

CHARACTERIZATIONS OF JORDAN LEFT DERIVATIONS ON SOME ALGEBRAS

GUANGYU AN, YANA DING, and JIANKUI LI^{*}

Communicated by A. R. Villena

ABSTRACT. A linear mapping δ from an algebra \mathcal{A} into a left \mathcal{A} -module \mathcal{M} is called a Jordan left derivation if $\delta(A^2) = 2A\delta(A)$ for every $A \in \mathcal{A}$. We prove that if an algebra \mathcal{A} and a left \mathcal{A} -module \mathcal{M} satisfy one of the following conditions—(1) \mathcal{A} is a C^* -algebra and \mathcal{M} is a Banach left \mathcal{A} -module; (2) $\mathcal{A} =$ Alg \mathcal{L} with $\cap \{L_- : L \in \mathcal{J}_{\mathcal{L}}\} = (0)$ and $\mathcal{M} = B(X)$; and (3) \mathcal{A} is a commutative subspace lattice algebra of a von Neumann algebra \mathcal{B} and $\mathcal{M} = B(\mathcal{H})$ —then every Jordan left derivation from \mathcal{A} into \mathcal{M} is zero. δ is called *left derivable* at $G \in \mathcal{A}$ if $\delta(AB) = A\delta(B) + B\delta(A)$ for each $A, B \in \mathcal{A}$ with AB = G. We show that if \mathcal{A} is a factor von Neumann algebra, G is a left separating point of \mathcal{A} or a nonzero self-adjoint element in \mathcal{A} , and δ is left derivable at G, then $\delta \equiv 0$.

1. INTRODUCTION

Let \mathcal{R} be an associative ring. For an integer $n \ge 2$, \mathcal{R} is said to be *n*-torsion-free if nA = 0 implies A = 0 for every A in \mathcal{R} . Recall that a ring \mathcal{R} is prime if $A\mathcal{R}B = (0)$ implies that either A = 0 or B = 0 for each A, B in \mathcal{R} , and it is semiprime if $A\mathcal{R}A = (0)$ implies A = 0 for every A in \mathcal{R} .

Suppose that \mathcal{M} is an \mathcal{R} -bimodule. An additive mapping δ from \mathcal{R} into \mathcal{M} is called a *derivation* if $\delta(AB) = \delta(A)B + A\delta(B)$ for each A, B in \mathcal{R} , and δ is called a *Jordan derivation* if $\delta(A^2) = \delta(A)A + A\delta(A)$ for every A in \mathcal{R} . Obviously, every derivation is a Jordan derivation. The converse is, in general, not true. A classi-

Copyright 2016 by the Tusi Mathematical Research Group.

Received Apr. 1, 2015; Accepted Aug. 18, 2015.

^{*}Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 47B47; Secondary 47L35, 47C15.

Keywords. C*-algebra, Jordan left derivation, left derivable point, left separating point.

cal result of Herstein [13] asserts that every Jordan derivation on a 2-torsion-free prime ring is a derivation. In [4], Brešar and Vukman give a brief proof of [13, Theorem 3.1]. In [7], Cusack generalizes [13, Theorem 3.1] to 2-torsion-free semiprime rings. In [3], Brešar gives an alternative proof of [7, Corollary 5].

In [5], Brešar and Vukman introduce the concepts of left derivations and Jordan left derivations. In [24], Vukman introduces the concept of (m, n)-Jordan derivations.

Let \mathcal{M} be a left \mathcal{R} -module. An additive mapping δ from \mathcal{R} into \mathcal{M} is called a *left derivation* if $\delta(AB) = A\delta(B) + B\delta(A)$ for each A, B in \mathcal{R} , and δ is called a *Jordan left derivation* if $\delta(A^2) = 2A\delta(A)$ for every A in \mathcal{R} . Let $m \ge 0$ and $n \ge 0$ be two fixed integers with $m + n \ne 0$; δ is called an (m, n)-*Jordan derivation* if $(m + n)\delta(A^2) = 2mA\delta(A) + 2n\delta(A)A$ for every A in \mathcal{R} . The concept of (m, n)-Jordan derivations covers the concept of Jordan derivations, as well as the concept of Jordan left derivations.

In [5], Brešar and Vukman prove that if there exists a nonzero Jordan left derivation from a prime ring \mathcal{R} into a left \mathcal{R} -module \mathcal{M} of characteristic not 2 and 3, then \mathcal{R} is commutative. In [10], Deng shows that [5, Theorem 2.1] is still true when \mathcal{M} is only characteristic not 2. In [23], Vukman shows that every Jordan left derivation from a complex semisimple Banach algebra into itself is zero. In [15], Kosi-Ulbl and Vukman prove that if $m \ge 1$ and $n \ge 1$ are two integers with $m \ne n$, then every (m, n)-Jordan derivation from a complex semisimple Banach algebra into itself is zero.

Throughout this paper, \mathcal{A} denotes an algebra over the complex field \mathbb{C} , and \mathcal{M} denotes a left \mathcal{A} -module. In the paper, we assume that all mappings from \mathcal{A} into \mathcal{M} are linear.

This paper is organized as follows. In Section 2, we show that every Jordan left derivation from a C^* -algebra \mathcal{A} into its Banach left module \mathcal{M} is zero.

In Section 3, we show that if \mathcal{L} is a subspace lattice on a complex Banach space X with $\cap \{L_- : L \in \mathcal{J}_{\mathcal{L}}\} = (0)$, then every Jordan left derivation from Alg \mathcal{L} into B(X) is zero. The class of reflexive algebras Alg \mathcal{L} with $\cap \{L_- : L \in \mathcal{J}_{\mathcal{L}}\} = (0)$ is very large, and it includes the following:

- (1) \mathcal{P} -subspace lattice algebras;
- (2) completely distributive subspace lattice algebras;
- (3) reflexive algebras Alg \mathcal{L} such that $(0)_+ \neq (0)$.

In Section 4, we show that if \mathcal{B} is a von Neumann algebra on a Hilbert space \mathcal{H} and $\mathcal{L} \subseteq \mathcal{B}$ is a commutative subspace lattice (CSL) on \mathcal{H} , then every Jordan left derivation from $\mathcal{B} \cap \text{Alg } \mathcal{L}$ into $B(\mathcal{H})$ is zero.

A linear mapping δ from \mathcal{A} into \mathcal{M} is called *left derivable at* $G \in \mathcal{A}$ if $\delta(AB) = A\delta(B) + B\delta(A)$ for each $A, B \in \mathcal{A}$ with AB = G. In [16], Li and Zhou show that if \mathcal{L} is a \mathcal{J} -subspace lattice, then every left derivable mapping at a unit on Alg \mathcal{L} is zero.

For a unital algebra \mathcal{A} and a unital left \mathcal{A} -module \mathcal{M} , we call an element $W \in \mathcal{A}$ a *left separating point* of \mathcal{M} if WM = 0 implies M = 0 for every $M \in \mathcal{M}$. It is easy to see that every left invertible element in \mathcal{A} is a left separating point of \mathcal{M} . In Section 5, we prove that if \mathcal{A} is a factor von Neumann algebra, then every left derivable mapping at a left separating point or a nonzero self-adjoint element is zero.

Let X be a complex Banach space, and let B(X) be the set of all bounded linear operators on X. We denote by X^* and X^{**} the dual space and the double dual space of X, respectively. In this paper, every subspace of X is a closed linear manifold. By a *subspace lattice* on X, we mean a collection \mathcal{L} of subspaces of X with (0) and X in \mathcal{L} such that, for every family $\{M_r\}$ of elements of \mathcal{L} , both $\cap M_r$ and $\vee M_r$ belong to \mathcal{L} , where $\vee M_r$ denotes the closed linear span of $\{M_r\}$.

Let \mathcal{L} be a subspace lattice on X. Define

$$\mathcal{J}_{\mathcal{L}} = \left\{ E \in \mathcal{L} : E \neq (0) \text{ and } E_{-} \neq X \right\} \quad \text{and} \quad \mathcal{P}_{\mathcal{L}} = \{ E \in \mathcal{L} : E_{-} \not\supseteq E \},$$

where $E_{-} = \bigvee \{F \in \mathcal{L} : F \not\supseteq E\}$. \mathcal{L} is called a \mathcal{J} -subspace lattice on X if it satisfies $E \lor E_{-} = X$ and $E \cap E_{-} = (0)$ for every E in $\mathcal{J}_{\mathcal{L}}$; $\lor \{E : E \in \mathcal{J}_{\mathcal{L}}\} = X$ and $\cap \{E_{-} : E \in \mathcal{J}_{\mathcal{L}}\} = (0)$. \mathcal{L} is called a \mathcal{P} -subspace lattice on X if it satisfies $\lor \{E : E \in \mathcal{P}_{\mathcal{L}}\} = X$ or $\cap \{E_{-} : E \in \mathcal{P}_{\mathcal{L}}\} = (0)$.

 \mathcal{L} is said to be *completely distributive* if its subspaces satisfy the identity

$$\bigwedge_{a\in I}\bigvee_{b\in J}L_{a,b}=\bigvee_{f\in J^I}\bigwedge_{a\in I}L_{a,f(a)},$$

where J^{I} denotes the set of all $f : I \to J$. For some properties of completely distributive subspace lattices and \mathcal{J} -subspace lattices, see [17] and [18].

For every subspace lattice \mathcal{L} on X, we use Alg \mathcal{L} to denote the algebra of all operators in B(X) that leave members of \mathcal{L} invariant; and for a subalgebra \mathcal{A} of B(X), we use Lat \mathcal{A} to denote the lattice of all subspaces of X that are invariant under all operators in \mathcal{A} . An algebra \mathcal{A} is called *reflexive* if $\mathcal{A} = \text{Alg Lat } \mathcal{A}$.

The following two lemmas will be used repeatedly.

Lemma 1.1 ([16, Lemma 2.1]). Let \mathcal{A} be an algebra, let \mathcal{M} be a left \mathcal{A} -module, and let δ be a Jordan left derivation from \mathcal{A} into \mathcal{M} . Then for each A, B in \mathcal{A} , the following two statements hold:

- (1) $\delta(AB + BA) = 2A\delta(B) + 2B\delta(A);$
- (2) $\delta(ABA) = A^2\delta(B) + 3AB\delta(A) BA\delta(A).$

Lemma 1.2 ([16, Lemma 2.2]). Let \mathcal{A} be an algebra, let \mathcal{M} be a left \mathcal{A} -module, and let δ be a Jordan left derivation from \mathcal{A} into \mathcal{M} . Then for every A and every idempotent P in \mathcal{A} , the following two statements hold:

(1)
$$\delta(P) = 0;$$

(2) $\delta(PA) = \delta(AP) = \delta(PAP) = P\delta(A).$

2. Jordan left derivations on C^* -algebras

In this section, we study Jordan left derivations from a C^* -algebra into its Banach left module and prove that these Jordan left derivations are zero.

Proposition 2.1. Let \mathcal{A} be a C^* -algebra, and let \mathcal{M} be a Banach left \mathcal{A} -module. If δ is a Jordan left derivation from \mathcal{A} into \mathcal{M} , then δ is automatically continuous. To prove Proposition 2.1, we need the following lemma. The proof of Lemma 2.2 is similar to the proof of [22, Theorem 2], but, for the sake of completeness, we give it here.

Lemma 2.2. Let \mathcal{A} be a C^* -algebra, and let \mathcal{M} be a Banach left \mathcal{A} -module. If δ is a left derivation from \mathcal{A} into \mathcal{M} , then δ is automatically continuous.

Proof. Let $\mathcal{J} = \{J \in \mathcal{A} : D_J(T) = \delta(JT) \text{ is continuous for every } T \text{ in } \mathcal{A}\}$. Since δ is a left derivation from \mathcal{A} into \mathcal{M} , we have that

$$J\delta(T) = \delta(JT) - T\delta(J)$$

for every T in \mathcal{A} and every J in \mathcal{J} . Then

 $\mathcal{J} = \{ J \in \mathcal{A} : S_J(T) = J\delta(T) \text{ is continuous every every } T \text{ in } \mathcal{A} \}.$

We divide the proof into three steps.

First, we show that \mathcal{J} is a closed two-sided ideal in \mathcal{A} . Clearly, \mathcal{J} is a right ideal in \mathcal{A} . Moreover, for each A, T in \mathcal{A} and every J in \mathcal{J} , we have that

$$\delta(AJT) = A\delta(JT) + JT\delta(A);$$

thus $D_{AJ}(T)$ is continuous for every T in \mathcal{A} and \mathcal{J} is also a left ideal in \mathcal{A} .

Suppose that $\{J_n\} \subseteq \mathcal{J}$ and $J \in \mathcal{A}$ such that $\lim_{n\to\infty} J_n = J$. Then every S_{J_n} is a continuous linear operator; hence we obtain

$$S_J(T) = J\delta(T) = \lim_{n \to \infty} J_n\delta(T) = \lim_{n \to \infty} S_{J_n}(T)$$

for every T in \mathcal{A} . By the principle of uniform boundedness, we have that S_J is norm continuous and $J \in \mathcal{A}$. Thus, \mathcal{J} is a closed two-sided ideal in \mathcal{A} .

Next, we show that the restriction $\delta|_{\mathcal{J}}$ is norm continuous. Suppose the contrary. We can choose $\{J_n\} \subseteq \mathcal{J}$ such that

$$\sum_{n=1}^{\infty} \|J_n\|^2 \leqslant 1 \quad \text{and} \quad \|\delta(J_n)\| \to \infty \quad \text{when } n \to \infty.$$

Let $B = (\sum_{n=1}^{\infty} J_n J_n^*)^{1/4}$. Then *B* is a positive element in \mathcal{J} with $||B|| \leq 1$. By [22, Lemma 1] it follows that $J_n = BC_n$ for some $\{C_n\} \subseteq \mathcal{J}$ with $||C_n|| \leq 1$, and

$$||D_B(C_n)|| = ||\delta(BC_n)|| = ||\delta(J_n)|| \to \infty \text{ when } n \to \infty.$$

This leads to a contradiction; hence $\delta|_{\mathcal{J}}$ is norm continuous.

Finally, we show that the C^* -algebra \mathcal{A}/\mathcal{J} is finite-dimensional. Otherwise, by [19] we know that \mathcal{A}/\mathcal{J} has an infinite-dimensional abelian C^* -subalgebra $\tilde{\mathcal{A}}$. Since the carrier space X of $\tilde{\mathcal{A}}$ is infinite, it follows easily from the isomorphism between $\tilde{\mathcal{A}}$ and $C_0(X)$ that there is a positive element H in $\tilde{\mathcal{A}}$ whose spectrum is infinite; hence we can choose nonnegative continuous functions f_1, f_2, \ldots , defined on the positive real axis such that

$$f_j f_k = 0$$
 if $j \neq k$ and $f_j (H) \neq 0$ $(j = 1, 2, ...).$

Let φ be a natural mapping from \mathcal{A} into \mathcal{A}/\mathcal{J} . Then there exists a positive element K in \mathcal{A} such that $\varphi(K) = H$. Denote $A_j = f_j(K)$ for each j. Then we have that $A_j \in \mathcal{A}$ and

$$\varphi(A_j^2) = \varphi(f_j(K))^2 = \left[f_j(\varphi(K))\right]^2 = f_j(H)^2 \neq 0.$$

It follows that $A_j^2 \notin \mathcal{J}$ and $A_j A_k = 0$ if $j \neq k$. If we replace A_j by an appropriate scalar multiple, we may suppose that $||A_j|| \leq 1$. By $A_j^2 \notin \mathcal{J}$, we have that $D_{A_j^2}$ is unbounded. Thus, we can choose $T_j \in \mathcal{A}$ such that

$$||T_j|| \leq 2^{-j}$$
 and $||\delta(A_j^2 T_j)|| \ge M ||\delta(A_j)|| + j,$

where M is the bound of the linear mapping

$$(T, x) \to xT : \mathcal{A} \times \mathcal{M} \to \mathcal{A}$$

Let $C = \sum_{j \ge 1} A_j T_j$. Then we have that $||C|| \le 1$ and $A_j C = A_j^2 T_j$, and so

$$\begin{split} \left\| A_{j}\delta(C) \right\| &= \left\| \delta(A_{j}C) - C\delta(A_{j}) \right\| \\ &\geqslant \left\| \delta(A_{j}^{2}T_{j}) \right\| - M \|C\| \left\| \delta(A_{j}) \right\| \\ &\geqslant M \left\| \delta(A_{j}) \right\| + j - M \left\| \delta(A_{j}) \right\| = j \end{split}$$

However, this is impossible because, in fact, $||A_i|| \leq 1$ and the linear mapping

 $T \to T\delta(C) : \mathcal{A} \to \mathcal{M}$

is bounded; hence we prove that \mathcal{A}/\mathcal{J} is finite-dimensional.

Since $\delta|_{\mathcal{J}}$ is continuous and \mathcal{A}/\mathcal{J} is finite-dimensional, it follows that δ is automatically continuous.

Given an element A of the algebra $B(\mathcal{H})$ of all bounded linear operators on a Hilbert space \mathcal{H} , we denote by $\mathcal{G}(A)$ the C^* -algebra generated by A. For any self-adjoint subalgebra \mathcal{A} of $B(\mathcal{H})$, if $\mathcal{G}(B) \subseteq \mathcal{A}$ for every self-adjoint element $B \in \mathcal{A}$, then we call \mathcal{A} locally closed. Obviously, every C^* -algebra is locally closed.

Lemma 2.3 ([6, Corollary 1.2]). Let \mathcal{A} be a locally closed subalgebra of $\mathcal{B}(\mathcal{H})$, let Y be a locally convex linear space, and let ψ be a linear mapping from \mathcal{A} into Y. If ψ is continuous from every commutative self-adjoint subalgebra of \mathcal{A} into Y, then ψ is continuous.

Proof of Proposition 2.1. By Lemma 2.3, it is sufficient to prove that δ is continuous from each commutative self-adjoint subalgebra \mathcal{B} of A into \mathcal{M} . It is clear that the norm closure $\overline{\mathcal{B}}$ of \mathcal{B} is an abelian C^* -algebra. Thus, we only need to show that the restriction $\delta|_{\overline{\mathcal{B}}}$ is continuous.

In fact, for each A, B in $\overline{\mathcal{B}}$, we have that

$$\delta(AB + BA) = \delta(2AB) = 2A\delta(B) + 2B\delta(A).$$

This means that $\delta|_{\bar{\mathcal{B}}}$ is a left derivation. By Lemma 2.2 we know that $\delta|_{\bar{\mathcal{B}}}$ is automatically continuous; hence δ is continuous on \mathcal{B} .

By Lemma 1.2(1) and Proposition 2.1, we can easily show the following result.

Corollary 2.4. Let \mathcal{A} be a von Neumann algebra, and let \mathcal{M} be a Banach left \mathcal{A} -module. If δ is a Jordan left derivation from \mathcal{A} into \mathcal{M} , then $\delta \equiv 0$.

Applying some techniques from [1], [8], and [9], we can obtain the following result.

Theorem 2.5. Let \mathcal{A} be a C^* -algebra, and let \mathcal{M} be a Banach left \mathcal{A} -module. If δ is a Jordan left derivation from \mathcal{A} into \mathcal{M} , then $\delta \equiv 0$.

Proof. By [9, p. 26], we can define a product \diamond in \mathcal{A}^{**} by $a^{**} \diamond b^{**} = \lim_{\lambda} \lim_{\mu} \alpha_{\lambda} \beta_{\mu}$ for each a^{**} , b^{**} in \mathcal{A}^{**} , where (α_{λ}) and (β_{μ}) are two nets in \mathcal{A} with $||a_{\lambda}|| \leq ||a^{**}||$ and $||b_{\mu}|| \leq ||b^{**}||$ such that $\alpha_{\lambda} \to a^{**}$ and $\beta_{\mu} \to b^{**}$ in the weak*-topology $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$. By [14, p. 726], we know that \mathcal{A}^{**} is *-isomorphic to a von Neumann algebra, and so we may assume that $(\mathcal{A}^{**}, \diamond)$ is a von Neumann algebra.

It is well known that \mathcal{M}^{**} turns into a Banach left $(\mathcal{A}^{**},\diamond)$ -module with the operation defined by

$$a^{**} \cdot m^{**} = \lim_{\lambda} \lim_{\mu} a_{\lambda} m_{\mu}$$

for every a^{**} in \mathcal{A}^{**} and every m^{**} in \mathcal{M}^{**} , where (a_{λ}) is a net in \mathcal{A} with $||a_{\lambda}|| \leq ||a^{**}||$ and $(a_{\lambda}) \to a^{**}$ in $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$, (m_{μ}) is a net in \mathcal{M} with $||m_{\mu}|| \leq ||m^{**}||$, and $(m_{\mu}) \to m^{**}$ in $\sigma(\mathcal{M}^{**}, \mathcal{M}^{*})$.

By Proposition 2.1 we have that $\delta^{**} : (\mathcal{A}^{**}, \diamond) \to \mathcal{M}^{**}$ is the weak*-continuous extension of δ to the double duals of \mathcal{A} and \mathcal{M} .

Let a^{**} , b^{**} be in \mathcal{A}^{**} , and let (a_{λ}) , (b_{μ}) be two nets in \mathcal{A} with $||a_{\lambda}|| \leq ||a^{**}||$ and $||b_{\mu}|| \leq ||b^{**}||$ such that $a^{**} = \lim_{\lambda} a_{\lambda}$ and $b^{**} = \lim_{\mu} b_{\mu}$ in $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$. We have that

$$\delta^{**}(a^{**} \diamond b^{**} + b^{**} \diamond a^{**}) = \delta^{**} \Big(\lim_{\lambda} \lim_{\mu} a_{\lambda} b_{\mu} + \lim_{\mu} \lim_{\lambda} b_{\mu} a_{\lambda} \Big).$$

By [1, p. 553], we know that every continuous bilinear map φ from $\mathcal{A} \times \mathcal{M}$ into \mathcal{M} is Arens regular, which means that

$$\lim_{\lambda} \lim_{\mu} \varphi(a_{\lambda}, m_{\mu}) = \lim_{\mu} \lim_{\lambda} \varphi(a_{\lambda}, m_{\mu})$$

for every $\sigma(\mathcal{A}^{**}, \mathcal{A}^{*})$ -convergent net (a_{λ}) in \mathcal{A} and every $\sigma(\mathcal{M}^{**}, \mathcal{M}^{*})$ -convergent net (m_{μ}) in \mathcal{M} . It follows that

$$\delta^{**} \left(\lim_{\lambda} \lim_{\mu} a_{\lambda} b_{\mu} + \lim_{\mu} \lim_{\lambda} b_{\mu} a_{\lambda} \right) = \delta^{**} \left(\lim_{\lambda} \lim_{\mu} a_{\lambda} b_{\mu} + \lim_{\lambda} \lim_{\mu} b_{\mu} a_{\lambda} \right)$$
$$= \lim_{\lambda} \lim_{\mu} \sum_{\mu} \delta(a_{\lambda} b_{\mu} + b_{\mu} a_{\lambda})$$
$$= \lim_{\lambda} \lim_{\mu} 2a_{\lambda} \delta(b_{\mu}) + \lim_{\lambda} \lim_{\mu} 2b_{\mu} \delta(a_{\lambda})$$
$$= \lim_{\lambda} \lim_{\mu} 2a_{\lambda} \delta(b_{\mu}) + \lim_{\mu} \lim_{\lambda} 2b_{\mu} \delta(a_{\lambda})$$
$$= 2a^{**} \delta^{**}(b^{**}) + 2b^{**} \delta^{**}(a^{**}).$$

It means that δ^{**} is a Jordan left derivation from \mathcal{A}^{**} into \mathcal{M}^{**} . Thus, by Corollary 2.4 we obtain

$$\delta^{**}(a^{**}) = 0$$

for every a^{**} in \mathcal{A}^{**} ; hence $\delta(a) = 0$ for every a in \mathcal{A} .

3. JORDAN LEFT DERIVATIONS ON REFLEXIVE ALGEBRAS

Let X be a complex Banach space. For any nonzero elements x in X and f in X^{*}, the rank 1 operator $x \otimes f \in B(X)$ is defined by $(x \otimes f)y = f(y)x$ for every y in X. For every nonempty subset E of X, let $E^{\perp} = \{f \in X^* : f(x) = 0 \text{ for every } x \text{ in } E\}$, and let $E^{\perp}_{-} = (E_{-})^{\perp}$.

The main result in this section is Theorem 3.1.

Theorem 3.1. Let \mathcal{L} be a subspace lattice on X such that $\cap \{L_{-} : L \in \mathcal{J}_{\mathcal{L}}\} = (0)$. If δ is a Jordan left derivation from Alg \mathcal{L} into B(X), then $\delta \equiv 0$.

In order to prove Theorem 3.1, we need the following two lemmas.

Lemma 3.2 ([12, Lemma 3.2]). Let X be a Banach space, let $E \subseteq X$ and $F \subseteq X^*$, and let ϕ be a bilinear mapping from $E \times F$ into B(X). If $\phi(x, f)X \subseteq \mathbb{C}x$ for every $x \in E$ and $f \in F$, then there exists a linear mapping S^* from F into X^* such that $\phi(x, f) = x \otimes S^* f$.

Lemma 3.3. Let \mathcal{L} be a subspace lattice on X, and let E and L be in $\mathcal{J}_{\mathcal{L}}$ such that $E_{-} \not\supseteq L$. If δ is a Jordan left derivation from Alg \mathcal{L} into B(X), then $\delta(x \otimes f) \subseteq \mathbb{C}x$ for every $x \in E$ and $f \in L_{-}^{\perp}$.

Proof. Since $E_{-} \not\supseteq L$, it follows that $E \subseteq L$ and $x \otimes f \in \text{Alg } \mathcal{L}$. Obviously, we can choose an element z in L and an element g in E_{-}^{\perp} such that g(z) = 1. In the following proof, we let $x \in E$ and $f \in F_{-}^{\perp}$; then $x \in F$.

Case 1: Suppose that $f(x) \neq 0$.

It is easy to show that

$$\left(\frac{1}{f(x)}(x\otimes f)\right)^2 = \frac{1}{f(x)}(x\otimes f)$$

and that $\frac{1}{f(x)}(x \otimes f)$ is an idempotent in Alg \mathcal{L} . By Lemma 1.2(1) we obtain

$$\delta(x \otimes f) = f(x)\delta\Big(\frac{1}{f(x)}(x \otimes f)\Big) = 0.$$

Case 2: Suppose that f(x) = 0. If $g(x) \neq 0$, then $(g+f)(x) \neq 0$. Hence

$$\delta(x \otimes (g+f)) = \delta(x \otimes g) = 0.$$

Thus $\delta(x \otimes f) = 0$.

If g(x) = 0, then since g(z) = 1, by Lemma 1.1 we have

$$\delta(x \otimes f) = \delta((x \otimes g)(z \otimes f) + (z \otimes f)(x \otimes g))$$

= 2(x \otimes g)\delta(z \otimes f) + 2(z \otimes f)\delta(x \otimes g) (3.1)

and

$$0 = \delta((x \otimes g)(z \otimes f)(x \otimes g)) = 3(x \otimes f)\delta(x \otimes g).$$
(3.2)

By (3.2) we have

$$\left(\delta(x\otimes g)\right)^*f=0$$

Hence

$$(z \otimes f)\delta(x \otimes g) = z \otimes (\delta(x \otimes g)^*f) = 0.$$

By (3.1) we know that

$$\delta(x \otimes f) = 2(x \otimes g)\delta(z \otimes f). \tag{3.3}$$

By (3.3) we have that $\delta(x \otimes f) \subseteq \mathbb{C}x$.

Proof of Theorem 3.1. Let $F \in \mathcal{J}(\mathcal{L})$. There exists an element $E \in \mathcal{J}(\mathcal{L})$ such that $E_{-} \not\supseteq F$. Let $x \in E$, $f \in F_{-}^{\perp}$. First we prove that $\delta(x \otimes f) = 0$.

If $f(x) \neq 0$, then we have $\delta(x \otimes f) = 0$. In the following we assume that f(x) = 0.

Case 1: Suppose that $\dim(E) = 1$.

Since $\cap \{L_- : L \in \mathcal{J}_{\mathcal{L}}\} = (0)$, there exists an element $L \in \mathcal{J}(\mathcal{L})$ such that $L_- \not\supseteq E$, and so $L \subseteq E$. Since dim(E) = 1, we have that L = E and $E_- \not\supseteq E$. Hence there exists an element $g \in E_-^{\perp}$ such that $g(x) \neq 0$. Since f(x) = 0, we have that $(f+g)(x) \neq 0$ and

$$\delta(x \otimes (f+g)) = \delta(x \otimes g) = 0,$$

Thus $\delta(x \otimes f) = 0$.

Case 2: Suppose that $\dim(E) \ge 2$.

By Lemma 3.3 we know that $\delta(x \otimes f) \subseteq \mathbb{C}x$ for every $x \in E$ and $f \in F_{-}^{\perp}$. By Lemma 3.2 there exists a linear mapping S^* from F_{-}^{\perp} to X^* such that

$$\delta(x \otimes f) = x \otimes S^* f.$$

We only need to prove that $S^*f = 0$.

Let $A \in \operatorname{Alg} \mathcal{L}$. We have that $Ax \in E$, $A^*f \in F_-^{\perp}$. By Lemma 1.1(1) it follows that

$$\delta(A(x \otimes f) + (x \otimes f)A) = 2A\delta(x \otimes f) + 2(x \otimes f)\delta(A)$$

= $Ax \otimes S^*f + x \otimes S^*A^*f$
= $2Ax \otimes S^*f + 2x \otimes (\delta(A))^*f.$ (3.4)

By (3.4) we have that

$$Ax \otimes S^* f = x \otimes \left(S^* A^* f - 2 \left(\delta(A) \right)^* f \right).$$
(3.5)

If $S^*f \neq 0$, then there exists an element $z \in X$ such that $(S^*f)(z) \neq 0$. By (3.5),

$$(S^*f)(z)Ax = (S^*A^*f - 2(\delta(A))^*f)(z)x.$$

Hence there exists a number λ_A such that $Ax = \lambda_A x$ for every $x \in E$.

Since $\cap \{L_- : L \in \mathcal{J}_{\mathcal{L}}\} = (0)$, there exists an element $L \in \mathcal{J}_{\mathcal{L}}$ such that $L_- \not\supseteq E$, and we can choose an element $x_1 \in E$ and $\eta \in L_-^{\perp}$ such that $\eta(x_1) = 1$. Let $0 \neq y \in L$. We have that

 $(y\otimes\eta)x_1=\lambda_{y\otimes\eta}x_1,$

and thus

$$y = \lambda_{y \otimes \eta} x_1. \tag{3.6}$$

Since $y \neq 0$, $\lambda_{y \otimes \eta} \neq 0$. Because dim $(E) \ge 2$, there exists an $x_2 \in E$ such that x_1 and x_2 are linearly independent. If $\eta(x_2) = 0$, then $\eta(x_1 + x_2) = 1$, and it follows that

$$(y \otimes \eta)(x_1 + x_2) = \lambda_{y \otimes \eta}(x_1 + x_2);$$

thus

$$y = \lambda_{y \otimes \eta} (x_1 + x_2).$$

By (3.6) we know that $x_2 = 0$. If $\eta(x_2) \neq 0$, then

$$(y \otimes \eta)(x_2) = \lambda_{y \otimes \eta} x_2;$$

thus

$$y = \frac{\lambda_{y \otimes \eta}}{\eta(x_2)} x_2.$$

By (3.6) we know that x_1 and x_2 are linearly dependent. Hence $S^*f = 0$ and $\delta(x \otimes f) = 0$.

In the following we prove that $\delta(A)^* = 0$ for every $A \in \operatorname{Alg} \mathcal{L}$. Let $A \in \operatorname{Alg} \mathcal{L}$, $x \in E$, and $f \in F_{-}^{\perp}$. We have that

$$\delta((x \otimes f)A + A(x \otimes f)) = 2(x \otimes f)\delta(A) = 0$$

thus,

 $\delta(A)^* f = 0.$

Since $\cap \{L_- : L \in \mathcal{J}_{\mathcal{L}}\} = (0)$, we obtain $\lor \{L_-^{\perp} : L \in \mathcal{J}_{\mathcal{L}}\} = X^*$. It implies that $\delta(A)^* = 0$

for every $A \in \operatorname{Alg} \mathcal{L}$. Since $\|\delta(A)\| = \|\delta(A)^*\|$, we have $\delta(A) = 0$ for every $A \in \operatorname{Alg} \mathcal{L}$.

Remark. Similarly to the definition of Jordan left derivations, we can define a Jordan right derivation. Similarly to the proof of Theorem 3.1, we can show that every Jordan right derivation from Alg \mathcal{L} with $\forall \{L : L \in \mathcal{J}_{\mathcal{L}}\} = X$ into B(X) is zero.

4. Jordan left derivations on CSL subalgebras of von Neumann Algebras

For a Hilbert space \mathcal{H} , we disregard the distinction between a closed subspace and the orthogonal projection onto it. Let \mathcal{L} be a subspace lattice on \mathcal{H} . \mathcal{L} is called a *CSL* if it consists of mutually commuting projections. Let \mathcal{B} be a von Neumann algebra on \mathcal{H} , and let $\mathcal{L} \subseteq \mathcal{B}$ be a CSL on \mathcal{H} . Then $\mathcal{A} = \mathcal{B} \cap \text{Alg } \mathcal{L}$ is said to be a *CSL subalgebra of a von Neumann algebra* \mathcal{B} .

Theorem 4.1. If δ is a Jordan left derivation from \mathcal{A} into $B(\mathcal{H})$, then $\delta \equiv 0$.

To prove Theorem 4.1, we need the following lemma.

Lemma 4.2. Let \mathcal{L} be a CSL in a von Neumann algebra \mathcal{B} on \mathcal{H} . Define

$$Q = \{ P^{\perp} A^* P x : P \in \mathcal{L}, A \in \mathcal{A}, x \in \mathcal{H} \}$$

Then we have

(1) $Q \in \mathcal{L}' \cap \mathcal{B} \subseteq \mathcal{A};$ (2) $Q^{\perp} \mathcal{A} Q^{\perp}$ is a von Neumann algebra on $Q^{\perp} \mathcal{H}$ when $Q \neq I.$

Proof. (1) Since \mathcal{L} is a CSL in \mathcal{B} , it is easy to show that $\mathcal{L}' \cap \mathcal{B} \subseteq \mathcal{A}$. Then we only need to prove that $Q \in \mathcal{L}' \cap \mathcal{B}$.

For every T in $\mathcal{B} \cap \operatorname{Alg} \mathcal{L}^{\perp}$, it means that $PTP^{\perp} = 0$ for every P in \mathcal{L} . Hence by the definition of Q we have that $Q^{\perp}TQ = 0$ and $Q \in \operatorname{Lat}(\mathcal{B} \cap \operatorname{Alg} \mathcal{L}^{\perp})$. It follows that

$$PQ = QPQ$$
 and $QP = QPQ$

for every $P \in \mathcal{L}$, and so $Q \in \mathcal{L}'$.

Letting $P \in \mathcal{L}$, $A \in \mathcal{A} \subseteq \mathcal{B}$, $B \in \mathcal{B}'$, and $x \in \mathcal{H}$, we have that $P^{\perp}A^*P \in \mathcal{B}$. It follows that

$$QBP^{\perp}A^*Px = QP^{\perp}A^*PBx = P^{\perp}A^*PBx = BP^{\perp}A^*Px.$$

By the definition of Q we obtain QBQ = BQ.

Similarly, since $B^* \in \mathcal{B}'$ for every $B \in \mathcal{B}'$, we have that $QB^*Q = B^*Q$. It follows that QB = BQ for every $B \in \mathcal{B}'$. This means that $Q \in \mathcal{B}'' = \mathcal{B}$ and $Q \in \mathcal{L}' \cap \mathcal{B} \subseteq \mathcal{A}$.

(2) It is obvious that $Q^{\perp} \mathcal{A} Q^{\perp}$ is a weakly closed operator algebra with an identity Q^{\perp} on $Q^{\perp} \mathcal{H}$; hence it is sufficient to prove that $Q^{\perp} \mathcal{A} Q^{\perp}$ is a self-adjoint algebra.

Fix an element $A \in \mathcal{A}$ and $P \in \mathcal{L}$. By the fact that Q commutes with P and the definition of Q, we have that

$$P(AQ^{\perp})P^{\perp} = (Q^{\perp}P^{\perp}A^{*}P)^{*} = 0.$$

This means that $AQ^{\perp} \in \mathcal{B} \cap \operatorname{Alg} \mathcal{L}^{\perp}$. Then we obtain

$$AQ^{\perp} \in \operatorname{Alg} \mathcal{L}^{\perp} \cap \operatorname{Alg} \mathcal{L} \cap \mathcal{B} = \mathcal{L}' \cap \mathcal{B} \subseteq \mathcal{A}.$$

It follows that $Q^{\perp}A^* \in \mathcal{A}$; thus $Q^{\perp}A^*Q^{\perp} \in Q^{\perp}\mathcal{A}Q^{\perp}$ for every $A \in \mathcal{A}$, which tells us that $Q^{\perp}\mathcal{A}Q^{\perp}$ is a von Neumann algebra on $Q^{\perp}\mathcal{H}$.

Proof of Theorem 4.1. Letting Q be as in Lemma 4.2, it is obvious that if Q = I, then $\delta(A) = Q\delta(A)$. We suppose that $Q \neq I$. Let $Q_1 = Q$, $Q_2 = I - Q$, and $\mathcal{A}_{ij} = Q_i \mathcal{A} Q_j$. Then we have the Peirce decomposition of \mathcal{A} as follows:

$$\mathcal{A}=\mathcal{A}_{11}+\mathcal{A}_{12}+\mathcal{A}_{21}+\mathcal{A}_{22}.$$

By Lemma 1.2(2), we have that

$$\delta(\mathcal{A}_{12}) = \delta(\mathcal{A}_{21}) = 0.$$

Moreover, by Lemma 4.2 we know that \mathcal{A}_{22} is a von Neumann algebra on $Q^{\perp}\mathcal{H}$; hence by Corollary 2.4 we obtain

$$\delta(\mathcal{A}_{22}) = 0.$$

It follows that

$$\delta(A) = \delta(QAQ) = Q\delta(A)$$

for every A in \mathcal{A} .

In the following, we show that $Q\delta(A) \equiv 0$ for every A in \mathcal{A} . Let P be in \mathcal{L} , and let A, B be in \mathcal{A} . By Lemmas 1.1(1) and 1.2(2) we have that

$$0 = \delta(PBP^{\perp}P^{\perp}AP^{\perp})$$

= $\delta((PBP^{\perp}P^{\perp}AP^{\perp}) + (P^{\perp}AP^{\perp}PBP^{\perp}))$
= $2PBP^{\perp}\delta(P^{\perp}AP^{\perp})$
= $2PBP^{\perp}\delta(A).$

It implies that $\delta(A)^* P^{\perp} B^* P = 0$; that is, $\delta(A)^* Q = 0$. Thus $Q\delta(A) \equiv 0$ for every A in \mathcal{A} .

Remark. In [21, pp. 741–742], Park introduces the concept of Jordan higher left derivations as follows.

Let \mathcal{A} be a unital algebra, and let $\mathbb{N} = \mathbb{N}^* \cup \{0\}$ be the set of all nonnegative integers. $\Delta = (\delta_i)_{i \in \mathbb{N}}$ is a sequence of linear mappings on \mathcal{A} , where $\delta_0 = id_{\mathcal{A}}$. Suppose that $c_{ij} = 1$ if i = j and $c_{ij} = 0$ if $i \neq j$. Δ is called a *Jordan higher left derivation* if

$$\delta_n(A^2) = \sum_{\substack{i+j=n\\i\leqslant j}} \left[(c_{ij}+1)\delta_i(A)\delta_j(A) \right]$$

for every A in \mathcal{A} , n in \mathbb{N}^* , and i, j in \mathbb{N} . It is clear that δ_1 is a Jordan left derivation on \mathcal{A} .

By the definition of Jordan higher left derivations, it is easy to show that each Jordan higher left derivation on these algebras, which are studied in Sections 2 to 4, is zero.

5. Left derivable mappings at some points

In this section, we consider left derivable mappings on factor von Neumann algebras at every left separating point or every nonzero self-adjoint element.

Lemma 5.1. Let \mathcal{A} be a unital algebra, let \mathcal{M} be a unital left \mathcal{A} -module, and let δ be a linear mapping from \mathcal{A} into \mathcal{M} . If δ is left derivable at a left separating point W, then $\delta(P) = 0$ for every idempotent P in \mathcal{A} .

Proof. It is clear that $\delta(W) = W\delta(I) + \delta(W)$. Then $W\delta(I) = 0$. Since W is a left separating point of \mathcal{M} , it follows that $\delta(I) = 0$.

For every idempotent $P \in \mathcal{A}$ and $t \in \mathbb{R}$ with $t \neq 1$, it is easy to show

$$I = (I - tP) \left(I - \frac{t}{t - 1}P \right).$$

Thus, we have that

$$W = (I - tP) \left(W - \frac{t}{t - 1} PW \right)$$

and

$$\delta(W) = (I - tP)\delta\left(W - \frac{t}{t - 1}PW\right) + \left(W - \frac{t}{t - 1}PW\right)\delta(I - tP);$$

that is,

$$\delta(W) = \delta(W) - \frac{t}{t-1}\delta(PW) - tP\delta(W) + \frac{t^2}{t-1}P\delta(PW) - tW\delta(P) + \frac{t^2}{t-1}PW\delta(P).$$

Hence, for any $t \neq 0, 1$, we obtain

$$0 = -\delta(PW) - (t-1)P\delta(W) + tP\delta(PW) - (t-1)W\delta(P) + tPW\delta(P);$$

that is,

$$0 = t (PW\delta(P) + P\delta(PW) - P\delta(W) - W\delta(P)) - (\delta(PW) - P\delta(W) - W\delta(P)).$$

Thus,

$$PW\delta(P) + P\delta(PW) - P\delta(W) - W\delta(P) = 0$$
(5.1)

and

$$\delta(PW) - P\delta(W) - W\delta(P) = 0. \tag{5.2}$$

Multiplying P from the left-hand sides of (5.1) and (5.2), we have that

$$PW\delta(P) + P\delta(PW) - P\delta(W) - PW\delta(P) = 0$$
(5.3)

and

$$P\delta(PW) - P\delta(W) - PW\delta(P) = 0.$$
(5.4)

Comparing (5.3) and (5.4), we have that $PW\delta(P) = 0$ and $P\delta(PW) - P\delta(W) = 0$. Thus, by (5.1), we have that $W\delta(P) = 0$. Since W is a left separating point of \mathcal{M} , we obtain $\delta(P) = 0$ for every idempotent P in \mathcal{A} .

By Lemma 5.1 and [16, Proposition 4.4], we have the following result.

Corollary 5.2. Let \mathcal{A} be a weakly closed unital algebra of $\mathcal{B}(\mathcal{H})$ of infinite multiplicity, and let δ be a linear mapping from \mathcal{A} into a unital left \mathcal{A} -module \mathcal{M} . If δ is left derivable at a left separating point W, then $\delta \equiv 0$.

Lemma 5.3 ([11, Theorem 3]). Let \mathcal{A} be a von Neumann algebra. Then any self-adjoint operator in \mathcal{A} can be written as a linear combination of 12 projections with 4 central and 8 real coefficients.

By Lemmas 5.1 and 5.3, it is easy to prove the following result.

Theorem 5.4. Let \mathcal{A} be a factor von Neumann algebra, let \mathcal{M} be a unital left \mathcal{A} -module, and let δ be a linear mapping from \mathcal{A} into \mathcal{M} . If δ is left derivable at a left separating point W, then $\delta \equiv 0$.

Lemma 5.5 ([2, Lemma 5]). Let \mathcal{A} be a von Neumann algebra, and \mathcal{A} has no direct summands of finite type I. Then each invertible operator $A \in \mathcal{A}^+$ can be written as a linear combination of projections in \mathcal{A} with positive coefficients, where \mathcal{A}^+ denotes the set of all positive operators in \mathcal{A} .

By Lemmas 5.1 and 5.5, we have the following corollary.

Corollary 5.6. Let \mathcal{A} be a von Neumann algebra, and \mathcal{A} has no direct summands of finite type I. Let \mathcal{M} be a unital left \mathcal{A} -module, and let δ be a linear mapping from \mathcal{A} into \mathcal{M} . If δ is left derivable at a left separating point W, then $\delta \equiv 0$.

By [16, Lemma 3.1] and Lemma 5.3, we know that if \mathcal{A} is a factor von Neumann algebra and δ is a left derivable mapping at zero from \mathcal{A} into any unital left \mathcal{A} -module \mathcal{M} with $\delta(I) = 0$, then $\delta \equiv 0$. Now we consider left derivable mappings at every nonzero self-adjoint element of factor von Neumann algebras.

Theorem 5.7. Let \mathcal{A} be a factor von Neumann algebra, let C in \mathcal{A} be a nonzero self-adjoint element, and let δ be a linear mapping from \mathcal{A} into itself. If δ is left derivable at C, then $\delta \equiv 0$.

Proof. If ker C = 0, then C is a left separating point of \mathcal{A} . By Theorem 5.4 we know the conclusion holds.

In the following, we suppose that ker $C \neq 0$.

Since \mathcal{A} is a factor von Neumann algebra, it is well known that \mathcal{A} is a prime algebra; that is,

$$A\mathcal{A}B = (0) \quad \text{implies} \quad A = 0 \text{ or } B = 0 \tag{5.5}$$

for each A, B in A.

Let $P = \overline{\operatorname{ran} C}$, and let Q = I - P. By assumption, we know $P \neq 0$ and $Q \neq 0$. For every M in \mathcal{A} , by $C = C^*$, we have that MC = 0 implies MP = 0 and CM = 0 implies PM = 0.

Let $\mathcal{A}_{11} = P\mathcal{A}P$, $\mathcal{A}_{12} = P\mathcal{A}Q$, $\mathcal{A}_{21} = Q\mathcal{A}P$, and $\mathcal{A}_{22} = Q\mathcal{A}Q$. It follows that $\mathcal{A} = \mathcal{A}_{11} + \mathcal{A}_{12} + \mathcal{A}_{21} + \mathcal{A}_{22}$. Since CQ = QC = 0, we have that $C = C_{11} \in \mathcal{A}_{11}$. We divide the proof into two steps.

First we show that $\delta(\mathcal{A}_{22}) = \delta(\mathcal{A}_{12}) = P\delta(\mathcal{A}_{21}) = Q\delta(\mathcal{A}_{11}) = 0.$

Since CI = C and δ is left derivable at C, it is easy to show that $C\delta(I) = P\delta(I) = 0$.

Letting $A_{11} \in \mathcal{A}_{11}$ be invertible, $A_{12} \in \mathcal{A}_{12}$, $A_{22} \in \mathcal{A}_{22}$, and $0 \neq t \in \mathbb{R}$. By a simple computation, we have that

$$A_{11}(A_{11}^{-1}C) = C$$

and

$$(A_{11} + tA_{11}A_{12})(A_{11}^{-1}C - A_{12}A_{22} + t^{-1}A_{22}) = C.$$

It follows that

$$\delta(C) = A_{11}^{-1} C \delta(A_{11}) + A_{11} \delta(A_{11}^{-1} C)$$
(5.6)

and

$$\delta(C) = (A_{11}^{-1}C - A_{12}A_{22} + t^{-1}A_{22})\delta(A_{11} + tA_{11}A_{12}) + (A_{11} + tA_{11}A_{12})\delta(A_{11}^{-1}C - A_{12}A_{22} + t^{-1}A_{22}) = [(A_{11}^{-1}C - A_{12}A_{22})\delta(A_{11}) + A_{11}\delta(A_{11}^{-1}C - A_{12}A_{22}) + A_{22}\delta(A_{11}A_{12}) + A_{11}A_{12}\delta(A_{22})] + t[(A_{11}^{-1}C - A_{12}A_{22})\delta(A_{11}A_{12}) + A_{11}A_{12}\delta(A_{11}^{-1}C - A_{12}A_{22})] + t^{-1}[A_{22}\delta(A_{11}) + A_{11}\delta(A_{22})].$$
(5.7)

Since t is an arbitrary nonzero number in \mathbb{R} , by (5.7) and [20, Proposition 2.0] it is easy to obtain some identities as follows:

$$(A_{11}^{-1}C - A_{12}A_{22})\delta(A_{11}A_{12}) + A_{11}A_{12}\delta(A_{11}^{-1}C - A_{12}A_{22}) = 0,$$
 (5.8)

$$A_{22}\delta(A_{11}) + A_{11}\delta(A_{22}) = 0, \qquad (5.9)$$

and

$$\delta(C) = (A_{11}^{-1}C - A_{12}A_{22})\delta(A_{11}) + A_{11}\delta(A_{11}^{-1}C - A_{12}A_{22}) + A_{22}\delta(A_{11}A_{12}) + A_{11}A_{12}\delta(A_{22}) = A_{11}^{-1}C\delta(A_{11}) + A_{11}\delta(A_{11}^{-1}C) - A_{12}A_{22}\delta(A_{11}) - A_{11}\delta(A_{12}A_{22}) + A_{22}\delta(A_{11}A_{12}) + A_{11}A_{12}\delta(A_{22}).$$
(5.10)

By (5.6) and (5.10) we have that

$$-A_{12}A_{22}\delta(A_{11}) - A_{11}\delta(A_{12}A_{22}) + A_{22}\delta(A_{11}A_{12}) + A_{11}A_{12}\delta(A_{22}) = 0.$$
(5.11)

Multiplying Q from the left of (5.9) and taking $A_{22} = Q$ in it, we have that

$$Q\delta(A_{11}) = 0$$

Since \mathcal{A}_{11} is a von Neumann algebra, it can be linearly generated by its invertible elements. Since δ is linear, we have

$$Q\delta(\mathcal{A}_{11})=0.$$

It follows that $Q\delta(C) = 0$ and $\delta(C) = P\delta(C)$. Similarly, we have that $P\delta(\mathcal{A}_{22}) = 0$.

Multiplying P from the left of (5.9) and taking $A_{11} = P$ and $A_{22} = Q$ in (5.9), we have that

$$P\delta(Q) = Q\delta(P) = 0.$$

It follows that $\delta(P) = P\delta(P) = P\delta(I) = 0$.

Multiplying Q from the left of (5.11) and taking $A_{11} = P$ and $A_{22} = Q$ in it, we have that

$$Q\delta(A_{12}) = 0.$$

Taking $A_{11} = P$ and $A_{22} = Q$ in (5.8), we obtain

$$(C - A_{12})\delta(A_{12}) + A_{12}\delta(C - A_{12}) = 0.$$
(5.12)

By $Q\delta(A_{12}) = 0$ and $Q\delta(C) = 0$, we have that $C\delta(A_{12}) = P\delta(A_{12}) = 0$; thus

 $\delta(A_{12}) = 0$

for every A_{12} in A_{12} , which means that $\delta(A_{12}) = 0$.

By $Q\delta(\mathcal{A}_{11}) = 0$ and taking $A_{11} = P$ in (5.11), we have that

$$A_{12}\delta(A_{22}) = 0. \tag{5.13}$$

Since A_{12} is arbitrary, it follows that $P\mathcal{A}Q\delta(A_{22}) = 0$. By (5.5) and $P \neq 0$ we obtain

$$Q\delta(A_{22}) = 0$$

for every A_{22} in A_{22} , which means that $Q\delta(A_{22}) = 0$. Using $P\delta(A_{22}) = 0$ and $Q\delta(A_{22}) = 0$, we have that $\delta(A_{22}) = 0$.

Taking $A_{22} = Q$ in (5.13), we obtain

$$A_{12}\delta(Q) = 0.$$

Similarly, by (5.5) it follows that $Q\delta(Q) = 0$; that is, $\delta(Q) = 0$ by $P\delta(Q) = 0$. By $P(C + A_{21}) = C$, we have that

$$(C + A_{21})\delta(P) + P\delta(C + A_{21}) = \delta(C).$$

Since $\delta(P) = 0$, it follows that $P\delta(C + A_{21}) = \delta(C)$; hence we obtain $P\delta(A_{21}) = 0$ for every A_{21} in \mathcal{A}_{21} . Thus $P\delta(\mathcal{A}_{21}) = 0$.

Similarly, letting $A_{11} \in \mathcal{A}_{11}$ be invertible, $A_{21} \in \mathcal{A}_{21}$, $A_{22} \in \mathcal{A}_{22}$, and $0 \neq t \in \mathbb{R}$. We have that

$$(CA_{11}^{-1} - A_{22}A_{21} + t^{-1}A_{22})(A_{11} + tA_{21}A_{11}) = C.$$

Thus, applying the same technique as in the previous proof, we can prove that $Q\delta(\mathcal{A}_{21}) = P\delta(\mathcal{A}_{11}) = 0$. Hence $\delta(\mathcal{A}_{21}) = \delta(\mathcal{A}_{11}) = 0$.

Acknowledgments. The authors thank the referee for his or her suggestions. This research was partially supported by the National Natural Science Foundation of China (grant no. 11371136).

References

- J. Alaminos, M. Brešar, J. Extermera, and R. Villena, *Characterizing Jordan maps on C^{*}-algebras through zero products*, Proc. Edinb. Math. Soc. (2) **53** (2010), no. 3, 543–555.
 Zbl 1216.47063. MR2720236. DOI 10.1017/S0013091509000534. 471
- A. Bikchentaev, On representation of elements of a von Neumann algebra in the form of finite sums of products of projections, Sibirsk. Mat. Zh. 46 (2005), no. 1, 24–34. MR2141300. DOI 10.1007/s11202-005-0003-4. 478
- M. Brešar, Jordan derivations on semiprime rings, Bull. Aust. Math. Soc. 104 (1988), no. 4, 1003–1006. Zbl 0691.16039. MR0929422. DOI 10.2307/2047580. 467
- M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Aust. Math. Soc. 37 (1988), no. 3, 321–322. Zbl 0634.16021. MR0943433. DOI 10.1017/S0004972700026927. 467
- M. Brešar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), no. 1, 7–16. Zbl 0703.16020. MR1028284. DOI 10.2307/2048234. 467
- J. Cuntz, On the continuity of Semi-Norms on operator algebras, Math. Ann. 220 (1976), no. 2, 171–183. Zbl 0306.46071. MR0397419. 470

- J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), no. 2, 321–324.
 Zbl 0327.16020. MR0399182. 467
- H. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monog. Ser. 24, Oxford Univ. Press, New York, 2000. MR1816726. 471
- H. Dales, F. Ghahramani, and N. Grønbæk, Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), no. 1, 19–54. Zbl 0903.46045. MR1489459. 471
- Q. Deng, On Jordan left derivations, Math. J. Okayama Univ. 34 (1992), 145–147. Zbl 0813.16021. MR1272614. 467
- S. Goldstein and A. Paszkiewicz, Linear combinations of projections in von Neumann algebras, Proc. Amer. Math. Soc. 116 (1992), no. 1, 175–183. Zbl 0768.47017. MR1094501. DOI 10.2307/2159311. 477
- J. Guo and J. Li, On centralizers of reflexive algebras, Aequationes Math. 84 (2012), no. 1, 1–12. Zbl 1257.47071. MR2968197. DOI 10.1007/s00010-012-0137-y. 472
- I. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104–1110. Zbl 0216.07202. MR0095864. 467
- 14. R. Kadison and J. Ringrose, Fundamentals of the Theory of Operator Algebras, I, Pure Appl. Math. 100, Academic Press, New York, 1983. MR0719020. 471
- I. Kosi-Ulbl and J. Vukman, A note on (m, n)-Jordan derivations on semiprime rings and Banach algebras, Bull. Aust. Math. Soc. 93 (2016), no. 2, 231–237. MR3480933. DOI 10.1017/S0004972715001203. 467
- J. Li and J. Zhou, Jordan left derivations and some left derivable maps, Oper. Matrices 4 (2010), 127–138. Zbl 1198.47054. MR2655008. DOI 10.7153/oam-04-06. 467, 468, 477, 478
- W. Longstaff, Strongly reflexive lattices, J. Lond. Math. Soc. (2) 11 (1975), no. 4, 491–498.
 Zbl 0313.47002. MR0394233. 468
- W. Longstaff and O. Panaia, *J-subspace lattices and subspace M-bases*, Studia Math. 139 (2000), no. 3, 197–212. Zbl 0974.46016. MR1762581. 468
- T. Ogasawara, Finite dimensionality of certain Banach algebras, J. Sci. Hiroshima Univ. Ser. A 17 (1954), 359–364. Zbl 0056.10902. MR0066569. 469
- Z. Pan, Derivable maps and derivational points, Linear Algebra Appl. 436 (2012), no. 11, 4251–4260. Zbl 1236.47030. MR2915280. DOI 10.1016/j.laa.2012.01.027. 479
- K. Park, Jordan higher left derivations and commutativity in prime rings, J. Chungcheong Math. Soc. 23 (2010), 741–748. 476
- J. Ringrose, Automatically continuous of derivations of operator algebras, J. Lond. Math. Soc. (2) 5 (1972), no. 3, 432–438. MR0374927. 469
- J. Vukman, On left Jordan derivations of rings and Banach algebras, Aequations Math. 75 (2008), no. 3, 260–266. Zbl 1155.46019. MR2424134. DOI 10.1007/s00010-007-2872-z. 467
- J. Vukman, On (m,n)-Jordan derivations and commutativity of prime rings, Demonstr. Math. 41 (2008), no. 4, 773–778. MR2484502. 467

DEPARTMENT OF MATHEMATICS, EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY, SHANGHAI 200237, CHINA.

E-mail address: anguangyu310@163.com; dingyana@mail.ecust.edu.cn; jiankuili@yahoo.com