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Abstract. Let n and k be nonnegative integers such that 1 ≤ k ≤ n + 1.
The convex cone F k:n

+ of all functions f on an arbitrary interval I ⊆ R whose

derivatives f (j) of orders j = k − 1, . . . , n are nondecreasing is characterized.
A simple description of the convex cone dual to F k:n

+ is given. In particular,
these results are useful in, and were motivated by, applications in probability.
In fact, the results are obtained in a more general setting with certain gen-
eralized derivatives of f of the jth order in place of f (j). Somewhat similar
results were previously obtained, in terms of Tchebycheff–Markov systems, in
the case when the left endpoint of the interval I is finite, with certain additional
integrability conditions; such conditions fail to hold in the mentioned applica-
tions. Development of substantially new methods was needed to overcome the
difficulties.

1. Introduction

In applications in probability (see, e.g., [11], [5], [6], [20], [21], [3], [26], [23], [25],
and references therein), one is concerned with stochastic domination, defined by
a formula of the form

X
F
< Y

def⇐⇒ X < Y (mod F )
def⇐⇒ Ef(X) ≥ Ef(Y ) for all f ∈ F ,
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where X and Y are random variables (r.v.’s) and F is a class of functions,
assuming the expectations are appropriately defined.

In the case when F is the class of all nondecreasing functions, the relation
F
<

is called the first-order stochastic dominance.
In general, the functions f ∈ F may be referred to as the test functions.
Unless Ef(X) = Ef(Y ) = ∞ or Ef(X) = Ef(Y ) = −∞, the inequality

Ef(X) ≥ Ef(Y ) can be rewritten as ν(f) :=
∫
f dν ≥ 0, where ν is the signed

measure (say, νX,Y ) equal to the difference between the probability distributions
of the r.v.’s X and Y .

More generally, one may allow ν to belong to a larger set (say, N) of signed
measures on an interval I, which are not necessarily the differences between two
probability measures. Usually, the set N is assumed to be a convex cone. One can
define the cone dual to F by the formula

F̂ :=
{
ν ∈ N: ν(f) ≥ 0 for all f ∈ F

}
.

Thus, at least in the case when the r.v.’s X and Y are such that Ef(X) and

Ef(Y ) are both finite for all f ∈ F , one will have X
F
< Y ⇐⇒ νX,Y ∈ F̂ .

For any α and β in Z ∪ {∞}, let α, β := {j ∈ Z : α ≤ j ≤ β}. In what follows,
assume that the values of indices i, j, k, `, m, n are each in the set 0,∞, unless
specified otherwise.

Classes of test functions of particular interest in the mentioned applications
are

F k:n
+ := F k:n

+ (I)
(1.1)

:= {f ∈ Dn : f (j) is nondecreasing for each j ∈ k − 1, n},

where

1 ≤ k ≤ n+ 1; (1.2)

I is an interval in R with endpoints a and b such that a < b and, for each j ∈ 1, n,
D j = D j(I) is the set of all (j−1)-times differentiable functions f ∈ RI such that
the function f (j−1) is absolutely continuous with an almost everywhere derivative
(denoted here by f (j)) that is (i) right-continuous on the interval I \ {b} and (ii)
left-continuous at the point b in the case when b ∈ I. Also, let D0 be the set of
all Borel-measurable functions in RI . Then, in particular, F 1:0

+ (I) will be the set
of nondecreasing functions f ∈ RI .

The functions of the class F n:n−1
+ are widely known as n-convex functions (see,

e.g., [18] and references therein).
On the other hand, the nonnegative functions g whose “horizontal reflections”

g(−·) belong to the class F 1:n−1
+ are also widely known as n-monotone functions

(see, e.g., [28], [17], [16]). In particular, in [16], multiply monotone distributions
are compared using s-convex stochastic orders—on [0,∞), with four applications
to insurance; other applications to insurance problems were given in [8]. Clearly,
the notion of the n-monotonicity is an extension of Bernstein’s complete mono-
tonicity.
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Note that the class F k:n
+ (or, rather, its “reflection” F k:n

− defined in (5.21)) may
be considered a generalization/extension of the class of all completely monotone
functions on (0,∞) (in the Bernstein sense). Indeed, the latter class coincides
with

⋂∞
n=0 F 1:n

− ([0,∞)); cf. [23, Proposition 3.4] and its proof therein.
The case of stochastic domination mod F k:n

+ with a > −∞ has been systemat-
ically studied in the literature (see, e.g., [11], [30], [12], [18], [5], [6]). In this case,
one can rely on the Taylor expansion

f(x) =
∑
i∈0,n

f (i)(a+)
(x− a)i

i!
+

∫
I

df (n)(t)
(x− t)n+

n!
(1.3)

for x ∈ I; as usual, we let u+ := 0 ∨ u and uv+ := (u+)
v for all u ∈ R and

v ∈ [0,∞), along with the convention 00 := 1. Note that f (i) ≥ 0 and hence
f (i)(a+) ≥ 0 for any f ∈ F k:n

+ and any i ∈ k, n. It is also clear that the functions
I 3 x 7→ c(x − a)i, I 3 x 7→ (x − a)j, and I 3 x 7→ (x − t)n+ belong to the set

F k:n
+ for all c ∈ R, i ∈ 0, k − 1, j ∈ k, n, and t ∈ I. So, assuming appropriate

integrability conditions, one has the following characterization of the dual cone
F̂ k:n

+ : a signed measure ν ∈ N is in F̂ k:n
+ if and only if all of the following three

conditions hold:

(i)
∫
I
(x− a)iν(dx) = 0 for all i ∈ 0, k − 1;

(ii)
∫
I
(x− a)jν(dx) ≥ 0 for all j ∈ k, n;

(iii)
∫
I
(x− t)n+ν(dx) ≥ 0 for all t ∈ I.

Such a characterization of the dual cone is very useful, as it reduces the verification
of the inequality ν(f) ≥ 0 for all test functions f ∈ F k:n

+ to the verification of
this inequality just in the case when f is in a certain set of polynomials and their
“positive parts” x 7→ (x − t)n+. One may note that, in the case when k ≤ n (cf.
(1.2)), the conjunction of the above conditions (i) and (ii) is equivalent to that
of conditions

(i′)
∫
I
xiν(dx) = 0 for all i ∈ 0, k − 1;

(ii′)
∫
I
xkν(dx) ≥ 0;

(ii′′)
∫
I
(x− a)jν(dx) ≥ 0 for all j ∈ k + 1, n.

Alas, Taylor expansion (1.3) does not seem to make sense when a = −∞ and
n ≥ 1, and then the entire argument no longer holds (cf., e.g., [5, Remark 3.6]).

On the other hand, it is the case when I = R and hence a = −∞ that is of
foremost interest in applications to probability (see [20], [3], [23], [25]), as the
distribution of the r.v. X in those applications may be normal (e.g., in [20]) or
a convolution of a normal distribution and a Poisson one (e.g., in [23]), whose
support set will then be the entire real line, or with a support set bounded from
above rather than from below (e.g., in [20], [3], [23], [25]). In general as well it is
desirable to allow the support sets of both X and Y not to be a priori bounded
either from above or below.

Because of the lack of the Taylor expansion (1.3), it is much more difficult

to obtain a characterization of the dual cone F̂ k:n
+ in the case when a = −∞

and k 6= n + 1. The first step here is to observe that for any f ∈ F k:n
+ one has
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f (j)(a+) = 0 for all j ∈ k + 1, n, which results in the following Taylor expansion
of the function f (k) “at the point −∞+ := (−∞)+”:

f (k)(xk) =
∑
i∈k,n

f (i)(−∞+)
(xk +∞)i−k

(i− k)!
+

∫
I

df (n)(t)
(xk − t)n−k

+

(n− k)!
(1.4)

= f (k)(−∞+) +

∫
I

df (n)(t)
(xk − t)n−k

+

(n− k)!

for xk ∈ I; here and elsewhere, we are assuming the conventions 0 · c := 0 for
any c ∈ [−∞,∞] and ∞0 := 1. Next, we fix an arbitrary z ∈ Y and, for any
y ∈ I∩(−∞, z), truncate the above Taylor expansion of the kth derivative f (k) by
replacing the integral

∫
I
in (1.4) with

∫
I∩[y,∞)

; let us denote the resulting function

by (f (k))y. Finally, the so-truncated kth derivative is lifted back up, in the sense
that a function gy is constructed so that the conditions (gy)

(k) = (f (k))y and

(gy)
(i)(z) = f (i)(z) for all i ∈ 0, k − 1 hold. In fact, gy is completely determined

by these conditions and is given by formulas (4.27), (4.33), and (4.34). Moreover,
gy approximates f in the sense of (4.35). So, gy may be considered an approximate
Taylor expansion of f at a = −∞. As Remark 4.7 shows, in general functions
f ∈ F k:n

+ admit only of such an approximate Taylor expansion of f at a = −∞;
that is, one cannot do without the truncation described above.

However, this approximate Taylor expansion of f is enough to obtain a desired
characterization of the dual cone F̂ k:n

+ in the case when a = −∞ and k 6= n+ 1,

which is as follows: a signed measure ν ∈ N is in F̂ k:n
+ if and only if

(i−∞)
∫
I
xiν(dx) = 0 for all i ∈ 0, k − 1;

(ii−∞)
∫
I
xkν(dx) ≥ 0;

(iii−∞)
∫
I
(x− t)n+ν(dx) ≥ 0 for all t ∈ I.

One can see that conditions (i−∞), (ii−∞), and (iii−∞) are, respectively, the
same as conditions (i′), (ii′), and (iii) on page 866; however, condition (ii′′) from
page 866 “disappears” when a = −∞.

The case when k = n + 1 is overall simpler (than the just discussed case
k 6= n + 1) but has a certain peculiarity to it, which will be addressed later in
this paper.

In fact, we consider a more general version of the class F k:n
+ , defined in (1.1),

by replacing the operators f 7→ f (j) of multiple differentiation with more general
differential operators, of the form

Ej := Ej
w0,...,wj

:= (Rwj
D) · · · (Rw1D)Rw0 , (1.5)

where D is the usual differentiation operator, w0, . . . , wn are positive smooth
enough functions, and Rwf := f/w for any function f ∈ RI . Thus, the operator
Ej is the alternating composition of the operators of the division by positive func-
tions and the differentiation operator. The functions w0, . . . , wn may be referred
to as the gauge functions. In the unit-gauge case, with w0 = · · · = wn = 1, the
operator Ej

w0,...,wj
reduces back to Dj, the operator of the j-fold differentiation.
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As shown in [24, Proposition 2.1], a special case of nonunit gauge functions—
with w0 = 1 and w1 = · · · = wn = ψ′ for a general continuous function ψ′—arises
from the unit gauges by a (generally nonlinear) change of scale.

One reason to consider general gauge functions w0, . . . , wn is to encompass, in
particular, the corresponding results in [11], [30], and [12] on dual cones, defined
in terms of extended complete Tchebycheff systems. Details on this are given in
Section 5.3. The theory and applications of Tchebycheff systems have a long and
rich history (see, e.g., [12], [15]). Perhaps even more importantly, the general, not
necessarily unit-gauge, case is the most interesting and challenging aspect of the
new theory.

Dealing with general, not necessarily unit, gauge functions w0, . . . , wn requires
overcoming more difficulties. One of them is that such an explicit representation
of the approximation gy of f as the one mentioned above and given by formulas
(4.27), (4.33), and (4.34) for the unit-gauge case is then no longer available. Here,
to be used in place of usual polynomials, generalized polynomials are introduced,
depending on the sequencew := (w0, . . . , wn) of gauge functions; rather naturally,
a function p is called a w-polynomial of degree j if the function Ej

w0,...,wj
p is a

nonzero constant.
Another notable distinction from the unit-gauge case is that, in general, in

place of the set k + 1, n in condition (ii′′) on page 866 for the unit-gauge case,
one may get any given subset of k + 1, n, depending on the choice of the gauge
functions w0, . . . , wn, as follows from Proposition 3.4. No phenomenon of this kind
appears to have been observed before.

In distinction with the mentioned classical theory on dual cones presented in
[11], [30], and [12], the more general setting considered in this paper requires an
extra chain of w-polynomials, defined in Section 3.4, in addition to the chain of
(w; t)-monomials considered in Section 3.3 and already present in the classical
theory.

An even more general treatment of the subject is given in the preprint version
(see [24]) of this paper, where no smoothness conditions on the gauge functions
wj are imposed, except for being Borel-measurable and locally bounded.

Closely related moment problems for generalized polynomials on a semi-infinite
interval in R and on R itself were considered by Krĕın and Nudel′man [15, Chap-
ter V]. Essentially, the method used there is compactification of the (semi-)infinite
interval—which, however, requires additional restrictions on the limit behavior of
certain generalized polynomials or their ratios near the infinite endpoint(s). No
such additional restrictions are assumed in the present paper.

The paper is organized as follows. In Sections 2–4, we develop necessary, mostly
quite novel, tools to provide a convenient description of the cone F k:n

+ of general-
ized monotone functions. These developments culminate in Theorem 4.6, accord-
ing to which every function f ∈ F k:n

+ is approximated in a monotone manner
by a function gy, which is the sum of two summands: (i) a member of a cer-
tain set of generalized polynomials and (ii) a mixture of the “positive parts”
(defined by (3.12)) of generalized polynomials, belonging to another set. This
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new approximative representation of the functions f ∈ F k:n
+ enables us to pro-

vide a description, in Section 5, of the cones dual to the cones F k:n
+ , for any

subinterval I of R and any gauge functions. This description of the dual cones is
quite convenient in the desired applications and looks quite similar to the known
descriptions of this kind, such as the mentioned ones in [11], [30], and [12], which
latter were obtained assuming a > −∞ and/or certain integrability conditions.
However, without such additional conditions, quite substantial difficulties needed
to be overcome. The close relations of our results with the Tchebycheff systems
are discussed in Section 5.3. Applications are presented in Section 6.

2. Compositions of operators of gauged differentiation

Take any interval I ⊆ R of nonzero length; a particular possibility is that
I = R. Let

a := inf I and b := sup I,

so that

−∞ ≤ a < b ≤ ∞. (2.1)

Let the ligature RC = RC (I) (for “right-continuous”) denote the set of all
functions in RI that are (i) right-continuous on the interval I \ {b} and (ii) left-
continuous at the point b in the case when b ∈ I.

Next, introduce

D := D(I) := the set of all functions f ∈ RI such that

there is a function Df ∈ RC satisfying the condition (2.2)

f(x) = f(z) +

∫ x

z

(Df)(u) du for all x and z in I.

Here and elsewhere,
∫ x

z
:= −

∫ z

x
if x < z. Any function f ∈ D is continuous

and even absolutely continuous. Moreover, for any function f ∈ D and any point
x ∈ I, one has the following: (i) if x 6= b, then the right derivative of f at x
(exists and) necessarily equals (Df)(x); (ii) the left derivative of f at b (exists
and) necessarily equals (Df)(b). Therefore, in view of the condition Df ∈ RC ,
the “generalized derivative” function Df is uniquely determined for each f ∈ D .
Thus, one has the linear operator

D : D → RC .

More generally, for each j ∈ 1, n, let D j = D j(I) be the set of all (j− 1)-times
differentiable functions f ∈ RI such that the (j − 1)th derivative of f is in D .
In particular, D1 = D . Let also D0 be the set of all Borel-measurable functions
in RI .

For each j ∈ 0, n, let wj be a (strictly) positive function of class Cn−j on the
interval I; that is, (Dn−jwj)(x) is defined for all x ∈ I and is continuous in x ∈ I.
Let

w := (w0, . . . , wn). (2.3)
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For each positive function w on I, define the linear operator Rw by the formula

Rwf :=
f

w
(2.4)

for all f : I → R.
For each j ∈ 0, n, let

Dj := Dw,j := DRwj
and Ej := Ew,j := Rwj

D. (2.5)

Further, let

D0 := D0
w := id and E0 := E0

w := Rw0 , (2.6)

where id denotes the identity operator: idf = f for any function f . Now, for all
j ∈ 1, n define the linear operators Dj

w and Ej recursively by the formulas

Dj
w := Dj−1D

j−1
w = Dj−1 · · ·D0 = DRwj−1

· · ·DRw0 and

Ej := Ej
w := EjE

j−1 = Ej · · ·E1E
0 = Rwj

D · · ·Rw1DRw0 = Rwj
Dj

w.
(2.7)

It is assumed here that the operators Dj
w and Ej have the same domain, which

is the class D j = D j(I), defined previously in this section.
We introduce now the notation

f (j) := f (j)
w := Ejf =

Dj
wf

wj

(2.8)

for j ∈ 0, n and f ∈ D j. Note that

f ∈ Dn

=⇒


f (0), . . . , f (n−1) are absolutely continuous, f (n) ∈ RC ,
f = f (0)w0,
f (j)(x) = f (j)(z) +

∫ x

z
f (j+1)(u)wj+1(u) du

for all j ∈ 0, n− 1, x ∈ I, z ∈ I.

(2.9)

Since wj was assumed to be of class Cn−j, it follows that for j ∈ 0, n and
f ∈ D j the function f (j) is in RC ; moreover, for f ∈ Dn and j ∈ 0, n− 1 the
function f (j) is continuous.

The functions wj may be referred to as the gauge functions.
Concerning these functions, the simplest and most common case is when wj = 1

for all j, which may be referred to as the unit-gauge case. In that case, for each
j ∈ 0, n− 1 each of the “gauged” higher-order derivatives f (j) and Dj

wf coincides
with the usual jth derivative of f .

Remark 2.1. Instead of the class RC (defined right after (2.1)), one could use any
other appropriate class of functions—as long as the condition that Df belongs
to that other class together with the condition that f(x) = f(z) +

∫ x

z
(Df)(u) du

for all x and z in I (cf. (2.2)) uniquely determine the function Df . However, our
particular choice of the class RC should be sufficient for most applications.

Moreover, the conditions on the gauge functions w0, . . . , wn (imposed in the
paragraph containing (2.3)) can be significantly relaxed. For example, in [24] it
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is only assumed that the gauges are locally bounded (strictly) positive Borel-
measurable functions. Of course, then the definitions of the compositional differ-
ential operators Dj

w and Ej
w have to be correspondingly adjusted.

We conclude this section with a proposition that allows us to compare the
values of two functions on an interval given a comparison between their gauged
higher-order derivatives and the same “initial” conditions at a point of the inter-
val. In the proof of that proposition and elsewhere, the following definition will
be useful.

For i ∈ 0, n, let Si denote the ith power of the left-shift operator (say, S), so
that

S = S1 and Siw = v, where v = (v0, . . . , vn−i) = (wi, . . . , wn). (2.10)

Proposition 2.2. Take any z ∈ I and any k ∈ 0, n. Suppose that functions f and
g in Dk are such that f (j)(z) = g(j)(z) for all j ∈ 0, k − 1. Then the inequality
f (k) ≥ g(k) on I∩ [z,∞) implies that f ≥ g on I∩ [z,∞). Similarly, the inequality
f (k) ≥ g(k) on I ∩ (−∞, z] implies that (−1)k(f − g) ≥ 0 on I ∩ (−∞, z].

Proof. In view of the recursive definition of Ej in (2.7), this proof can be naturally
done by induction in k. If k = 0, then in view of (2.8) and (2.6), there is nothing
to prove. Suppose now that k ∈ 1, n. Assume that f (k) ≥ g(k) on I ∩ (−∞, z].
Without loss of generality, g = 0 (otherwise, replace f by f − g). In view of (2.8),

(2.7), and (2.10), one has f (j) = h
(j−1)
Sw for all j ∈ 1, k, where

h := Df (0) = DRw0f.

The conditions

(i) k ∈ 1, n,
(ii) f (j)(z) = g(j)(z) for all j ∈ 0, k − 1,
(iii) f (k) ≥ g(k) on I ∩ (−∞, z],
(iv) g = 0, and

(v) f (j) = h
(j−1)
Sw for all j ∈ 1, k imply

f (0)(z) = 0, (2.11)

h
(i)
Sw(z) = 0 for all i ∈ 0, k − 2, and h

(k−1)
Sw ≥ 0 on I ∩ (−∞, z]. So, by induction,

(−1)k−1h ≥ 0 on I ∩ (−∞, z]. Therefore, in view of (2.11),

(−1)kf (0)(x) = −
∫ x

z

(−1)k−1Df (0)(u) du = −
∫ x

z

(−1)k−1h(u) du ≥ 0

for all x ∈ I ∩ (−∞, z]. Thus, the part of Proposition 2.2 concerning the interval
I ∩ (−∞, z] is proved. The part concerning the interval I ∩ [z,∞) is proved quite
similarly. �

3. w-polynomials

Take any k ∈ −1, n.

3.1. w-Polynomials: Basic definitions. If k ≥ 0, let us say that a function
p is a w-polynomial of degree ≤ k (on I) if p ∈ Dk and p(k) is a constant. Let
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us further say that the only w-polynomial of degree ≤−1 is the zero function
on I. Denote the set of all w-polynomials of degree ≤k by P≤k or, in detailed
notation, by P≤k

w . In particular, P≤−1 = {0}. Let

P≤k
+ := P≤k

w;+ := {p ∈ P≤k : p(k) ≥ 0}. (3.1)

In particular, P≤−1
+ = P≤−1 = {0}, P≤0 = {cw0 : c ∈ R}, and P≤0

+ = {cw0 : c ∈
[0,∞)}. We then define the set of all w-polynomials of degree k as

Pk := Pk
w := P≤k \ P≤k−1 for k ∈ 0, n,with P−1 := P≤−1 = {0}.

So, for any k ∈ 0, n,

Pk = {p ∈ Dk : p ∈ Dk and p(k) is a nonzero constant}.
In the unit-gauge case, the sets Pk and P≤k coincide with the sets of usual

polynomial functions on I of degree k and of degree ≤ k, respectively.

3.2. w-Polynomials: An interpolation/tangency property. The following
interpolation/tangency property of the w-polynomials is an extension of the cor-
responding property of the usual polynomials.

Proposition 3.1. For each z ∈ I and each (c0, . . . , ck) ∈ Rk+1, there is a unique
w-polynomial p ∈ P≤k such that p(j)(z) = cj for all j ∈ 0, k; moreover, this
w-polynomial p is continuous.

Remark 3.2. In particular, Proposition 3.1 implies that any w-polynomial is
continuous—because, obviously, for any p ∈ P≤k and any z ∈ I there is some
finite sequence (c0, . . . , ck) ∈ Rk+1 such that p(j)(z) = cj for all j ∈ 0, k.

Proof of Proposition 3.1. The proof is naturally done by induction in k. If k =
−1, there is almost nothing to prove, because then the set 0, k is empty and the set
P≤k

w is a singleton one, consisting of just one w-polynomial, 0, which is obviously
continuous. Suppose now that k ∈ 0, n. Then (cf. the proof of Proposition 2.2),

the condition that p ∈ P≤k
w & p

(j)
w (z) = cj for all j ∈ 0, k can be rewritten

as p(z) = c0w0(z) & q ∈ P≤k−1
Sw & q

(i)
Sw(z) = ci+1 for all i ∈ 0, k − 1, where

q := Dp(0) = DRw0p. By induction, the condition q
(i)
Sw(z) = ci+1 for all i ∈ 0, k − 1

determines a unique Sw-polynomial q ∈ P≤k−1
Sw , and this q is continuous. It

remains to note that the conditions DRw0p = q and p(z) = c0w0(z) imply that
p(x) = w0(x)(c0+

∫ x

z
q(u) du) for all x ∈ I and thus determine a unique p ∈ P≤k

w ;

moreover, this p is continuous (since c0 +
∫ x

z
q(u) du is continuous in x). �

3.3. A chain of w-polynomials vanishing at a point. Take any

t ∈ {a} ∪ I \ {b} = [a, b). (3.2)

For j and m in 0, n such that j ≤ m, define the functions pt;j,m : I → (−∞,∞]
recursively by the conditions

pt;m,m(xm) = wm(xm) for all xm ∈ I;

pt;j,m(xj) = wj(xj)

∫ xj

t+

dxj+1pt;j+1,m(xj+1) for all xj ∈ I if j < m.
(3.3)
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In the case when, for a given triple (t, j,m), one has pt;j,m(xj) ∈ R for all xj ∈ I,
let us identify pt;j,m with the function whose graph is the same as that of pt;j,m
but the codomain is R.

Consider first the case when t ∈ I. Then, by induction and the continuity of
the functions w0, . . . , wn, the functions pt;j,m are real-valued and continuous, so
that

pt;j,m ∈ RC . (3.4)

Furthermore, by (2.5) and (2.2),

pt;j+1,m = Djpt;j,m and pt;j,m(t) = 0 if j < m. (3.5)

Hence, by (2.8) and (2.7), pt;j,m is an Sjw-polynomial of degree m− j, satisfying
the conditions

(pt;j,m)
(i)

Sjw(t) = 0 for all i ∈ 0,m− j − 1 and (pt;j,m)
(m−j)

Sjw = 1; (3.6)

by Proposition 3.1, such a polynomial is unique. It follows from (3.6) that

(pt;j,m)
(i)

Sjw(t) = I{i = m− j} for all i ∈ 0, n,

where I{·} denotes the indicator function. So, again by Proposition 3.1, for each
k ∈ j, n, the Sjw-polynomials pt;j,j, . . . , pt;j,k form a basis of the linear space

P≤k−j
Sjw . More specifically, each Sjw-polynomial p of degree k− j can be uniquely

represented by a linear combination of the basis Sjw-polynomials pt;j,j, . . . , pt;j,k,
as follows:

p =

k−j∑
i=0

p
(i)

Sjw(t)pt;j,j+i. (3.7)

Consider now the remaining case t /∈ I, so that, by the condition (3.2), t = a and
a /∈ I. Then, since wi > 0 for all i ∈ 0, n, the function pa;j,m is strictly positive on I
but may take the value ∞ at some point of the interval I; in such a case, it is easy

to see that pa;j,m = ∞ everywhere on I. In fact, for each pair (j,m) ∈ 0, n
2
such

that j ≤ m, one has the following dichotomy: either (i) pa;j,m = ∞ everywhere on

I or (ii) pa;j,m is in P≤k−j
Sjw and hence finite and continuous, so that (3.4) holds in

the latter case. Introduce the following “finiteness” sets for the functions pa;j,m:

F := Fw :=
{
(j,m) ∈ 0, n

2
: j ≤ m & pa;j,m <∞

}
,

F•m := Fw;•m :=
{
j : (j,m) ∈ F

}
= {j ∈ 0,m : pa;j,m <∞},

Fj,n := Fw;j,n :=
{
m : (j,m) ∈ F

}
= {m ∈ j, n : pa;j,m <∞}.

(3.8)

In view of (3.3),

F•m = jm,m for some jm ∈ 0,m. (3.9)

In particular, m ∈ F•m and hence F•m 6= ∅. Similarly, j ∈ Fj,n and hence Fj,n 6= ∅.
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In the unit-gauge case, for j < m and xj ∈ I,

pt;j,m(xj) =
(xj − t)m−j

(m− j)!
(3.10)

if t 6= −∞, and p−∞;j,m = ∞; also, pt;m,m = 1.

Remark 3.3. In view of (3.10), the polynomials pt;0,i (of degree i with i ∈ 0, n)
defined in accordance with (3.3) may be referred to as the canonical (w; t)-mono-
mials.

One may refer to the set j, n\Fj,n as the set of “missing” degreesm of canonical
(w; a)-monomials pa;j,m, for m ∈ j, n. The following proposition states that, if
a /∈ I, then the set of “missing” degrees can be any subset of the set j + 1, n,
depending on the choice of the gauge functions w0, . . . , wn.

Proposition 3.4. Suppose that a /∈ I. Then, for any j ∈ 0, n and any given
set M ⊆ j + 1, n, one can construct a sequence w = (w0, . . . , wn) of real-valued
continuous functions on I such that the missing-degrees set j, n \Fw;j,n coincides
with M .

Proof. In the case when a = −∞, for each j ∈ 0, n take some λj ∈ R, and let
wj(xj) := exp(λjxj) for all xj ∈ I. Then it is not hard to verify by induction in
m− j that, for all j and m in 0, n such that j < m and for all xj ∈ I,

pa;j,m(xj)

=

{
exp{(

∑
i∈j,m λi)xj}/

∏
i∈j,m−1

∑
s∈i+1,m λs if λm + Λj,m > 0,

∞ otherwise,

(3.11)

where

Λj,m := min
i∈j,m−1

∑
s∈i+1,m−1

λs,

with the usual convention that the sum of an empty family is 0.
The case when a > −∞ (and hence a ∈ R\I) can be considered quite similarly.

In this case, one may let wj(xj) := (xj − a)λj−1 for all xj ∈ I. Then (3.11)
holds for all xj ∈ I if the exponent (

∑
i∈j,m λi)xj therein is replaced by (−1 +∑

i∈j,m λi) ln(xj − a).
So, in either case, whether a = −∞ or a > −∞, for the corresponding con-

structed sequence w and any m ∈ j + 1, n one has m ∈ Fw;j,n \ {j} if and only
if λm + Λj,m > 0. Since for any given j and m the real number Λj,m depends
only on (λs)s∈j+1,m−1, one can choose λm recursively in m ∈ j + 1, n so that the
finiteness condition λm +Λj,m > 0 in (3.11) be satisfied if and only if m is not in
the prescribed subset M of the set j + 1, n. �

The definitions of F , F•m, Fj,n, and jm by formulas (3.8) and (3.9) continue to
make sense even when a ∈ I, and

a ∈ I =⇒ F =
{
(j,m) ∈ 0, n

2
: j ≤ m

}
, F•m = 0,m, Fj,n = j, n, jm = 0.
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Note also that, for each j ∈ F•m = jm,m, the function pa;j,m is an (everywhere
positive) Sjw-polynomial of degree ≤ m− j, whether a ∈ I or not.

In the unit-gauge case, for all j and m in 0, n one has (i) F•m = 0,m and
Fj,n = j, n if a > −∞, and (ii) F•m = {m} and Fj,n = {j} if a = −∞.

Again for j and m in 0, n such that j ≤ m, define the “positive parts” of the
functions pt;j,m by the formula

p+t;j,m(xj) := pt;j,m(xj)I{xj ≥ t} (3.12)

for all xj ∈ I. Here and subsequently, the convention

∞ · 0 = 0 · ∞ = 0 (3.13)

is used.
By (3.12), (3.3), and the positivity of the wj’s,

p+t;j,m ≥ 0 (3.14)

for all j and m in 0, n such that j ≤ m. Also, recall the definition of the class RC
right after (2.1) and note that, by (3.4),

p+t;j,m ∈ RC for (j,m) ∈ F. (3.15)

Moreover, one has the following.

Lemma 3.5. Suppose that j < m and (j,m) ∈ F . Then

p+t;j+1,m = Djp
+
t;j,m. (3.16)

Proof. Take any xj and z in I. In view of (2.5), (2.2), (3.12), and (3.15), it is
enough to show that

pt;j,m(xj)

wj(xj)
I{xj ≥ t} = pt;j,m(z)

wj(z)
I{z ≥ t}

(3.17)

+

∫ xj

z

dxj+1pt;j+1,m(xj+1)I{xj+1 ≥ t}.

In the case when xj ≥ t and z ≥ t, (3.17) follows by the first equality in (3.5).
In the case when xj ≥ t and z < t, the integral in (3.17) equals

∫ xj

t
dxj+1×

pt;j+1,m(xj+1), and so, (3.17) follows by the two equalities in (3.5).
The case of xj < t and z ≥ t is quite similar to that of xj ≥ t and z < t, as the

roles of xj and z are interchangeable.
In the case when xj < t and z < t, (3.17) is obvious, as each of the three

indicators in (3.17) equals 0. �

In the unit-gauge case, for j < m and xj ∈ I,

p+t;j,m(xj) =
(xj − t)m−j

+

(m− j)!
(3.18)

if t 6= −∞, and p+−∞;j,m = ∞; also, p+t;m,m(xm) = I{xm ≥ t} for xm ∈ I.
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3.4. Another chain of w-polynomials vanishing at a point. Fix an arbi-
trary

z ∈ (a, b) (3.19)

and recall (3.8).
Take any (k, j) ∈ F and i ∈ 0, k, and define the functions pa,z;i:k:j : I → R by

the conditions

pa,z;k:k:j(xk) = pa;k,j(xk) for all xk ∈ I; (3.20)

pa,z;i:k:j(xi) = wi(xi)

∫ xi

z

dxi+1pa,z;i+1:k:j(xi+1) for all xi ∈ I if i < k; (3.21)

then pa,z;i:k:j ∈ Pj−i
Siw.

Indeed, by (3.8), (3.20), and (3.21), the functions pa,z;i:k:j are nonnegative and
finite. Also, by (2.5) and (2.2),

Dipa,z;i:k:j = pa,z;i+1:k:j if i < k. (3.22)

Hence, Dk−i
Siwpa,z;i:k:j = pa,z;k:k:j = pa;k,j. Moreover, (cf. (3.6)) (pa;k,j)

(j−k)

Skw
= 1.

Hence, (pa;k,j)
(j−k+1)

Skw
= 0,

(pa,z;i:k:j)
(j−i)

Siw = 1, (3.23)

and (pa,z;i:k:j)
(j−i+1)

Siw = 0, which indeed yields

pa,z;i:k:j ∈ Pj−i
Siw. (3.24)

In the unit-gauge case, for all i ∈ 0, k and xi ∈ I,

pa,z;i:k:j(xi) =
1

(j − i)!

[
(xi − a)j−i −

k−i−1∑
γ=0

(
j − i

γ

)
(z − a)j−i−γ(xi − z)γ

]
(3.25)

if a > −∞ and j ∈ k,∞, and

pa,z;i:k:k(xi) =
(xi − z)k−i

(k − i)!
(3.26)

whether a = −∞ or a > −∞. Recall here that the generalized polynomials
pa,z;i:k:j were defined for (k, j) ∈ F and i ∈ 0, k; recall also that, in the unit-gauge

case, F = {(j,m) ∈ 0, n
2
: j ≤ m} if a > −∞ and F = {(m,m) : m ∈ 0, n} if

a = −∞. Besides, in the case when a > −∞,

pa,z;i:k:j(xi) −→
z↓a

(xi − a)j−i

(j − i)!

for all i ∈ 0, k and xi ∈ I.
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4. Convex cones of generalized multiply monotone functions

4.1. Convex cones H i:n
+ of generalized multiply monotone functions. Let

M+ denote the set of all nonnegative measures µ defined on the Borel σ-algebra
over I such that µ(I ∩ {b}) = 0.

For j ∈ 0, n, µ ∈ M+, and x ∈ I, let

hj;µ(x) := hj:n;µ(x) :=

∫
I

µ(dt)p+t;j,n(x), (4.1)

so that hj;µ(x) ∈ [0,∞]. Note that, if µ ∈ M+ is such that hj;µ(x) < ∞ for all
x ∈ I, then one has a function hj;µ : I → R.

For each i ∈ 0, n, let H i:n
+ denote the set of all functions h : I → R such that

(i) h(x) = hi;µ(x) for some µ ∈ M+ and all x ∈ I and (ii) hj;µ(x) < ∞ for all
j ∈ i, n and all x ∈ I.

Lemma 4.1. Take any i ∈ 0, n and any µ ∈ M+ such that hi;µ ∈ H i:n
+ . Then

hi;µ ∈ RC . Also, the function hi;µ/wi is nondecreasing. Moreover, if i ∈ 0, n− 1,
then hi;µ ∈ D (recall (2.2)) and

Dihi;µ = hi+1;µ. (4.2)

Proof. Take any t ∈ I \ {b}. By (3.3), the function pt;i,n/wi is nonnegative and
nondecreasing on the interval I ∩ [t,∞). So, by (3.12), the function p+t;i,n/wi is

nonnegative and nondecreasing on the interval I. Moreover, by (3.4), (3.12), and
the condition t ∈ I \ {b}, one has p+t;i,n ∈ RC . Next,

hi;µ(xi)

wi(xi)
=

∫
I

µ(dt)
p+t;i,n(xi)

wi(xi)
=

∫
I\{b}

µ(dt)
p+t;i,n(xi)

wi(xi)

for all xi ∈ I, because µ ∈ M+ and hence µ(I ∩ {b}) = 0. So, by dominated
convergence, the condition p+t;i,n ∈ RC for t ∈ I \ {b} implies hi;µ ∈ RC . It also
follows that hi;µ/wi is nondecreasing.

Now suppose that i ∈ 0, n− 1. Then hi+1;µ ∈ H i+1:n
+ , and so, hi+1;µ ∈ RC .

Also, by (4.1) and (3.17), for any xi and z in I,∫ xi

z

dxi+1hi+1;µ(xi+1) =

∫ xi

z

dxi+1

∫
I

µ(dt)p+t;i+1,n(xi+1)

=

∫
I

µ(dt)

∫ xi

z

dxi+1p
+
t;i+1,n(xi+1)

=

∫
I

µ(dt)
(p+t;i,n(xi)
wi(xi)

−
p+t;i,n(z)

wi(z)

)
=
hi;µ(xi)

wi(xi)
− hi;µ(z)

wi(z)
.

In view of (2.5) and (2.2), this verifies (4.2) and thus completes the proof of
Lemma 4.1. �
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4.2. Convex cones F k:n
+ of generalized multiply monotone functions.

Recall condition (1.2). Recall also (2.8) and introduce the class of functions

F k:n
+ := F k:n

+ (I)

:= {f ∈ Dn : f (j) is nondecreasing for each j ∈ k − 1, n}.
(4.3)

Clearly, F k:n
+ is a convex cone. For instance, in the unit-gauge case F 1:0

+ is
the cone of all nondecreasing functions in RI , F 1:1

+ is the cone of all continuous
nondecreasing convex functions in RI , and F 2:1

+ is the cone of all continuous
convex functions in RI . Also in the unit-gauge setting, special cases of the cones
F k:n

+ (or similar to them) and cones in a sense dual to those cones were considered,
more or less explicitly, in a number of papers, including the following: [9], [27], and
[19] for (k, n) = (4, 3); [2] and [3] (dealing with the cone H 0:2

+ ; cf. Proposition 4.2
in the present paper, below); [20] (dealing with the cone H 0:5

+ ; cf. Theorem 6.1
in the present paper); [14] for (k, n) = (2, 2); [21] for (k, n) = (1, 3); [23] for
n ∈ {2, 3} and k ∈ 1, n; [25] for (k, n) ∈ {(1, 2), (1, 3)}; [22] (dealing with the
cone H 0:3

+ ).

Proposition 4.2. H 0:n
+ ⊆ F k:n

+ .

Proof. Take any h ∈ H 0:n
+ , so that h = h0;µ for some µ ∈ M+. By (4.1) and (3.14),

hi;µ ≥ 0 for each i ∈ 0, n. So, by (2.8) and (4.2), h
(i)
0;µ = (Di

wh0;µ)/wi = hi;µ/wi ≥ 0

for each i ∈ 0, n. Hence, h
(i)
0;µ is nondecreasing for each i ∈ 0, n− 1. Also, in view

of (4.1), (3.12), and (3.3), for each x ∈ I,

h
(n)
0;µ(x) =

hn;µ(x)

wn(x)
=

1

wn(x)

∫
I

µ(dt)p+t;n,n(x) = µ
(
I ∩ (−∞, x]

)
,

which is nondecreasing in x. Thus, by (4.3), h = h0;µ ∈ F k:n
+ . �

Important bounding properties for the functions in the class F k:n
+ are given by

the following.

Proposition 4.3. Take any f ∈ F k:n
+ and any z ∈ I.

(I) There exists a w-polynomial p ∈ P≤k−1 such that
(i) if k is even, then f ≥ p on the interval I;
(ii) if k is odd, then

(*) f ≥ p on the interval I ∩ [z,∞);
(**) f ≤ p on the interval I ∩ (−∞, z].

Moreover, one may assume that this w-polynomial p depends on f and z
only via the values of f (0)(z), . . . , f (k−1)(z).

(II) If k ≤ n, then there exists a w-polynomial q ∈ P≤k
+ such that

(i) if k is odd, then f ≥ q on the interval I;
(ii) if k is even, then

(*) f ≥ q on the interval I ∩ [z,∞);
(**) f ≤ q on the interval I ∩ (−∞, z].

Moreover, one may assume that this w-polynomial q depends on f and z
only via the values of f (0)(z), . . . , f (k)(z).
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Proof. By Proposition 3.1, there exists a unique w-polynomial p ∈ P≤k−1 such
that p(i)(z) = f (i)(z) for all i ∈ 0, k − 1; moreover, then the condition p ∈ P≤k−1

implies that p(k−1)(x) = p(k−1)(z) = f (k−1)(z) for all x ∈ I. On the other hand, the
condition f ∈ F k:n

+ implies that the function f (k−1) is nondecreasing. Therefore,

f (k−1) ≥ p(k−1) on the interval I ∩ [z,∞), and f (k−1) ≤ p(k−1) on the interval
I ∩ (−∞, z]. To complete the proof of Proposition 4.3(I), it remains to recall
Proposition 2.2.

Part (II) of Proposition 4.3 is proved similarly, by letting q be the unique
w-polynomial in P≤k such that p(i)(z) = f (i)(z) for all i ∈ 0, k. Here the addi-
tional condition k ≤ n (together with the condition f ∈ F k:n

+ ) implies, in view of

(2.8), that the function f (k) is nonnegative, and so, q(k)(x) = q(k)(z) = f (k)(z) ≥ 0

for all x ∈ I. Therefore and because q ∈ P≤k, it follows that q ∈ P≤k
+ . Moreover,

since f (k) is nondecreasing, it follows that f (k) ≥ q(k) on the interval I ∩ [z,∞),
and f (k) ≤ q(k) on the interval I ∩ (−∞, z]. �

4.3. Generalized Taylor expansion at the left endpoint a of the interval
I of the generalized derivatives f (j) for j ∈ k, n of a function f in F k:n

+ .
Take any f ∈ F k:n

+ . It follows by (2.8) that

for each j ∈ k, n,

{
f (j) is nonnegative and nondecreasing, and so,
there exists a limit f (j)(a+) ∈ [0,∞).

(4.4)

Now one can state the following generalized Taylor expansion.

Lemma 4.4. For all j ∈ k, n

f (j)wj = pj + hj, where

pj :=
∑
i∈j,n

f (i)(a+)pa;j,i and hj :=

∫
I

df (n)(t)p+t;j,n.
(4.5)

The integral in (4.5) is understood in the “pointwise” sense, so that hj(xj) =∫
I
df (n)(t)p+t;j,n(xj) for all xj ∈ I; the latter integral exists (in [0,∞]), since p+t;j,n ≥

0 and the function f (n) is nondecreasing.

Proof of Lemma 4.4. This is done by downward induction in j, starting with
j = n. Indeed, by the definitions of pj in (4.5) and of pt;j,m in (3.3),

pn = f (n)(a+)wn.

By the definitions of hj in (4.5) and of p+t;j,m in (3.12), for all xn ∈ I,

hn(xn) =

∫
I

df (n)(t)wn(xn)I{xn ≥ t} =
(
f (n)(xn)− f (n)(a+)

)
wn(xn);

here we also used the fact that f (n) ∈ RC , which was noted in the paragraph
following (2.8). So, the equality f (j)wj = pj + hj holds for j = n. Suppose now

this equality holds for some j ∈ k + 1, n. It remains to show then that this
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equality holds with j− 1 instead of j. By (2.8) and the induction assumption, for
all xj−1 ∈ I,

f (j−1)(xj−1)− f (j−1)(a+) =

∫ xj−1

a+

dxjf
(j)(xj)wj(xj)

(4.6)
= J1(xj−1) + J2(xj−1),

where

J1(xj−1) :=

∫ xj−1

a+

dxjpj(xj)

=
∑
i∈j,n

f (i)(a+)

∫ xj−1

a+

dxjpa;j,i(xj)

=
∑
i∈j,n

f (i)(a+)
pa;j−1,i(xj−1)

wj−1(xj−1)
=
pj−1(xj−1)

wj−1(xj−1)
− f (j−1)(a+)

(4.7)

by (4.5) and (3.3), whereas

J2(xj−1) :=

∫ xj−1

a+

dxjhj(xj)

=

∫ xj−1

a+

dxj

∫
I

df (n)(t)p+t;j,n(xj)

=

∫
I

df (n)(t)

∫ xj−1

a+

dxjpt;j,n(xj)I{xj ≥ t}

=

∫
I

df (n)(t)

∫ xj−1

t+

dxjpt;j,n(xj)I{xj−1 ≥ t}

=

∫
I

df (n)(t)
pt;j−1,n(xj−1)

wj−1(xj−1)
I{xj−1 ≥ t}

=

∫
I

df (n)(t)
p+t;j−1,n(xj−1)

wj−1(xj−1)
=
hj−1(xj−1)

wj−1(xj−1)

(4.8)

by (4.5), (3.14), the Fubini theorem, (3.12), (3.3), again (3.12), and again (4.5).
Now (4.6), (4.7), and (4.8) indeed yield f (j−1)w(j−1) = p(j−1) + h(j−1). �

Take any j ∈ k, n, as in Lemma 4.4. Since pa;j,i ≥ 0 for i ∈ j, n, it follows from
Lemma 4.4 and (4.4) that the values of the function hj are all in [0,∞), that is,
are finite and nonnegative. It also follows, in view of (3.8), that necessarily

f (i)(a+) = 0 for all i ∈ j, n \ Fj,n. (4.9)

Moreover, in view of (4.5) and (3.13),

pj =
∑
i∈Fj,n

f (i)(a+)pa;j,i. (4.10)
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In the unit-gauge case,

Fi,n =


i, n if a > −∞ and i ≤ n,

{i} if a = −∞ and i ≤ n,

∅ if i > n,

(4.11)

and (4.5) becomes the almost usual Taylor expansion (of the function f (j) “at the
point a+”) given by the formula

f (j)(xj) =
∑
i∈j,n

f (i)(a+)
(xj − a)i−j

(i− j)!
+

∫
I

df (n)(t)
(xj − t)n−j

+

(n− j)!
(4.12)

for j ∈ k, n and xj ∈ I. Here in the case when a = −∞ one necessarily has
f (i)(a+) = 0 for all i ∈ j + 1, n (cf. (4.9)), and then the sum in (4.12) reduces
simply to f (j)(−∞). For simplicity, we let

g(−∞) := g
(
(−∞)+

)
(4.13)

for any function g.
Note that the set k, n is empty if k = n + 1, and then (4.4), Lemma 4.4, and

(4.12) become vacuous. However, the definition of pj in (4.5) and the expression
of pj in (4.10) make sense even for j = n+1, if one uses the standard convention
that the sum of any empty family is 0, so that

pn+1 = 0. (4.14)

4.4. Truncation of the generalized Taylor expansion at the point a of
the generalized derivative f (k) of a function f in F k:n

+ . Recall (3.19). Take
then any

y ∈ (a, z], (4.15)

recall (3.8), and introduce the function

g̃y := g̃z,y :=
∑

j∈Fk,n

f (j)(a+)pa,z;0:k:j + h0,y, (4.16)

where pa,z;0:k:j is understood according to (3.20)–(3.21) and

hi,y :=

∫
I∩[y,∞)

df (n)(t)p+t;i,n (4.17)

for i ∈ 0, n. The latter integral (understood in the “pointwise” sense, similarly to
the integral expressing hj in (4.5)) exists (in [0,∞]), again because p+t;j,n ≥ 0 and

the function f (n) is nondecreasing. In fact, hi,y(xi) =
∫
I∩[y,∞)

df (n)(t)p+t;i,n(xi) =∫
[y,y∨xi]

df (n)(t)pt;i,n(xi) <∞ for all xi ∈ I—because, by (3.3) and the continuity

of the functions w0, . . . , wn, the expression pt;i,n(xi) is locally bounded in t ∈ I
for each xi ∈ I (actually, pt;i,n(xi) is locally bounded in (t, xi) ∈ I2). So, in view
of (4.1),

hi,y = hi;µn,y ∈ H i:n
+ , (4.18)
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where the measure µn,y ∈ M+ is defined by the condition that µn,y(I∩(−∞, x]) =
f (n)(x ∨ y) − f (n)(y) for all x ∈ I; note here that µn,y(I ∩ {b}) = µn,y({b}) =
f (n)(b) − f (n)(b−) = 0 if b ∈ I, since f (n) ∈ RC , and trivially µn,y(I ∩ {b}) =
µn,y(∅) = 0 if b /∈ I. So, in either case, µn,y(I ∩ {b}) = 0.

Moreover, Lemma 4.1 immediately yields.

Lemma 4.5. Take any i ∈ 0, n. Then hi,y ∈ RC . Also, the function hi;y/wi is
nondecreasing. Moreover, if i ∈ 0, n− 1, then hi,y ∈ D and

Dihi,y = hi+1,y. (4.19)

Now combine (4.16), (2.8), (2.7), (3.22), (3.20), (4.10), and (4.19) to conclude
that

(g̃y)
(k)wk = pk + hk,y (4.20)

(here one may want to recall that in the case when k = n + 1 one has g̃y = h0,y
and, by (4.14), pk = 0). Similarly (but using (3.21) instead of (3.20)), one can
also observe that

(g̃y)
(i)(z) = hi,y(z) for all i ∈ 0, k − 1, (4.21)

since pa,z;i:k:j(z) = 0 if i < k.
Recalling again that f (n) ∈ RC , one has

∫
I∩{a} df

(n)(t)p+t;i,n = 0. So, on com-

paring (4.20) with (4.5), one concludes that

(g̃y)
(k)↗

y↓a
f (k) (4.22)

(pointwise, on I).

4.5. Lifting the truncated generalized Taylor expansion of f (k) to an
approximation gy ∈ Pk:n

+ + H 0:n
+ of a function f ∈ F k:n

+ . In accordance
with Proposition 3.1, let qk;z,y be the unique w-polynomial in P≤k−1 such that

(qk;z,y)
(i)(z) = (f − g̃y)

(i)(z) for all i ∈ 0, k − 1.

Let now

gy = gz,y := qk;z,y + g̃y. (4.23)

Then

(gy)
(i)(z) = f (i)(z) for all i ∈ 0, k − 1 (4.24)

and

(gy)
(k) = (g̃y)

(k), (4.25)

so that, by (4.22),

(gy)
(k)↗

y↓a
f (k). (4.26)

In view of (4.16), one can rewrite (4.23) as

gy = Pz,y +Rz,y, (4.27)
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where

Pz,y := qk;z,y +
∑

j∈Fk,n

f (j)(a+)pa,z;0:k:j and Rz,y := h0,y. (4.28)

Take any j ∈ Fk,n ⊆ k, n. By (2.7), (3.22), and (3.20), Dk
wpa,z;0:k:j = pa,z;k:k:j =

pa;k,j. Therefore and by (2.8) and (3.5), for each s ∈ k, j one has p
(s)
a,z;0:k:j =

pa;s,j/ws, which is nonnegative and nondecreasing, by (3.3). So, p
(s)
a,z;0:k:j is nonde-

creasing for each s ∈ k − 1, j. Also, by (3.23), p
(s)
a,z;0:k:j = 0 for each s ∈ j + 1, n.

We conclude that p
(s)
a,z;0:k:j is nondecreasing for each s ∈ k − 1, n. Also, by (3.24),

pa,z;0:k:j ∈ Pj ⊆ P≤n. So,

pa,z;0:k:j ∈ Pk:n
+ := P≤n ∩ F k:n

+ for j ∈ Fk,n. (4.29)

Hence, by the condition qk;z,y ∈ P≤k−1,

Pz,y ∈ Pk:n
+ . (4.30)

Thus, (4.27) may be considered as a Taylor-type expansion of the function gy
(which latter is in turn an approximation to f , as seen from (4.35) below); at that,
Rz,y may be considered the remainder term, which vanishes when the function f (n)

is constant on the interval I∩[y,∞). In view of (4.28), (4.18), and Proposition 4.2,

Rz,y ∈ H 0:n
+ ⊆ F k:n

+ . (4.31)

It follows from (4.27), (4.30), and (4.31) that

gy ∈ Pk:n
+ + H 0:n

+ ⊆ F k:n
+ . (4.32)

In view of (4.11), in the unit-gauge case with a = −∞ and k ≤ n, the summands
Pz,y and Rz,y in (4.27) are as follows: for all x0 ∈ I,

Pz,y(x0) =
k−1∑
i=0

ci;z,y
(x0 − z)i

i!
+ f (k)(−∞)

(x0 − z)k

k!
, with (4.33)

ci;z,y := f (i)(z)− (g̃y)
(i)(z)

= f (i)(z)− hi,y(z)

= f (i)(z)−
∫
I∩[y,∞)

df (n)(xn)
(z − xn)

n−i
+

(n− i)!
,

and

Rz,y(x0) =

∫
I∩[y,∞)

df (n)(xn)
(x0 − xn)

n
+

n!
. (4.34)

Here, the second expression for ci;z,y is obtained by (4.21); if a > −∞ or k = n+1,
then the expression for Pz,y is simpler than the one in (4.33).

By (4.30), Remark 3.2, Lemma 4.5, and the continuity of the wi’s, the func-
tions Pz,y and h0,y are locally bounded, for each y. Similarly, by (4.25) and
(4.20), (gy)

(k)wk is locally bounded, for each y. In particular, Dk
wgz is locally
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bounded. Now by (2.9), Proposition 2.2, and monotone convergence, one immedi-
ately obtains the following approximative representation of any function f ∈ F k:n

+

by mixtures of w-polynomials and “positive parts” thereof.

Theorem 4.6. For any f ∈ F k:n
+ and gy as in (4.27)–(4.28),

gy ↗
y↓a
f on I ∩ [z,∞) and (−1)k(f − gy)↘

y↓a
0 on I ∩ (−∞, z]. (4.35)

Remark 4.7. In view of (4.35) and (4.32), the cone F k:n
+ of functions f on I

can be viewed as the closure, in a certain topology, of the cone Pk:n
+ + H 0:n

+ .
One may, therefore, ask whether these two cones are the same, that is, whether
F k:n

+ = Pk:n
+ + H 0:n

+ . However, in general, this is not the case for any n and k
as in (1.2). For example, in the unit-gauge setting, let I = R and

f(x) := g(x)I{x ≤ 0}+ p(x)I{x > 0} (4.36)

for all x ∈ R, where g(x) := (−1)k(1 − x)k−1/2 and p(x) :=
∑n+1

i=0 g
(i)(0)xi/i!.

Then, f (j)(x) = g(j)(x)I{x ≤ 0} +
∑n+1

i=j g
(i)(0)xi−jI{x > 0}/(i − j)! > 0 for

all j ∈ k, n+ 1 and x ∈ R, and hence, f ∈ F k:n
+ . On the other hand, f /∈

Pk:n
+ + H 0:n

+ . Indeed, take any q ∈ Pk:n
+ and h ∈ H 0:n

+ . Then, by [21, p. 619,
Lemma 2 and p. 606, (1)], h(−∞) = 0; so, for x→ −∞, either q(x)+h(x) ∼ c|x|k
for some c ∈ (0,∞) or q(x)+h(x) = O(|x|k−1), depending on whether the degree
of the polynomial q is n or < n, whereas |f(x)| ∼ |x|k−1/2.

Quite similarly, one can show that F k:n
+ 6= Pk:n

+ + H 0:n
+ for any interval I

with the left endpoint a = −∞, again in the unit-gauge case and again for any
n and k as in (1.2). Moreover, in view of [24, Remark 2.3], it is easy to see that
F k:n

+ 6= Pk:n
+ + H 0:n

+ for any given nonzero-length interval I and any n and k as
in (1.2), with an appropriate choice of gauge functions w0, . . . , wn.

The idea of construction (4.36) comes from [21] (cf. Propositions 1 and 2
therein). As mentioned before, in [21] the special case with n = 3, k = 1, and
unit-gauge wj was considered.

5. Convex cone dual to F k:n
+

Let us recall that condition (1.2) continues to hold in this section. Here, we
shall define and completely characterize the convex cone dual to any set G such
that

Pk:n
+ ∪ P+

0:n ⊆ G ⊆ F k:n
+ , (5.1)

where Pk:n
+ is as defined in (4.29) and

P+
0:n := {p+t;0,n : t ∈ I}, (5.2)

with p+t;0,n defined according to (3.12).
Note that

P≤k−1 ⊆ P≤k
+ , (5.3)

P≤k−1 ⊆ G , (5.4)

k ≤ n =⇒ P≤k
+ ⊆ G . (5.5)
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Indeed, by the definition, if p ∈ P≤k−1, then p(k−1) is a constant and p(k) = 0,
whence p ∈ P≤k

+ by (3.1), and p ∈ P≤n ∩ F k:n
+ = Pk:n

+ ⊆ G by (1.2), (4.3),
(4.29), and (5.1). This yields (5.3) and (5.4).

If now k ≤ n and p ∈ P≤k
+ , then obviously p ∈ P≤n, and also p(k) ≥ 0 and

p(k+1) = 0, whence, in view of (2.8), p(k−1) is nondecreasing and p(j) is constant
for each j ∈ k, n, so that, by (4.3), p ∈ F k:n

+ . Thus, recalling again the definition
of Pk:n

+ in (4.29) and the first set inclusion in (5.1), one obtains (5.5).
Also, one has the following.

Proposition 5.1. P+
0:n ⊆ F 1:n

+ ⊆ F k:n
+ .

Proof. Take any t ∈ I. In view of (3.16), (2.8), and (3.14), (p+t;0,n)
(j) = p+t;j,n/wj ≥ 0

for all j ∈ 0, n. In particular, (p+t;0,n)
(n)(x0) = I{x0 ≥ t} is obviously nondecreasing

in x0 ∈ I. It also follows that for each j ∈ 0, n− 1, one has (p+t;0,n)
(j+1)wj+1 =

p+t;j+1,n ≥ 0 and hence, by (2.8), (p+t;0,n)
(j) is nondecreasing. So, p+t;0,n ∈ F 1:n

+ ⊆
F k:n

+ . Now Proposition 5.1 follows by (5.2). �

By (4.29) and Proposition 5.1, there always is a set G satisfying conditions (5.1),
which will be the only conditions generally imposed on G in this paper. In partic-
ular, the set G will not have to be convex or a cone. However, the cone dual to G ,
to be denoted by Ĝ and defined later in this section, will be a convex cone indeed.
Moreover, it will turn out that in most cases the dual cone Ĝ will not depend on
the choice of G as long as conditions (5.1) are satisfied—the only exception in
this regard being the case when all of the following conditions hold:

k = n+ 1, k is odd, and a /∈ I. (5.6)

So, unless this exceptional case takes place, the dual cone Ĝ will coincide with
F̂ k:n

+ .

5.1. Admissible set of measures. In accordance with the general definition
of the dual cone (see, e.g., [10, Chapter III, Section 5] or [29, p. 7]), it appears

natural to define the cone Ĝ dual to the set G of functions on I as consisting
of signed measures on the Borel σ-algebra—say, B—over I. However, we shall
take a more general approach by letting Ĝ be a set of ordered pairs (ν1, ν2) of
nonnegative (not necessarily finite) measures on B such that ν1(f) ≥ ν2(f) for
all f ∈ G . Here and subsequently, we use the common definition ν(f) :=

∫
I
f dν

for a Borel-measurable function f : I → R and a nonnegative measure ν on B,
if the integral exists in the extended sense, that is, if at least one of the values
ν(f+) or ν(f−) is finite, and in such a case we let ν(f) := ν(f+)−ν(f−); as usual,
f+ := f ∨ 0 and f− := (−f)+. For brevity (unless otherwise indicated), when we
say that ν(f) satisfies a certain condition, it will actually mean that ν(f) exists
and satisfies that condition. For example, if we say ν(f) > −∞, it actually means
that ν(f) exists and does not equal −∞ (which is equivalent to the statement
that ν(f−) <∞).

Of course, if at least one of the nonnegative measures ν1, ν2 is finite, then one
can introduce the signed measure ν := ν1 − ν2; if, moreover, at least one of the
integrals ν1(f), ν2(f) is finite, then one can also let ν(f) := ν1(f) − ν2(f) and
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write the usual duality condition ν(f) ≥ 0 instead of ν1(f) ≥ ν2(f). However,
such additional restrictions on the finiteness of one of the measures ν1, ν2 or one
of the integrals ν1(f), ν2(f) are unnecessary for our results on the dual cone or in
the relevant applications.

Yet, to ensure that the dual cone Ĝ be convex, one cannot allow two pairs
(ν1, ν2) and (ρ1, ρ2) of measures to both belong to Ĝ if {νj(f), ρj(f)} = {∞,−∞}
for some f ∈ G and some j ∈ {1, 2} because in that case the integral (νj + ρj)(f)
would not exist and thus the pair (ν1, ν2) + (ρ1, ρ2) = (ν1 + ρ1, ν2 + ρ2) could not

possibly belong to Ĝ . For this reason, only pairs (ν1, ν2) of nonnegative measures
such that ν1(f)∧ ν2(f) > −∞ for all f ∈ G will be allowed to belong to the dual

cone Ĝ ; such pairs of measures may be referred to as admissible.
To formalize this approach to admissibility (which works well in the applica-

tions), let us first introduce the notation N+ for the set of all nonnegative (not
necessarily finite) measures on B. Next, introduce the set

N+(G ) :=
{
ν ∈ N+ : ν(f) > −∞ for all f ∈ G

}
, (5.7)

which may be referred to as the admissible set (of nonnegative measures corre-
sponding to the set G of functions). One has the following characterization of this
admissible set.

Proposition 5.2. Take any ν ∈ N+.

(i) If k ≤ n, then

ν ∈ N+(G ) ⇐⇒ ν(p) > −∞ for all p ∈ P≤k
+ . (5.8)

(ii) If k is even or a ∈ I, then

ν ∈ N+(G ) ⇐⇒ ν(p) > −∞ for all p ∈ P≤k−1

⇐⇒ ν(p) ∈ R for all p ∈ P≤k−1.
(5.9)

(iii) If the exceptional case (5.6) takes place, then

ν ∈ N+(F
k:n
+ ) ⇐⇒ ν(p) ∈ R for all p ∈ P≤k−1

& ν
(
(a, ã)

)
= 0 for some ã ∈ I

=⇒ ν ∈ N+(G ).

(5.10)

Thus (given the condition (5.1)), the admissible set N+(G ) does not actually
depend on the choice of G , except for the case (5.6). In that exceptional case,
(5.10) shows that the admissible set N+(F k:n

+ ) is inconveniently too small, consist-
ing only of measures ν with support supp ν bounded away from the left endpoint
a of the interval I; in particular, in the important case when a = −∞, the set
supp ν will have to be bounded from below, which would rule out applications
without such a restriction. Allowing G to differ from F k:n

+ was motivated by this
inconvenience. Indeed, if the class G is smaller F k:n

+ , then, in view of (5.7), the
admissible set N+(G ) may turn out to be a large enough extension of the too
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small class N+(F k:n
+ ) of measures. In particular, a sensible choice of G in the

exceptional case (5.6) appears to be given by the formula

G = {f ∈ F n+1:n
+ : f ≥ p for some p ∈ P≤n}, (5.11)

so that the equivalences in (5.9) obviously continue to hold even in the exceptional
case (5.6).

Proof of Proposition 5.2. The implication =⇒ in part (i) of this proposition
follows immediately by (5.7) and (5.5), whereas the reverse implication ⇐= there
follows by parts (II)(i) and (I)(i) of Proposition 4.3 and (5.3).

If k is even, then the first equivalence in part (ii) of Proposition 5.2 follows by
(5.7), part (I)(i) of Proposition 4.3, and (5.4). If k is odd and a ∈ I, then the
just-mentioned equivalence follows by (5.7), part (I)(ii)(*) of Proposition 4.3 (with
z = a), and (5.4). As for the second equivalence in part (ii) of Proposition 5.2, it
follows because −p ∈ P≤k−1 for any p ∈ P≤k−1.

To complete the proof of Proposition 5.2, it remains to prove its part (iii). To
do this, suppose first that ν((a, ã)) = 0 for some ã ∈ I. Then one can replace ν by
its restriction to the Borel σ-algebra over the reduced interval I ∩ [ã,∞) in place
of I and, accordingly, replace the functions in G and the functions w0, . . . , wn by
their respective restrictions to the interval I ∩ [ã,∞), which obviously contains
its left endpoint ã. Now the implication =⇒ in the last line in (5.10) and, in
particular, the implication ⇐= in the first line there follow immediately by the
already verified part (ii) of Proposition 5.2.

The implication ν ∈ N+(F k:n
+ ) =⇒ ν(p) ∈ R for all p ∈ P≤k−1 in (5.10)

follows by (5.4), (5.1), and the second equivalence in (5.9) (which latter holds
whether or not the exceptional case (5.6) takes place).

Thus, it remains to verify the implication ν ∈ N+(F k:n
+ ) =⇒ ν((a, ã)) =

0 for some ã ∈ I in (5.10). Toward this end, assume, on the contrary, that
ν((a, ã)) > 0 for all ã ∈ I. Take any sequence (ti)i∈N in I such that ti → a
(as i→ ∞). Then, by the assumption, ν((a, ti)) > 0 for all i ∈ N. Now, introduce
the functions p−t;j,m : I → R by the formula

p−t;j,m(xj) := pt;j,m(xj)I{xj < t} (5.12)

for all t and xj ∈ I (cf. (3.12)). The conditions in (5.6) that k = n + 1 and k is
odd imply that n is even. So, by (5.12) and (3.3), p−t;0,n ≥ 0 (on I) and p−t;0,n > 0
on I ∩ (−∞, t) = (a, t) for any t ∈ I. Now, take any i ∈ N. Then, recalling that
ν((a, ti)) > 0, take any γi ∈ R such that

0 < γi ≤ ν(p−ti;0,n); (5.13)

in particular, if ν(p−ti;0,n) <∞, then one may take γi = ν(p−ti;0,n). Now, introduce
the function

f := −
∞∑
i=1

1

γi
p−ti;0,n = −

∫
I

µ(dt)p−t;0,n, (5.14)
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where µ is the nonnegative measure defined by the formula

µ(g) :=
∞∑
i=1

1

γi
g(ti)

for all nonnegative functions g on I. Since p−t;0,n ≥ 0 for all t ∈ I, it follows that
f ≤ 0. Moreover, in view of the condition a /∈ I in (5.6), for any x ∈ I, there is
some ix ∈ N such that for all i ∈ ix,∞, one has ti < x and hence p−ti;0,n(x) = 0, so

that f(x) = −
∑ix−1

i=1
1
γi
p−ti;0,n(x) > −∞. Therefore, f(x) ∈ (−∞, 0] for all x ∈ I.

Next (cf. (5.14), Lemma 4.1, (3.3)),

f (n)(x) = − 1

wn(x)

∫
I

µ(dt)p−t;n,n(x)

= − 1

wn(x)

∫
I

µ(dt)pt;n,n(x)I{x < t}

= −
∫
I

µ(dt)I{x < t} = −µ
(
I ∩ (x,∞)

)
is nondecreasing in x ∈ I, so that f ∈ F n+1:n

+ = F k:n
+ . On the other hand, by

(5.14) and (5.13),

ν(f) = −
∞∑
i=1

1

γi
ν(p−ti;0,n) ≤ −

∞∑
i=1

1 = −∞.

So, the assumption that the condition “ν((a, ã)) = 0 for some ã ∈ I” is vio-
lated has led to the conclusion that ν /∈ N+(F k:n

+ ). This completes the proof of
Proposition 5.2(iii) as well. �

Suppose, for example, that the exceptional case (5.6) with n = 0 takes place
in the unit-gauge setting. Then, F k:n

+ = F n+1:n
+ = F 1:0

+ is the set of all non-
decreasing functions f : I → R. In this situation, with a /∈ I, it is rather clear
that, for any nonnegative measure ν on B with inf supp ν = a, one can choose a
function f ∈ F 1:0

+ = F k:n
+ growing so fast (from −∞ up) on I that ν(f) = −∞.

This simple observation was the main idea behind the above proof of part (iii) of
Proposition 5.2. Again for the exceptional case (5.6) with n = 0 in the unit-gauge
setting, the set G as in (5.11) is the set of all nondecreasing functions in RC
that are also bounded from below, which latter appears to be a rather natural
additional condition to impose on the functions in F 1:0

+ .
The function f defined by formula (5.14) in the proof of part (iii) of Proposi-

tion 5.2 may be considered a generalized spline of order n. For instance, in the
unit-gauge setting with n = 2 and k = n + 1 = 3, that function f will be con-
tinuously differentiable, with the graph consisting of countably many parabolic
arcs.

5.2. Dual cone. Define the dual cone Ĝ by the formula

Ĝ :=
{
(ν1, ν2) ∈ N+(G )× N+(G ) : ν1(f) ≥ ν2(f) for all f ∈ G

}
=

{
(ν1, ν2) ∈ N+ × N+ : ν1(f) ≥ ν2(f) > −∞ for all f ∈ G

}
.

(5.15)
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Theorem 5.3. Take any (ν1, ν2) ∈ N+(G ) × N+(G ). Then (ν1, ν2) ∈ Ĝ if and
only if all of the following conditions hold:

(i) ν1(p) = ν2(p) ∈ R for all p ∈ P≤k−1;
(ii) ν1(p) ≥ ν2(p) for all p ∈ Pk:n

+ [= P≤n ∩ F k:n
+ , by (4.29)];

(iii) ν1(p
+
t;0,n) ≥ ν2(p

+
t;0,n) for all t ∈ I.

Thus, the verification of the condition on (ν1, ν2) ∈ N+(G ) × N+(G ) that
ν1(f) ≥ ν2(f) for all f ∈ F k:n

+ reduces to the verification of this inequality
just for certain w-polynomials and their “positive parts.”

Remark 5.4. For each (ν1, ν2) ∈ N+(G ) × N+(G ), condition (i) of Theorem 5.3
follows from condition (ii) there. Indeed, suppose that condition (ii) holds, and
then take any (ν1, ν2) ∈ N+(G ) × N+(G ) and any p ∈ P≤k−1. Then {p,−p} ⊆
P≤k−1 ⊆ G by (5.4), whence ν1(p) ≥ ν2(p) > −∞ and −ν1(p) = ν1(−p) ≥
ν2(−p) = −ν2(p), with ν2(−p) > −∞, which yields ν1(p) = ν2(p) ∈ R. Thus,
again, for each (ν1, ν2) ∈ N+(G )×N+(G ), conditions (ii) and (iii) of Theorem 5.3

already suffice for (ν1, ν2) ∈ Ĝ . Moreover, in the case when k = n + 1, one has
P≤k−1 = P≤n = Pk:n

+ , because p(n) is constant and hence nondecreasing for any
p ∈ P≤n; therefore, in this case conditions (i) and (ii) of Theorem 5.3 are just
equivalent to each other.

Proof of Theorem 5.3. That condition (ii) in Theorem 5.3 is necessary for

(ν1, ν2) ∈ Ĝ follows immediately from (5.15) and (5.1). Next, condition (i) follows
from condition (ii) by Remark 5.4. The necessity of condition (iii) in Theorem 5.3
follows immediately from (5.1) and (5.2). Thus, the “only if” part of Theorem 5.3
is verified.

Let us now consider the “if” part of the theorem. Suppose that conditions
(i)–(iii) of Theorem 5.3 hold. Take any z ∈ (a, b) and then y ∈ (a, z], as in (3.19)
and (4.15). Take also any f ∈ G . Then, by (5.1), f ∈ F k:n, and so, the function
f (n) is nondecreasing and hence the corresponding Lebesgue–Stieltjes measure
df (n) is nonnegative. So, by the definition of Rz,y in (4.28), (4.17), condition (iii)
of Theorem 5.3, the Fubini theorem, and (3.14),

ν1(Rz,y) ≥ ν2(Rz,y) ≥ 0. (5.16)

By (4.30), (5.1), conditions (ii) of Theorem 5.3 and (ν1, ν2) ∈ N+(G ) × N+(G ),
and (5.7),

ν1(Pz,y) ≥ ν2(Pz,y) > −∞. (5.17)

It follows by (4.27), (5.16), and (5.17) that

ν1(gy) ≥ ν2(gy). (5.18)

Also, by (4.32), gz ∈ F k:n
+ . So, by part I of Proposition 4.3, there exists a

w-polynomial pz ∈ P≤k−1 such that (i) if k is even, then gz ≥ pz and (ii) if k is
odd, then gz ≥ pz on I ∩ [z,∞) and gz ≤ pz on I ∩ (−∞, z]. In view of (4.35),
one concludes that

(i) if k is even, then gy ≥ pz and gy ↗
y↓a
f on the interval I;

(ii) if k is odd, then
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(*) gy ≥ pz and gy ↗
y↓a
f on the interval I ∩ [z,∞);

(**) gy ≤ pz and gy ↘
y↓a
f on the interval I ∩ (−∞, z].

By Theorem 5.3(i), ν1(pz) = ν2(pz) ∈ R. Thus, by the Lebesgue monotone
convergence theorem and conclusions (i) and (ii) above,∫

I∩[z,∞)

gy dνj −→
y↓a

∫
I∩[z,∞)

f dνj and∫
I∩(−∞,z)

gy dνj −→
y↓a

∫
I∩(−∞,z)

f dνj

(5.19)

for j ∈ {1, 2}. In view of the condition (ν1, ν2) ∈ N+(G )×N+(G ) and the definition
(5.7), ν1(f) ∧ ν2(f) > −∞ or, equivalently, ν1(f−) ∨ ν2(f−) <∞, whence∫

I∩[z,∞)

f dν1 ∧
∫
I∩[z,∞)

f dν2 ∧
∫
I∩(−∞,z)

f dν1 ∧
∫
I∩(−∞,z)

f dν2 > −∞. (5.20)

It follows from (5.19) and (5.20) that νj(gy) =
∫
I∩[z,∞)

gy dνj+
∫
I∩(−∞,z)

gy dνj −→
y↓a∫

I∩[z,∞)
f dνj +

∫
I∩(−∞,z)

f dνj = νj(f), again for j ∈ {1, 2}; condition (5.20) is

used here to show that the integrals
∫
I∩[z,∞)

f dνj and
∫
I∩(−∞,z)

f dνj can be added.

So, by (5.18), ν1(f) ≥ ν2(f), for any f ∈ G . In view of (5.15), the proof of the
“if” part of Theorem 5.3 is now completed as well. �

Theorem 5.3 can be restated in the following “basis” form.

Theorem 5.5. Take any (ν1, ν2) ∈ N+(G ) × N+(G ), and also take any s and z

in I. Then, (ν1, ν2) ∈ Ĝ if and only if all of the following conditions hold:

(i′) ν1(ps;0,i) = ν2(ps;0,i) ∈ R for all i ∈ 0, k − 1;
(ii′) ν1(pa,z;0:k:j) ≥ ν2(pa,z;0:k:j) for all j ∈ Fk,n;
(iii) ν1(p

+
t;0,n) ≥ ν2(p

+
t;0,n) for all t ∈ I.

(Recall here the definitions (3.3) and (3.20), (3.21), (3.8) concerning thew-poly-
nomials ps;0,i for i ∈ 0, k − 1 and pa,z;0:k:j for j ∈ Fk,n.)

Proof of Theorem 5.5. First here, by (3.7), the w-polynomials ps;0,0, . . . , ps;0,k−1

constitute a basis of the linear space P≤k−1, and so, condition (i′) of Theorem 5.5
is equivalent to condition (i) of Theorem 5.3.

One can similarly see that the conjunction of conditions (i′) and (ii′) of The-
orem 5.5 is equivalent to condition (ii) of Theorem 5.3 (which latter is in turn
equivalent to the conjunction of conditions (i) and (ii) of Theorem 5.3).

Alternatively, one can note that, by (4.29) and condition (ii) of Theorem 5.3,
for each (ν1, ν2) ∈ N+(G )×N+(G ) condition (ii′) of Theorem 5.5 is necessary for

ν ∈ Ĝ . On the other hand, condition (ii) of Theorem 5.3 was used in the proof
of the “if” part of Theorem 5.3 only to obtain the conclusion (5.17). However,
the same conclusion can be obviously obtained by using the definition of Pz,y

in (4.28), formula (4.4), and conditions (i′) and (ii′) of Theorem 5.5—instead of
(4.30) and condition (ii) of Theorem 5.3. Thus, Theorem 5.5 is proved. �
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In the unit-gauge case, Theorem 5.5 immediately results in the following corol-
laries, in view of (3.10), (3.18), (3.25), (3.26), and (4.11).

Corollary 5.6. Suppose that w0 = · · · = wn = 1. Suppose also that a = −∞.
Take any (ν1, ν2) ∈ N+(G ) × N+(G ), and also take any real s and z. Then

(ν1, ν2) ∈ Ĝ if and only if all of the following conditions hold:

(i)
∫
I
(x− s)iν1(dx) =

∫
I
(x− s)iν2(dx) ∈ R for all i ∈ 0, k − 1;

(ii)
∫
I
(x− z)kν1(dx) ≥

∫
I
(x− z)kν2(dx) if k ≤ n;

(iii)
∫
I
(x− t)n+ν1(dx) ≥

∫
I
(x− t)n+ν2(dx) for all t ∈ I.

Corollary 5.7. Suppose that w0 = · · · = wn = 1. Suppose also that a > −∞.
Take any (ν1, ν2) ∈ N+(G )× N+(G ), and also take any real s. Then (ν1, ν2) ∈ Ĝ
if and only if all of the following conditions hold:

(i)
∫
I
(x− s)iν1(dx) =

∫
I
(x− s)iν2(dx) ∈ R for all i ∈ 0, k − 1;

(ii)
∫
I
(x− a)jν1(dx) ≥

∫
I
(x− a)jν2(dx) for all j ∈ k, n;

(iii)
∫
I
(x− t)n+ν1(dx) ≥

∫
I
(x− t)n+ν2(dx) for all t ∈ I.

One may note here that the part of condition (ii) in Corollary 5.7 for j = n
follows from condition (iii) there. Therefore, one may replace the specification
j ∈ k, n in Corollary 5.7(ii) by j ∈ k, n− 1.

Corollary 5.6 immediately results in the following statement, which will be
useful in probabilistic applications such as ones considered in [21], [20], and [25].

Corollary 5.8. Suppose that w0 = · · · = wn = 1. Suppose also that a = −∞.
Let X and Y be any r.v.’s with values in the interval I and with distributions
belonging to the admissible set N+(G ) (characterized in Proposition 5.2). Take
any real s and z. Then,

Ef(X) ≥ Ef(Y ) for all f ∈ G

if and only if all of the following conditions hold:

(i) E(X − s)i = E(Y − s)i ∈ R for all i ∈ 1, k − 1;
(ii) E(X − z)k ≥ E(Y − z)k if k ≤ n;
(iii) E(X − t)n+ ≥ E(Y − t)n+ for all t ∈ I.

Clearly, similar probabilistic formulations can be immediately obtained based
on Theorems 5.3 and 5.5 and Corollary 5.7.

By using the reflection transformation R 3 x 7→ −x, one immediately obtains
the corresponding results for the “reflected” class of functions

F k:n
− (I) :=

{
f− : f ∈ F k:n

+ (−I)
}
, (5.21)

where −I := {−x : x ∈ I} and f−(x) := f(−x) for all x ∈ I. For instance, in
view of part (i) of Proposition 5.2, one has the following “reflected” counterpart
of Corollary 5.8, where for simplicity we shall consider only the case when k ≤ n.

Corollary 5.9. Suppose that k ≤ n and b = ∞. Let X and Y be any r.v.’s
with values in the interval I and such that Ep(X) ∧ Ep(Y ) > −∞ for all (usual)
polynomials p of degree ≤ k with (−1)kp(k) ≥ 0. Take any real s and z. Then,

Ef(X) ≥ Ef(Y ) for all f ∈ F k:n
− (I)
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if and only if all of the following conditions hold:

(i) E(X − s)i = E(Y − s)i ∈ R for all i ∈ 1, k − 1;
(ii) E(z −X)k ≥ E(z − Y )k;
(iii) E(t−X)n+ ≥ E(t− Y )n+ for all t ∈ I.

5.3. Relations with Tchebycheff systems. Let (u0, . . . , un) be a sequence of
real-valued functions of class Cn on a finite closed interval [a, b] ⊂ R. According
to [12, p. 376, Theorem 1.1], (u0, . . . , un) is an extended complete Tchebycheff
system (or, briefly, an ECT -system) on [a, b] if and only if the Wronskian

Wk(x) := Wk(u0, . . . , uk)(x) := det
[
u
(j)
i (x)

]k
i,j=0

is (strictly) positive for all k ∈ 0, n and x ∈ I; here, (j) denotes the usual jth
derivative. This characterization of ECT -systems, as well as their definition given
at the very beginning of [12, Chapter XI], can be extended almost verbatim to
sequences (u0, . . . , un) of functions of class C

n defined on any interval I ⊆ R.
Let W = Wn denote the set of all sequences w = (w0, . . . , wn) of smooth

positive functions on I described in the paragraph containing formula (2.3).
The following proposition states that the ECT -systems can be described as the

sequences of w-polynomials graded by degree, with positive coefficients of their
highest-degree w-monomials.

Proposition 5.10. Let (u0, . . . , un) be a sequence of real-valued functions of class
Cn on I. Then, (u0, . . . , un) is an ECT -system if and only if for some w ∈ W

and all α ∈ 0, n the function uα is a w-polynomial of degree α with (uα)
(α)
w > 0.

Proof. Take any t and s in I such that t < s. By [12, p. 379, Theorem 1.2]
and [12, p. 379, Remark 1.2], (u0, . . . , un) is an ECT -system on the interval
[t, s] if and only if, for some w ∈ W and some nonsingular lower-triangular
real matrix L = [`α,i]

n
α,i=0, one has ũα = pt;0,α on [t, s] for all α ∈ 0, n, where

[ũ0, . . . , ũn]
T := L−1[u0, . . . , un]

T , and T stands for the matrix transposition; cf.
here [12, p. 378, (1.5)] and (3.3). That is, in view of Remark 3.3, (u0, . . . , un) is an
ECT -system on the interval [t, s] if and only if, for some w ∈ W and all α ∈ 0, n,
the function uα is a linear combination

∑α
i=0 `α,ipt;0,i on the interval [t, s] of the

canonical (w; t)-monomials pt;0,0, . . . , pt;0,α, with `α,α > 0.
On the other hand, by (3.7) (with j = 0 and k = α), a function p is a

w-polynomial of degree α on [t, s] with p
(α)
w > 0 if and only if p is a linear

combination
∑α

i=0 `α,ipt;0,i on the interval [t, s] of the canonical (w; t)-monomials

pt;0,0, . . . , pt;0,α, with `α,α = p
(α)
w (t) > 0.

Thus, (u0, . . . , un) is an ECT -system on [t, s] if and only if for some w ∈ W
and all α ∈ 0, n the function uα is a w-polynomial of degree α on [t, s] with
(uα)

(α) > 0.
At that, by [12, p. 380, Remark 1.3], for any point x ∈ [t, s], the values of all the

gauge functions w0, . . . , wn at x do not depend on the choice of t and s, as long
as the condition x ∈ [t, s] holds; rather, these values are completely determined
by the values of the functions u0, . . . , un in a neighborhood of x.

This completes the proof of Proposition 5.10. �
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As before, let (u0, . . . , un) be a sequence of real-valued functions of class Cn

on a finite closed interval [a, b] ⊂ R. According to [12, p. 375, Definition 1.1], the
cone C(u0, . . . , un) of functions f from the open interval (a, b) to R is defined by
the condition

f ∈ C(u0, . . . , un)
def⇐⇒ det

[
ui(tj)

]n+1

i,j=0
≥ 0

for all t0, . . . , tn such that a < t0 < · · · < tn+1 < b, where un+1 := f .
Beginning with [12, Chapter XI, Section 2], it is assumed there that the ui’s

are what was referred to in our Remark 3.3 as the canonical (w; a)-monomials ;
that is, ui = pa;0,i for all i ∈ 0, n. At that, it is tacitly assumed in [12] that
all these ui’s are finite on [a, b]; compare (3.8). Under all these conditions, for
I = (a, b), according to [12, p. 386, Theorem 2.1], the cone C(u0, . . . , un) in
[12] essentially coincides with our cone F n+1:n

+ , and hence,
⋂n

j=k−1C(u0, . . . , uj)

essentially coincides with F k:n
+ ; here one may recall definition (4.3) of F k:n

+ . More
precisely,

n⋂
j=k−1

C(u0, . . . , uj) /F k:n
+ , (5.22)

where the symbol / stands for the following: “is contained in, and would coincide
with if the class RC in the definition (2.2) of D and Df were replaced by the
narrower class of all functions in RI that are right-continuous on the interval
I \ {b} and left-continuous on the interval I \ {a}” (cf. Remark 2.1).

A result similar to a special case of Theorem 5.5 was stated as two separate
theorems in [12, p. 407]: Theorem 5.1 for k = n+1 and Theorem 5.2 for k ∈ 1, n, in
the notation of the present paper; the symbol k in the present paper corresponds
to k + 1 in [12, p. 407, Theorem 5.2]. The latter two theorems in [12] are based
on the papers [11] and [30], respectively. In the mentioned special case when I
is a finite open interval—so that I = (a, b), −∞ < a < b < ∞—Theorems 5.1
and 5.2 in [12, p. 407] characterize convex cones that are in a certain sense dual
to the cones C(u0, . . . , un) and

⋂n
j=k−1C(u0, . . . , uj), respectively, where, for each

i ∈ 0, n, the function ui coincides with the (w; a)-monomial pa;0,i and—somewhat
tacitly but crucially—is assumed to be finite; compare again the definition of the
ui’s in [12, p. 381, (2.1)] and the definition of the pt;j,m’s in (3.3) (in the present
paper).

There are a number of differences between our Theorem 5.5 and [12, p. 407,
Theorems 5.1, 5.2]. One is that the dual cone in [12] is defined in a traditional
manner, as a set of signed measures ν rather than a set of ordered pairs (ν1, ν2)
of nonnegative measures (cf. the beginning of the discussion in Section 5.1); at
that, the total variation of ν in [12, p. 407, Theorems 5.1, 5.2] was assumed to
be finite. Also, in these theorems in [12] the interval I is assumed to be finite
and open, whereas we allow I to be any interval in R. Moreover, our treatment
appears to be more direct, as we define the classes F k:n

+ of multiply monotone
functions directly in terms of the gauge functions wi, rather than in terms of
specific (w; a)-monomials ui = pa;0,i. Our method of proof is also more direct,
without an explicit characterization or use of the extreme rays of the cones F k:n

+ .
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However, the most significant difference between [12, p. 407, Theorems 5.1,
5.2] and our Theorem 5.5 is that the former ones impose the mentioned addi-
tional, ostensibly innocuous condition of the finiteness of the (w; a)-monomials
ui = pa;0,i for all i ∈ 0, n. This additional condition rules out, among others, the
unit-gauge case with a = −∞, the most important case in applications such as
ones considered in [21], [20], and [25], which, in fact, motivated the present paper.

In [7], stochastic orderings for comparing discrete r.v.’s valued in an arbitrary
ordered finite grid of nonnegative points were studied, with an emphasis on the
effect on such orderings caused by an addition of a point. It appears that the
theory presented in this paper can be extended to cones of generalized multiply
monotone functions defined on a (not necessarily finite) one-dimensional grid
rather than on an interval I ⊆ R. One would then have to use finite differences
in place of derivatives.

6. Applications

Here, we shall present applications of our main results to generalized moment
comparison inequalities for sums of independent r.v.’s and (super)martingales.
Other illustrations and applications, including ones concerning solutions of com-
positional systems of linear differential inequalities and refinements of the Cheby-
shev integral association inequality for generalized multiply monotone functions
(extending results of Andersson [1], Karlin and Ziegler [13], and Borell [4]), can
be found in [24].

The following theorem concerns normal domination of (super)martingales with
conditionally bounded differences, which may be further applied to concentration
of measure for separately Lipschitz functions, as shown in [20, Section 4]. Let
(S0, S1, . . . ) be a supermartingale relative to a filter (H≤0, H≤1, . . . ) of σ-algebras,
with S0 ≤ 0 almost surely and differences Xi := Si−Si−1 for i ∈ 1,∞. Let Ej and
Varj denote the conditional expectation and variance, respectively, given H≤j.

Theorem 6.1. Suppose that for every i ∈ 1,∞ there exist H≤(i−1)-measurable
r.v.’s Ci−1 and Di−1 and a positive real number si such that

Ci−1 ≤ Xi ≤ Di−1 and (6.1)

Di−1 − Ci−1 ≤ 2si (6.2)

almost surely. Then, for all f ∈ F 1:5
+ (in the unit-gauge case) and all n ∈ 1,∞,

Ef(Sn) ≤ Ef(sZ), (6.3)

where

s :=
√
s21 + · · ·+ s2n

and Z ∼ N(0, 1).
If, moreover, (S0, S1, . . . ) is a martingale relative to (H≤0, H≤1, . . . ) with S0 = 0

almost surely, then inequality (6.3) holds for all f ∈ F 2:5
+ .

Proof. By [20, Theorem 2.1], E(Sn − t)5+ ≤ E(sZ − t)5+ for all t ∈ R. Also, the
conditions that S0 ≤ 0 almost surely and (S0, S1, . . . ) be a supermartingale yield
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ESn ≤ 0 = EsZ. So, by Corollary 5.8 with I = R, inequality (6.3) holds for all
f ∈ F 1:5

+ .
Assuming now that (S0, S1, . . . ) is a martingale with S0 = 0, one has ESn = 0 =

EsZ. Also, it then follows that ES2
n =

∑n
1 EX

2
i =

∑n
1 EVari−1Xi ≤

∑n
1 E|Ci−1×

Di−1| ≤ 1
4

∑n
1 E(|Ci−1|+|Di−1|)2 = 1

4

∑n
1 E(Di−1−Ci−1)

2 ≤
∑n

1 s
2
i = s2 = E(sZ)2;

the first inequality in the above chain of equalities and inequalities follows by [20,
(2.12)] and the third equality in this chain follows because, by (6.1), Ci−1 ≤
Ei−1Xi = 0 ≤ Di−1 almost surely. So, under the additional conditions stated in
the last sentence of Theorem 6.1, (6.3) holds indeed for all f ∈ F 2:5

+ . �

Recalling the definition of the set H i:n
+ in the beginning of Section 4.1 and

Proposition 4.2, one sees that Theorem 6.1 provides an extension of inequality
(6.3), from all f ∈ H 0:5

+ to all f ∈ F 1:5
+ (or, under the additional, martingale con-

ditions on (S0, S1, . . . ), even to all f ∈ F 2:5
+ ). Quite similarly one can extend other

results in [20], including: (i) Theorem 2.6 as far as it concerns (2.3); (ii) inequality
(4.3); and (iii) Theorem 4.4 and Corollary 4.8 as far as they concern (4.3) (all the
references in this sentence are to [20]).

Among other applications is the main result in [25], whose proof is based, in
part, on Corollary 5.9 in the present paper. In particular, that result in [25] implies
the following.

Theorem 6.2. Let X1, . . . , Xn be any nonnegative independent r.v.’s such that
for some nonnegative real numbers m,m1, . . . ,mn, s, s1, . . . , sn one has 0 < s ≤
m2/n,

EXi ≥ mi and EX2
i ≤ si

for all i ∈ 1, n and

m1 + · · ·+mn ≥ m and s1 + · · ·+ sn ≤ s.

Let Y1, . . . , Yn denote any independent identically distributed r.v.’s such that

P
(
Y1 =

s

m

)
= 1− P(Y1 = 0) =

m2

ns
.

Then,

Ef(Sn) ≤ Ef(Y1 + · · ·+ Yn) ≤ Ef
( s
m
Πm2/s

)
≤ Ef(m+ Z

√
s)

for all f ∈ F 1:3
− , where Πλ is any r.v. having the Poisson distribution with param-

eter λ ∈ (0,∞) and Z is any standard normal r.v.

Variants of this result for the classes F 2:2
− , F 3:2

− , F 2:3
− , F 3:3

− , and F 4:3
− of func-

tions in place of F 1:3
− are given in [25, Remark 2.5].

Similarly, it would be quite convenient to use Corollary 5.6 of the present paper
in place of [21, Lemmas 1–4] and in place of [23, Lemmas 4.5, 4.6]; those lemmas
in [21] and [23] were proved in a rather ad hoc manner.
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