Banach J. Math. Anal. 10 (2016), no. 2, 415-429
http://dx.doi.org/10.1215/17358787-3589331
ISSN: 1735-8787 (electronic) http://projecteuclid.org/bjma

ON THE EXISTENCE OF UNIVERSAL SERIES BY THE GENERALIZED WALSH SYSTEM

SERGO A. EPISKOPOSIAN

Communicated by J. A. Ball

Abstract. In this paper, we prove the following: let $\omega(t)$ be a continuous function with $\omega(+0)=0$ and increasing in $[0, \infty)$. Then there exists a series of the form

$$
\sum_{k=1}^{\infty} c_{k} \psi_{k}(x) \quad \text { with } \sum_{k=1}^{\infty} c_{k}^{2} \omega\left(\left|c_{k}\right|\right)<\infty
$$

with the following property: for each $\varepsilon>0$ a weight function $\mu(x), 0<\mu(x) \leq$ $1,|\{x \in[0,1): \mu(x) \neq 1\}|<\varepsilon$ can be constructed so that the series is universal in the weighted space $L_{\mu}^{1}[0,1)$ both with respect to rearrangements and subseries.

1. Introduction and preliminaries

The first case of a universality was observed by Fekete [7] in 1914. He showed that there exists a (formal) real power series

$$
\sum_{n=1}^{\infty} a_{n} x^{n}, \quad x \in[-1,1]
$$

that not only diverges at every point $x \neq 0$ but does so in the worst possible way. Indeed, to every continuous function $g(x)$ on $[-1,1]$ with $g(0)=0$ there exists an increasing sequence $\left\{n_{k}\right\}$ of positive integers such that $S_{n_{k}}(x)$ converges to $g(x)$ uniformly as $k \rightarrow \infty$.

Fekete's example of a universal power (or Taylor) series exhibits two aspects of universality that are generally present. Apart from the first aspect of maximal

[^0]This result was extended by A. A. Talalyan [15] to arbitrary orthonormal complete systems. He also established that if $\left\{\phi_{n}(x)\right\}_{n=1}^{\infty}$-the normalized basis of space $L^{p}[0,1], p>1$ - then there exists a series of the form

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k} \phi_{k}(x), \quad a_{k} \rightarrow 0 \tag{1.3}
\end{equation*}
$$

which has the following property: for any measurable function $f(x)$ the members of series (1.3) can be rearranged so that the rearranged series converges on a measure on $[0,1]$ to $f(x)$ (see [16]).
W. Orlicz [13] observed the fact that there exist functional series that are universal with respect to rearrangements in the sense of almost everywhere convergence in the class of almost everywhere finite measurable functions.

It is also useful to note that even Riemann proved that every convergent numerical series which is not absolutely convergent is universal with respect to rearrangements in the class of all real numbers.

Let $\mu(x)$ be measurable on a $[0,2 \pi]$ function with $0<\mu(x) \leq 1, x \in[0,2 \pi]$, and let $L_{\mu}^{1}[0,2 \pi]$ be a space of measurable functions $f(x), x \in[0,2 \pi]$ with

$$
\int_{0}^{2 \pi}|f(x)| \mu(x) d x<\infty
$$

M. G. Grigorian [9] constructed a series of the form

$$
\sum_{k=-\infty}^{\infty} C_{k} e^{i k x} \quad \text { with } \sum_{k=-\infty}^{\infty}\left|C_{k}\right|^{q}<\infty, \forall q>2
$$

which is universal in $L_{\mu}^{1}[0,2 \pi]$ concerning partial series for some weight function $\mu(x), 0<\mu(x) \leq 1, x \in[0,2 \pi]$.

In [6] it is proved that, for any given sequence of natural numbers $\left\{\lambda_{m}\right\}_{m=1}^{\infty}$ with $\lambda_{m} \nearrow^{\infty}$, there exists a series by a trigonometric system of the form

$$
\begin{equation*}
\sum_{k=1}^{\infty} C_{k} e^{i k x}, \quad C_{-k}=\bar{C}_{k} \tag{1.4}
\end{equation*}
$$

with

$$
\left|\sum_{k=1}^{m} C_{k} e^{i k x}\right| \leq \lambda_{m}, \quad x \in[0,2 \pi], m=1,2, \ldots,
$$

so that, for each $\varepsilon>0$, a weight function $\mu(x)$,

$$
0<\mu(x) \leq 1, \quad|\{x \in[0,2 \pi]: \mu(x) \neq 1\}|<\varepsilon
$$

can be constructed so that the series (1.4) is universal in the weighted space $L_{\mu}^{1}[0,2 \pi]$ with respect simultaneously to rearrangements, as well as to subseries.

Let us denote the generalized Walsh system of order a by Ψ_{a} (see Definition 2.2 below).

In this paper, we prove the following results.

Theorem 1.4. Let $\omega(t)$ be a continuous function with $\omega(+0)=0$ and increasing in $[0, \infty)$. Then there exists a series of the form

$$
\begin{equation*}
\sum_{k=1}^{\infty} c_{k} \psi_{k}(x) \text { with } \sum_{k=1}^{\infty} c_{k}^{2} \omega\left(\left|c_{k}\right|\right)<\infty \tag{1.5}
\end{equation*}
$$

with the following property: for each $\varepsilon>0$ a weight function $\mu(x), 0<\mu(x) \leq$ $1,|\{x \in[0,1): \mu(x) \neq 1\}|<\varepsilon$ can be constructed so that the series (1.5) is universal in the weighted space $L_{\mu}^{1}[0,1)$ with respect to both rearrangements and subseries.

Remark 1.5. Theorem 1.4 for trigonometric and classical Walsh systems was proved in [2] and [3].

2. BASIC LEMMAS

Now, we present the definitions of generalized Rademacher and Walsh systems.
Let a denote a fixed integer, $a \geq 2$, and put $\omega_{a}=e^{\frac{2 \pi i}{a}}$. Now we will give the definitions of generalized Rademacher and Walsh systems [1].

Definition 2.1. The Rademacher system of order a is defined by

$$
\varphi_{0}(x)=\omega_{a}^{k} \quad \text { if } x \in\left[\frac{k}{a}, \frac{k+1}{a}\right), k=0,1, \ldots, a-1, x \in[0,1),
$$

and, for $n \geq 0$,

$$
\varphi_{n}(x+1)=\varphi_{n}(x)=\varphi_{0}\left(a^{n} x\right) .
$$

Definition 2.2. The generalized Walsh system of order a is defined by

$$
\psi_{0}(x)=1
$$

and if $n=\alpha_{1} a^{n_{1}}+\cdots+\alpha_{s} a^{n_{s}}$ where $n_{1}>\cdots>n_{s}$, then

$$
\psi_{n}(x)=\varphi_{n_{1}}^{\alpha_{1}}(x) \cdot \ldots \cdot \varphi_{n_{s}}^{\alpha_{s}}(x)
$$

Let us denote the generalized Walsh system of order a by Ψ_{a}. Note that Ψ_{2} is the classical Walsh system. The basic properties of the generalized Walsh system of order a were obtained by H. E. Chrestenson, R. Paley, J. Fine, W. Young, C. Watari, N. Vilenkin, and others (see [1], [8], [14], [18]-[20]). Next, we present some properties of the Ψ_{a} system.
Property 1. Each nth Rademacher function has period $\frac{1}{a^{n}}$ and

$$
\begin{equation*}
\varphi_{n}(x)=\mathrm{const} \in \Omega_{a}=\left\{1, \omega_{a}, \omega_{a}^{2}, \ldots, \omega_{a}^{a-1}\right\} \tag{2.1}
\end{equation*}
$$

if $x \in \Delta_{n+1}^{(k)}=\left[\frac{k}{a^{n+1}}, \frac{k+1}{a^{n+1}}\right), k=0, \ldots, a^{n+1}-1, n=1,2, \ldots$.
It is also easily verified that

$$
\begin{equation*}
\left(\varphi_{n}(x)\right)^{k}=\left(\varphi_{n}(x)\right)^{m}, \quad \forall n, k \in \mathcal{N}, \text { where } m=k(\bmod a) \tag{2.2}
\end{equation*}
$$

Property 2. It is clear that, for any integer n, the Walsh function $\psi_{n}(x)$ consists of a finite product of Rademacher functions and accepts values from Ω_{a}.

Property 3. Let $\omega_{a}=e^{\frac{2 \pi i}{a}}$. Then for any natural number m we have

$$
\sum_{k=0}^{a-1} \omega_{a}^{k \cdot m}= \begin{cases}a, & \text { if } m \equiv 0(\bmod a) \tag{2.3}\\ 0, & \text { if } m \neq 0(\bmod a)\end{cases}
$$

Property 4. The generalized Walsh system $\Psi_{a}, a \geq 2$, is a complete orthonormal system in $L^{2}[0,1)$ and a basis in $L^{p}[0,1), p>1$ (see [14]).

Property 5. From Definition 2.2 we have

$$
\begin{equation*}
\psi_{i}(x) \cdot \psi_{j}\left(a^{s} x\right)=\psi_{j \cdot a^{s}+i}(x), \quad \text { where } 0 \leq i, j<a^{s} \tag{2.4}
\end{equation*}
$$

and, particularly,

$$
\begin{equation*}
\psi_{a^{k}+j}(x)=\varphi_{k}(x) \cdot \psi_{j}(x), \quad \text { if } 0 \leq j \leq a^{k}-1 \tag{2.5}
\end{equation*}
$$

Now, for any $m=1,2, \ldots$ and $1 \leq k \leq a^{m}$, we put $\Delta_{m}^{(k)}=\left[\frac{k-1}{a^{m}}, \frac{k}{a^{m}}\right)$ and consider the following function,

$$
I_{m}^{(k)}(x)= \begin{cases}1, & \text { if } x \in[0,1) \backslash \Delta_{m}^{(k)} \tag{2.6}\\ 1-a^{m}, & \text { if } x \in \Delta_{m}^{(k)}\end{cases}
$$

and we periodically extend these functions on R^{1} with period 1 .
By $\chi_{E}(x)$ we denote the characteristic function of the set E; that is,

$$
\chi_{E}(x)= \begin{cases}1, & \text { if } x \in E \tag{2.7}\\ 0, & \text { if } x \notin E\end{cases}
$$

Then, clearly,

$$
\begin{equation*}
I_{m}^{(k)}(x)=\psi_{0}(x)-a^{m} \cdot \chi_{\Delta_{m}^{(k)}}(x) \tag{2.8}
\end{equation*}
$$

and for the natural numbers $m \geq 1$ and $1 \leq i \leq a^{m}$,

$$
\begin{align*}
a_{i}\left(\chi_{\Delta_{m}^{(k)}}\right) & =\int_{0}^{1} \chi_{\Delta_{m}^{(k)}}(x) \cdot \overline{\psi_{i}}(x) d x=\mathcal{A} \cdot \frac{1}{a^{m}}, \quad 0 \leq i<a^{m} \tag{2.9}\\
b_{i}\left(I_{m}^{(k)}\right) & =\int_{0}^{1} I_{m}^{(k)}(x) \overline{\psi_{i}}(x) d x= \begin{cases}0, & \text { if } i=0 \text { and } i \geq a^{k} \\
-\mathcal{A}, & \text { if } 1 \leq i<a^{k}\end{cases} \tag{2.10}
\end{align*}
$$

where $\mathcal{A}=$ const $\in \Omega_{a}$ and $|\mathcal{A}|=1$.
Hence,

$$
\begin{align*}
\chi_{\Delta_{m}^{(k)}}(x) & =\sum_{i=0}^{a^{k}-1} a_{i}\left(\chi_{\Delta_{m}^{(k)}}\right) \psi_{i}(x) \tag{2.11}\\
I_{m}^{(k)}(x) & =\sum_{i=1}^{a^{k}-1} b_{i}\left(I_{m}^{(k)}\right) \psi_{i}(x) \tag{2.12}
\end{align*}
$$

Lemma 2.3. For any numbers $\gamma \neq 0, N_{0}>1, \varepsilon \in(0,1)$, and any interval of order a $\Delta=\Delta_{m}^{(k)}=\left[\frac{k-1}{a^{m}}, \frac{k}{a^{m}}\right), i=1, \ldots, a^{m}$, there exist a measurable set $E \subset \Delta$ and a polynomial $P(x)$ in the Ψ_{a} system of the form

$$
P(x)=\sum_{k=N_{0}}^{N} c_{k} \psi_{k}(x)
$$

which satisfy the following conditions:

$$
\begin{gather*}
|E|>(1-\varepsilon) \cdot|\Delta| ; \tag{1}\\
P(x)= \begin{cases}\gamma, & \text { if } x \in E, \\
0, & \text { if } x \notin \Delta ;\end{cases} \\
{\left[\sum_{k=N_{0}}^{N} c_{k}^{2}\right]^{\frac{1}{2}}<a \cdot|\gamma| \cdot \sqrt{\frac{|\Delta|}{\varepsilon}} .} \tag{3}
\end{gather*}
$$

Define the coefficients c_{n}, a_{i}, b_{j}, and the function $P(x)$ in the following way:

$$
\begin{align*}
P(x) & =\gamma \cdot \chi_{\Delta_{m}^{(k)}}(x) \cdot I_{\nu_{0}}^{(1)}\left(a^{s} x\right), \quad x \in[0,1], \tag{2.14}\\
c_{n} & =c_{n}(P)=\int_{0}^{1} P(x) \overline{\psi_{n}}(x) d x, \quad \forall n \geq 0, \tag{2.15}\\
a_{i} & =a_{i}\left(\chi_{\Delta_{m}^{(k)}}\right), \quad 0 \leq i<a^{m}, \quad b_{j}=b_{j}\left(I_{\nu_{0}}^{(1)}\right), \quad 1 \leq j<a^{\nu_{0}} . \tag{2.16}
\end{align*}
$$

Taking into account (2.1)-(2.3), (2.5)-(2.7), and (2.9)-(2.12) for $P(x)$, we obtain

$$
\begin{align*}
P(x) & =\gamma \cdot \sum_{i=0}^{a^{m}-1} a_{i} \psi_{i}(x) \cdot \sum_{j=1}^{a^{\nu_{0}}-1} b_{j} \psi_{j}\left(a^{s} x\right) \\
& =\gamma \cdot \sum_{j=1}^{a^{\nu_{0}-1}} b_{j} \cdot \sum_{i=0}^{a^{m}-1} a_{i} \psi_{j \cdot a^{s}+i}(x)=\sum_{k=N_{0}}^{N} c_{k} \psi_{k}(x), \tag{2.17}
\end{align*}
$$

where

$$
\begin{align*}
& c_{k}=c_{k}(P)= \begin{cases}-\mathcal{K} \cdot \frac{\gamma}{a^{m}} \text { or } 0, & \text { if } k \in\left[N_{0}, N\right], \\
0, & \text { if } k \notin\left[N_{0}, N\right],\end{cases} \tag{2.18}\\
& \mathcal{K} \in \Omega_{a}, \quad|\mathcal{K}|=1, \quad N=a^{s+\nu_{0}}+a^{m}-a^{s}-1 . \tag{2.19}
\end{align*}
$$

Set

$$
E=\{x \in \Delta: P(x)=\gamma\} .
$$

By (2.7), (2.8), and (2.14), we have

$$
\begin{gathered}
|E|=a^{-m}\left(1-a^{-\nu_{0}}\right)>(1-\epsilon)|\Delta|, \\
P(x)= \begin{cases}\gamma, & \text { if } x \in E, \\
\gamma\left(1-a^{\nu_{0}}\right), & \text { if } x \in \Delta \backslash E, \\
0, & \text { if } x \notin \Delta .\end{cases}
\end{gathered}
$$

From relations (2.13), (2.18), and (2.19) we obtain

$$
\begin{aligned}
\max _{N_{0} \leq m \leq N} \int_{0}^{1}\left|\sum_{k=N_{0}}^{m} c_{k} \psi_{k}(x)\right| d x & <\left[\int_{0}^{1}|P(x)|^{2} d x\right]^{\frac{1}{2}} \leq\left[\sum_{k=N_{0}}^{N}\left|c_{k}\right|^{2}\right]^{\frac{1}{2}} \\
& =|\gamma| \cdot|\Delta| \cdot \sqrt{a^{\nu_{0}+s}+a^{m}}=|\gamma| \cdot \sqrt{|\Delta|} \cdot \sqrt{a^{\nu_{0}}+1} \\
& <|\gamma| \cdot \sqrt{|\Delta|} \cdot \sqrt{\frac{a}{\varepsilon}}<a \cdot|\gamma| \cdot \sqrt{\frac{|\Delta|}{\varepsilon}}
\end{aligned}
$$

Lemma 2.4. Let $\omega(t)$ be a continuous function increasing in $[0, \infty)$ and $\omega(+0)=0$. Then, for any given numbers $0<\varepsilon<\frac{1}{2}, N_{0}>2$, and a step function

$$
\begin{equation*}
f(x)=\sum_{s=1}^{q} \gamma_{s} \cdot \chi_{\Delta_{s}}(x) \tag{2.20}
\end{equation*}
$$

where each Δ_{s} is an interval of the form $\Delta_{m}^{(i)}=\left[\frac{i-1}{2^{m}}, \frac{i}{2^{m}}\right], 1 \leq i \leq 2^{m}$, there exist a measurable set $E \subset[0,1)$ and a polynomial $P(x)$ of the form

$$
P(x)=\sum_{k=N_{0}}^{N} c_{k} \psi_{k}(x),
$$

which satisfy the following conditions:

$$
\begin{gather*}
|E|>1-\varepsilon, \tag{1}\\
P(x)=f(x), \quad \text { for } x \in E \tag{2}\\
\sum_{k=N_{0}}^{N}\left|c_{k}\right|^{2} \cdot \omega\left(\left|c_{k}\right|\right)<\varepsilon \tag{3}\\
\max _{N_{0} \leq M \leq N} \int_{e}\left|\sum_{k=N_{0}}^{M} c_{k} \psi_{k}(x)\right| d x<\varepsilon+\int_{e}|f(x)| d x \tag{4}
\end{gather*}
$$

for every measurable subset e of E.
Proof. Let $0<\varepsilon<1$ be an arbitrary number. For any positive number η with

$$
\begin{equation*}
\eta<\frac{\varepsilon^{2}}{a^{2}} \cdot\left[\int_{0}^{1} f^{2}(x) d x\right]^{-1} \tag{2.21}
\end{equation*}
$$

by definition of function $\omega(t)$, there exists a positive number $\delta<\varepsilon$ so that, for any $t, 0<t<\delta$, we have

$$
\begin{equation*}
\omega(t)<\omega(\delta)<\eta \tag{2.22}
\end{equation*}
$$

Without restriction of generality, we assume that

$$
\begin{equation*}
0<a \cdot\left|\gamma_{s}\right| \cdot \sqrt{\frac{\left|\Delta_{s}\right|}{\varepsilon}}<\delta, \quad s=1,2, \ldots, q \tag{2.23}
\end{equation*}
$$

Applying Lemma 2.3 consecutively, we can find a sequence of sets $E_{s} \subset \Delta_{s}$ and polynomials

$$
\begin{equation*}
P_{s}(x)=\sum_{k=N_{s-1}}^{N_{s}-1} c_{k}^{(s)} \psi_{k}(x), \quad s=1,2, \ldots, q \tag{2.24}
\end{equation*}
$$

which, for all $1 \leq s \leq q$, satisfy the following conditions:

$$
\begin{align*}
&\left|E_{s}\right|>(1-\varepsilon) \cdot\left|\Delta_{s}\right|, \tag{2.25}\\
& P_{s}(x)= \begin{cases}\gamma_{s}, & \text { if } x \in E_{s} \\
0, & \text { if } x \notin \Delta_{s},\end{cases} \tag{2.26}\\
& {\left[\sum_{k=N_{s-1}}^{N_{s}-1}\left|c_{k}^{(s)}\right|^{2}\right]^{\frac{1}{2}}<a \cdot\left|\gamma_{s}\right| \cdot \sqrt{\frac{\left|\Delta_{s}\right|}{\varepsilon}} . } \tag{2.27}
\end{align*}
$$

We define a set E and a polynomial $P(x)$ as follows:

$$
\begin{align*}
E & =\bigcup_{s=1}^{q} E_{s}, \tag{2.28}\\
P(x) & =\sum_{k=1}^{q} c_{k} \psi_{k}(x)=\sum_{s=1}^{q}\left[\sum_{k=N_{s-1}}^{N_{s}-1} c_{k}^{(s)} \psi_{k}(x)\right], \tag{2.29}
\end{align*}
$$

where

$$
\begin{equation*}
c_{k}=c_{k}^{(s)}, \quad \text { for } N_{s-1} \leq k<N_{s}, s=1,2, \ldots, q, N=N_{q}-1 \tag{2.30}
\end{equation*}
$$

From (2.20), (2.25), (2.26), (2.28), and (2.29) we get

$$
\begin{aligned}
|E| & >1-\varepsilon, \\
P(x) & =f(x), \quad \text { if } x \in E .
\end{aligned}
$$

Taking relations (2.23), (2.27), and (2.30), for any $k \in\left[N_{0}, N\right]$ we have

$$
\begin{equation*}
\left|c_{k}\right| \leq \max _{1 \leq s \leq q}\left[a \cdot\left|\gamma_{s}\right| \cdot \sqrt{\frac{\left|\Delta_{s}\right|}{\varepsilon}}\right]<\delta \tag{2.31}
\end{equation*}
$$

Hence, and from (2.22), it follows that

$$
\omega\left(\left|c_{k}\right|\right)<\omega(\delta)<\eta, \quad \forall k \in\left[N_{0}, N\right] .
$$

Consequently, from (2.21) and (2.27) we get

$$
\begin{aligned}
\sum_{k=N_{0}}^{N}\left|c_{k}\right|^{2} \cdot \omega\left(\left|c_{k}\right|\right) & <\eta \cdot \sum_{s=1}^{q}\left[\sum_{k=N_{s-1}}^{N_{s}-1}\left|c_{k}^{(s)}\right|^{2}\right] \\
& <\eta \cdot \frac{a^{2}}{\varepsilon} \cdot\left[\int_{0}^{1} f^{2}(x) d x\right]<\varepsilon
\end{aligned}
$$

That is, statements (1)-(3) of Lemma 2.4 are satisfied. Now we will check the fulfillment of statement (4).

For any number $M, N_{0} \leq M<N$, we can find $s_{0}, 1 \leq s_{0} \leq q$ such that $N_{s_{0}}<M<N_{s_{0}+1}$. Then, from (2.29) and (2.30) we have

$$
\begin{equation*}
\sum_{k=N_{0}}^{M} c_{k} \psi_{k}(x)=\sum_{s=1}^{s_{0}} P_{s}(x)+\sum_{k=N_{s_{0}}}^{M} c_{k} \psi_{k}(x) \tag{2.32}
\end{equation*}
$$

Given the choice of δ and that $P(x)=f(x)$ for $x \in E$, we then obtain, from relations (2.23), (2.27), (2.29), and (2.32) for any measurable set $e \subset E$

$$
\begin{aligned}
& \int_{e}\left|\sum_{k=N_{0}}^{M} c_{k} \psi_{k}(x)\right| d x \\
& \quad \leq \int_{e}\left|\sum_{s=1}^{s_{0}} P_{s}(x)\right| d x+\int_{0}^{1}\left|\sum_{k=N_{s_{0}}}^{M} c_{k} \psi_{k}(x)\right| d x \\
& \quad<\int_{e}|P(x)| d x+\left|\gamma_{s_{0}+1}\right| \cdot a \cdot \sqrt{\frac{\left|\Delta_{s_{0}+1}\right|}{\varepsilon}} \\
& \quad<\int_{e}|f(x)| d x+\varepsilon
\end{aligned}
$$

3. Proof of main Results

Proof. Let $\omega(t)$ be a continuous function, increasing in $[0, \infty)$ and $\omega(+0)=0$, and let

$$
\begin{equation*}
\left\{f_{n}(x)\right\}_{n=1}^{\infty} \tag{3.1}
\end{equation*}
$$

be a sequence of all step functions with rational values and rational jump points. Applying Lemma 2.4 consecutively, we can find a sequence of sets $\left\{E_{s}\right\}_{s=1}^{\infty}$ and a sequence of polynomials

$$
\begin{equation*}
P_{s}(x)=\sum_{k=N_{s-1}}^{N_{s}-1} c_{k}^{(s)} \psi_{k}(x) \tag{3.2}
\end{equation*}
$$

where $1=N_{0}<N_{1}<\cdots<N_{s}<\cdots, s=1,2, \ldots$, which satisfy the following conditions:

$$
\begin{align*}
\left|E_{s}\right| & >1-2^{-2(s+1)}, \quad E_{s} \subset[0,1], \tag{3.3}\\
P_{s}(x) & =f_{s}(x), \quad x \in E_{s} \tag{3.4}
\end{align*}
$$

$$
\begin{gather*}
\sum_{k=N_{s-1}}^{N_{s}-1}\left|c_{k}^{(s)}\right| \cdot \omega\left(\left|c_{k}^{(s)}\right|\right)<2^{-2 s}, \tag{3.5}\\
\max _{N_{s-1} \leq p<N_{s}}\left[\int_{e}\left|\sum_{k=N_{s-1}}^{p} c_{k}^{(s)} \psi_{k}(x)\right| d x\right]<2^{-2(s+1)}+\int_{e}\left|f_{s}(x)\right| d x \tag{3.6}
\end{gather*}
$$

for any measurable set $e \subset E$.
Denote

$$
\begin{equation*}
\sum_{k=1}^{\infty} c_{k} \psi_{k}(x)=\sum_{s=1}^{\infty}\left[\sum_{k=N_{s-1}}^{N_{s}-1} c_{k}^{(s)} \psi_{k}(x)\right] \tag{3.7}
\end{equation*}
$$

where $c_{k}=c_{k}^{(s)}$, for $N_{s-1} \leq k<N_{s}, s=1,2, \ldots$.
Let ε be an arbitrary positive number, and setting

$$
\left\{\begin{array}{l}
\Omega_{n}=\bigcap_{s=n}^{\infty} E_{s}, \quad n=1,2, \ldots \tag{3.8}\\
E=\Omega_{n_{0}}=\bigcap_{s=n_{0}}^{\infty} E_{s}, \quad n_{0}=\left[\log _{1 / 2} \varepsilon\right]+1 \\
B=\bigcup_{n=n_{0}}^{\infty} \Omega_{n}=\Omega_{n_{0}} \cup\left(\bigcup_{n=n_{0}+1}^{\infty} \Omega_{n} \backslash \Omega_{n-1}\right)
\end{array}\right.
$$

It is clear that $|B|=1$ and $|E|>1-\varepsilon$ (see (3.3)).
We define a function $\mu(x)$ in the following way:

$$
\mu(x)= \begin{cases}1, & \text { for } x \in E \cup([0,1) \backslash B) \tag{3.9}\\ \mu_{n}, & \text { for } x \in \Omega_{n} \backslash \Omega_{n-1}, n \geq n_{0}+1\end{cases}
$$

where

$$
\left\{\begin{array}{l}
\mu_{n}=\left[2^{2 n} \cdot \prod_{s=1}^{n} h_{s}\right]^{-1}, \tag{3.10}\\
h_{s}=\left\|f_{s}(x)\right\|_{C}+\max _{N_{s-1} \leq p<N_{s}}\left\|\sum_{k=N_{s-1}}^{p} c_{k}^{(s)} \psi_{k}(x)\right\|_{C}+1,
\end{array}\right.
$$

where $\|g(x)\|_{C}=\max _{x \in[0,1)}|g(x)|, g(x)$ is a bounded function on $[0,1)$.
From (3.5) and (3.8)-(3.10) we obtain the following:
(A) $\mu(x)$ is a measurable function and

$$
0<\mu(x) \leq 1, \quad|\{x \in[0,1): \mu(x) \neq 1\}|<\varepsilon
$$

(B) $\sum_{k=1}^{\infty}\left|c_{k}\right|^{2} \cdot \omega\left(\left|c_{k}\right|\right)<\infty$.

Hence, we obviously have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} c_{k}=0 \tag{3.11}
\end{equation*}
$$

It follows from (3.8)-(3.10) that, for all $s \geq n_{0}$ and $p \in\left[N_{s-1}, N_{s}\right.$),

$$
\begin{align*}
& \int_{[0,1) \backslash \Omega_{s}}\left|\sum_{k=N_{s-1}}^{p} c_{k}^{(s)} \psi_{k}(x)\right| \mu(x) d x \\
& \quad=\sum_{n=s+1}^{\infty}\left[\int_{\Omega_{n} \backslash \Omega_{n-1}}\left|\sum_{k=N_{s-1}}^{p} c_{k}^{(s)} \psi_{k}(x)\right| \mu_{n} d x\right] \\
& \quad \leq \sum_{n=s+1}^{\infty} 2^{-2 n}\left[\int_{0}^{1}\left|\sum_{k=N_{s-1}}^{p} c_{k}^{(s)} \psi_{k}(x)\right| h_{s}^{-1} d x\right]<\frac{1}{3} 2^{-2 s} \tag{3.12}
\end{align*}
$$

By (3.4) and (3.8)-(3.10), for all $s \geq n_{0}$ we have

$$
\begin{align*}
\int_{0}^{1} \mid & \left|P_{s}(x)-f_{s}(x)\right| \mu(x) d x \\
= & \int_{\Omega_{s}}\left|P_{s}(x)-f_{s}(x)\right| \mu(x) d x \\
& +\int_{[0,1) \backslash \Omega_{s}}\left|P_{s}(x)-f_{s}(x)\right| \mu(x) d x \\
= & \sum_{n=s+1}^{\infty}\left[\int_{\Omega_{n} \backslash \Omega_{n-1}}\left|P_{s}(x)-f_{s}(x)\right| \mu_{n} d x\right] \\
\leq & \sum_{n=s+1}^{\infty} 2^{-2 s}\left[\int_{0}^{1}\left(\left|f_{s}(x)\right|+\left|\sum_{k=N_{s-1}}^{N_{s}-1} c_{k}^{(s)} \psi_{k}(x)\right|\right) h_{s}^{-1} d x\right] \\
\quad< & \frac{1}{3} 2^{-2 s}<2^{-2 s} . \tag{3.13}
\end{align*}
$$

Taking relations (A), (3.6), and (3.8)-(3.10) into account, for all $p \in\left[N_{s-1}, N_{s}\right)$ and $s \geq n_{0}+1$, we obtain

$$
\begin{align*}
\int_{0}^{1} \mid & \sum_{k=N_{s-1}}^{p} c_{k}^{(s)} \psi_{k}(x) \mid \mu(x) d x \\
= & \int_{\Omega_{s}}\left|\sum_{k=N_{s-1}}^{p} c_{k}^{(s)} \psi_{k}(x)\right| \mu(x) d x \\
& +\int_{[0,1) \backslash \Omega_{s}}\left|\sum_{k=N_{s}-1}^{p} c_{k}^{(s)} \psi_{k}(x)\right| \mu(x) d x \\
& <\sum_{n=n_{0}+1}^{s}\left[\int_{\Omega_{n} \backslash \Omega_{n-1}}\left|\sum_{k=N_{s-1}}^{p} c_{k}^{(s)} \psi_{k}(x)\right| d x\right] \cdot \mu_{n}+\frac{1}{3} 2^{-2 s} \\
< & \sum_{n=n_{0}+1}^{s}\left(2^{-2(s+1)}+\int_{\Omega_{n} \backslash \Omega_{n-1}}\left|f_{s}(x)\right| d x\right) \mu_{n}+\frac{1}{3} 2^{-2 s} \\
= & 2^{-2(s+1)} \cdot \sum_{n=n_{0}+1}^{s} \mu_{n}+\int_{\Omega_{s}}\left|f_{s}(x)\right| \mu(x) d x+\frac{1}{3} 2^{-2 s} \\
& <\int_{0}^{1}\left|f_{s}(x)\right| \mu(x) d x+2^{-2 s} . \tag{3.14}
\end{align*}
$$

Let $f(x) \in L_{\mu}^{1}[0,1)$ be any function; that is, $\int_{0}^{1}|f(x)| \mu(x) d x<\infty$.
It is easy to see that we can choose a function $f_{\nu_{1}}(x)$ from the sequence (3.1) such that

$$
\begin{equation*}
\int_{0}^{1}\left|f(x)-f_{\nu_{1}}(x)\right| \mu(x) d x<2^{-2}, \quad \nu_{1}>n_{0}+1 \tag{3.15}
\end{equation*}
$$

Hence, we have

$$
\begin{equation*}
\int_{0}^{1}\left|f_{\nu_{1}}(x)\right| \mu(x) d x<2^{-2}+\int_{0}^{1}|f(x)| \mu(x) d x \tag{3.16}
\end{equation*}
$$

From Definition 2.2 and from relations (A), (3.13), and (3.15) we obtain, with $m_{1}=1$,

$$
\begin{align*}
& \int_{0}^{1}\left|f(x)-\left[P_{\nu_{1}}(x)+c_{m_{1}} \psi_{m_{1}}(x)\right]\right| \mu(x) d x \\
& \quad \leq \int_{0}^{1}\left|f(x)-f_{\nu_{1}}(x)\right| \mu(x) d x+\int_{0}^{1}\left|f_{\nu_{1}}(x)-P_{\nu_{1}}(x)\right| \mu(x) d x \\
& \quad+\int_{0}^{1}\left|c_{m_{1}} \psi_{m_{1}}(x)\right| \mu(x) d x<2 \cdot 2^{-2}+\left|c_{m_{1}}\right| \tag{3.17}
\end{align*}
$$

Assume that numbers $\nu_{1}<\nu_{2}<\cdots<\nu_{q-1}, m_{1}<m_{2}<\cdots<m_{q-1}$ are chosen in such a way that the following condition is satisfied:

$$
\begin{align*}
& \int_{0}^{1}\left|f(x)-\sum_{s=1}^{j}\left[P_{\nu_{s}}(x)+c_{m_{s}} \psi_{m_{s}}(x)\right]\right| \mu(x) d x \\
& \quad<2 \cdot 2^{-2 j}+\left|c_{m_{j}}\right|, \quad 1 \leq j \leq q-1 \tag{3.18}
\end{align*}
$$

Now, we choose a function $f_{\nu_{q}}(x)$ from the sequence (3.1) such that

$$
\begin{equation*}
\int_{0}^{1}\left|\left(f(x)-\sum_{s=1}^{q-1}\left[P_{\nu_{s}}(x)+c_{m_{s}} \psi_{m_{s}}(x)\right]\right)-f_{n_{q}}(x)\right| \mu(x) d x<2^{-2 q} \tag{3.19}
\end{equation*}
$$

where $\nu_{q}>\nu_{q-1}, \nu_{q}>m_{q-1}$.
This, with (3.18), implies

$$
\begin{align*}
\int_{0}^{1}\left|f_{\nu_{q}}(x)\right| \mu(x) d x & <2^{-2 q}+2 \cdot 2^{-2(q-1)}+\left|c_{m_{q-1}}\right| \\
& =9 \cdot 2^{-2 q}+\left|c_{m_{q-1}}\right| \tag{3.20}
\end{align*}
$$

From (3.13), (3.14), and (3.20) we have

$$
\begin{align*}
\int_{0}^{1}\left|f_{\nu_{q}}(x)-P_{\nu_{q}}(x)\right| \mu(x) d x & <2^{-2 \nu_{q}}, \tag{3.21}\\
P_{\nu_{q}}(x) & =\sum_{k=N_{\nu_{q}-1}}^{N_{\nu_{q}}-1} c_{k}^{\left(\nu_{q}\right)} \psi_{k}(x), \\
\max _{N_{\nu_{q}-1} \leq p<N \nu_{q}} \int_{0}^{1}\left|\sum_{k=N_{\nu_{q}-1}}^{p} c_{k}^{\left(\nu_{q}\right)} \psi_{k}(x)\right| \mu(x) d x & <10 \cdot 2^{-2 q}+\left|c_{m_{q-1}}\right| . \tag{3.22}
\end{align*}
$$

Denote

$$
\begin{equation*}
m_{q}=\min \left\{n \in N: n \notin\left\{\left\{\{k\}_{k=N_{\nu_{s}-1}}^{N_{\nu_{s}}-1}\right\}_{s=1}^{q} \cup\left\{m_{s}\right\}_{s=1}^{q-1}\right\}\right\} . \tag{3.23}
\end{equation*}
$$

Taking into account the relations (A), (3.19), and (3.21), we get

$$
\begin{align*}
& \int_{0}^{1}\left|f(x)-\sum_{s=1}^{q}\left[P_{\nu_{s}}(x)+c_{m_{s}} \psi_{m_{s}}(x)\right]\right| \mu(x) d x \\
& \leq \int_{0}^{1}\left|\left(f(x)-\sum_{s=1}^{q-1}\left[P_{\nu_{s}}(x)+c_{m_{s}} \psi_{m_{s}}(x)\right]\right)-f_{\nu_{q}}(x)\right| \mu(x) d x \\
&+\int_{0}^{1}\left|f_{\nu_{q}}(x)-P_{\nu_{q}}(x)\right| \mu(x) d x \\
&+\int_{0}^{1}\left|c_{m_{q}} \psi_{m_{q}}(x)\right| \mu(x) d x<2 \cdot 2^{-2 q}+\left|c_{m_{q}}\right| \tag{3.24}
\end{align*}
$$

Thus, by induction, we can choose from series (3.7) a sequence of members

$$
c_{m_{q}} \psi_{m_{q}}(x), \quad q=1,2, \ldots
$$

and a sequence of polynomials

$$
\begin{equation*}
P_{\nu_{q}}(x)=\sum_{k=N_{\nu_{q}-1}}^{N_{\nu_{q}}-1} c_{k}^{\left(\nu_{q}\right)} \psi_{k}(x), \quad N_{n_{q}-1}>N_{n_{q-1}}, q=1,2, \ldots, \tag{3.25}
\end{equation*}
$$

such that conditions (3.22)-(3.24) are satisfied for all $q \geq 1$.
Taking into account the choice of $P_{\nu_{q}}(x)$ and $c_{m_{q}} \psi_{m_{q}}(x)$ (see (3.22) and (3.25)), we conclude that the series

$$
\sum_{q=1}^{\infty}\left[\sum_{k=N_{\nu_{q}-1}}^{N_{\nu_{q}-1}} c_{k}^{\left(\nu_{q}\right)} \psi_{k}(x)+c_{m_{q}} \psi_{q}(x)\right]
$$

is obtained from the series (3.7) by rearrangement of members.
It follows from (3.11), (3.21), and (3.24) that this series converges to the function $f(x)$ in the metric $L_{\mu}^{1}[0,1)$; that is, the series (3.7) is universal with respect to rearrangements (see Definition 1.1).

On the other hand, it is easy to see that, for any function $f(x) \in L_{\mu}^{1}[0,1)$, from the sequence (3.2) one can choose polynomials

$$
P_{r_{s}}(x)=\sum_{k=N_{r_{s}-1}}^{N_{r_{s}}-1} c_{k}^{\left(r_{s}\right)} \psi_{k}(x), \quad r_{s-1}<r_{s}, s=1,2, \ldots,
$$

so that the following conditions are satisfied:

$$
\begin{aligned}
\int_{0}^{1}\left|f(x)-\sum_{s=1}^{N} P_{r_{s}}(x)\right| \mu(x) d x<2^{-N}, \quad N=1,2, \ldots, \\
\max _{N_{r_{s}-1} \leq m<N r_{s}} \int_{0}^{1}\left|\sum_{k=N_{r_{s}-1}}^{p} c_{k}^{\left(r_{s}\right)} \psi_{k}(x)\right| \mu(x) d x<2^{-N}, \quad N=1,2, \ldots
\end{aligned}
$$

Hence, it follows that the subseries

$$
\sum_{s=1}^{\infty}\left[\sum_{k=N_{r_{s}-1}}^{N_{r_{s}}-1} c_{k}^{\left(r_{s}\right)} \psi_{k}(x)\right]
$$

of series (3.7) converges to $f(x)$ in the metric of $L_{\mu}^{1}[0,1)$. This means that series (3.7) is universal in $L_{\mu}^{1}[0,1)$ by subseries (see Definition 1.3).

References

1. H. E. Chrestenson, A class of generalized Walsh functions, Pacific J. Math. 45 (1955), 17-31. MR0068659. 418
2. S. A. Episkoposian, On the existence of universal series by Walsh system, J. Contemp. Math. Anal. 38 (2003), no. 4, 25-40. MR2133958. 416, 418
3. S. A. Episkoposian, On the existence of universal series by trigonometric system, J. Funct. Anal. 230 (2006), 169-189. Zbl 1091.42003. MR2184187. DOI 10.1016/j.jfa.2005.05.010. 416, 418
4. S. A. Episkoposian, On greedy algorithms with respect to generalized Walsh system, Glob. J. Pure Appl. Math. 3 (2007), 77-86. MR2351437.
5. S. A. Episkoposian, L^{1}-convergence of greedy algorithm by generalized Walsh system, Banach J. Math. Anal. 6 (2012), no. 1, 161-174. MR2862553. DOI 10.15352/bjma/ 1337014675.
6. S. A. Episkoposian and M. G. Grigorian, Representation of functions in weighted spaces $L_{\mu}^{1}[0,2 \pi]$ by trigonometric and Walsh series, Anal. Math. 27 (2001), 261-277. Zbl 1001.42019. MR1885409. DOI 10.1023/A:1014368111379. 416, 417
7. M. Fekete, Untersuchungen über absolut summable Reihen, mit Anwendung auf Dirichletsche und Fouriersche Reihen (in Hungarian), Math. És. Termész. Ért. 32 (1914), 389-425. Zbl 45.1274.01. 415, 416
8. J. Fine, The generalized Walsh functions, Trans. Amer. Math. Soc. 69 (1950), 66-77. Zbl 0041.03002. MR0042535. 418
9. M. G. Grigorian, On the representation of functions by orthogonal series in weighted L^{p} spaces, Studia Math. 134 (1999), no 3, 211-237. MR1685453. 416, 417
10. B. I. Golubov, A. V. Efimov, and V. A. Skvortsov, Walsh Series and Transforms, Kluwer Academic, Dordrecht, 1991. MR1155844. DOI 10.1007/978-94-011-3288-6.
11. V. Ya. Kozlov, On the complete systems of orthogonal functions, Sb. Math. 26 (1950), 351-364. MR0036860. 416
12. D. E. Menshov, On the partial sums of trigonometric series, Sb. Math. 20 (1947), 197-238. 416
13. W. Orlicz, Uber die unabhangig von der Anordnung fast uberall kniwergenten Reihen, Bull. de l'Acad. Polon. des Sci. 81 (1927), 117-125. 416, 417
14. R. E. A. C. Paley, A remarkable set of orthogonal functions, Proc. Lond. Math. Soc. 34 (1932), 241-279. 418, 419
15. A. A. Talalyan, On the convergence almost everywhere the subsequence of partial sums of general orthogonal series, Izv. Akad. Nauk Arm. SSR ser. Math. 10 (1957), 17-34. MR0089940. 416, 417
16. A. A. Talalyan, On the universal series with respect to rearrangements, Izv. Math. 24 (1960), 567-604. MR0119088. 416, 417
17. P. L. Ul'yanov, On the unconditional convergence and the summability, Izv. Math. 22 (1958), 811-840. MR0103381. 416
18. N. Vilenkin, On a class of complete orthonormal systems, Izv. Math. 28 (1963), 1-35. Zbl 0125.34304. MR0154042. 418
19. C. Watari, On generalized Walsh Fourier series, I, Proc. Japan Acad. 33 (1957), 435-438. Zbl 0080.05101. MR0098953. 418
20. W. Young, Mean convergence of generalized Walsh-Fourier series, Trans. Amer. Math. Soc. 218 (1976), 311-320. Zbl 0327.43009. MR0394022. 418

Faculty of Applied Mathematics, State Engineering University of Armenia, Yerevan, Teryan st. 105, Yerevan 0009, Armenia.

E-mail address: sergoep@ysu.am

[^0]: Copyright 2016 by the Tusi Mathematical Research Group.
 Received Mar. 12, 2015; Accepted Jul. 22, 2015.
 2010 Mathematics Subject Classification. Primary 42A65; Secondary 42A20, 42C10.
 Keywords. generalized Walsh system, weighted space, universal series.

