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Abstract. A linear mapping δ from an algebra A into a left A-module M
is called a Jordan left derivation if δ(A2) = 2Aδ(A) for every A ∈ A. We
prove that if an algebra A and a left A-module M satisfy one of the following
conditions—(1) A is a C∗-algebra and M is a Banach left A-module; (2) A =
AlgL with ∩{L− : L ∈ JL} = (0) and M = B(X); and (3) A is a commutative
subspace lattice algebra of a von Neumann algebra B and M = B(H)—then
every Jordan left derivation from A into M is zero. δ is called left derivable at
G ∈ A if δ(AB) = Aδ(B) +Bδ(A) for each A,B ∈ A with AB = G. We show
that if A is a factor von Neumann algebra, G is a left separating point of A or
a nonzero self-adjoint element in A, and δ is left derivable at G, then δ ≡ 0.

1. Introduction

LetR be an associative ring. For an integer n > 2,R is said to be n-torsion-free
if nA = 0 implies A = 0 for every A in R. Recall that a ring R is prime if
ARB = (0) implies that either A = 0 or B = 0 for each A,B in R, and it is
semiprime if ARA = (0) implies A = 0 for every A in R.

Suppose that M is an R-bimodule. An additive mapping δ from R into M is
called a derivation if δ(AB) = δ(A)B+Aδ(B) for each A,B in R, and δ is called
a Jordan derivation if δ(A2) = δ(A)A+Aδ(A) for every A in R. Obviously, every
derivation is a Jordan derivation. The converse is, in general, not true. A classi-
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cal result of Herstein [13] asserts that every Jordan derivation on a 2-torsion-free
prime ring is a derivation. In [4], Brešar and Vukman give a brief proof of [13, The-
orem 3.1]. In [7], Cusack generalizes [13, Theorem 3.1] to 2-torsion-free semiprime
rings. In [3], Brešar gives an alternative proof of [7, Corollary 5].

In [5], Brešar and Vukman introduce the concepts of left derivations and Jor-
dan left derivations. In [24], Vukman introduces the concept of (m,n)-Jordan
derivations.

LetM be a leftR-module. An additive mapping δ fromR intoM is called a left
derivation if δ(AB) = Aδ(B)+Bδ(A) for each A,B in R, and δ is called a Jordan
left derivation if δ(A2) = 2Aδ(A) for every A in R. Let m > 0 and n > 0 be two
fixed integers with m + n 6= 0; δ is called an (m,n)-Jordan derivation if (m +
n)δ(A2) = 2mAδ(A) + 2nδ(A)A for every A in R. The concept of (m,n)-Jordan
derivations covers the concept of Jordan derivations, as well as the concept of
Jordan left derivations.

In [5], Brešar and Vukman prove that if there exists a nonzero Jordan left
derivation from a prime ring R into a left R-module M of characteristic not 2
and 3, then R is commutative. In [10], Deng shows that [5, Theorem 2.1] is still
true whenM is only characteristic not 2. In [23], Vukman shows that every Jordan
left derivation from a complex semisimple Banach algebra into itself is zero. In
[15], Kosi-Ulbl and Vukman prove that if m > 1 and n > 1 are two integers with
m 6= n, then every (m,n)-Jordan derivation from a complex semisimple Banach
algebra into itself is zero.

Throughout this paper, A denotes an algebra over the complex field C, and M
denotes a left A-module. In the paper, we assume that all mappings from A into
M are linear.

This paper is organized as follows. In Section 2, we show that every Jordan left
derivation from a C∗-algebra A into its Banach left module M is zero.

In Section 3, we show that if L is a subspace lattice on a complex Banach space
X with ∩{L− : L ∈ JL} = (0), then every Jordan left derivation from AlgL into
B(X) is zero. The class of reflexive algebras AlgL with ∩{L− : L ∈ JL} = (0) is
very large, and it includes the following:

(1) P-subspace lattice algebras;
(2) completely distributive subspace lattice algebras;
(3) reflexive algebras AlgL such that (0)+ 6= (0).

In Section 4, we show that if B is a von Neumann algebra on a Hilbert space
H and L ⊆ B is a commutative subspace lattice (CSL) on H, then every Jordan
left derivation from B ∩ AlgL into B(H) is zero.

A linear mapping δ from A into M is called left derivable at G ∈ A if δ(AB) =
Aδ(B) +Bδ(A) for each A,B ∈ A with AB = G. In [16], Li and Zhou show that
if L is a J -subspace lattice, then every left derivable mapping at a unit on AlgL
is zero.

For a unital algebraA and a unital leftA-moduleM, we call an elementW ∈ A
a left separating point of M if WM = 0 implies M = 0 for every M ∈ M. It
is easy to see that every left invertible element in A is a left separating point
of M.
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In Section 5, we prove that if A is a factor von Neumann algebra, then every
left derivable mapping at a left separating point or a nonzero self-adjoint element
is zero.

Let X be a complex Banach space, and let B(X) be the set of all bounded
linear operators on X. We denote by X∗ and X∗∗ the dual space and the double
dual space of X, respectively. In this paper, every subspace of X is a closed linear
manifold. By a subspace lattice on X, we mean a collection L of subspaces of X
with (0) and X in L such that, for every family {Mr} of elements of L, both ∩Mr

and ∨Mr belong to L, where ∨Mr denotes the closed linear span of {Mr}.
Let L be a subspace lattice on X. Define

JL =
{
E ∈ L : E 6= (0) and E− 6= X

}
and PL = {E ∈ L : E− + E},

where E− = ∨{F ∈ L : F + E}. L is called a J -subspace lattice on X if it
satisfies E ∨ E− = X and E ∩ E− = (0) for every E in JL; ∨{E : E ∈ JL} = X
and ∩{E− : E ∈ JL} = (0). L is called a P-subspace lattice on X if it satisfies
∨{E : E ∈ PL} = X or ∩{E− : E ∈ PL} = (0).

L is said to be completely distributive if its subspaces satisfy the identity∧
a∈I

∨
b∈J

La,b =
∨
f∈JI

∧
a∈I

La,f(a),

where J I denotes the set of all f : I → J . For some properties of completely
distributive subspace lattices and J -subspace lattices, see [17] and [18].

For every subspace lattice L on X, we use AlgL to denote the algebra of all
operators in B(X) that leave members of L invariant; and for a subalgebra A of
B(X), we use LatA to denote the lattice of all subspaces of X that are invariant
under all operators in A. An algebra A is called reflexive if A = Alg LatA.

The following two lemmas will be used repeatedly.

Lemma 1.1 ([16, Lemma 2.1]). Let A be an algebra, let M be a left A-module,
and let δ be a Jordan left derivation from A into M. Then for each A, B in A,
the following two statements hold:

(1) δ(AB +BA) = 2Aδ(B) + 2Bδ(A);
(2) δ(ABA) = A2δ(B) + 3ABδ(A)−BAδ(A).

Lemma 1.2 ([16, Lemma 2.2]). Let A be an algebra, let M be a left A-module,
and let δ be a Jordan left derivation from A into M. Then for every A and every
idempotent P in A, the following two statements hold:

(1) δ(P ) = 0;
(2) δ(PA) = δ(AP ) = δ(PAP ) = Pδ(A).

2. Jordan left derivations on C∗-algebras

In this section, we study Jordan left derivations from a C∗-algebra into its
Banach left module and prove that these Jordan left derivations are zero.

Proposition 2.1. Let A be a C∗-algebra, and let M be a Banach left A-module.
If δ is a Jordan left derivation from A into M, then δ is automatically continuous.
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To prove Proposition 2.1, we need the following lemma. The proof of Lemma 2.2
is similar to the proof of [22, Theorem 2], but, for the sake of completeness, we
give it here.

Lemma 2.2. Let A be a C∗-algebra, and let M be a Banach left A-module. If δ
is a left derivation from A into M, then δ is automatically continuous.

Proof. Let J = {J ∈ A : DJ(T ) = δ(JT ) is continuous for every T in A}. Since
δ is a left derivation from A into M, we have that

Jδ(T ) = δ(JT )− Tδ(J)

for every T in A and every J in J . Then

J =
{
J ∈ A : SJ(T ) = Jδ(T ) is continuous every every T in A

}
.

We divide the proof into three steps.
First, we show that J is a closed two-sided ideal in A. Clearly, J is a right

ideal in A. Moreover, for each A, T in A and every J in J , we have that

δ(AJT ) = Aδ(JT ) + JTδ(A);

thus DAJ(T ) is continuous for every T in A and J is also a left ideal in A.
Suppose that {Jn} ⊆ J and J ∈ A such that limn→∞ Jn = J . Then every SJn

is a continuous linear operator; hence we obtain

SJ(T ) = Jδ(T ) = lim
n→∞

Jnδ(T ) = lim
n→∞

SJn(T )

for every T in A. By the principle of uniform boundedness, we have that SJ is
norm continuous and J ∈ A. Thus, J is a closed two-sided ideal in A.

Next, we show that the restriction δ|J is norm continuous. Suppose the con-
trary. We can choose {Jn} ⊆ J such that

∞∑
n=1

‖Jn‖2 6 1 and
∥∥δ(Jn)∥∥ → ∞ when n→ ∞.

Let B = (
∑∞

n=1 JnJ
∗
n)

1/4. Then B is a positive element in J with ‖B‖ 6 1. By
[22, Lemma 1] it follows that Jn = BCn for some {Cn} ⊆ J with ‖Cn‖ 6 1, and∥∥DB(Cn)

∥∥ =
∥∥δ(BCn)

∥∥ =
∥∥δ(Jn)∥∥ → ∞ when n→ ∞.

This leads to a contradiction; hence δ|J is norm continuous.
Finally, we show that the C∗-algebra A/J is finite-dimensional. Otherwise,

by [19] we know that A/J has an infinite-dimensional abelian C∗-subalgebra Ã.
Since the carrier space X of Ã is infinite, it follows easily from the isomorphism
between Ã and C0(X) that there is a positive element H in Ã whose spectrum is
infinite; hence we can choose nonnegative continuous functions f1, f2, . . ., defined
on the positive real axis such that

fjfk = 0 if j 6= k and fj(H) 6= 0 (j = 1, 2, . . .).
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Let ϕ be a natural mapping from A into A/J . Then there exists a positive
element K in A such that ϕ(K) = H. Denote Aj = fj(K) for each j. Then we
have that Aj ∈ A and

ϕ(A2
j) = ϕ

(
fj(K)

)2
=

[
fj
(
ϕ(K)

)]2
= fj(H)2 6= 0.

It follows that A2
j /∈ J and AjAk = 0 if j 6= k. If we replace Aj by an appropriate

scalar multiple, we may suppose that ‖Aj‖ 6 1. By A2
j /∈ J , we have that DA2

j
is

unbounded. Thus, we can choose Tj ∈ A such that

‖Tj‖ 6 2−j and
∥∥δ(A2

jTj)
∥∥ >M

∥∥δ(Aj)
∥∥+ j,

where M is the bound of the linear mapping

(T, x) → xT : A×M → A.
Let C =

∑
j>1AjTj. Then we have that ‖C‖ 6 1 and AjC = A2

jTj, and so∥∥Ajδ(C)
∥∥ =

∥∥δ(AjC)− Cδ(Aj)
∥∥

>
∥∥δ(A2

jTj)
∥∥−M‖C‖

∥∥δ(Aj)
∥∥

>M
∥∥δ(Aj)

∥∥+ j −M
∥∥δ(Aj)

∥∥ = j.

However, this is impossible because, in fact, ‖Aj‖ 6 1 and the linear mapping

T → Tδ(C) : A → M
is bounded; hence we prove that A/J is finite-dimensional.

Since δ|J is continuous and A/J is finite-dimensional, it follows that δ is
automatically continuous. �

Given an element A of the algebra B(H) of all bounded linear operators on
a Hilbert space H, we denote by G(A) the C∗-algebra generated by A. For any
self-adjoint subalgebra A of B(H), if G(B) ⊆ A for every self-adjoint element
B ∈ A, then we call A locally closed. Obviously, every C∗-algebra is locally
closed.

Lemma 2.3 ([6, Corollary 1.2]). Let A be a locally closed subalgebra of B(H), let
Y be a locally convex linear space, and let ψ be a linear mapping from A into Y .
If ψ is continuous from every commutative self-adjoint subalgebra of A into Y ,
then ψ is continuous.

Proof of Proposition 2.1. By Lemma 2.3, it is sufficient to prove that δ is contin-
uous from each commutative self-adjoint subalgebra B of A into M. It is clear
that the norm closure B̄ of B is an abelian C∗-algebra. Thus, we only need to
show that the restriction δ|B̄ is continuous.

In fact, for each A, B in B̄, we have that

δ(AB +BA) = δ(2AB) = 2Aδ(B) + 2Bδ(A).

This means that δ|B̄ is a left derivation. By Lemma 2.2 we know that δ|B̄ is
automatically continuous; hence δ is continuous on B. �

By Lemma 1.2(1) and Proposition 2.1, we can easily show the following result.
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Corollary 2.4. Let A be a von Neumann algebra, and let M be a Banach left
A-module. If δ is a Jordan left derivation from A into M, then δ ≡ 0.

Applying some techniques from [1], [8], and [9], we can obtain the following
result.

Theorem 2.5. Let A be a C∗-algebra, and let M be a Banach left A-module. If
δ is a Jordan left derivation from A into M, then δ ≡ 0.

Proof. By [9, p. 26], we can define a product � in A∗∗ by a∗∗�b∗∗ = limλ limµ αλβµ
for each a∗∗, b∗∗ in A∗∗, where (αλ) and (βµ) are two nets in A with ‖aλ‖ 6 ‖a∗∗‖
and ‖bµ‖ 6 ‖b∗∗‖ such that αλ → a∗∗ and βµ → b∗∗ in the weak∗-topology
σ(A∗∗,A∗). By [14, p. 726], we know that A∗∗ is ∗-isomorphic to a von Neumann
algebra, and so we may assume that (A∗∗,�) is a von Neumann algebra.

It is well known that M∗∗ turns into a Banach left (A∗∗, �)-module with the
operation defined by

a∗∗ ·m∗∗ = lim
λ

lim
µ
aλmµ

for every a∗∗ in A∗∗ and every m∗∗ in M∗∗, where (aλ) is a net in A with ‖aλ‖ 6
‖a∗∗‖ and (aλ) → a∗∗ in σ(A∗∗,A∗), (mµ) is a net in M with ‖mµ‖ 6 ‖m∗∗‖, and
(mµ) → m∗∗ in σ(M∗∗,M∗).

By Proposition 2.1 we have that δ∗∗ : (A∗∗, �) → M∗∗ is the weak∗-continuous
extension of δ to the double duals of A and M.

Let a∗∗, b∗∗ be in A∗∗, and let (aλ), (bµ) be two nets in A with ‖aλ‖ 6 ‖a∗∗‖
and ‖bµ‖ 6 ‖b∗∗‖ such that a∗∗ = limλ aλ and b∗∗ = limµ bµ in σ(A∗∗,A∗). We
have that

δ∗∗(a∗∗ � b∗∗ + b∗∗ � a∗∗) = δ∗∗
(
lim
λ

lim
µ
aλbµ + lim

µ
lim
λ
bµaλ

)
.

By [1, p. 553], we know that every continuous bilinear map ϕ from A×M into
M is Arens regular, which means that

lim
λ

lim
µ
ϕ(aλ,mµ) = lim

µ
lim
λ
ϕ(aλ,mµ)

for every σ(A∗∗,A∗)-convergent net (aλ) in A and every σ(M∗∗,M∗)-convergent
net (mµ) in M. It follows that

δ∗∗
(
lim
λ

lim
µ
aλbµ + lim

µ
lim
λ
bµaλ

)
= δ∗∗

(
lim
λ

lim
µ
aλbµ + lim

λ
lim
µ
bµaλ

)
= lim

λ
lim
µ
δ(aλbµ + bµaλ)

= lim
λ

lim
µ

2aλδ(bµ) + lim
λ

lim
µ

2bµδ(aλ)

= lim
λ

lim
µ

2aλδ(bµ) + lim
µ

lim
λ

2bµδ(aλ)

= 2a∗∗δ∗∗(b∗∗) + 2b∗∗δ∗∗(a∗∗).

It means that δ∗∗ is a Jordan left derivation from A∗∗ into M∗∗. Thus, by Corol-
lary 2.4 we obtain

δ∗∗(a∗∗) = 0

for every a∗∗ in A∗∗; hence δ(a) = 0 for every a in A. �
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3. Jordan left derivations on reflexive algebras

Let X be a complex Banach space. For any nonzero elements x in X and f
in X∗, the rank 1 operator x ⊗ f ∈ B(X) is defined by (x ⊗ f)y = f(y)x for
every y in X. For every nonempty subset E of X, let E⊥ = {f ∈ X∗ : f(x) =
0 for every x in E}, and let E⊥

− = (E−)
⊥.

The main result in this section is Theorem 3.1.

Theorem 3.1. Let L be a subspace lattice on X such that ∩{L− : L ∈ JL} = (0).
If δ is a Jordan left derivation from AlgL into B(X), then δ ≡ 0.

In order to prove Theorem 3.1, we need the following two lemmas.

Lemma 3.2 ([12, Lemma 3.2]). Let X be a Banach space, let E ⊆ X and F ⊆
X∗, and let φ be a bilinear mapping from E × F into B(X). If φ(x, f)X ⊆ Cx
for every x ∈ E and f ∈ F , then there exists a linear mapping S∗ from F into
X∗ such that φ(x, f) = x⊗ S∗f .

Lemma 3.3. Let L be a subspace lattice on X, and let E and L be in JL such that
E− + L. If δ is a Jordan left derivation from AlgL into B(X), then δ(x⊗f) ⊆ Cx
for every x ∈ E and f ∈ L⊥

−.

Proof. Since E− + L, it follows that E ⊆ L and x ⊗ f ∈ AlgL. Obviously, we
can choose an element z in L and an element g in E⊥

− such that g(z) = 1. In the
following proof, we let x ∈ E and f ∈ F⊥

− ; then x ∈ F .
Case 1 : Suppose that f(x) 6= 0.
It is easy to show that( 1

f(x)
(x⊗ f)

)2

=
1

f(x)
(x⊗ f)

and that 1
f(x)

(x⊗ f) is an idempotent in AlgL. By Lemma 1.2(1) we obtain

δ(x⊗ f) = f(x)δ
( 1

f(x)
(x⊗ f)

)
= 0.

Case 2 : Suppose that f(x) = 0.
If g(x) 6= 0, then (g + f)(x) 6= 0. Hence

δ
(
x⊗ (g + f)

)
= δ(x⊗ g) = 0.

Thus δ(x⊗ f) = 0.
If g(x) = 0, then since g(z) = 1, by Lemma 1.1 we have

δ(x⊗ f) = δ
(
(x⊗ g)(z ⊗ f) + (z ⊗ f)(x⊗ g)

)
= 2(x⊗ g)δ(z ⊗ f) + 2(z ⊗ f)δ(x⊗ g) (3.1)

and

0 = δ
(
(x⊗ g)(z ⊗ f)(x⊗ g)

)
= 3(x⊗ f)δ(x⊗ g). (3.2)

By (3.2) we have (
δ(x⊗ g)

)∗
f = 0.
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Hence

(z ⊗ f)δ(x⊗ g) = z ⊗
(
δ(x⊗ g)∗f

)
= 0.

By (3.1) we know that

δ(x⊗ f) = 2(x⊗ g)δ(z ⊗ f). (3.3)

By (3.3) we have that δ(x⊗ f) ⊆ Cx. �

Proof of Theorem 3.1. Let F ∈ J (L). There exists an element E ∈ J (L) such
that E− + F . Let x ∈ E , f ∈ F⊥

− . First we prove that δ(x⊗ f) = 0.
If f(x) 6= 0, then we have δ(x ⊗ f) = 0. In the following we assume that

f(x) = 0.
Case 1 : Suppose that dim(E) = 1.
Since ∩{L− : L ∈ JL} = (0), there exists an element L ∈ J (L) such that

L− + E, and so L ⊆ E. Since dim(E) = 1, we have that L = E and E− + E.
Hence there exists an element g ∈ E⊥

− such that g(x) 6= 0. Since f(x) = 0, we
have that (f + g)(x) 6= 0 and

δ
(
x⊗ (f + g)

)
= δ(x⊗ g) = 0,

Thus δ(x⊗ f) = 0.
Case 2 : Suppose that dim(E) > 2.
By Lemma 3.3 we know that δ(x⊗ f) ⊆ Cx for every x ∈ E and f ∈ F⊥

− . By
Lemma 3.2 there exists a linear mapping S∗ from F⊥

− to X∗ such that

δ(x⊗ f) = x⊗ S∗f.

We only need to prove that S∗f = 0.
Let A ∈ AlgL. We have that Ax ∈ E, A∗f ∈ F⊥

− . By Lemma 1.1(1) it follows
that

δ
(
A(x⊗ f) + (x⊗ f)A

)
= 2Aδ(x⊗ f) + 2(x⊗ f)δ(A)

= Ax⊗ S∗f + x⊗ S∗A∗f

= 2Ax⊗ S∗f + 2x⊗
(
δ(A)

)∗
f. (3.4)

By (3.4) we have that

Ax⊗ S∗f = x⊗
(
S∗A∗f − 2

(
δ(A)

)∗
f
)
. (3.5)

If S∗f 6= 0, then there exists an element z ∈ X such that (S∗f)(z) 6= 0. By (3.5),

(S∗f)(z)Ax =
(
S∗A∗f − 2

(
δ(A)

)∗
f
)
(z)x.

Hence there exists a number λA such that Ax = λAx for every x ∈ E.
Since ∩{L− : L ∈ JL} = (0), there exists an element L ∈ JL such that

L− + E, and we can choose an element x1 ∈ E and η ∈ L⊥
− such that η(x1) = 1.

Let 0 6= y ∈ L. We have that

(y ⊗ η)x1 = λy⊗ηx1,

and thus

y = λy⊗ηx1. (3.6)
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Since y 6= 0, λy⊗η 6= 0. Because dim(E) > 2, there exists an x2 ∈ E such that x1
and x2 are linearly independent. If η(x2) = 0, then η(x1 + x2) = 1, and it follows
that

(y ⊗ η)(x1 + x2) = λy⊗η(x1 + x2);

thus

y = λy⊗η(x1 + x2).

By (3.6) we know that x2 = 0. If η(x2) 6= 0, then

(y ⊗ η)(x2) = λy⊗ηx2;

thus

y =
λy⊗η

η(x2)
x2.

By (3.6) we know that x1 and x2 are linearly dependent. Hence S∗f = 0 and
δ(x⊗ f) = 0.

In the following we prove that δ(A)∗ = 0 for every A ∈ AlgL. Let A ∈
AlgL, x ∈ E, and f ∈ F⊥

− . We have that

δ
(
(x⊗ f)A+ A(x⊗ f)

)
= 2(x⊗ f)δ(A) = 0;

thus,

δ(A)∗f = 0.

Since ∩{L− : L ∈ JL} = (0), we obtain ∨{L⊥
− : L ∈ JL} = X∗. It implies that

δ(A)∗ = 0

for every A ∈ AlgL. Since ‖δ(A)‖ = ‖δ(A)∗‖, we have δ(A) = 0 for every
A ∈ AlgL. �

Remark. Similarly to the definition of Jordan left derivations, we can define a
Jordan right derivation. Similarly to the proof of Theorem 3.1, we can show that
every Jordan right derivation from AlgL with ∨{L : L ∈ JL} = X into B(X) is
zero.

4. Jordan left derivations on CSL subalgebras of von Neumann
algebras

For a Hilbert space H, we disregard the distinction between a closed subspace
and the orthogonal projection onto it. Let L be a subspace lattice on H. L is
called a CSL if it consists of mutually commuting projections. Let B be a von
Neumann algebra on H, and let L ⊆ B be a CSL on H. Then A = B ∩ AlgL is
said to be a CSL subalgebra of a von Neumann algebra B.

Theorem 4.1. If δ is a Jordan left derivation from A into B(H), then δ ≡ 0.

To prove Theorem 4.1, we need the following lemma.

Lemma 4.2. Let L be a CSL in a von Neumann algebra B on H. Define

Q = {P⊥A∗Px : P ∈ L, A ∈ A, x ∈ H}.
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Then we have

(1) Q ∈ L′ ∩ B ⊆ A;
(2) Q⊥AQ⊥ is a von Neumann algebra on Q⊥H when Q 6= I.

Proof. (1) Since L is a CSL in B, it is easy to show that L′ ∩ B ⊆ A. Then we
only need to prove that Q ∈ L′ ∩ B.

For every T in B∩AlgL⊥, it means that PTP⊥ = 0 for every P in L. Hence by
the definition of Q we have that Q⊥TQ = 0 and Q ∈ Lat(B ∩AlgL⊥). It follows
that

PQ = QPQ and QP = QPQ

for every P ∈ L, and so Q ∈ L′.
Letting P ∈ L, A ∈ A ⊆ B, B ∈ B′, and x ∈ H, we have that P⊥A∗P ∈ B. It

follows that

QBP⊥A∗Px = QP⊥A∗PBx = P⊥A∗PBx = BP⊥A∗Px.

By the definition of Q we obtain QBQ = BQ.
Similarly, since B∗ ∈ B′ for every B ∈ B′, we have that QB∗Q = B∗Q. It

follows that QB = BQ for every B ∈ B′. This means that Q ∈ B′′ = B and
Q ∈ L′ ∩ B ⊆ A.

(2) It is obvious that Q⊥AQ⊥ is a weakly closed operator algebra with an
identity Q⊥ on Q⊥H; hence it is sufficient to prove that Q⊥AQ⊥ is a self-adjoint
algebra.

Fix an element A ∈ A and P ∈ L. By the fact that Q commutes with P and
the definition of Q, we have that

P (AQ⊥)P⊥ = (Q⊥P⊥A∗P )∗ = 0.

This means that AQ⊥ ∈ B ∩ AlgL⊥. Then we obtain

AQ⊥ ∈ AlgL⊥ ∩ AlgL ∩ B = L′ ∩ B ⊆ A.

It follows that Q⊥A∗ ∈ A; thus Q⊥A∗Q⊥ ∈ Q⊥AQ⊥ for every A ∈ A, which tells
us that Q⊥AQ⊥ is a von Neumann algebra on Q⊥H. �

Proof of Theorem 4.1. Letting Q be as in Lemma 4.2, it is obvious that if Q = I,
then δ(A) = Qδ(A). We suppose that Q 6= I. Let Q1 = Q, Q2 = I − Q, and
Aij = QiAQj. Then we have the Peirce decomposition of A as follows:

A = A11 +A12 +A21 +A22.

By Lemma 1.2(2), we have that

δ(A12) = δ(A21) = 0.

Moreover, by Lemma 4.2 we know that A22 is a von Neumann algebra on Q⊥H;
hence by Corollary 2.4 we obtain

δ(A22) = 0.
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It follows that

δ(A) = δ(QAQ) = Qδ(A)

for every A in A.
In the following, we show that Qδ(A) ≡ 0 for every A in A. Let P be in L, and

let A, B be in A. By Lemmas 1.1(1) and 1.2(2) we have that

0 = δ(PBP⊥P⊥AP⊥)

= δ
(
(PBP⊥P⊥AP⊥) + (P⊥AP⊥PBP⊥)

)
= 2PBP⊥δ(P⊥AP⊥)

= 2PBP⊥δ(A).

It implies that δ(A)∗P⊥B∗P = 0; that is, δ(A)∗Q = 0. Thus Qδ(A) ≡ 0 for
every A in A. �

Remark. In [21, pp. 741–742], Park introduces the concept of Jordan higher left
derivations as follows.

Let A be a unital algebra, and let N = N∗ ∪ {0} be the set of all nonnegative
integers. ∆ = (δi)i∈N is a sequence of linear mappings on A, where δ0 = idA.
Suppose that cij = 1 if i = j and cij = 0 if i 6= j. ∆ is called a Jordan higher left
derivation if

δn(A
2) =

∑
i+j=n
i6j

[
(cij + 1)δi(A)δj(A)

]
for every A in A, n in N∗, and i, j in N. It is clear that δ1 is a Jordan left derivation
on A.

By the definition of Jordan higher left derivations, it is easy to show that each
Jordan higher left derivation on these algebras, which are studied in Sections 2
to 4, is zero.

5. Left derivable mappings at some points

In this section, we consider left derivable mappings on factor von Neumann
algebras at every left separating point or every nonzero self-adjoint element.

Lemma 5.1. Let A be a unital algebra, let M be a unital left A-module, and let
δ be a linear mapping from A into M. If δ is left derivable at a left separating
point W , then δ(P ) = 0 for every idempotent P in A.

Proof. It is clear that δ(W ) = Wδ(I)+ δ(W ). Then Wδ(I) = 0. Since W is a left
separating point of M, it follows that δ(I) = 0.

For every idempotent P ∈ A and t ∈ R with t 6= 1, it is easy to show

I = (I − tP )
(
I − t

t− 1
P
)
.

Thus, we have that

W = (I − tP )
(
W − t

t− 1
PW

)
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and

δ(W ) = (I − tP )δ
(
W − t

t− 1
PW

)
+
(
W − t

t− 1
PW

)
δ(I − tP );

that is,

δ(W ) = δ(W )− t

t− 1
δ(PW )− tPδ(W )

+
t2

t− 1
Pδ(PW )− tWδ(P ) +

t2

t− 1
PWδ(P ).

Hence, for any t 6= 0, 1, we obtain

0 = −δ(PW )− (t− 1)Pδ(W ) + tPδ(PW )− (t− 1)Wδ(P ) + tPWδ(P );

that is,

0 = t
(
PWδ(P ) + Pδ(PW )− Pδ(W )−Wδ(P )

)
−

(
δ(PW )− Pδ(W )−Wδ(P )

)
.

Thus,

PWδ(P ) + Pδ(PW )− Pδ(W )−Wδ(P ) = 0 (5.1)

and

δ(PW )− Pδ(W )−Wδ(P ) = 0. (5.2)

Multiplying P from the left-hand sides of (5.1) and (5.2), we have that

PWδ(P ) + Pδ(PW )− Pδ(W )− PWδ(P ) = 0 (5.3)

and

Pδ(PW )− Pδ(W )− PWδ(P ) = 0. (5.4)

Comparing (5.3) and (5.4), we have that PWδ(P ) = 0 and Pδ(PW )−Pδ(W ) = 0.
Thus, by (5.1), we have that Wδ(P ) = 0. Since W is a left separating point of
M, we obtain δ(P ) = 0 for every idempotent P in A. �

By Lemma 5.1 and [16, Proposition 4.4], we have the following result.

Corollary 5.2. Let A be a weakly closed unital algebra of B(H) of infinite mul-
tiplicity, and let δ be a linear mapping from A into a unital left A-module M. If
δ is left derivable at a left separating point W , then δ ≡ 0.

Lemma 5.3 ([11, Theorem 3]). Let A be a von Neumann algebra. Then any
self-adjoint operator in A can be written as a linear combination of 12 projections
with 4 central and 8 real coefficients.

By Lemmas 5.1 and 5.3, it is easy to prove the following result.

Theorem 5.4. Let A be a factor von Neumann algebra, let M be a unital left
A-module, and let δ be a linear mapping from A into M. If δ is left derivable at
a left separating point W , then δ ≡ 0.
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Lemma 5.5 ([2, Lemma 5]). Let A be a von Neumann algebra, and A has no
direct summands of finite type I. Then each invertible operator A ∈ A+ can
be written as a linear combination of projections in A with positive coefficients,
where A+ denotes the set of all positive operators in A.

By Lemmas 5.1 and 5.5, we have the following corollary.

Corollary 5.6. Let A be a von Neumann algebra, and A has no direct summands
of finite type I. Let M be a unital left A-module, and let δ be a linear mapping
from A into M. If δ is left derivable at a left separating point W , then δ ≡ 0.

By [16, Lemma 3.1] and Lemma 5.3, we know that if A is a factor von Neumann
algebra and δ is a left derivable mapping at zero from A into any unital left
A-module M with δ(I) = 0, then δ ≡ 0. Now we consider left derivable mappings
at every nonzero self-adjoint element of factor von Neumann algebras.

Theorem 5.7. Let A be a factor von Neumann algebra, let C in A be a nonzero
self-adjoint element, and let δ be a linear mapping from A into itself. If δ is left
derivable at C, then δ ≡ 0.

Proof. If kerC = 0, then C is a left separating point of A. By Theorem 5.4 we
know the conclusion holds.

In the following, we suppose that kerC 6= 0.
Since A is a factor von Neumann algebra, it is well known that A is a prime

algebra; that is,

AAB = (0) implies A = 0 or B = 0 (5.5)

for each A, B in A.
Let P = ranC, and let Q = I−P . By assumption, we know P 6= 0 and Q 6= 0.

For every M in A, by C = C∗, we have that MC = 0 implies MP = 0 and
CM = 0 implies PM = 0.

Let A11 = PAP , A12 = PAQ, A21 = QAP , and A22 = QAQ. It follows that
A = A11 +A12 +A21 +A22. Since CQ = QC = 0, we have that C = C11 ∈ A11.
We divide the proof into two steps.

First we show that δ(A22) = δ(A12) = Pδ(A21) = Qδ(A11) = 0.
Since CI = C and δ is left derivable at C, it is easy to show that Cδ(I) =

Pδ(I) = 0.
Letting A11 ∈ A11 be invertible, A12 ∈ A12, A22 ∈ A22, and 0 6= t ∈ R. By a

simple computation, we have that

A11(A
−1
11 C) = C

and

(A11 + tA11A12)(A
−1
11 C − A12A22 + t−1A22) = C.

It follows that

δ(C) = A−1
11 Cδ(A11) + A11δ(A

−1
11 C) (5.6)
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and

δ(C) = (A−1
11 C − A12A22 + t−1A22)δ(A11 + tA11A12)

+ (A11 + tA11A12)δ(A
−1
11 C − A12A22 + t−1A22)

=
[
(A−1

11 C − A12A22)δ(A11) + A11δ(A
−1
11 C − A12A22)

+ A22δ(A11A12) + A11A12δ(A22)
]

+ t
[
(A−1

11 C − A12A22)δ(A11A12) + A11A12δ(A
−1
11 C − A12A22)

]
+ t−1

[
A22δ(A11) + A11δ(A22)

]
. (5.7)

Since t is an arbitrary nonzero number in R, by (5.7) and [20, Proposition 2.0] it
is easy to obtain some identities as follows:

(A−1
11 C − A12A22)δ(A11A12) + A11A12δ(A

−1
11 C − A12A22) = 0, (5.8)

A22δ(A11) + A11δ(A22) = 0, (5.9)

and

δ(C) = (A−1
11 C − A12A22)δ(A11) + A11δ(A

−1
11 C − A12A22)

+ A22δ(A11A12) + A11A12δ(A22)

= A−1
11 Cδ(A11) + A11δ(A

−1
11 C)

− A12A22δ(A11)− A11δ(A12A22)

+ A22δ(A11A12) + A11A12δ(A22). (5.10)

By (5.6) and (5.10) we have that

−A12A22δ(A11)− A11δ(A12A22) + A22δ(A11A12) + A11A12δ(A22) = 0. (5.11)

Multiplying Q from the left of (5.9) and taking A22 = Q in it, we have that

Qδ(A11) = 0.

Since A11 is a von Neumann algebra, it can be linearly generated by its invertible
elements. Since δ is linear, we have

Qδ(A11) = 0.

It follows that Qδ(C) = 0 and δ(C) = Pδ(C). Similarly, we have that Pδ(A22) =
0.

Multiplying P from the left of (5.9) and taking A11 = P and A22 = Q in (5.9),
we have that

Pδ(Q) = Qδ(P ) = 0.

It follows that δ(P ) = Pδ(P ) = Pδ(I) = 0.
Multiplying Q from the left of (5.11) and taking A11 = P and A22 = Q in it,

we have that

Qδ(A12) = 0.

Taking A11 = P and A22 = Q in (5.8), we obtain

(C − A12)δ(A12) + A12δ(C − A12) = 0. (5.12)
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By Qδ(A12) = 0 and Qδ(C) = 0, we have that Cδ(A12) = Pδ(A12) = 0; thus

δ(A12) = 0

for every A12 in A12, which means that δ(A12) = 0.
By Qδ(A11) = 0 and taking A11 = P in (5.11), we have that

A12δ(A22) = 0. (5.13)

Since A12 is arbitrary, it follows that PAQδ(A22) = 0. By (5.5) and P 6= 0 we
obtain

Qδ(A22) = 0

for every A22 in A22, which means that Qδ(A22) = 0. Using Pδ(A22) = 0 and
Qδ(A22) = 0, we have that δ(A22) = 0.

Taking A22 = Q in (5.13), we obtain

A12δ(Q) = 0.

Similarly, by (5.5) it follows that Qδ(Q) = 0; that is, δ(Q) = 0 by Pδ(Q) = 0.
By P (C + A21) = C, we have that

(C + A21)δ(P ) + Pδ(C + A21) = δ(C).

Since δ(P ) = 0, it follows that Pδ(C+A21) = δ(C); hence we obtain Pδ(A21) = 0
for every A21 in A21. Thus Pδ(A21) = 0.

Similarly, letting A11 ∈ A11 be invertible, A21 ∈ A21, A22 ∈ A22, and 0 6= t ∈ R.
We have that

(CA−1
11 − A22A21 + t−1A22)(A11 + tA21A11) = C.

Thus, applying the same technique as in the previous proof, we can prove that
Qδ(A21) = Pδ(A11) = 0. Hence δ(A21) = δ(A11) = 0. �
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