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DIFFERENTIAL EQUATIONS WITH SMALL PARAMETER
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Abstract. The boundary value problems for linear and nonlinear regular
degenerate abstract differential equations are studied. The equations have the
principal variable coefficients and a small parameter. The linear problem is
considered on a parameter-dependent domain (i.e., on a moving domain). The
maximal regularity properties of linear problems and the optimal regularity
of the nonlinear problem are obtained. In application, the well-posedness of
the Cauchy problem for degenerate parabolic equations and boundary value
problems for degenerate anisotropic differential equations are established.

1. Introduction, notation, and background

Boundary value problems (BVPs) for abstract differential equations (ADEs)
have been studied extensively by many researchers (see [1], [3], [4], [8]–[21], and
[24] and the references therein). A comprehensive introduction to ADEs and his-
torical references may be found in [13] and [24]. The maximal regularity properties
of ADEs have been studied in [1], [3]–[5], [8], [9], [16]–[20], and [23], for example.
The main objective of the present article is to discuss the BVP for degenerate
linear ADEs with variable coefficients
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(−1)mta(x)u[2m](x) + A(x)u(x) +
2m−1∑
j=1

t
j

2mAj(x)u
[j](x) = f(x),

and the BVP for the following nonlinear degenerate equation,

(−1)ma(x)u[2m](x) +O(x, u, u[1], . . . , u[2m−1])u(x)

= F (x, u, u[1], . . . , u[2m−1]), x ∈ (0, 1),

where t is a small parameter, m is an integer number, a(x) is a complex valued
A(x), Aj(x) are linear, and O(x, . . . , ), F (x, . . . , ) are nonlinear operators in a
Banach space E for x ∈ (0, 1) and

u[i](x) =
[
xγ1(1− x)γ2

d

dx

]i
u(x), γk ≥ 0, k = 1, 2.

The uniform separability, resolvent estimates, and the Fredholm properties of the
linear problem are obtained in abstract Lp-spaces. In particular, we prove that
the corresponding linear differential operator is both R-positive and a generator
of the analytic semigroup.

Then, by using the separability properties of linear problems, the existence and
uniqueness of the maximal regular solution of the nonlinear problem is proved in
E-valued Lp spaces. Moreover, the well-posedness of the Cauchy problem for the
degenerate parabolic equation

∂u

∂y
+ (−1)mtau[2m]

x + Au = f, y ∈ R+, x ∈ (0, 1)

is established, where u = u(y, x), f = f(y, x), a = a(x), A = A(x), and

u[i]
x =

[
xγ1(1− x)γ2

∂

∂x

]i
u(y, x).

In application, the BVP for degenerate partial differential equations on a cylin-
drical domain is studied. Some of the important characteristics of these problems
are the following: (1) here the main and boundary equations are degenerated on
all boundaries; (2) the principal parts of the problems are non-self-adjoint; (3) the
equations possess variable coefficients with small parameter; and (4) the equa-
tions are degenerated with different speeds at boundary lines, in general. Note
that the maximal regularity properties of ADEs considered in Banach spaces were
treated in, for example, [1], [8], [11], [16]–[20], and [23]. Nonlinear BVPs for ADEs
are studied in, for instance, [3], [17], and [20].

Let γ = γ(x) be a positive measurable function on a domain Ω ⊂ Rn. And
Lp,γ(Ω;E) denotes the space of strongly measurable E-valued functions that are
defined on Ω with the norm

‖f‖p,γ = ‖f‖Lp,γ(Ω;E) =
(∫ ∥∥f(x)∥∥p

E
γ(x) dx

) 1
p
, 1 ≤ p < ∞.

For γ(x) ≡ 1, the space Lp,γ(Ω;E) will be denoted by Lp = Lp(Ω;E).
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The weight function γ is said to be of Muckenhopt type, that is, γ ∈ Ap,
1 < p < ∞, if there is a positive constant C such that( 1

|Q|

∫
Q

γ(x) dx
)( 1

|Q|

∫
Q

γ− 1
p−1 (x) dx

)p−1

≤ C

for all cubes Q ⊂ Rn.
The Banach space E is called a UMD-space if the Hilbert operator (Hf)(x) =

limε→0

∫
|x−y|>ε

f(y)
x−y

dy is bounded in Lp(R,E), p ∈ (1,∞) (see, e.g., [7, Theo-

rem 1]). UMD spaces include, for example, Lp- and lp-spaces and Lorentz spaces
Lpq, p, q ∈ (1,∞).

Let C be the set of complex numbers, and let

Sϕ =
{
λ;λ ∈ C, | arg λ| ≤ ϕ

}
∪ {0}, 0 ≤ ϕ < π.

A linear operator A is said to be ϕ-positive in a Banach space E with bound
M > 0 if D(A) is dense on E and ‖(A + λI)−1‖B(E) ≤ M(1 + |λ|)−1 for any
λ ∈ Sϕ, where I is the identity operator in E and B(E) denotes the space of
bounded linear operators in E. Sometimes A+λI will be written as A+λ and will
be denoted by Aλ. It is known (see [22, Section 1.15.1]) that a positive operator
A has well-defined fractional powers Aθ. Let E(Aθ) denote the space D(Aθ) with
norm

‖u‖E(Aθ) =
(
‖u‖p + ‖Aθu‖p

) 1
p , 1 ≤ p < ∞, 0 < θ < ∞.

Let S(Rn;E) denote the Schwartz class, that is, the space of all E-valued
rapidly decreasing smooth functions on Rn. Let F denote the Fourier transfor-
mation. A function Ψ ∈ C(Rn;B(E)) is called a Fourier multiplier in Lp,γ(R

n;E)
if the map

u → Φu = F−1Ψ(ξ)Fu, u ∈ S(Rn;E)

is well defined and extends to a bounded linear operator in Lp,γ(R
n;E). The set

of all multipliers in Lp,γ(R
n;E) will be denoted by Mp,γ(E). Let

Wh =
{
Ψh ∈ Mp,γ(E), h ∈ Q ⊂ C

}
be a collection of multipliers in Mp,γ(E). We say that Wh is a uniform collection
of multipliers if there exists a positive constant C independent of h such that

‖F−1ΨhFu‖Lp,γ(Rn;E) ≤ C‖u‖Lp,γ(Rn;E)

for all h ∈ Q and u ∈ S(Rn;E).

Definition 1.1. A Banach space E is said to be a space satisfying the multiplier
condition with respect to p ∈ (1,∞) and weighted function γ, if, for any Ψ ∈
C(1)(R;B(E)), the R-boundedness (see, e.g., [8, Section 4.1]) of the set{

ξjΨ(j)(ξ) : ξ ∈ R\{0}, j = 0, 1
}

implies Ψ ∈ Mp,γ(E).
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Let E1 and E2 be two Banach spaces continuously embedded in a locally convex
space.

The operator A(x) is said to be ϕ-positive in E uniformly with respect to x ∈ G
if D(A(x)) is independent of x, D(A(x)) is dense in E, and ‖(A(x) + λ)−1‖ ≤
M

1+|λ| for all λ ∈ S(ϕ), 0 ≤ ϕ < π, where the constant M is independent of x

and λ.
The ϕ-positive operator A(x), x ∈ G is said to be uniformly R-positive in a

Banach space E if there exists ϕ ∈ [0, π) such that the set{
A(x)

(
A(x) + ξI

)−1
: ξ ∈ Sϕ

}
is uniformly R-bounded, that is,

sup
x∈G

R
({[

A(x)
(
A(x) + ξI

)−1]
: ξ ∈ Sϕ

})
≤ M.

Let σ∞(E) denote the space of all compact operators in E. Let E0 and E be
two Banach spaces, and let E0 be continuously and densely embedded into E.
Let us consider the Sobolev–Lions-type space Wm

p,γ(a, b;E0, E), consisting of all

functions u ∈ Lp,γ(a, b;E0) that have generalized derivatives u(m) ∈ Lp,γ(a, b;E)
with the norm

‖u‖Wm
p,γ

= ‖u‖Wm
p,γ(a,b;E0,E) = ‖u‖Lp,γ(a,b;E0) + ‖u(m)‖Lp,γ(a,b;E) < ∞.

Let

W [m]
p,γ = W [m]

p,γ (0, 1;E0, E)

= {u;u ∈ Lp(0, 1;E0), u
[m] ∈ Lp(0, 1;E),

‖u‖
W

[m]
p,γ

= ‖u‖Lp(0,1;E0) + ‖u[m]‖Lp(0,1;E) < ∞}.

Let t be a positive parameter. We define the following parameterized norm in
Wm

p,γ(a, b;E0, E):

‖u‖Wm
p,γ,t

= ‖u‖Wm
p,γ,t(a,b;E0,E) = ‖u‖Lp,γ(a,b;E0) + ‖tu(m)‖Lp,γ(a,b;E) < ∞.

The embedding theorems play a key role in the perturbation theory of DOEs.
For estimating lower-order derivatives, we use the following embedding theorems
from [18].

Theorem 1.2 ([18, Theorem 2.3]). Assume that the following conditions are
satisfied:

(1) E is a Banach space satisfying the multiplier condition with respect to p
and weighted function γ.

(2) A is an R-positive operator in E.
(3) We have that 0 ≤ j ≤ m, 0 ≤ µ ≤ 1 − j

m
, and 1 < p < ∞; and h and t

are positive parameters, that is, 0 < h < h0 < ∞, 0 < t < 1.
(4) There exists a bounded linear extension operator from Wm

p,γ(a, b;E(A), E)
to Wm

p,γ(R
n;E(A), E).
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Then the embedding DjWm
p,γ(a, b;E(A), E) ⊂ Lp,γ(a, b;E(A1− j

m
−µ)) is continu-

ous. Moreover, for u ∈ Wm
p,γ(a, b;E(A), E) the following estimate holds:

‖u(j)‖
Lp,γ(a,b;E(A1− j

m−µ))
≤ hµ‖u‖Wm

p,γ,t(a,b;E(A),E) + h−(1−µ)‖u‖Lp,γ(a,b;E).

Theorem 1.3 ([18, Theorem 2.4]). Suppose that all conditions of Theorem 1.2
are satisfied. Moreover, let γ ∈ Ap, Ω be a bounded region, and let A−1 ∈ σ∞(E).
Then the embedding

Wm
p,γ

(
a, b;E(A), E

)
⊂ Lp,γ(a, b;E)

is compact.

Consider the BVP for the ADE with constant coefficients

(−1)mtu[2m](x) + (A+ λ)u(x) = f(x), x ∈ (0, 1),
ν0k∑
i=0

tσi

[
αkiu

[i](0) +
N∑
j=1

δkiju
[i](xkj)

]
= f0k, k = 1, 2, . . . ,m, (1.1)

ν1k∑
i=0

tσi

[
βkiu

[i](1) +
N∑
j=1

ηkiju
[i](xkj)

]
= f1k, k = 1, 2, . . . ,m,

where u[i](x) = (xγ d
dx
)iu(x), νjk ∈ {0, 2m − 1}; fjk ∈ Ek = (E(A), E)θjk,p, θjk =

νjk+
1

p(1−γ)

2m
, j = 0, 1, σi =

i
2m

+ 1
2mp

, αki, βki, δkij, ηkij are complex numbers, and

xkj ∈ (0, 1); and A is a linear operator in a Banach space E.
In a similar way as [18, Theorem 5.1] we obtain the following.

Theorem 1.4. Suppose that the following conditions are satisfied:

(1) t is a small positive parameter and αkν0k , βkν1k 6= 0;
(2) E is a Banach space satisfying the multiplier condition with respect to p

and weighted function γ(x) = xγ, 0 ≤ γ < 1− 1
p
, 1 < p < ∞;

(3) A is an R-positive operator in E.

Then problem (1.1) has a unique solution u ∈ W
[2m]
p,γ (0, 1;E(A), E) for f ∈

Lp(0, 1;E) and fjk ∈ Ek. Moreover, for | arg λ| ≤ ϕ and sufficiently large |λ|, the
following uniform coercive estimate holds:

2m∑
i=0

|λ|1−
i

2m t
i
2‖u[i]‖Lp(0,1;E) + ‖Au‖Lp(0,1;E)

≤ C
[
‖f‖Lp(0,1;E) +

m∑
k=1

(
‖f0k‖Ek

+ ‖f1k‖Ek

)]
.
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2. Degenerate equation with variable coefficients

Consider the BVP for the parameter-dependent ADE with variable coefficients

(L+ λ)u = (−1)mta(x)u[2m](x) + A(x)u(x) +
2m−1∑
i=1

t
i

2mAi(x)u
[i](x) + λu(x)

= f(x),

L0ku =

ν0k∑
i=0

tσi

[
αkiu

[i](0) +
N∑
j=1

δkiju
[i](xkj)

]
= 0, k = 1, 2, . . . ,m,

L1ku =

ν1k∑
i=0

tσi

[
βkiu

[i](1) +
N∑
j=1

ηkiju
[i](xkj)

]
= 0, k = 1, 2, . . . ,m,

(2.1)

where u[i] = [xγ1(1− x)γ2 d
dx
]iu(x), x ∈ (0, 1), 0 ≤ γ1, γ2 < 1; σi =

i
2m

+ 1
2mp

; ν0k,

ν1k ∈ {0, 2m− 1}; k = 1, 2, . . . ,m; αki, βki, δkij, and ηkij are complex numbers; t
is a small positive parameter; λ is a complex parameter; and A(x) and Ai(x) are
linear operators in a Banach space E. Note that∫ x

0

z−γ1(1− z)−γ2 dz < ∞.

A function u ∈ W
[2m]
p,γ (0, 1;E(A), E) satisfying the equation (2.1) a.e. on (0, 1) is

said to be the solution of the equation (2.1) on (0, 1).

Remark 2.1. Let

y =

∫ x

0

z−γ1(1− z)−γ2 dz. (2.2)

Under the substitution (2.2), the spaces Lp(0, 1;E) and W
[2m]
p,γ (0, 1;E(A), E) are

mapped isomorphically onto the weighted spaces

Lp,γ̃(0, b;E), W 2
p,γ̃

(
0, b;E(A), E

)
,

respectively, where

γ̃ = γ̃
(
x(y)

)
, b =

∫ 1

0

z−γ1(1− z)−γ2 dz.

Under the substitution (2.2), the problem (2.1) is transformed into the following
nondegenerate problem:

(−1)mta(y)u(2m)(y) + A(y)u(y) +
2m−1∑
i=1

t
i

2mAi(y)u
(i)(y) + λu(y) = f(y), (2.3)

L0ku =

ν0k∑
i=0

tσi

[
αkiu

(i)(0) +
N∑
j=1

δkiju
(i)(ykj)

]
= 0, k = 1, 2, . . . ,m, (2.4)

L1ku =

ν1k∑
i=0

tσi

[
βkiu

(i)(b) +
N∑
j=1

ηkiju
(i)(ykj)

]
= 0, k = 1, 2, . . . ,m
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considered in the weighted space Lp,γ(0, b;E), where y, ã(y) = a(x(y)), Ã(y) =

A(x(y)), Ãi(y) = Ai(x(y)), and γ̃(y) = γ(x(y)) will be denoted by a(y), A(y),
Ai(y), and γ, respectively.

3. Degenerate ADEs with parameter

Consider the problem (2.3)–(2.4). Let X = Lp,γ(0, b;E) and

Y = W 2m
p,γ

(
0, b;E(A), E

)
.

By (E1, E2)θ,p, 0 < θ < 1, 1 ≤ p ≤ ∞, we will denote the interpolation spaces
obtained from {E1, E2} by the K-method (see [22, Section 1.3.2]).

Theorem 3.1. Assume that the following conditions are satisfied:

(1) αkν0k , βkν1k 6= 0 and a(y) is a positive continuous function on [0, b].
(2) E is a Banach space satisfying the multiplier condition with respect to p

and weighted function γ(y) = yγ1(b− y)γ2, 0 ≤ γ1, γ2 < 1− 1
p
, 1 < p < ∞.

(3) A(y) is an R-positive operator in E uniformly with respect to y ∈ [0, b]
and A(y)A−1(y0) ∈ C([0, b];B(E)), y0 ∈ (0, b).

(4) For any ε > 0 there is a positive constant C(ε) such that
‖Ai(y)u‖ ≤ ε‖u‖(E(A),E) i

2m,∞
+ C(ε)‖u‖ for u ∈ (E(A), E) i

2m
,∞.

Then, the problem (2.3)–(2.4) has a unique solution u ∈ Y for f ∈ X and
| arg λ| ≤ ϕ with sufficiently large |λ|. Moreover, the uniform coercive estimate
holds:

2m∑
i=0

|λ|1−
i

2m t
i

2m‖u(i)‖p,γ + ‖Au‖p,γ ≤ C‖f‖p,γ. (3.1)

Proof. First, we will show the uniqueness of the solution. Let G1,G2, . . . , GN be
regions in R, and let ϕ1, ϕ2, . . . , ϕN correspond to a partition of a unit in which
the functions ϕj are smooth on R, suppϕj ⊂ Gj, and

∑N
j=1 ϕj(y) = 1. Then, for

all u ∈ Y , we have u(y) =
∑N

j=1 uj(y), where uj(y) = u(y)ϕj(y). Let u ∈ Y be a

solution of (2.3)–(2.4). Then from (2.3)–(2.4) we obtain

(L+ λ)uj = (−1)mtau
(2m)
j + (A+ λ)uj = fj, (3.2)

where

fj = fϕj + (−1)mta
2m−1∑
ν=0

C2mu
(ν)ϕ

(2m−ν)
j +

2m−1∑
i=1

i∑
ν=0

t
i

2mCν
i u

(ν)ϕ
(i−ν)
j ,

L0kuj = 0, L1kuj = 0, j = 1, 2, . . . , N, k = 1, 2, . . . ,m.

(3.3)

By freezing coefficients in (3.2) we obtain

(−1)mta(y0j)u
(2m)
j (y) +

(
A(y0j) + λ

)
uj(y) = Fj(y), (3.4)

where

Fj = fj +
[
A(y0j)− A(y)

]
uj +

[
a(y)− a(y0j)

]
u
(2m)
j . (3.5)
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Since functions uj(x) have compact supports, by extending uj(x) on the outsides
of suppϕj we obtain BVPs for ADEs with constant coefficients:

(−1)mta(y0j)u
(2m)
j +

(
A(y0j) + λ

)
uj = Fj,

Likuj = 0, i = 0, 1, k = 1, 2, . . . ,m.
(3.6)

Let ‖ · ‖Gj ,p,γk denote E-valued weighted Lp-norms with respect to weighted func-
tions xγk on Gj. Let ϕj be such that 0 ∈ suppϕj. Then, by virtue of Theorem 1.4,
we obtain that problem (3.6) has a unique solution uj and that the coercive uni-
form estimates hold:

2m∑
i=0

|λ|1−
i

2m t
i

2m‖u(i)
j ‖Gj ,p,γ1 + ‖Auj‖Gj ,p,γ1 ≤ C‖Fj‖Gj ,p,γ1 . (3.7)

In a similar way, Theorem 1.4 implies the following estimates:

2m∑
i=0

|λ|1−
i

2m t
i

2m‖u(i)
j ‖Gj ,p,γ2 + ‖Auj‖Gj ,p,γ2 ≤ C‖Fj‖Gj ,p,γ2 (3.8)

on domains Gj adjoin the boundary point b. Similarly, these estimates are derived
for domains Gj, which do not intersect with boundary points. Hence, by using
the properties of the smoothness of coefficients of equations (3.3) and (3.5) and
by choosing diameters of suppϕj sufficiently small, we get

‖Fj‖Gj ,p,γ ≤ ε‖uj‖W 2m
p,γ,t(Gj ;E(A),E) + C(ε)‖fj‖Gj ,p,γ, j = 1, 2, . . . , N (3.9)

for the sufficiently small positive ε and the continuous function C(ε). Conse-
quently, from (3.7) and (3.8) and Theorem 1.2 we get

2m∑
i=0

|λ|1−
i

2m t
i

2m‖u(i)
j ‖Gj ,p,γ + ‖Auj‖Gj ,p,γ

≤ C‖f‖Gj ,p,γ + ε‖uj‖W 2
p,γ

+ C(ε)‖uj‖Gj ,p,γ.

Choosing ε < 1 from the above inequality, we have

2m∑
i=0

|λ|1−
i

2m t
i

2m‖u(i)
j ‖Gj ,p,γ + ‖Auj‖Gj ,p,γ ≤ C

[
‖f‖Gj ,p,γ + ‖uj‖Gj ,p,γ

]
. (3.10)

It is clear that γ(x) ∼ xγ1 on domains Gj in neighborhoods of 0, γ(x) ∼ (1−x)γ2

on domains Gj around the point b and that γ(x) is equivalent to the constant for

others domains Gj. Then using the equality u(y) =
∑N

j=1 uj(y) and the estimate

(3.10) for u ∈ Y we have

2m∑
i=0

|λ|1−
i

2m t
i

2m‖u(i)‖p,γ + ‖Auj‖p,γ ≤ C
[∥∥(L+ λ)u

∥∥
p,γ

+ ‖u‖p,γ
]
. (3.11)

Let u ∈ Y be the solution of problem (2.3)–(2.4). Then, for | arg λ| ≤ ϕ, we have

‖u‖X =
∥∥(L+ λ)u− Lu

∥∥
X
≤ 1

λ

[∥∥(L+ λ)u
∥∥
X
+ ‖u‖Y

]
. (3.12)
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Then by Theorem 1.2 and by virtue of (3.10) and (3.12) for sufficiently large |λ|,
we have

2m∑
i=0

|λ|1−
i

2m t
i

2m‖u(i)‖X + ‖Au‖X ≤ C
∥∥(L+ λ)u

∥∥
X
. (3.13)

Consider the operator O in Lp,γ(0, b;E) generated by problem (2.3)–(2.4) for
λ = 0, that is,

D(O) =W 2m
p,γ

(
0, b;E(A), E, Lik

)
,

Ou = (−1)mta(x)u[2m](x) + A(x)u(x) +
2m−1∑
i=1

t
i

2mAi(x)u
[i](x).

The estimate (3.13) implies that problem (2.3)–(2.4) has only one unique solution
and that the operator Oλ has an invertible operator in its rank space. We need to
show that this rank space coincides with the space Lp,γ(0, b;E). We consider the
smooth functions gj = gj(y) with respect to the partition of the unique ϕj = ϕj(y)
on (0, b) that equal one on suppϕj, where supp gj ⊂ Gj and |gj(y)| < 1. Let us
construct the function uj for all j that are defined on Ωj = (0, b) ∩ Gj and
satisfying problem (2.3)–(2.4). Problem (2.3)–(2.4) can be expressed as

(−1)mta(y0j)u
(2m)
j +

(
A(y0j) + λ

)
uj

= gj{Fj +
[
A(y0j)− A(y)

]
uj +

[
a(y)− a(y0j)

]
uj}, (3.14)

Likuj = 0, j = 1, 2, . . . , N, i = 0, 1.

Consider operators Ojλt in Lp,γ(Gj;E) generated by BVPs (3.14). By virtue of
Theorem 1.2 for f ∈ Lp,γ(Gj;E), | arg λ| ≤ ϕ, and sufficiently large |λ|, we have

2m∑
i=0

|λ|1−
i

2m t
i

2m

∥∥∥ di

dyi
O−1

jλtf
∥∥∥
p,γ

+ ‖AO−1
jλtf‖p,γ ≤ C‖f‖p,γ. (3.15)

Extending uj to zero on the outside of suppϕj and passing substitutions
uj = O−1

jλ υj in (3.15), we obtain operator equations with respect to υj:

υj = Kjλtυj + gjf, j = 1, 2, . . . , N. (3.16)

By virtue of Theorem 1.2 and estimate (3.15), in view of the smoothness of the
coefficients of the expression Kjλt, for sufficiently large |λ| we have ‖Kjλt‖ < ε,
where ε is sufficiently small. Consequently, equations (3.16) have unique solutions
υj = [I −Kjλt]

−1gjf . Moreover,

‖υj‖p,γ =
∥∥[I −Kjλt]

−1gjf
∥∥
p,γ

≤ ‖f‖p,γ.

Hence, [I −Kjλt]
−1gj are bounded linear operators from X to Lp,γ(Gj;E). Thus,

we obtain that

uj = Ujλtf = O−1
jλt[I −Kjλt]

−1gjf
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are solutions of (3.16). Consider the linear operator (Ut + λ) in X such that

(Ut + λ)f =
N∑
j=1

ϕj(y)Ujλtf.

It is clear from the constructions Ujtand the estimate (3.15) that operators Ujλt

are bounded linear from X to Y and
2m∑
i=0

|λ|1−
i

2m t
i

2m

∥∥∥ di

diy
U−1
jλtf

∥∥∥
p,γ

+ ‖AU−1
jλtf‖p,γ ≤ C‖f‖p,γ. (3.17)

Therefore, (Ut + λ) is a bounded linear operator from Lp,γ to Lp,γ. Let Lt de-
note the operator in X generated by BVPs (3.4)–(3.5). The act of (Lt + λ) to

u =
∑N

j=1 ϕjUjλtf gives (Lt + λ)u = f +
∑N

j=1Φjλtf , where the Φjλt are linear

combinations of Ujλt and
d
dy
Ujλt. By virtue of embedding Theorem 1.2 and the

estimate (3.17) and from the expression Φjλt, we obtain that operators Φjλt are
bounded linear from X to Lp,γ(Gj;E) and that ‖Φjλt‖ < ε. Therefore, there exists

a bounded linear invertible operator (I+
∑N

j=1Φjλt)
−1. Hence, we obtain that the

BVP (2.3)–(2.4) for f ∈ X has a unique solution

u(y) = (Lt + λ)−1f = (Ut + λ)
(
I +

N∑
j=1

Φjλt

)−1

f

=
N∑
j=1

ϕj(y)O
−1
jλt[I −Kjλt]

−1
(
I +

N∑
j=1

Φjλt

)−1

f.

(3.18)

Then by using the above representation and in view of Theorem 1.2 we obtain
the assertion. �

Conclusion 3.2. Theorem 3.1 implies that the differential operator Lt has a re-
solvent (Lt + λ)−1 for | arg λ| ≤ ϕ, and the estimate holds:

2m∑
i=0

|λ|1−
i

2m t
i

2m

∥∥Di(Lt + λ)−1
∥∥
B(X)

+
∥∥A(Lt + λ)−1

∥∥
B(X)

≤ C.

Theorem 3.3. Let all conditions of Theorem 3.1 hold, and let A−1 ∈ σ∞(E).
Then the operator Lt is Fredholm from Y into X.

Proof. Theorem 3.1 implies that the operator Lt + λ has a bounded inverse, say
(Lt + λ)−1, from X to Y for sufficiently large |λ|; that is, the operator Lt + λ is
Fredholm from Y into X. Moreover, by virtue of Theorem 1.3, the embedding
Y ⊂ X is compact. Then we obtain that the operator Lt is Fredholm from Y
into X. �

Let Gt denote the operator in Lp(0, 1;E) generated by BVP (2.1) for λ = 0.
By virtue of Theorem 3.1 and Remark 2.1 we obtain the following.

Conclusion 3.4. Let all conditions of Theorem 3.1 be satisfied. Then we have the
following:
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(a) Problem (2.1) has a unique solution u ∈ W
[2m]
p,γ (0, 1;E(A), E) for f ∈

Lp(0, 1;E), | arg λ| ≤ ϕ, and sufficiently large |λ|. Moreover, the uniform
coercive estimate holds:

2m∑
i=0

|λ|1−
i

2m t
i

2m‖u[i]‖p + ‖Au‖p ≤ C‖f‖p.

(b) The operator Gt is Fredholm from W
[2m]
p,γ (0, 1;E(A), E) into Lp(0, 1;E).

(c) Gt has a resolvent operator (Gt + λ)−1 for | arg λ| ≤ ϕ, and

2m∑
i=0

|λ|1−
i

2m t
i

2m

∥∥D[i](Gt + λ)−1
∥∥
B(Lp(0,1;E))

+
∥∥A(Gt + λ)−1

∥∥
B(Lp(0,1;E))

≤ C.

4. R-positive properties of the degenerate ADE with parameter

Conclusion 3.4 implies that the operator Gt is positive in Lp(0, 1;E). In the
following theorem we prove that this operator is R-positive in Lp(0, 1;E).

Theorem 4.1. Let all conditions of Theorem 1.4 be satisfied. Then the operator
Gt is R-positive in Lp(0, 1;E).

Proof. First consider the BVP with constant coefficients

(−1)mtu(2m)(x) + (A+ λ)u(x) = f(x), x ∈ (0, 1), (4.1)

Liku = 0, i = 0, 1, k = 1, 2, . . . ,m, (4.2)

where boundary conditions Liku are defined as in (2.4) and A is a linear operator
in E. Let Bt denote the operator in X = Lp,γ(0, b;E) generated by problem

(4.1)–(4.2), where γ(x) = x
γ

1−γ . Since A is a positive operator in E, in view of

[8, Lemma 2.6] there exists the semigroup Ujλt(x) = exωjt
− 1

2mA
1

2m
λ , Reωj < 0,

j = 1, 2, . . . ,m, Ujλt(x) = e−(b−x)ωjt
− 1

2mA
1

2m
λ , Reωj > 0, j = m+1,m+2, . . . , 2m,

that is holomorphic for x > 0 and strongly continuous for x ≥ 0, where ωj are
roots of the equation (−1)mω2m + 1 = 0. By using a technique similar to that
applied in [24, Lemma 5. 3. 2(1)], we have that for f ∈ D(0, b;E(A)) the solution
of the equation (4.1) is represented as

u(x) =
2m∑
j=1

Ujλt(x)gk +

∫ b

0

U0λt(x− y)f(y) dy, gk ∈ E, (4.3)

where

U0λt(x− y) =

{
−t−

1
2m

∑m
k=1 A

− 1
2m

λ Ukλt(x− y), x ≥ y,

t−
1

2m

∑m
k=1A

− 1
2m

λ Ukλt(y − x), x ≤ y.

By taking into account the boundary conditions (4.2), we obtain the following
equation with respect to g1, g2, . . . , g2m:

2m∑
k=1

Lk(Ujλt)g1 = Lk(Φλ), j = 1, 2, . . . , 2m,Φλ =

∫ b

0

U0λt(x− y)f(y) dy.
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By solving the above system and substituting it into (4.3), we obtain the repre-
sentation of the solution for problem (4.1)–(4.2):

u(x) =
[
B(t) + λ

]−1
f =

∫ b

0

Gt(λ, x, y)f(y) dy,

Gt(λ, x, y) =
2m∑
k=1

2m∑
j=1

t
1

2mA
− 1

2m
λ Bkjt(λ)Ujλt(x)Ũkjλt(x− y) + U0λt(x− y),

(4.4)

where Bkjt(λ) are uniformly bounded operators in E and

Ũkjλt(x− y) =

{
bkjUkλt(x− y), x ≥ y,

βkjUkλt(y − x), x ≤ y,
bkj, βkj ∈ C.

Let us to show that the set {Φt(λ, x, y);λ ∈ S(ϕ)} is uniformly R-bounded.
By using the generalized Minkowski and Young inequalities, and by semigroup
estimates from (4.3), we have the uniform estimate

∥∥Φt(λ, x, y)f
∥∥
X
≤ C

2m∑
k=1

2m∑
j=1

{‖A− 1
2m

λ ‖
∥∥Bkjt(λ)

∥∥∥∥Ũkjλt(x)f
∥∥
X
+
∥∥U0λt(x)f

∥∥
X
}

≤ C‖f‖X .

Due to the R-positivity of A and the uniform boundedness of operators Bkjt(λ),
in view of Kahane’s contraction principle, and from the product properties of the
collection of R-bounded operators (see [8, Lemma 3.5, Proposition 3.4]), we get
that the sets

bkjt(λ, x, y) =
{
Bkjt(λ)A

− 1
2m

λ Ujλt(x)
[
Ukλt(1− y) + Uνλt(y)

]
: λ ∈ Sϕ

}
,

b0t(λ, x, y) =
{
U0λt(x− y) : λ ∈ Sϕ

}
are uniformly R-bounded. Then, by using Kahane’s contraction principle and
product and additional properties of the collection of R-bounded operators, and
in view of the R-boundedness of the sets bkj, b0, for all u1, u2, . . . , uµ ∈ F ,
λ1, λ2, . . . , λµ ∈ S(ϕ), and independent symmetric {−1, 1}-valued random vari-
ables ri(y), i = 1, 2, . . . , µ, µ ∈ N , we have the uniform estimate∫

Ω

∥∥∥ µ∑
i=1

ri(y)Φt(λi, x, y)ui

∥∥∥
X
dτ

≤ C

2m∑
k,j=1

∫
Ω

∥∥∥ µ∑
i=1

ri(y)bkjt(λi, x, y)ui

∥∥∥
X
dτ +

∫
Ω

∥∥∥ µ∑
i=1

ri(y)b0t(λi, x, y)ui

∥∥∥
X
dτ

≤ Ceβ|λt
−1|

1
2 |x−y|

∫
Ω

∥∥∥ µ∑
i=1

ri(y)ui

∥∥∥
X
dτ.

This implies that

R
{
Φt(λ, x, y) : λ ∈ Sϕ

}
≤ Ceβ|λt

−1|
1

2m |x−y|, β < 0, x, y ∈ (0, b).
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By applying the R-boundedness property of kernel operators (see, e.g., [8, Propo-
sition 4.12]), and due to the density of D(0, b;E(A)) in X (see, e.g., [14, Sec-
tion 2.2]), we get that the operator Bt is uniformly R-positive in X. From the
representation solution (4.4) of problem (4.1)–(4.2), and in view of Remark 2.1,
it is easy to see that the operator (Lt + λ)−1 can be expressed as a linear combi-
nation of operators O−1

jλt like (Bt + λ)−1. The hypothesis is therefore validated by
the representation (4.4) and by virtue of Kahane’s contraction principle, by the
product and additional properties of the collection of R-bounded operators, and
by Remark 2.1. �

5. The Cauchy problem for degenerate abstract parabolic
equations with parameter

Consider the mixed problem for the parabolic ADE with parameter:

∂u(x, y)

∂y
+ (−1)mta(x)u[2m]

x (x, y) +
[
A(x) + d

]
u(x, y) = f(x, y),

ν0k∑
i=0

tσi

[
αkiu

[i](0, y) +
N∑
j=1

δkiju
[i](xkj, y)

]
= 0, k = 1, 2, . . . ,m,

ν1k∑
i=0

tσi

[
βkiu

[i](1, y) +
N∑
j=1

ηkiju
[i](xkj, y)

]
= 0, k = 1, 2, . . . ,m,

u(x, 0) = 0, x ∈ (0, 1), y ∈ R+.

(5.1)

Here, αki, βki, δkij, ηkij are complex numbers; a is a complex-valued function on
(0, 1), ν0k, ν1k ∈ {0, 2m − 1}, d > 0;A(x) is a linear operator in a Banach space
E for x ∈ (0, 1); σi =

i
2m

+ 1
2mp

; and 0 ≤ γk < 1.

For p = (p, p1), ∆+ = R+×(0, 1), Lp,γ(∆+;E) denotes the space of all E-valued
weighted p-summable functions with mixed norm (see, e.g., [6, Section 8]), that
is, the space of all measurable functions f defined on ∆+ for which

‖f‖Lp,γ(∆+) =
(∫

R+

(∫ 1

0

∥∥f(x, y)∥∥p
γ(x) dx

) p1
p
dy

) 1
p1 < ∞.

Analogously, Wm
p,γ(∆+, E(A), E) denotes the Sobolev space with corresponding

mixed norm (see [6, Section 8] for the scalar case).
In this section, we prove the following result.

Theorem 5.1. Assume that all conditions of Theorem 3.1 are satisfied for ϕ > π
2
.

Then, for f ∈ Lp(∆+;E) and sufficiently large d > 0, problem (5.1) has a unique

solution belonging to W
1,[2m]
p,γ (∆+;E(A), E) and the following coercive estimate

holds: ∥∥∥∂u
∂y

∥∥∥
Lp(∆+;E)

+ t‖D[2m]
x u‖Lp(∆+;E) + ‖Au‖Lp(∆+;E) ≤ C‖f‖Lp(∆+;E).
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Proof. The problem (5.1) can be express as the following Cauchy problem:

du

dy
+ (Gt + d)u = f, u(0) = 0. (5.2)

Here Gt denotes the operator generated by (5.2) for λ = 0. Theorem 4.1 implies
that the operator Gt is R-positive in F = Lp(0, 1;E). By virtue of [22, Sec-
tion 1.14], Gt is a generator of an analytic semigroup in F . Then applying [23,
Theorem 4.2] we obtain that, for f ∈ Lp1(R+;F ) and sufficiently large d > 0,
problem (5.2) has a unique solution belonging to W 1

p1,γ
(R+;D(Gt), F ) and the

estimate holds:∥∥∥du
dy

∥∥∥
Lp1 (R+;F )

+
∥∥(Gt + a)u

∥∥
Lp1 (R+;F )

≤ C‖f‖Lp1 (R+;F ).

Since Lp1(R+;F ) = Lp(∆+;E) by Theorem 3.1, we have∥∥(Gt + d)u
∥∥
F
= ‖u‖

W
[2m]
p,γ (0,1;E(A),E)

.

These relations and the above estimate prove the hypothesis to be true. �

6. Degenerate ADEs in moving domains

Consider at first the inhomogeneous BVP for an ADE with constant coefficients
on a moving domain (0, b(s)):

(−1)mu[2m](x) + (A+ λ)u(x) = f(x),
ν0k∑
i=0

tσi

[
αkiu

[i](0) +
N∑
j=1

δkiju
[i](xkj)

]
= fk, k = 1, 2, . . . ,m, (6.1)

ν1k∑
i=0

tσi

[
βkiu

[i](b) +
N∑
j=1

ηkiju
[i](xkj)

]
= fk, k = 1, 2, . . . ,m,

where u[i] = (xγ d
dx
)iu, αki, βki, δkij, ηkij are complex numbers, xkj ∈ (0, b(s)); A is

a linear operator in E; t is positive; and λ is a complex parameter,

σi =
i

2m
+

1

2mp(1− γ)
.

In a similar way as Theorem 1.4 we obtain the following.

Conclusion 6.1. Let all conditions of Theorem 1.4 be satisfied for t = 1, and
let b = b(s) be a continuous function on [c, d]. Then problem (6.1) for all f ∈
Lp(0, b;E), f ∈ Ek, has a unique solution u ∈ W

[2m]
p,γ (0, b;E(A), E). Moreover,

for | arg λ| ≤ ϕ and sufficiently large |λ|, the following uniform coercive estimate
holds:

2m∑
i=0

|λ|1−
i

2m‖u[i]‖Lp(0,b;E) + ‖Au‖Lp(0,b;E) ≤ C
[
‖f‖Lp(0,b;E) +

2m∑
k=1

‖fk‖Ek

]
.
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Consider the BVP (2.1) in the moving domain (0, b(s)); that is,

(−1)mta(x)u[2m](x) + A(x)u(x) +
2m−1∑
i=1

t
i

2mAi(x)u
[i](x) = f(x),

L0ku = 0, L1ku = 0, k = 1, 2, . . . ,m,

(6.2)

where

u[i] =
[
xγ1(b− x)γ2

d

dx

]i
u(x), 0 ≤ γ1, γ2 < 1.

Then Theorem 3.1 implies the following.

Conclusion 6.2. Assume that all conditions of Theorem 3.1 are satisfied and that
b = b(s) is a continuous function on [c, d]. Then problem (6.2) has a unique

solution u ∈ W
[2m]
p,γ (0, b;E(A), E) for f ∈ Lp(0, b(s);E), p ∈ (1,∞), and λ ∈ Sϕ

with sufficiently large |λ|, and the coercive uniform estimate holds:

2m∑
i=0

|λ|1−
i

2m‖u[i]‖Lp(0,b;E) + ‖Au‖Lp(0,b;E) ≤ ‖f‖Lp(0,b;E).

Proof. Really, under the substitution τ = xb−1(s), the moving BVP (6.2) is trans-
formed into the following problem with a parameter in the fixed domain (0, 1):

(−1)mb−2m(s)a(τ)u[2m](τ) + A(τ)u(τ) +
2m−1∑
i=1

t
i

2mAi(τ)u
[i](τ) = f(τ),

ν0k∑
i=0

b−σi(s)
[
αkiu

[i](0) +
N∑
j=1

δkiju
[i](xkj)

]
= 0, k = 1, 2, . . . ,m,

ν1k∑
i=0

b−σi(s)
[
βkiu

[i](1) +
N∑
j=1

ηkiju
[i](xkj)

]
= 0, k = 1, 2, . . . ,m.

Then, by virtue of Theorem 3.1, we obtain the assertion. �

7. Nonlinear degenerate ADEs

Consider now the following nonlinear problem:

(−1)ma(x)u[2m](x) +O(x, u, u[1], . . . , u[2m−1])u(x)

= F (x, u, u[1], . . . , u[2m−1]), x ∈ (0, a),
(7.1)

ν0k∑
i=0

tσi

[
αkiu

[i](0) +
N∑
j=1

δkiju
[i](xkj)

]
= 0, k = 1, 2, . . . ,m, (7.2)

ν1k∑
i=0

tσi

[
βkiu

[i](a) +
N∑
j=1

ηkiju
[i](xkj)

]
= 0, k = 1, 2, . . . ,m,

where u[i](x) = (xγ d
dx
)iu(x), mk ∈ {0, 2m − 1};σi =

i
2m

+ 1
2mp(1−γ)

; αki, βki, δkij,

ηkij are complex numbers; and xkj ∈ (0, 1), ν0k, ν1k ∈ {0, 2m− 1}.
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In this section we will prove the existence and uniqueness of the maximal
regular solution for the nonlinear problem (7.1)–(7.2). Let

U = (u0, u1, . . . , u2m−1), X = Lp(0, a;E), Y = W [2m]
p,γ

(
0, a;E(A), E

)
,

Ei =
(
E(A), E

)
θi,p

, θi =
i+ 1

p(1−γ)

2m
, X0 =

2m−1∏
i=0

Ei,

Remark 7.1. By using a result of J. Lions and I. Petree (see, e.g., [22, Section 1.8]),
we obtain that the embedding DiY ∈ Ei is continuous and there is a constant C1

such that for w ∈ Y , W = {wi}, wi = Diw(·), i = 1, 2, . . . , 2m− 1,

‖u‖∞,X0 =
2m−1∏
i=0

‖Diw‖C([0,a],Ej) = sup
x∈[0,a]

2m−1∏
i=0

∥∥Diw(x)
∥∥
Ej

≤ C1‖w‖Y .

For r > 0 denote by Or the closed ball in X0 of radios r; that is,

Or =
{
u ∈ X0, ‖u‖X0 ≤ r

}
.

Consider the linear problem

(−1)mw[2m](x) +
(
A(x) + d

)
w(x) = f(x),

Likw = 0, i = 0, 1, k = 1, 2, . . . ,m,
(7.3)

where A(x) is a linear operator in a Banach space E for x ∈ (0, a), Lik are
boundary conditions defined by (7.2), and d > 0.

Assume that E is a Banach space satisfying the multiplier condition with re-

spect to p and the weighted function x
γ

1−γ , 0 ≤ γ < 1− 1
p
, p ∈ (1,∞), and assume

that A(x) is uniformly R-positive in E. By virtue of Conclusion 6.2, the problem
(7.3) is maximal regular in X uniformly with respect to a ∈ (0, a0]; that is, there
is a unique solution w ∈ Y of the problem (7.3) for all f ∈ X and for sufficiently
large d > 0. Moreover, it has the following coercive estimate:

‖w‖Y ≤ C0‖f‖X ,
where the constant C0 is independent of f ∈ X and a ∈ (0, a0].

Condition 1. Assume that the following are satisfied:

(1) αkν0k , βkν1k 6= 0, a(x) is a positive continuous function on [0, a];
(2) E is a Banach space satisfying the multiplier condition with respect to p

and weighted function x
γ

1−γ , 0 ≤ γ < 1− 1
p
, p ∈ (1,∞);

(3) F : [0, a] × X0 → E is a measurable function for each υi ∈ Ei, i =
0, 1, . . . , 2m− 1; F (x, u0, u1, . . . , u2m−1) is continuous with respect to x ∈
[0, a] and f(x) = F (x, 0) ∈ X. Moreover, for each r > 0 there exists the
positive functions hk(x) such that∥∥F (x, U)

∥∥
E
≤ h1(x)‖U‖X0 ,∥∥F (x, U)− F (x, Ū)

∥∥
E
≤ h2(x)‖U − Ū‖X0 ,

where hk ∈ Lp(0, a) with

‖hk‖Lp(0,a) < C−1
0 , k = 1, 2;
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and U = {u0, u1, . . . , u2m − 1}, Ū = {ū0, ū1, . . . , ū2m−1}, ui, ūi ∈ Ei, and
U, Ū ∈ Or.

(4) There exist Φi ∈ Ei, such that the operator O(x,Φ) for Φ = {Φi} is
R-positive in E uniformly with respect to x ∈ [0, a]; O(x,Φ)O−1(x0,Φ) ∈
C([0, a];B(E)); O(x, 0) = A(x).

(5) O(x, U) for x ∈ (0, a) is a uniform positive operator in a Banach space
E, where the domain definition D(O(x, U)) does not depend on x, U , and
O : (0, a) × X0 → B(E(A), E) is continuous. Moreover, for each r > 0,
there is a positive constant L(r) such that ‖[O(x, U) − O(x, Ū)]υ‖E ≤
L(r)‖U − Ū‖X0‖Aυ‖E for x ∈ (0, a), U, Ū ∈ Or and υ ∈ D(O(x, U)).

Theorem 7.2. Let Condition 1 hold. Then there is a ∈ (0 a0] such that problem

(7.1)–(7.2) has a unique solution that belongs to the space W
[2m]
p,γ (0, a;E(A), E).

Proof. We want to solve the problem (7.1)–(7.2) locally by means of maximal
regularity of the linear problem (7.3) via the contraction mapping theorem. For
this purpose, let w be a solution of the linear problem (7.3). Consider a ball

Br =
{
υ ∈ Y, Lik(υ − w) = 0, ‖υ − w‖Y ≤ r

}
.

Let w ∈ Y be a solution of the problem (7.3), and let

W =
(
w(0), w[1](0), . . . , w[2m−1](0)

)
.

Given υ ∈ Br, solve the linear problem

(−1)ma(x)u[2m](x) + A(x)u(x) + du(x)

= F (x, υ) +
[
O(x, 0)−O(x, υ)

]
υ(x), (7.4)

Liku = 0, i = 0, 1, k = 1, 2, . . . ,m,

where

V = (υ, υ[1], . . . , υ[2m−1]), υ ∈ Y.

Consider the function

Φ(x) = F (x, υ) +
[
O(x, 0)−O(x, υ)

]
υ(x).

First of all, we show that Φ ∈ X and ‖Φ‖X ≤ C−1
0 r for

υ ∈ Y, ‖υ‖Y ≤ r.

Indeed, by Remark 7.1, υ ∈ C([0, a];E0), and one has

O(x, 0)−O(x, υ) ∈ C
(
[0, a];B

(
E(A), E

))
.

Hence, by assumption (3), Φ is measurable and

‖Φ‖X ≤ L(r)‖υ‖X0‖Aυ‖X + h1(x)‖υ‖X0 .

Then, by using Remark 7.1, we obtain

‖Φ‖X ≤ rL(r)‖υ‖X + r‖h1‖Lp ≤ r2L(r) + r‖h1‖Lp ≤ r.

Define a map Q on Br by Qυ = u, where u is a solution of the problem (7.4). We
want to show that Q(Br) ⊂ Br and that Q is a contraction operator provided that



164 V. B. SHAKHMUROV

a is sufficiently small and r is chosen properly. For this aim, by using maximal
regularity properties of the problem (7.3), we have

‖Qυ−w‖Y = ‖u−w‖Y ≤ C0{
∥∥F (x, υ)−F (x, 0)

∥∥
X
+
∥∥[O(x, 0)−O(x, V )

]
υ
∥∥
X
}.

By assumption (3) for υ ∈ Or we get∥∥F (x, υ)− F (x, 0)
∥∥
X
≤ ‖h2‖Lp(0,a)‖υ‖X0 .

By assumptions (4) and (5) and Remark 7.1, for υ ∈ Or, we have∥∥[O(x, 0)υ −O(x, V )
]
υ
∥∥
X

≤ sup
x∈[0,a]

{
∥∥[O(x, 0)−O(x,W )

]
υ
∥∥
L(X0,X)

+
∥∥[O(x,W )−O(x, V )

]
υ
∥∥
B(X0,X)

‖υ‖Y }

≤ L(r)
[
‖W‖X0‖Aυ‖X + ‖υ − w‖∞,X0

][
‖υ − w‖Y + ‖w‖Y

]
≤ rL(r)

{[
‖W‖X0‖υ‖Y + C1‖υ − w‖Y

]
+ L(r)‖w‖Y

}
.

Choosing r and a ∈ (0 a0] so that ‖w‖Y < δa, by assumptions (3)–(5) we obtain
from the above inequalities that

‖Qυ − w‖Y ≤ r + r2L(r)‖W‖X0 + r2L(r)C1 + rL(r)‖w‖Y < r.

That is, the operator Q maps Br into itself:

Q(Br) ⊂ Br.

Let u1 = Q(υ1) and u2 = Q(υ2). Then u1 − u2 is a solution of the problem

(−1)ma(x)u[2m](x) + A(x)u(x) + du(x)

= F (x, υ1)− F (x, υ1) +
[
O(x, υ2)−O(x, 0)

][
υ1(x)− υ2(x)

]
−

[
O(x, υ1)−O(x, υ2)

]
υ1(x),

Liku = 0, i = 0, 1, k = 1, 2, . . . ,m.

In a similar way, by using assumption (5), we obtain

‖u1 − u2‖Y ≤ C0{rL(r)‖υ1 − υ2‖X + L(r)‖υ1 − υ2‖Y ‖υ1‖X + ‖h2‖Lp‖υ1 − υ2‖Y }
≤ C0

[
2rL(r) + ‖h2‖Lp

]
‖υ1 − υ2‖Y .

Thus Q is a strict contraction. Eventually, the contraction mapping principle
implies a unique fixed point of Q in Br, which is the unique strong solution

u ∈ Y = W [2m]
p,γ

(
0, a;E(A), E

)
. �
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8. The BVP for degenerate anisotropic equations

The Fredholm property of the BVP for elliptic equations was studied in, for
example, [2], [8], and [24]. Let Ω = (0, 1)×G, where G ⊂ Rn, n ≥ 2, is a bounded
domain with (n− 1)-dimensional boundary ∂G. Let us consider the BVP for the
degenerate elliptic equation

(−1)mta(x)D[2m]
x u(x, y) +

∑
|α|≤2l

bα(x)aα(y)D
α
y u(x, y)

+
2m−1∑
i=1

∑
|β|≤µi

t
i

2maiβ(x, y)D
i
xD

β
yu(x, y) + du(x, y) = f(x, y),

(8.1)

ν0k∑
i=0

tσi

[
αkiu

[i](0, y) +
N∑
j=1

δkiju
[i](xkj, y)

]
= 0, k = 1, 2, . . . ,m, (8.2)

ν1k∑
i=0

tσi

[
βkiu

[i](b, y) +
N∑
j=1

ηkiju
[i](xkj, y)

]
= 0, k = 1, 2, . . . ,m,

Bju =
∑

|β|≤mj

bjβ(y)D
β
yu(x, y) = 0, x ∈ G, y ∈ ∂Ω, j = 1, 2, . . . , l, (8.3)

where u[i] = [xγ1(1 − x)γ2 d
dx
]iu(x), 0 ≤ γ1, γ2 < 1, σi = i

2m
+ 1

2mp
, ν0k, ν1k ∈

{0, 2m − 1}, k = 1, 2, . . . ,m; αki, βki, δkij, ηkij are complex numbers; d > 0; t is
a small positive parameter;

Dj = −i
∂

∂yj
, Dy = (D1, . . . , Dn), y = (y1, . . . , yn)

a, aα, bα, aiβ, bjβ are complex valued functions; and µi < 2l. Let p =(p1, p).
Let Q denote the differential operator in Lp(Ω) generated by the

BVP (8.1)–(8.3).

Theorem 8.1. Let the following conditions be satisfied:

(1) a, bα ∈ C([0, 1]), aα ∈ C(Ω̄) for each |α| = 2l and aα ∈ L∞(Ω) for each
|α| < 2l.

(2) bjβ ∈ C2l−mj(∂Ω) for each j, β, and mj < 2l,
∑l

j=1 bjβ(y
′)σj 6= 0, for

|β| = mj, y
′ ∈ ∂G, where σ = (σ1, σ2, . . . , σn) ∈ Rn is a normal to ∂G.

(3) For y ∈ Ω̄, ξ ∈ Rn, λ ∈ S(ϕ0), |ξ|+ |λ| 6= 0, let λ+
∑

|α|=2l aα(y)ξ
α 6= 0.

(4) For each y0 ∈ ∂Ω, a local BVP in local coordinates corresponding to y0,

λ+
∑
|α|=2l

aα(y0)D
αϑ(y) = 0,

Bj0ϑ =
∑

|β|=mj

bjβ(y0)D
βu(y) = hj, j = 1, 2, . . . , µ,

has a unique solution ϑ ∈ C0(R+) for all h = (h1, h2, . . . , hn) ∈ Rn, and
for ξ′ ∈ Rn−1 with
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(6) 0 ≤ γk < 1 − 1
p
, p ∈ (1,∞), k = 1, 2, . . . , 2m, and αkνik 6= 0, βkνik 6= 0,

i = 0, 1, k = 1, 2, . . . ,m.

Then we have the following:

(a) Problem (8.1)–(8.3) has a unique solution u ∈ W
[2m],2l
p,γ (Ω) for f ∈ Lp(Ω)

and sufficiently large d > 0. Moreover, the uniform coercive estimate
holds:

‖tD[2m]
x u‖Lp(Ω) +

∑
|α|≤2l

‖Dαu‖Lp(Ω) ≤ C‖f‖Lp(Ω).

(b) The operator u → Qu is Fredholm from W
[2m],2l
p,γ (Ω) into Lp(Ω).

(c) The operator Q is R-positive in Lp(Ω).

Proof. Let us consider the operators A(x) and Ai(x) in E = Lp1(G) that are
defined by the equalities

D(A) =
{
u ∈ W 2l

p1
(G), Bju = 0, j = 1, 2, . . . ,m

}
, Au =

∑
|α|≤2l

bαaαD
α
y u,

Aiu =
∑
|β|≤µi

aiβD
β
yu, i = 0, 1, . . . , 2m− 1.

Then problem (8.1)–(8.3) can be rewritten as problem (2.1), where u(x) = u(x, ·),
f(x) = f(x, ·), x ∈ (0, 1) are the functions with values in E = Lp1(G). By virtue
of [3, Theorem 4.5.2] the space E = Lp1(G), p1 ∈ (1,∞), satisfies the multi-
plier condition. By virtue of [8, Theorem 8.2], the operator A+ µ for sufficiently
large µ > 0 is R-positive in Lp1 . Moreover, (1) and (2) imply condition (3) of
Theorem 3.1; that is, conditions (1)–(3) of Theorem 3.1 are fulfilled. It is known
that the embedding W 2l

p1
(G) ⊂ Lp1(G) is compact (see, e.g., [22, Section 3]). Using

the interpolation properties of Sobolev spaces (see [22, Section 4]), we obtain that
condition (4) of Theorem 3.1 is satisfied. Hence, all hypotheses of Theorem 3.1 are
valid. Then, by using Conclusions 3.4 and 6.1, we obtain assertions (a) and (b).
Then assertion (c) is obtained from Theorem 4.1. �

Acknowledgment. The author would like to express a deep gratitude to Dr. Er-
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4. W. Arendt and M. Duelli, Maximal Lp-regularity for parabolic and elliptic equations

on the line, J. Evol. Equ. 6 (2006), no 4, 773–790. Zbl 1113.35108. MR2267707.
DOI 10.1007/s00028-006-0292-5. 147

http://www.ams.org/mathscinet-getitem?mr=2148373
http://www.emis.de/cgi-bin/MATH-item?0109.32701
http://www.ams.org/mathscinet-getitem?mr=0147774
http://www.emis.de/cgi-bin/MATH-item?1113.35108
http://www.ams.org/mathscinet-getitem?mr=2267707
http://dx.doi.org/10.1007/s00028-006-0292-5


LINEAR AND NONLINEAR DEGENERATE ADES 167

5. A. Ashyralyev, C. Cuevas, and S. Piskarev, On well-posedness of difference schemes for
abstract elliptic problems in spaces, Numer. Func. Anal. Opt. 29 (2008), nos. 1–2, 43–65.
MR2387837. DOI 10.1080/01630560701872698. 147

6. O. V. Besov, V. P. Ilin, and S. M. Nikolskii, Integral Representations of Functions and
Embedding Theorems, Nauka, Moscow, 1975. MR0430771. 159

7. D. L. Burkholder, “A geometric condition that implies the existence of certain singular in-
tegrals of Banach-space-valued functions” in Conference on Harmonic Analysis in Honor of
Antoni Zygmund, Vol. I, II (Chicago, 1981), Wadsworth Math. Ser., Wadsworth, Belmont,
CA, 1983, 270–286. MR0730072. 149

8. R. Denk, M. Hieber, and J. Prüss, R-boundedness, Fourier multipliers and problems of
elliptic and parabolic type, Mem. Amer. Math. Soc. 166 (2003), no. 788. MR2006641.
DOI 10.1090/memo/0788. 147, 148, 149, 157, 158, 159, 165, 166

9. C. Dore and S. Yakubov, Semigroup estimates and non coercive boundary value problems,
Semigroup Forum 60 (2000), no. 1, 93–121. MR1829933. DOI 10.1007/s002330010005. 147

10. A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Dekker, New
York, 1999. MR1654663. 147

11. A. Favini, V. Shakhmurov, and Y. Yakubov, Regular boundary value problems for complete
second order elliptic differential-operator equations in UMD Banach spaces, Semigroup Fo-
rum 79 (2009), no. 1, 22–54. MR2534222. DOI 10.1007/s00233-009-9138-0. 147, 148

12. J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Univ. Press, New
York, 1985. MR0790497. 147

13. S. G. Krein, Linear Differential Equations in Banach Space, Transl. Math. Monogr., Amer.
Math. Soc., Providence, 1971. MR0342804. 147

14. J.-L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems, Mir, Moscow,
1971. 147

15. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Progr.
Nonlinear Differential Equations Appl. 16, Birkhäuser, Basel, 2003. MR1329547.
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