),

(c) there exist κ ∈ N and {Ωl : l ∈ N} ⊆ B(Rs(κ)) such that Ωl ↗ Rs(κ) as
l → ∞ and χΩk×R∞hAi ∈ L2(µG) for all k ∈ N and i ∈ In+r,

(d) for every k ∈ N, the matrix (a−1)k is invertible and normal in (Rs(k), | · |),
(e) for all i ∈ In+r and k ∈ N, inequality (5.1) is satisfied, where Al is the

transformation of Rs(k) induced by the inverse of (a−1)l, l ∈ N.
Then CA ∈ S∗

n,r.
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Proof. We begin by showing that for every m ∈ N there exists p̃ ∈ N such that
for all i ∈ In+r and σ ∈ B(Rm), condition (5.2) is satisfied. Indeed, fix i ∈ In+r,
m ∈ N, and σ ∈ B(Rm). Suppose that there exists p0 ∈ N such that

s(p0) ≥ m and rank(a−1)p0,p0+1 = 0.

Set p̃ = p0. Then normality of (a−1)p̃+1 implies that rank(a−1)p̃+1,p̃ = 0. This
and surjectivity of A−1 yield (5.2). Now, suppose that for every p ∈ N such that
s(p) ≥ m we have

rank(a−1)p,p+1 = s(p)− s(p− 1). (5.12)

It is easily seen that

A−1
p (σ̃ × Rs(p)−m) = π

s(p+1)
s(p) ◦A−1

p+1

(
σ̃ × Rs(p)−m × {0} × · · · × {0}

)
, p ≥ p̃,

where p̃ is the smallest integer such that s(p̃ − 1) ≥ m. This and (5.12) imply
that

µG

(
A−1(σ × R∞)4

(
A−1

p (σ̃ × Rs(p)−m)
)
× R∞)

= 0, p ≥ p̃. (5.13)

Using (5.13) repeatedly, we obtain (5.2).
Now, if m ∈ N, σ ∈ Rm, and i ∈ In+r, then there exists p̂ ∈ N such that for

µG-almost every x ∈ R∞ and every p ≥ p̂, we have

(χσ×R∞ ◦A−i)(x) = 1 ⇐⇒
((
A−i(x)

)
1
, . . . ,

(
A−i(x)

)
m

)
∈ σ

⇐⇒
((
(A−i

p ◦ πp)(x)
)
1
, . . . ,

(
(A−i

p ◦ πp)(x)
)
m

)
∈ σ

⇐⇒ ∆(χσ×Rs(p)−m ◦A−i
p )(x) = 1.

This implies that χσ×R∞ ◦ A−i = limp→∞∆(χσ×Rs(p)−m ◦ A−i
p ), which all proves

that (5.3) is satisfied.
Finally, since, by (4.2) and Theorem 4.1, CAk

is densely defined and cosubnor-
mal for every k ∈ N, we can apply Theorem 5.1. �

Remark 5.3. Concerning Theorem 5.1, it is worth noting that, by Step 3, condition
(iii) of Theorem 5.1 is automatically satisfied if lim supl→∞ ‖hAi

l
‖ < +∞, i ∈ In+r.

Below we provide examples of unbounded composition operators induced by
infinite matrices that belong to S∗

n,r. The first one, with diagonal matrix symbols,
is motivated by [27, Theorem 4.1], where cosubnormality of bounded CA’s of this
kind was shown (by use of different methods).

Example 5.4. Let n, r ∈ Z+. Let a = (aij)i,j∈N ⊆ R be a diagonal matrix, that is,
aii = αi with {αm}∞m=1 ⊆ (0,∞), and let aij = 0 for all i, j ∈ N such that i 6= j.
Assume that

0 < αk < 1 for all k ∈ N such that k > n+ r,

and that
∞∑
k=1

(1− αk) is convergent. (5.14)

Clearly, a induces an A-measurable invertible transformation A of R∞ such that
Da is a set of full measure µG. Let s = {s(k)}∞k=1 ⊆ N be given by s(k) = k. Then
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A−1 is an A-measurable transformation induced by a matrix a−1 ∈ F(s) such that
Da−1 is a set of full measure µG. Let {Ωk : k ∈ N} be given by Ωk = [−k, k]n+r.
By (4.1), for all i ∈ In+r, we have

hAi
l
(x1, . . . , xl) =

1

αi
1 · · ·αi

l

exp
|(x1, . . . , xl)|2 − |(α−i

1 x1, . . . , α
−i
l xl)|2

2

=
l∏

j=1

1

αi
j

exp
(
−
x2
j

2

1− α2i
j

α2i
j

)
, (x1, . . . , xl) ∈ Rl, l ∈ N,

where Al is the transformation of Rl induced by the matrix al, l ∈ N. This
together with the change of variable theorem (see [25, Theorem 8.26]) and (5.14)
implies that there is C > 0 such that

‖χΩk×Rl−n−rhAi
l
‖2L2(µG,l)

=
n+r∏
j=1

1

α2i
j

∫ k

−k

e
−

x2j (1−α2i
j )

α2i
j dµG,1

l∏
j=n+r+1

1

α2i
j

∫ ∞

−∞
e
−

x2j (1−α2i
j )

α2i
j dµG,1

= C
l∏

j=n+r+1

1

α2i
j

1√
2π

∫ ∞

−∞
e
−

x2j (2−α2i
j )

2α2i
j dm1

= C
l∏

j=n+r+1

(αi
j

√
2− α2i

j )
−1, k, l ∈ N and l > n+ r.

Since αi
j

√
2− α2i

j < 1 for every j > n+r and every i ∈ In+r, we infer from (5.14)

and [22, Chapter VII] that 0 < liml→∞ ‖χΩk×Rl−n−rhAi
l
‖L2(µG,l) < ∞. In view of

[11, Corollary 5.1], the above discussion shows that conditions (a), (b), and (d)
of Proposition 5.2 are satisfied. Now, set

hi
(
{xj}j∈N

)
=

∞∏
j=1

1

αi
j

exp
(
−
x2
j

2

1− α2i
j

α2i
j

)
, {xj}∞j=1 ∈ `2(pα,i), i ∈ In+r,

where pα,i = {p(i)j }∞j=1 with p
(i)
j = |1− α2i

j |. Since for every i ∈ In+r, the product∏∞
j=1 α

−i
j is convergent by (5.14) and [22, Theorem 3, p. 219], and the series∑∞

j=1

x2
j

2

1−α2i
j

α2i
j

is convergent for every {xj}∞j=1 ∈ `2(pα,i), we see that hi is well

defined. By [1, Lemma 11] and [1, Theorem 1.3, p. 92], `2(pα,i) is a set of full
measure µG. Hence hi may be treated as a B(R∞)-measurable mapping defined
on the whole of R∞. For all i ∈ In+r and k,m ∈ N and σ ∈ B(Rm), we have

µG ◦A−i
(
(σ × R∞) ∩ (Ωk × R∞)

)
= lim

l→∞
µG,l

(
A−i

l

(
(σ × Rl−m) ∩ (Ωk × Rl−n−r)

))
= lim

l→∞

∫
σ×Rl−m

χΩk×Rl−n−rhAi
l
dµG,l =

∫
σ×R∞

χΩk×R∞hi dµG,
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where the last equality follows from the Lebesgue dominated convergence theo-
rem and the fact that χΩk×R∞hi is essentially bounded. This, together with [2,
Theorem 10.3], implies that for every i ∈ In+r, A

i is nonsingular and hi = hAi

almost every [µG]. Hence the conditions (a) to (e) of Proposition 5.2 are satisfied,
and consequently CA ∈ S∗

n,r.

Remark 5.5. In view of [27, Theorem 4.1], the operator CA from Example 5.4
is bounded and cosubnormal whenever αi ∈ (0, 1) for every i ∈ N (if αm > 1
for some m ∈ N, then CA is unbounded in L2(µG); see [27, Proposition 2.2]).
It is worth noting that, if this is the case, cosubnormality of CA can also be
deduced from Proposition 5.2. To this end, we first observe that CA ∈ S∗

n,0 for
every n ∈ N which follows from Theorem 5.1. On the other hand, by applying
[11, Corollary 5.5], we see that CA is a bounded operator on L2(µG). Hence, using
Proposition 2.3, we get cosubnormality of CA.

Remark 5.6. It should be noted that any nontrivial scalar multiple of the identity
mapping on R∞ cannot satisfy the assumptions of Proposition 5.2. Indeed, sup-
pose that A : R∞ → R∞ is given by A(x) = αx, with α ∈ R \ {0, 1,−1}. Then
either A or A−1 is singular ; that is, one of them is not nonsingular. To see this,
we first fix α ∈ (0, 1). Then we take any sequence {xn}∞n=1 ⊆ (0, 1) such that

∞∑
n=1

xn < ∞ and
∞∑
n=1

x
√
α

n = ∞. (5.15)

Set an =
√

2 ln x−1
n , n ∈ N. Using the well-known method of proving that

the Gaussian measure µG,1 is a probability measure due to Poisson (see [32,
pp. 18–19]), we can show that

1− exp
(
−a2

2

)
≤

( 1√
2π

∫
[−a,a]

exp
(
−x2

2

)
dm1

)2

≤ 1− exp(−a2), a ∈ (0,∞). (5.16)

By (5.15) and [22, Theorem 3, p. 219], the product
∏∞

n=1(1 − exp(−a2n
2
)) is con-

vergent, which in view of (5.16) implies that

0 <
∞∏
n=1

(
1− exp

(
−a2n

2

))
≤

( ∞∏
n=1

1√
2π

∫
[−an,an]

exp
(
−x2

2

)
dm1

)2

≤ 1.

This, in turn, yields

0 < µG

( ∞∏
n=1

[−an, an]
)
.

On the other hand, the product
∏∞

n=1(1− exp(−α2a2n)) is divergent to zero (use
again (5.15) and [22, Theorem 3, p. 219]). Hence, by (5.16), we deduce that

0 = µG

( ∞∏
n=1

[−αan, αan]
)
,
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which shows that A is singular. Similar reasoning proves the same for other α’s
belonging to R \ {0, 1− 1} (if |α| > 1, then A−1 is singular).

In fact, modifying slightly the above argument, one can show that any transfor-
mation A of R∞ given by A({xk}∞k=1) = {αkxk}∞k=1, with {αk}∞k=1 ⊆ R such that
either lim supk→∞ |αk| 6= 1 or lim infk→∞ |αk| 6= 1, does not satisfy the assump-
tions of Proposition 5.2.

Below, in Proposition 5.9, we provide another set of conditions implying that a
satisfies the assumptions of Theorem 5.1. To this end, we need an auxiliary lemma
in which a class of infinite matrices (suitable for Proposition 5.9) is distinguished.
Recall that a matrix (ai,j)i,j∈N is called η-banded, with η ∈ Z+, if ai,j = 0 for all
i, j ∈ N such that |i − j| > η. Below, and later on, δij stands for the Kronecker
delta.

Lemma 5.7. Let p = {pj}∞j=1 and {αj}∞j=1 be sequences of positive real numbers
such that

(a) {pj}∞j=1 and {αj}∞j=1 belong to `1(N),
(b) there are 0 < m < M < ∞ such that

pj+1

pj
∈ (m,M) for every j ∈ N,

(c) supj∈N
αj

pj
< ∞.

Let η ∈ Z+. Let b̂ = (b̂i,j)i,j∈N be a η-banded matrix with real entries such that

(d) |b̂i,j| ≤ αi for all i, j ∈ N,
(e) b̂ is symmetric, that is, b̂i,j = b̂j,i for all i, j ∈ N.

Let b = (δij + b̂i,j)i,j∈N. Then the following conditions are satisfied:

(1) b̂ induces a trace-class operator B̂ on `2(N);
(2) detb is well defined; moreover, detb 6= 0 if and only if the operator I+ B̂

is invertible;

(3) there exists C̃ > 0 such that∣∣∣ ∞∑
j=1

x2
j − (bx)2j

∣∣∣ ≤ C̃

∞∑
j=1

x2
jpj, x = {xj}∞j=1 ∈ R∞;

(4) if detb 6= 0, then b induces an invertible transformation of R∞.

Proof. If {ei}∞i=1 is the standard orthonormal basis for `2(N), then by (d) we have

∞∑
i=1

∣∣〈|B̂|ei, ei
〉∣∣ ≤ ∞∑

i=1

∥∥|B̂|ei
∥∥ =

∞∑
i=1

∥∥U |B̂|ei
∥∥

=
∞∑
i=1

‖B̂ei‖ ≤ (2η + 1)
∞∑
i=1

αi < ∞,

where B̂ = U |B̂| is the polar decomposition of B̂. This proves that B̂ is a trace-
class operator. This, according to [3, p. 46], implies (2). For the proof of (3), we
first observe that if S is the shift operator S(x1, x2, . . .) = (0, x1, x2, . . .) acting



182 P. BUDZYŃSKI, P. DYMEK, and A. P LANETA

on `2(p), then, by (b), there exists C > 0 such that maxi∈Iη{‖Si‖, ‖S∗i‖} < C.
Let c = max{supj∈N

αj

pj
, supj∈N αj}. Then, for every {xj}∞j=1 ∈ `2(p), we have∣∣∣ ∞∑

j=1

x2
j − (bx)2j

∣∣∣ ≤ ∞∑
j=1

(
(b̂x)2j + 2|xj|

∣∣(b̂x)j∣∣)
≤ 2

∞∑
j=1

η∑
k=−η

α2
jx

2
j+k + 2‖x‖`2(p)

( ∞∑
j=1

(b̂x)2j
pj

) 1
2

≤ 2

η∑
k=−η

∞∑
j=1

α2
jx

2
j+k + 2‖x‖`2(p)

(
2

η∑
k=−η

∞∑
j=1

α2
jx

2
j+k

pj

) 1
2

≤ 2c2
η∑

k=−η

∞∑
j=1

x2
j+kpj + 2‖x‖`2(p)

(
2c2

η∑
k=−η

∞∑
j=1

x2
j+kpj

) 1
2

≤ 2c2(2η + 1)C2‖x‖2`2(p) + 2‖x‖`2(p)
(
2c2(2η + 1)C2‖x‖2`2(p)

) 1
2 .

This proves (3). If detb 6= 0, then, by (2), the matrix b induces an invertible
operator B in `2(N). Let a denote the matrix of the operator B−1 with respect
to the standard orthonormal basis of `2(N). In view of [17, Proposition 2.3] and
Lemma 4.2, Da is a set of full measure µG. Let A be the transformation of R∞

induced by a, and let B be the transformation induced by b. It is a matter
of simple calculations (based on the fact that BB−1 = B−1B = I) to show
that AB and BA coincide with the identity mapping on R∞ up to sets of full
measure µG. �

Regarding Lemma 5.7, we note that if b̂ is a matrix satisfying assumptions (a)
and (d) of Lemma 5.7, then for every k ∈ N we have∣∣(b̂k)i,j∣∣ ≤ ( ∞∑

l=1

αl

)k−1

αi, i, j ∈ N.

As a consequence, we get the following.

Corollary 5.8. Under the assumptions of Lemma 5.7, for every k ∈ N we have

that (b̂)k is a trace-class operator, detbk is well defined, and there exists C̃ > 0
such that ∣∣∣ ∞∑

j=1

x2
j − (bkx)2j

∣∣∣ ≤ C̃‖x‖2`2(p), x = {xj}∞j=1 ∈ `2(p). (5.17)

Proposition 5.9. Let n, r ∈ Z+ and η ∈ N. Assume that b̂ = (b̂ij)i,j∈N, p =
{pj}∞j=1 and {αj}∞j=1 satisfy conditions (a) to (e) of Lemma 5.7. Denote by b

the matrix (δij + b̂ij)i,j∈N and by B the transformation of R∞ induced by b. Let
s = {s(k)}∞k=1 ⊆ N be an increasing sequence. Suppose that

(f) there exists ρ > 0 such that | detbk| ∈ [ρ,+∞) for all k ∈ N.
Then B is invertible, B−1 is nonsingular, and CB−1 ∈ S∗

n,r.
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Proof. Note that, by [3, p. 46], (f), and Lemma 5.7, | detb| = limk→∞ | detbk| ∈
[ρ,∞) and det(bi)l 6= 0 for i ∈ In+r and sufficiently large l ∈ N. Hence, by (4) of
Lemma 5.7, the transformation B is invertible. According to (3) of Lemma 5.7

and Corollary 5.8, there exists C̃ > 0 such that the inequality (5.17) holds for
every k ∈ In+r. Hence the formula

hi
(
{xj}∞j=1

)
= | detb|i exp 1

2

( ∞∑
j=1

x2
j − (bix)2j

)
, {xj}∞j=1 ∈ `2(p),

defines a B(R∞)-measurable function on R∞ for every i ∈ In+r. Now, let us

choose κ ∈ N so that 1 − 2C̃pj > 0 for every j > s(κ), and let {Ωk : k ∈ N} be
given by Ωk = [−k, k]s(κ). Then, employing the change of variable theorem and
the fact that `2(p) is a set of full measure µG in R∞, we get∫

Ωk×R∞
exp

( ∞∑
j=1

x2
j − (bix)2j

)
dµG

≤
∫
Ωk×R∞

exp
(
C̃
∥∥{xj}∞j=1

∥∥2

`2(p)

)
dµG

=

∫
Ωk

exp
(
C̃

s(κ)∑
j=1

x2
jpj

)
dµG,s(κ) ·

∞∏
j=s(κ)+1

1√
2π

∫
R
exp

(
−
(1− 2C̃pj)x

2
j

2

)
dm1

=

∫
Ωk

exp
(
C̃

s(κ)∑
j=1

x2
jpj

)
dµG,s(κ)

·
∞∏

j=s(κ)+1

1√
1− 2C̃pj

, i ∈ In+r, k ∈ N. (5.18)

Since p ∈ `1(N), we deduce that
∏∞

j=s(κ)+1
1√

1−2C̃pj
is convergent (see [22, Chapter

VII]). Thus, by (5.18), the function χΩk×R∞hi belongs to L2(µG) for all i ∈ In+r
and k ∈ N. Note that there exists C > 0 such that∣∣∣ s(l)∑

j=1

x2
j −

(
(bk)lx

)2
j

∣∣∣ ≤ C

s(l)∑
j=1

x2
jpj, x ∈ Rs(l), l ∈ N, k ∈ In+r (5.19)

(see the proof of assertion (3) of Lemma 5.7). Hence arguing as in (5.18), we show
that the function χΩk×R∞∆hB−i

l
belongs to L2(µG,s(l)) for all i ∈ In+r, k ∈ N and

every l ∈ N such that l ≥ κ, where Bi
l is a transformation of Rs(l) induced by

(bi)l. Note that for every x = {xi}∞i=1 ∈ `2(p) we have∣∣∣ s(l)∑
j=1

(
x2
j −

(
(bi)lπs(l)x

)2
j

)
−

∞∑
j=1

(
x2
j − (bix)2j

)∣∣∣
≤

∣∣∣ s(l)∑
j=s(l)−iη

x2
j −

(
(bi)lπs(l)x

)2
j

∣∣∣+ ∣∣∣ ∞∑
j=s(l)−iη

x2
j − (bix)2j

∣∣∣.
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This combined with (5.17) and (5.19) proves that

hi(x) = lim
l→∞

∆hB−i
l
(x), x ∈ `2(p).

By (5.18) and (5.19), the function Hk,i : `
2(p) → C given by

Hk,i(x) = sup
l∈N

{∣∣det(bi)l
∣∣}χΩk×R∞ exp

1

2

(
C‖x‖2`2(p)

)
is a majorant in L2(µG) for the sequence {χΩk×R∞∆hB−i

l
}∞l=1, k ∈ N and i ∈ In+r.

Hence, by the Lebesgue dominated convergence theorem, we get

χΩk×R∞hi = lim
l→∞

χΩk×R∞∆hB−i
l
, k ∈ N, i ∈ In+r. (5.20)

Since for all i ∈ In+r and l ∈ N, the matrices bi are banded and the matrices
(bi)l are invertible, we deduce from (5.20) that for all i ∈ In+r, k,m ∈ N, and
σ ∈ B(Rm), we have

µG

(
Bi

(
(σ × R∞) ∩ (Ωk × R∞)

))
= lim

l→∞
µG,s(l)

(
Bi

l

(
(σ × Rs(l)−m) ∩ (Ωk × Rs(l)−s(κ))

))
= lim

l→∞

∫
σ×Rs(l)−m

χΩk×Rs(l)−s(κ)hB−i
l
dµG,s(l) =

∫
σ×R∞

χΩk×R∞hi dµG.

This, by [2, Theorem 10.3], implies that for every i ∈ In+r, the transformationB−i

is nonsingular and hi = hB−i almost every [µG]. This, Theorem 4.1, Lemma 4.2,
and equality (5.20) imply that conditions (i) to (vii) of Theorem 5.1 hold with
A = B−1 and Al = B−1

l , l ∈ N (conditions (vi) and (vii) follow easily from
η-boundedness of b). Hence, applying Theorem 5.1, we get that CB−1 belongs to
S∗
n,r. �

Remark 5.10. Regarding Proposition 5.9, we note that there is an another way
of producing the inverses of an η-bounded matrix b and a transformation B via
inductive technique. To this end, instead of conditions (a)–(e) of Lemma 5.7, we
assume that

(1) there exists ρ > 0 such that σ(bk) ⊆ [ρ,+∞) for all k ∈ N,
(2) for every k ∈ N, bk is normal in (Rs(k), | · |),
(3) for every ε > 0 there is k0 ∈ N such that for every m ≥ l ≥ k0

|bmι
s(m)
s(l) x− ι

s(m)
s(l) blx| ≤ ε

(
|x|+ |bmι

s(m)
s(l) x|+ |blx|

)
, x ∈ Rs(l),

where ιst : Rt 3 (x1, . . . , xt) 7→ (x1, . . . , xt, 0, . . . , 0) ∈ Rs for t ≤ s.

Then we proceed as follows. For j ∈ N, let Bj denote the linear mapping Rs(j) →
Rs(j) induced by bj. By [19, Theorem 1.1, Lemma 4.3] and (3), the sequence
{Bj}∞j=1 induces a closable densely defined operator B∞ acting on `2(N) according
to the formula

D(B∞) =
⋃
k∈N

{
ιkx : x ∈ Rk such that lim

j→∞
ιs(j)bjι

s(j)
k x ∈ `2(N)

}
,

B∞ιkx = lim
j→∞

ιs(j)bjι
s(j)
k x, ιkx ∈ D(B∞),
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where ιt : Rt 3 (x1, . . . , xt) 7→ (x1, . . . , xt, 0, . . .) ∈ R∞ for t ∈ N. The trans-
formation B∞ is the inductive limit of {Bj}∞j=1. In view of [19, Corollary 2.2,
Lemma 4.3] and (1), σ(B∞) ⊆ [ρ,+∞) and thus B∞ is invertible. From this
point forward we proceed as in the proof of (4) of Lemma 5.7.

With help of Proposition 5.9, we can deliver an example of composition oper-
ators belonging to S∗

n,r induced by the nondiagonal transformation of R∞. The
operator is induced by a 1-banded matrix.

Example 5.11. Let n, r ∈ Z+. Let b be a matrix given by

b =


1 q1 0 0 0 · · ·
q1 1 q2 0 0 · · ·
0 q2 1 q3 0 · · ·
0 0 q3 1 q4 · · ·
· · · · · · · · · · · · · · · · · ·

 ,

with q ∈ (0,
√
2
2
). Let {s(k)}∞k=1 be given by s(k) = k. Set p = {qj}∞j=1, and define

αj = qj−1, j ∈ N. Clearly, detbl = detbl−1 − q2l−2 detbl−2, l ≥ 3, which implies
that 1−

∑∞
k=2 q

2k−2 < detbl < 1 for l ≥ 2. As a consequence, the assumptions of
Proposition 5.9 are satisfied. Hence b induces an invertible transformation B of
R∞ such that B−1 is nonsingular and CB−1 belongs to S∗

n,r. If fact, CB−1 ∈ S∗
n,r

for every n, r ∈ Z+.
Now, let X ⊆ L2(µG) be the family defined as in Step 5 of the proof of

Theorem 5.1 with A = B−1. According to Lemma 3.2 and (5.10), we see that
X ⊆ D((C∗

B−1)n) for every n ∈ Z+. Arguing as in Step 5 of the proof of Theo-
rem 5.1 and using [4, Lemma 3.2], we see that X is linearly dense in L2(µG). Thus
every power of C∗

B−1 is densely defined. This combined with [10, Theorem 52]
proves that D∞(C∗

B−1) is dense in L2(µG). On the other hand, by Proposition 2.3,
the operator C∗

B−1|D∞(C∗
B−1 )

is subnormal.

Remark 5.12. Concluding the article, we point out that Theorem 5.1 and Propo-
sitions 5.2 and 5.9 rely essentially on the very precise knowledge of the Radon–
Nikodym derivative hA, which is due to the inequality (5.9). It seems desirable
to look for some inductive-limit-based criteria for cosubnormality, which would
be independent of the knowledge of hA.
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