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Abstract. We generalize and study, within the framework of quantum
mechanics and working with 1-dimensional, manifestly non-Hermitian Hamil-
tonians H = −d2/dx2+V , the traditional class of exactly solvable models with
local point interactions V = V (x). We discuss the consequences of the use of
nonlocal point interactions such that (V f)(x) =

∫
K(x, s)f(s) ds by means of

the suitably adapted formalism of boundary triplets.

1. Introduction

An important class of Schrödinger operators is formed by operators with sin-
gular perturbations. For example, this class contains Schrödinger operators with
point interactions. These operators effectively simulate short-range interactions
and belong to the class of exactly solvable models. Numerous works have been
devoted to the study of singularly perturbed Schrödinger operators, in which a
series of approaches to the construction and investigation of such operators are
developed (see, e.g., [1], [3] and references therein). These studies, in the major-
ity of cases, deal with symmetric singular perturbations that lead to self-adjoint
Schrödinger operators.

In the present article, we study non-self-adjoint Schrödinger operators with
nonlocal one-point interactions. This new class of solvable models with point
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interactions has recently been proposed and studied (for the self-adjoint case)
by Albeverio and Nizhnik [6] (see also [7], [2], [15]). Our interest in the non-self-
adjoint case was inspired in part by an intensive development of pseudo-Hermitian
(PT -symmetric) quantum mechanics (PHQM/PTQM) in recent decades (see
[8], [14], [23]).

Non-self-adjoint point-interaction solvable models (see, e.g., [4], [24], [28])
require a more detailed analysis in comparison with their self-adjoint counter-
parts. In contrast to the self-adjoint case, one should illustrate a typical PHQM/
PTQM evolution of spectral properties which can be obtained by changing the
parameters of the model: complex eigenvalues → spectral singularities; excep-
tional points → similarity to a self-adjoint operator. One of the simplest examples
of this is the well-studied δ-interaction model −d2/dx2+a〈δ, ·〉δ(x) with complex
parameter a ∈ C (see [19], [22], or Section 6 below). However, this model seems
to be sufficiently trivial due to the very simple structure of the singular potential
that leads to “poor” spectral properties of the corresponding operator-realizations
Ha (e.g., the Ha’s have no exceptional points and bound states on the continuous
spectrum).

One possible reasonable complication of the model consists in the addition of
the nonlocal interaction term

∫∞
−∞ K(x, s)f(s) ds. In an attempt to keep the solv-

ability of the model and its intimate relationship with δ-interaction, we assume
that

K(x, s) = q(x)δ(s) + δ(x)q∗(s),

where q ∈ L2(R) is a given piecewise continuous function. The corresponding
nonlocal δ-interaction

− d2

dx2
+ a〈δ, ·〉δ(x) + 〈δ, ·〉q(x) + (q, ·)δ(x), a ∈ C, (1.1)

where (·, ·) is the inner product in L2(R) linear in the second argument, is studied
in Section 5 with the use of the boundary triplet technique (see the Appendix).
Namely, the formal expression (1.1) gives rise to the family of operators {Ha},

Haf = −d2f

dx2
+ f(0)q(x), a ∈ C, q ∈ L2(R) is fixed

with domains of definition (5.3) which are determined by the singular part of
perturbation a〈δ, ·〉δ(x)+(q, ·)δ(x) in (1.1). Our investigation of {Ha} is based on
the fact that each operator Ha is the proper extension of the symmetric operator

S̃min (5.5); that is, S̃min ⊂ Ha ⊂ S̃max, where S̃max = S̃†
min is the adjoint of S̃min

(see Section 5.1).
We show that spectral properties ofHa are completely characterized by the pair

{a, W̃λ}, where a ∈ C distinguishes Ha among all proper extensions of S̃min, while

the Weyl–Titchmarsh function W̃λ (5.10) characterizes the symmetric operator

S̃min which is the “common part” of all Ha’s (see Theorems 5.1, 5.4, and 5.7).
One of the interesting features of the model is the fact that a ∈ C determines the

measure of non-self-adjointness of the operators Ha, while the choice of q defines

the symmetric operator S̃min and, therefore, the structure of the holomorphic
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function W̃λ. Such a “separation of responsibility” of parameters of the model
allows one to preserve its solvability and illustrate the possible appearance of
exceptional points and eigenvalues on a continuous spectrum (see Example 5.3
and Section 6).

The proposed approach to the construction of non-self-adjoint nonlocal point
interaction models is not restricted to the case of δ-interactions only, and it can
be applied to the wider class of ordinary point interaction models. We illustrate
this point in Sections 2–4, which are devoted to the general case of one-point
interactions, including combinations of δ- and δ′-interactions.

Throughout the present article, D(H), R(H), and kerH denote the domain,
range, and null-space of a linear operator H, respectively, while H �D stands for
the restriction of H to the set D. The adjoint of H with respect to the natural
inner product (·, ·) (linear in the second argument) in L2(R) is denoted by H†.

2. One-point interactions

2.1. Ordinary one-point interactions. A 1-dimensional Schrödinger operator
with interactions supported at the point x = 0 can be defined by the formal
expression

− d2

dx2
+ a〈δ, ·〉δ(x) + b〈δ′, ·〉δ(x) + c〈δ, ·〉δ′(x) + d〈δ′, ·〉δ′(x), (2.1)

where δ and δ′ are, respectively, the Dirac δ-function and its derivative, the param-
eters a, b, c, d are complex numbers, and

〈δ, f〉 = f(0), 〈δ′, f〉 := −f ′(0), ∀f ∈ W 2
2 (R).

Denote

T =

[
a b
c d

]
.

Then (2.1) can be rewritten in more compact form as

− d2

dx2
+ [δ, δ′]T

[
〈δ, ·〉
〈δ′, ·〉

]
. (2.2)

The expression (2.2) determines the symmetric (non-self-adjoint) operator

S = − d2

dx2
, D(S) =

{
f ∈ W 2

2 (R) : f(0) = f ′(0) = 0
}
,

in L2(R), which does not depend on the choice of a, b, c, d. In order to take into
account the impact of these parameters, we should extend the action of δ and δ′

onto W 2
2 (R\{0}). The most natural way is

〈δ, f〉 := fr(0) =
f(0+) + f(0−)

2
, 〈δ′, f〉 := f ′

r(0) = −f ′(0+) + f ′(0−)

2
.

Furthermore, we assume that the second derivative in (2.2) acts on W 2
2 (R\{0})

in the distributional sense, that is,

−f ′′ = −
{
f ′′(x)

}
x 6=0

− fs(0)δ
′(x)− f ′

s(0)δ(x), f ∈ W 2
2

(
R\{0}

)
,
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where

fs(0) = f(0+)− f(0−), f ′
s(0) = f ′(0+)− f ′(0−).

Then the action of (2.2) on functions f ∈ W 2
2 (R\{0}) can be represented as

−
{
f ′′(x)

}
x 6=0

+ [δ, δ′][TΓ0f − Γ1f ], (2.3)

where

Γ0f =

[
〈δ, f〉
〈δ′, f〉

]
=

[
fr(0)
−f ′

r(0)

]
, Γ1f =

[
f ′
s(0)
fs(0)

]
.

Obviously, (2.3) determines a function from L2(R) if and only if TΓ0f = Γ1f .
Therefore, the expression (2.1) gives rise to the operator −d2/dx2 in L2(R) with
the domain of definition {f ∈ W 2

2 (R\{0}) : TΓ0f − Γ1f = 0}.

2.2. Nonlocal one-point interactions. Let us generalize the one-point inter-
actions potential considered in (2.1) by adding a nonlocal point interactions part

〈δ, ·〉q1(x) + (q1, ·)δ(x) + (q2, ·)δ′(x) + 〈δ′, ·〉q2(x),

where functions qj ∈ L2(R) are assumed to be piecewise continuous and (·, ·) is
the standard inner product (linear in the second argument) of L2(R). Then the
generalization of (2.2) takes the form

− d2

dx2
+ [δ, δ′]

(
T

[
〈δ, ·〉
〈δ′, ·〉

]
+

[
(q1, ·)
(q2, ·)

])
+ [q1, q2]

[
〈δ, ·〉
〈δ′, ·〉

]
. (2.4)

Extending, by analogy with (2.2), the action of (2.4) onto W 2
2 (R\{0}) we obtain

−
{
f ′′(x)

}
x 6=0

+ [δ, δ′][TΓ0f − Γ1f ] + [q1, q2]Γ0f, (2.5)

where

Γ0f =

[
〈δ, f〉
〈δ′, f〉

]
=

[
fr(0)
−f ′

r(0)

]
, Γ1f =

[
f ′
s(0)− (q1, f)
fs(0)− (q2, f)

]
. (2.6)

The expression (2.5) makes sense as a function from L2(R) if and only if the
second term of (2.5) vanishes (i.e., if TΓ0f − Γ1f = 0). This means that the
formal expression (2.4) allows one to define the operator in L2(R),

HTf = −d2f

dx2
+ [q1, q2]Γ0f = −

{
f ′′(x)

}
x 6=0

+ fr(0)q1(x)− f ′
r(0)q2(x) (2.7)

with the domain of definition

D(HT) =
{
f ∈ W 2

2

(
R\{0}

)
: (TΓ0 − Γ1)f = 0

}
, (2.8)

where the Γi’s are determined by (2.6) and T =
[
a b
c d

]
.

Each operator HT is the restriction of the maximal operator

Smaxf = −d2f

dx2
+ [q1, q2]Γ0f = −

{
f ′′(x)

}
x 6=0

+ fr(0)q1(x)− f ′
r(0)q2(x), (2.9)

with D(Smax) = W 2
2 (R\{0}) acting in L2(R).

The operator Smax satisfies Green’s identity

(Smaxf, g)− (f, Smaxg) = (Γ1f) · Γ0g − (Γ0f) · Γ1g, (2.10)
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where the dot · in the right-hand side means the standard inner product in C2.
Moreover, according to [6, Lemma 1], for any vectors h0, h1 ∈ C2, there exists
f ∈ D(Smax) such that Γ0f = h0 and Γ1f = h1.

The next operator plays an important role in what follows:

H∞ = Smax �D(H∞), D(H∞) =
{
f ∈ D(Smax) : Γ0f = 0

}
. (2.11)

In view of (2.6) and (2.9),

H∞f = −d2f

dx2
, f ∈ D(H∞) =

{
f ∈ W 2

2

(
R\{0}

)
: fr(0) = f ′

r(0) = 0
}
.

It is easy to check that H∞ is a positive (since (H∞f, f) =
∫
R |f

′(x)|2 dx > 0 for
nonzero f ∈ D(H∞)) self-adjoint operator in L2(R).

Taking into account [12, Corollary 2.5], the self-adjointness of H∞, Green’s
identity (2.10), and the surjectivity of the mapping (Γ0,Γ1) : D(Smax) → C2⊕C2,
one is led to the conclusion that the operator Smin = Smax �D(Smin) with domain
of definition D(Smin) = {f ∈ D(Smax) : Γ0f = Γ1f = 0} is a closed symmetric

operator in L2(R). Precisely, Sminf = −d2f
dx2 with the domain

D(Smin) =

{
f ∈ W 2

2

(
R\{0}

)
:
fr(0) = 0 fs(0) = (q2, f)
f ′
r(0) = 0 f ′

s(0) = (q1, f)

}
. (2.12)

Moreover, the relation S†
min = Smax holds and the collection (C2,Γ0,Γ1) is a

boundary triplet (see the Appendix) of Smax. The latter property is especially
important because the operators HT are intermediate extensions between Smin

and Smax and their domains are determined in terms of boundary operators Γj.
Precisely, the definition (2.7) and domain of definition (2.8) ofHT can be rewritten
as follows:

HT = Smax �D(HT), D(HT) =
{
f ∈ D(Smax) : TΓ0f = Γ1f

}
. (2.13)

Therefore, the well-developed methods of the theory of boundary triplets (see
[27]) can be applied for the investigation of HT.

3. Special cases of nonlocal one-point interactions

3.1. Self-adjoint nonlocal one-point interactions.

Lemma 3.1. If the entries of T satisfy the conditions a, d ∈ R, b = c∗, then
the corresponding operator HT defined by (2.7) is self-adjoint in L2(R) for any
choice of qj ∈ L2(R).

Proof. It follows from the theory of boundary triplets (see the Appendix) that

H†
T = HT† , where T† = (T∗)t. Therefore, HT is a self-adjoint operator if and only

if the matrix T is Hermitian. The latter is equivalent to the conditions a, d ∈ R,
b = c∗. �
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3.2. PT -symmetric nonlocal one-point interactions. As usual (see [14]), we
consider the space parity operator Pf(x) = f(−x) and the conjugation operator
T f = f ∗. An operator H acting in L2(R) is called PT -symmetric if PT H =
HPT .

Lemma 3.2. If the entries of T and the functions qj satisfy the conditions

a, d ∈ R, b, c ∈ iR, PT q1 = q1, PT q2 = −q2, (3.1)

then the corresponding operator HT defined by (2.7) is PT -symmetric.

Proof. It is easy to check that, for any f ∈ W 2
2 (R\{0}),

(Pf)r(0) = fr(0), (Pf)s(0) = −fs(0),

(Pf)′r(0) = −f ′
r(0), (Pf)′s(0) = f ′

s(0).

These relations, definition (2.6) of Γj, and (3.1) lead to the conclusion that

ΓjPT f = σ3T Γjf, σ3 =

[
1 0
0 −1

]
, j = 0, 1. (3.2)

(The same symbol T is used for the conjugation operators in L2(R) and C2.)
Therefore, if (3.1) holds, then the operator Smax defined by (2.9) is PT -symmetric:

PT Smaxf = − d2

dx2
PT f + [q1, q2]σ3T Γ0f = SmaxPT f.

Since HT is the restriction of Smax onto D(HT), the invariance of D(HT) with
respect to PT will guarantee the PT -symmetricity of HT.

Let us prove that PT : D(HT) → D(HT). To do that, we consider an arbitrary
f ∈ D(HT). Then, according to (2.8), TΓ0f = Γ1f and the inclusion PT f ∈
D(HT) is equivalent to the condition TΓ0PT f = Γ1PT f . By virtue of (3.2),
TΓ0PT f = Tσ3T Γ0f and

Γ1PT f = σ3T Γ1f = σ3T TΓ0f = σ3T
∗T Γ0f.

This means that the required identity TΓ0PT f = Γ1PT f is true if and only if
Tσ3 = σ3T

∗. The latter matrix relation holds if the entries of T satisfy (3.1). �

3.3. P-self-adjoint nonlocal one-point interactions. An operator HT defi-
ned by (2.7) is called P-self-adjoint if PHT = H†

TP .

Lemma 3.3. If the entries of T and the functions qj satisfy the conditions

a, d ∈ R, b = −c∗, Pq1 = q1, Pq2 = −q2, (3.3)

then the operator HT is P-self-adjoint.

Proof. Similarly to the proof of Lemma 3.2, we check that ΓjPf = σ3Γjf and
show that the conditions (3.3) ensure the commutation relation SmaxP = PSmax.

The operators HT and H†
T are restrictions of Smax. Therefore, the condition P :

D(HT) → D(H†
T) means the identity PHT = H†

TP .

Let us verify that P : D(HT) → D(H†
T). Since H†

T = HT∗t , the domains

of definition D(HT) and D(H†
T) are determined by (2.8) with the matrices T
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and T∗t, respectively. Let f ∈ D(HT). Then TΓ0f = Γ1f and the inclusion

Pf ∈ D(H†
T) is equivalent to the condition T∗tΓ0Pf = Γ1Pf .

Taking into account that ΓjPf = σ3Γjf , we obtain T∗tΓ0Pf = T∗tσ3Γ0f
and Γ1Pf = σ3Γ1f = σ3TΓ0f . Hence, T∗tΓ0Pf = Γ1Pf holds if and only
if T∗tσ3 = σ3T. This matrix relation holds if the entries a, b, c, d of T satisfy
(3.3). �

4. Spectral analysis of HT

It follows from the definition (2.11) of the self-adjoint operator H∞ that its
spectrum σ(H∞) = [0,∞) is purely continuous. This means that (H∞ − λI)−1 is
unbounded for any λ ∈ [0,∞). SinceH∞ is an extension of the symmetric operator
Smin with finite defect numbers, we conclude that the operator (Smin − λI)−1

is also unbounded. This means that the spectrum of each HT contains [0,∞).
Furthermore, only eigenvalues of HT may appear in ρ(H∞) = C \ [0,∞). This
fact follows from the definition (2.13) of HT and the relation (A.2) describing
σ(HT) ∩ ρ(H∞). (An eigenfunction of HT should be the eigenfunction of Smax

corresponding to the same eigenvalue (since Smax is an extension of HT).)
The kernel subspace ker(Smax − λI) has dimension 2 for any choice of λ ∈

C \ [0,∞). Let uλ, vλ be a basis of ker(Smax − λI). Then, any f ∈ ker(Smax − λI)
has the form f = c1uλ + c2vλ, and f turns out to be the eigenfunction of HT

corresponding to the eigenvalue λ if and only if f belongs to the domain D(HT)
determined by (2.13), that is, if c1, c2 are nonzero solutions of the linear system

c1(TΓ0 − Γ1)uλ + c2(TΓ0 − Γ1)vλ = 0.

Therefore, the eigenvalues λ ∈ C \ [0,∞) of HT coincide with the roots of the
characteristic equation

det
[
(TΓ0 − Γ1)uλ, (TΓ0 − Γ1)vλ

]
= 0. (4.1)

Let us assume without loss of generality that the eigenfunctions uλ, vλ are
chosen in such a way that

Γ0uλ =

[
1
0

]
and Γ0vλ =

[
0
1

]
.

Then the characteristic equation (4.1) for the determination of eigenvalues of HT

takes the form

det(T−Wλ) = 0, (4.2)

where the (2× 2)-matrix Wλ = [Γ1uλ,Γ1vλ] is called the Weyl–Titchmarsh func-
tion associated to the boundary triplet (C2,Γ0,Γ1). The Weyl–Titchmarsh func-
tion Wλ is holomorphic on C \ [0,∞) and it satisfies the relation (W ∗

λ )
t = Wλ∗

(see the Appendix).
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4.1. Eigenfunctions of Smax. Let us write any λ ∈ C \ [0,∞) as λ = k2, where
k ∈ C+ = {k ∈ C : Im k > 0}, and consider the function

G(x) =
i

2k
eik|x|.

Obviously, G(·) belongs to W 2
2 (R\{0}) and

−G′′ − k2G = 0, −(G′)′′ − k2G′ = 0, x 6= 0.

Moreover,

Gr(0) =
i

2k
, G′

r(0) = 0, G′′
r(0) = −ik

2
,

Gs(0) = 0, G′
s(0) = −1, G′′

s(0) = 0.

The convolution

f = (G ∗ q)(x) =
∫ ∞

−∞
G(x− s)q(s) ds

(q ∈ L2(R) is a piecewise continuous function) is the solution of the differential
equation −f ′′ − k2f = q in L2(R).

Lemma 4.1. The functions

u(x) = −(G ∗ q1)(x)− 2ik
[
1 + (G ∗ q1)(0)

]
G(x) +

2i

k
(G′ ∗ q1)(0)G′(x),

v(x) = −(G ∗ q2)(x)− 2ik(G ∗ q2)(0)G(x)− 2i

k

[
1− (G′ ∗ q2)(0)

]
G′(x)

form the basis of the eigenfunction subspace ker(Smax − k2I).

Proof. An elementary analysis shows that the functions u, v belong toW 2
2 (R\{0})

and

ur(0) = 1, us(0) = −2i

k
(G′ ∗ q1)(0),

vr(0) = 0, vs(0) =
2i

k

[
1− (G′ ∗ q2)(0)

]
,

u′
r(0) = 0, u′

s(0) = 2ik
[
1 + (G ∗ q1)(0)

]
,

v′r(0) = −1, v′s(0) = 2ik(G ∗ q2)(0).

(4.3)

The first column in (4.3) means that u and v are linearly independent, and

Γ0u =

[
1
0

]
, Γ0v =

[
0
1

]
.

Furthermore, taking into account (2.9) and (4.3), we obtain for almost all x ∈ R,

(Smax − k2I)u = −u′′ − k2u+ q1 = −q1 + q1 = 0.

Similarly, (Smax − k2I)v = −v′′ − k2v + q2 = −q2 + q2 = 0. Hence, the functions
u, v belong to ker(Smax − k2I) and they form a basis of this subspace. �
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4.2. The Weyl–Titchmarsh function associated to (C2,Γ0,Γ1). Since

Γ0u =

[
1
0

]
and Γ0v =

[
0
1

]
,

the Weyl–Titchmarsh function associated to (C2,Γ0,Γ1) has the form Wλ =
[Γ1u,Γ1v], where, in view of (2.6) and (4.3),

Γ1u =

[
2ik[1 + (G ∗ q1)(0)]− (q1, u)
−2i

k
(G′ ∗ q1)(0)− (q2, u)

]
,

Γ1v =

[
2ik(G ∗ q2)(0)− (q1, v)

2i
k
[1− (G′ ∗ q2)(0)]− (q2, v)

]
.

Making some additional rudimentary calculations (mainly related to the calcu-
lation of scalar products (q, u), (q, v) for functions u, v from Lemma 4.1), we
obtain

Wλ =

[
(q1, G ∗ q1) (q1, G ∗ q2)
(q2, G ∗ q1) (q2, G ∗ q2)

]
+

[
r11 r12
r21 r22

]
, (4.4)

where

r11 = 2ik
[
1 + (G ∗ q1)(0)

][
1 + (G ∗ q∗1)(0)

]
+

2i

k
(G′ ∗ q1)(0)(G′ ∗ q∗1)(0),

r22 =
2i

k

[
1− (G′ ∗ q2)(0)

][
1− (G′ ∗ q∗2)(0)

]
+ 2ik(G ∗ q2)(0)(G ∗ q∗2)(0),

r12 = 2ik(G ∗ q2)(0)
[
1 + (G ∗ q∗1)(0)

]
− 2i

k
(G′ ∗ q∗1)(0)

[
1− (G′ ∗ q2)(0)

]
,

r21 = 2ik(G ∗ q∗2)(0)
[
1 + (G ∗ q1)(0)

]
− 2i

k
(G′ ∗ q1)(0)

[
1− (G′ ∗ q∗2)(0)

]
.

Denote

Bq1,q2 =

[
1 + (G ∗ q1)(0) (G ∗ q2)(0)
−(G′ ∗ q1)(0) 1− (G′ ∗ q2)(0)

]
.

Then (4.4) can be rewritten as follows:

Wλ =

[
(q1, G ∗ q1) (q1, G ∗ q2)
(q2, G ∗ q1) (q2, G ∗ q2)

]
+Bt

q∗1 ,q
∗
2

[
2ik 0
0 2i

k

]
Bq1,q2 . (4.5)

Substituting (4.5) into (4.2), we obtain the characteristic equation for eigen-
values λ ∈ C \ [0,∞) of HT. In particular, if q1 = q2 = 0, the Weyl function Wλ

coincides with
[
2ik 0
0 2i/k

]
and the equation (4.2) is transformed to the polynomial

2dk2 + ik(detT− 4) + 2a = 0, (4.6)

which determines spectra of ordinary point interactions considered in Section 2.1.
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5. Nonlocal δ-interaction

5.1. Definition and description of eigenvalues. The classical one-point
δ-interaction is given by the formal expression

− d2

dx2
+ a〈δ, ·〉δ(x), a ∈ C. (5.1)

It is natural to suppose that the generalization of (5.1) to the nonlocal case
consists in the addition of the nonlocal part 〈δ, ·〉q(x)+ (q, ·)δ(x) of δ-interaction.
For this reason, a nonlocal one-point δ-interaction can be defined via the formal
expression

− d2

dx2
+ a〈δ, ·〉δ(x) + 〈δ, ·〉q(x) + (q, ·)δ(x), a ∈ C, q ∈ L2(R),

which is a particular case of (2.4) with T =
[
a 0
0 0

]
, q1 = q, and q2 = 0. This means

that the corresponding operator HT ≡ Ha defined by (2.7) and (2.8) acts as

Haf = −d2f

dx2
+ fr(0)q(x), (5.2)

on the domain of definition

D(Ha) =

{
f ∈ W 2

2

(
R\{0}

)
:
fs(0) = 0
f ′
s(0) = afr(0) + (q, f)

}
. (5.3)

In view of Lemma 3.2, the operatorHa is PT -symmetric if a ∈ R and PT q = q.
In this case, due to Lemma 3.1, the operator Ha should be self-adjoint. Therefore,
PT -symmetric nonlocal δ-interactions are realized via self-adjoint operators. The
same result is true for the case of P-self-adjoint operators Ha (see Lemma 3.3).

Theorem 5.1. The operator Ha defined by (5.2) has an eigenvalue λ = k2 ∈
C \ [0,∞) if and only if the following relation holds:

a = (q,G ∗ q) + 2ik
[
1 + (G ∗ q)(0)

][
1 + (G ∗ q∗)(0)

]
, k ∈ C+. (5.4)

Proof. If q = q1 and q2 = 0, then the Weyl–Titchmarsh function (4.5) has the
form

Wλ =

[
(q,G ∗ q) + r11 −2i

k
(G′ ∗ q∗)(0)

−2i
k
(G′ ∗ q)(0) 2i

k

]
,

where r11 = 2ik[1+(G∗q)(0)][1+(G∗q∗)(0)]+ 2i
k
(G′ ∗q)(0)(G′ ∗q∗)(0). By virtue

of (4.2), λ ∈ σp(Ha) if and only if det(T−Wλ) = 0, where T =
[
a 0
0 0

]
. The direct

calculation of det(T−Wλ) in the latter equation gives (5.4). �

Each operator Ha satisfies the relation Smin ⊂ Ha ⊂ Smax because Ha = HT

with the matrix T determined above. This important general relation (which
holds for any HT) can be made more precise for the particular case of operators
Ha. Indeed, it follows from (5.3) that the Ha’s are extensions of the following
operator:

S̃minf = −d2f

dx2
, D(S̃min) =

{
f ∈ W 2

2

(
R\{0}

)
:
fs(0) = fr(0) = 0
f ′
s(0) = (q, f)

}
. (5.5)
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It is easy to see (comparing D(S̃min) with the domain D(Smin) determined by

(2.12)) that S̃min is an extension of Smin, that is, Smin ⊂ S̃min. Moreover, the

operator S̃min is symmetric. This fact follows from Green’s identity (4.2) because

Γ1f = 0 for all f ∈ D(S̃min).

Denote S̃max = S̃†
min. The calculation of the adjoint operator gives

S̃maxf = −d2f

dx2
+ fr(0)q(x), D(S̃max) =

{
f ∈ W 2

2

(
R\{0}

)
: fs(0) = 0

}
.

It is easy to check that Smin ⊂ S̃min ⊂ Ha ⊂ S̃max ⊂ Smax. Thus, Ha is a proper

extension of the symmetric operator S̃min. Furthermore, an elementary analysis
shows that:

(i) the kernel subspace ker(S̃max−λI) is 1-dimensional and that it is generated
by the function (cf. Lemma 4.1)

uλ(x) = −(G ∗ q)(x)− 2ik
[
1 + (G ∗ q)(0)

]
G(x); (5.6)

(ii) the triple (C, Γ̃0, Γ̃1), where

Γ̃0f = fr(0), Γ̃1f = f ′
s(0)− (q, f), f ∈ D(S̃max) (5.7)

is the boundary triplet of S̃max and

Γ̃0uλ = 1, Γ̃1uλ = (q,G ∗ q) + 2ik
[
1 + (G ∗ q)(0)

][
1 + (G ∗ q∗)(0)

]
, (5.8)

where uλ is determined by (5.6);
(iii) the operators Ha initially defined by (5.2) and (5.3) can be rewritten in

terms of the boundary triplet (C, Γ̃0, Γ̃1):

Ha = S̃max �D(Ha), D(Ha) =
{
f ∈ D(S̃max) : aΓ̃0f = Γ̃1f

}
; (5.9)

(iv) the operator

H̃∞ = S̃max �D(H̃∞), D(H̃∞) =
{
f ∈ D(S̃max) : Γ̃0f = 0

}
is positive self-adjoint and its spectrum σ(H̃∞) = [0,∞) is purely contin-
uous.

The items (i)–(iv) allow one to simplify the investigation of Ha. First of all we

note that the Weyl–Titchmarsh function W̃λ associated to the boundary triplet

(C, Γ̃0, Γ̃1) is a holomorphic function on ρ(H̃∞) = C \ [0,∞) and that, due to
(5.8), it has the form

W̃λ = Γ̃1uλ = (q,G ∗ q) + 2ik
[
1 + (G ∗ q)(0)

][
1 + (G ∗ q∗)(0)

]
. (5.10)

The obtained formula immediately justifies (5.4) because λ ∈ C \ [0,∞) is an

eigenvalue of Ha if and only if det(a − W̃λ) = 0 (or, which is equivalent, if

a = W̃λ). The latter identity shows that at least one of the subspaces C± belongs
to ρ(Ha). Indeed, if a ∈ R, then ρ(Ha) ⊃ C±. If a ∈ C \ R, then only nonreal
eigenvalues ofHa might be in C±. Let us assume that λ± ∈ σp(Ha) with Imλ+ > 0

and Imλ− < 0. Then, simultaneously, Im a > 0 and Im a < 0 (since W̃λ± = a
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and (Imλ)(Im W̃λ) > 0 for Imλ 6= 0; see the Appendix), which is impossible.
Therefore, at least one of the C±’s does not belong to σ(Ha). This result is not
true for the general case of one-point interactions considered in Section 2. For
instance, if q1 = q2 = 0 and a = d = 0, bc = 4, then the characteristic equation
(4.6) vanishes and the eigenvalues of HT fill the whole domain C \ [0,∞).

Corollary 5.2. The existence of a real eigenvalue of Ha means that Ha is a
self-adjoint operator in L2(R).

Proof. Let uλ ∈ L2(R) be an eigenfunction of Ha corresponding to a real eigen-

value λ. It follows from the definition of S̃min that ker(S̃min−λI) = {0}. Therefore,
the domain of Ha can be represented as

D(Ha) =
{
f = v + cuλ : v ∈ D(S̃min), c ∈ C

}
(since the symmetric operator S̃min has the defect index 1) and

Haf = Ha(v + cuλ) = S̃minv + λcuλ.

Using the last expression we check that Im(Haf, f) = 0 for all f = v + cuλ from
the domain of Ha. Therefore, Ha is a self-adjoint operator. �

In contrast to the case of ordinary one-point interactions considered in Sec-
tion 2.1, the operators Ha may have real eigenvalues embedded into the contin-

uous spectrum [0,∞) of H̃∞. To see this, we rewrite the function uλ in (5.6)
as

uλ(x) =

{
Ak(x)e

ikx +Bk(x)e
−ikx, x > 0,

Ck(x)e
ikx +Dk(x)e

−ikx, x < 0,
λ = k2, (5.11)

where

Ak(x) = 1 +
i

2k

∫ ∞

0

eiksq(s) ds− i

2k

∫ x

0

e−iksq(s) ds,

Dk(x) = 1 +
i

2k

∫ 0

−∞
e−iksq(s) ds− i

2k

∫ 0

x

eiksq(s) ds,

Bk(x) = − i

2k

∫ ∞

x

eiksq(s) ds,

Ck(x) = − i

2k

∫ x

−∞
e−iksq(s) ds.

If λ = k2 with k ∈ C+, then the function uλ belongs to L2(R) and it solves the
differential equation −f ′′(x) + fr(0)q(x) = λf(x) for x 6= 0. According to (5.8)
and (5.10), uλ belongs to the domain of definition (5.3) of the operator Ha with

a = W̃λ. In other words, uλ is the eigenfunction of Ha.
If λ = k2 with k ∈ R \ {0}, then the function uλ defined by (5.11) turns out to

be a generalized eigenfunction of Ha. This means that uλ preserves all the above
properties except the property of being in L2(R). It should be noted that uλ may
belong to L2(R). In this case, the generalized eigenfunction coincides with the
ordinary eigenfunction and the corresponding operator Ha will have a positive
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eigenvalue λ = k2. In view of Corollary 5.2, this phenomenon is possible only for
self-adjoint operators Ha.

Example 5.3. We have the case of an even function with finite support. Let q be
an even function with support in [−ρ, ρ]. The elementary calculation in (5.11)
gives that, for all |x| > ρ,

uλ(x) = βke
ik|x|, βk = 1− 1

k

∫ ρ

0

sin ks q(s) ds.

It is easy to see that uλ will be in L2(R) if and only if βk = 0. If k ∈ R \ {0} is
a solution of the last equation, then uλ turns out to be an eigenfunction of the

self-adjoint operator Ha, where a = W̃λ and W̃λ is formally defined by (5.10) with
λ = k2 ∈ (0,∞). It should be noted that the case of odd functions with finite
support is completely different. Indeed, if q is odd with the support in [−ρ, ρ],
then

uλ(x) =

{
(1− 1

k

∫ ρ

0
sin ksq(s) ds)eikx, x > ρ,

(1 + 1
k

∫ ρ

0
sin ksq(s) ds)e−ikx, x < −ρ.

Obviously, such a function uλ does not belong to L2(R) and it cannot be an
eigenfunction ofHa. Therefore, in the case of an odd function q with finite support,
the corresponding operators Ha (a ∈ C) have no positive eigenvalues.

Let us consider the simplest example of an even function

q(x) = Zχ[−ρ,ρ](x) =

{
Z, x ∈ [−ρ, ρ],

0, x ∈ R \ [−ρ, ρ],
Z ∈ R, ρ > 0. (5.12)

The characteristic equation βk = 0 takes the form Z(1 − cos kρ) = k2. Let k0 ∈
R \ {0} be the solution of this equation. Then the function

uλ(x) =
Z(1− cos k0(ρ− |x|))

k2
0

χ[−ρ,ρ](x), λ = k2
0,

belongs to the domain of definition

D(Ha) =

{
f ∈ W 2

2

(
R\{0}

)
:
f(0−) = f(0+) ≡ f(0)
f ′(0+)− f ′(0−) = af(0) + Z

∫ ρ

−ρ
f(x) dx

}
of the self-adjoint operator Haf = −d2f

dx2 + Zf(0)χ[−ρ,ρ](x), where

a = [u′
λ]s(0)− Z

∫ ρ

−ρ

uλ(x) dx =
Z2

k2
0

(sin 2k0ρ
k0

− 2ρ
)
.

The function uλ is an eigenfunction of Ha corresponding to the positive eigenvalue
λ = k2

0.
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5.2. Exceptional points. The geometric multiplicity of any λ ∈ σp(Ha) is 1

due to (i) and the fact that ker(S̃min − λI) = {0}. The algebraic multiplicity can
be calculated with the use of [10, Corollary 4.4].

An eigenvalue of Ha is called an exceptional point if its geometrical multiplic-
ity does not coincide with the algebraic multiplicity. The presence of an excep-
tional point means that Ha cannot be self-adjoint for any choice of inner product
in L2(R). By virtue of Corollary 5.2, the operators Ha may only have nonreal
exceptional points.

Theorem 5.4. A nonreal eigenvalue λ0 of Ha is an exceptional point if and only

if W̃ ′
λ0

= 0, where W̃ ′
λ = d

dλ
W̃λ.

Proof. The resolvent (H̃∞−λI)−1 of a self-adjoint operator H̃∞ is a holomorphic

operator-valued function on ρ(H̃∞) = C\ [0,∞). On the other hand, the resolvent
(Ha − λI)−1 may be a meromorphic function on C \ [0,∞) with its poles being
eigenvalues of Ha.

Let λ0 ∈ C \ R be a pole of (Ha − λI)−1. Then its order coincides with the
maximal length of Jordan vectors associated with λ0 (see, e.g., [9, Chapter 2]).
Therefore, the existence of an exceptional point λ0 of Ha is equivalent to the
existence of a pole λ0 of order greater than 1 for the meromorphic operator-valued
function

Ξ(λ) = (Ha − λI)−1 − (H̃∞ − λI)−1. (5.13)

In other words, λ0 turns out to be an exceptional point of Ha if and only if there
exists v ∈ L2(R) such that

lim
λ→λ0

∥∥(λ− λ0)Ξ(λ)v
∥∥ = ∞. (5.14)

It is sufficient to suppose in (5.14) that v = uλ∗ ∈ ker(S̃max − λ∗I) (since Ha and

H̃∞ are extensions of S̃min and, hence, Ξ(λ) �R(S̃min−λI)= 0).

It follows from the Krein–Naimark resolvent formula (A.4) that∥∥(λ− λ0)Ξ(λ)uλ∗
∥∥ =

∣∣∣ λ− λ0

a− W̃λ

∣∣∣∥∥γ(λ)γ(λ∗)†uλ∗
∥∥. (5.15)

Let us evaluate the part ‖γ(λ)γ(λ∗)†uλ∗‖ in (5.15). In view of (A.3),

γ(λ∗)†uλ∗ = Γ̃1(H̃∞ − λI)−1uλ∗ .

The operator H̃∞ is defined in (iv) and it acts as H̃∞f = −d2f
dx2 for all functions

f ∈ D(H̃∞) = {f ∈ W 2
2 (R\{0}) : f(0−) = f(0+) = 0}. The resolvent of H̃∞ is

well known and it takes an especially simple form for f = uλ∗ :

(H̃∞ − λI)−1uλ∗ =
1

2i(Imλ)
(uλ − uλ∗).

The definition of the Weyl–Titchmarsh function W̃λ associated to the boundary

triplet (C, Γ̃0, Γ̃1) and the relation Γ̃0uλ = 1 in (5.8) imply that Γ̃1uλ = W̃λ for



SCHRÖDINGER OPERATORS WITH NONLOCAL ONE-POINT INTERACTIONS 937

all λ ∈ C \ [0,∞). Therefore,

γ(λ∗)†uλ∗ = Γ̃1(H̃∞ − λI)−1uλ∗ =
Γ̃1(uλ − uλ∗)

2i(Imλ)
=

W̃λ − W̃λ∗

2i(Imλ)
=

Im W̃λ

Imλ
.

Furthermore, it follows from the definition of γ-field γ(·) associated with (C, Γ̃0,

Γ̃1) (see the Appendix) and (5.8) that γ(λ)c = cuλ for all c ∈ C. Hence,

γ(λ)γ(λ∗)†uλ∗ = Im W̃λ

Im λ
uλ. Setting fλ = uλ in (A.1), we decide that

‖uλ‖2 =
Im W̃λ

Imλ
, λ ∈ C \ R. (5.16)

Therefore,

α(λ) =
∥∥γ(λ)γ(λ∗)†uλ∗

∥∥ =
(Im W̃λ

Imλ

)3/2

.

The function α(λ) is continuous in a neighborhood of the nonreal point λ0

and α(λ0) 6= 0. Therefore, taking (5.15) into account, we decide that (5.14) is
equivalent to the condition

lim
λ→λ0

a− W̃λ

λ− λ0

= 0.

Remembering that a = W̃λ0 (since λ0 is an eigenvalue of Ha), we complete the
proof. �

Remark 5.5. A result of similar type (but in a different context) was published
recently in [13, Lemma 2.4].

Corollary 5.6. If Ha has an exceptional point λ0, then λ∗
0 is an exceptional point

for Ha∗

The proof follows from Theorem 5.4 and the relation W̃ ∗
λ = W̃λ∗ .

5.3. Spectral singularities. Let Ha be a non-self-adjoint operator with real
spectrum. The operator Ha cannot have real eigenvalues due to Corollary 5.2.
Therefore, the spectrum of Ha is continuous and it coincides with [0,∞).

If Ha turns out to be self-adjoint with respect to an appropriative choice of
inner product of L2(R) (i.e., if Ha is similar to a self-adjoint operator in L2(R)),
then its resolvent (Ha − λI)−1 should satisfy the standard evaluation∥∥(Ha − λI)−1f

∥∥ ≤ C

| Imλ|
‖f‖, (5.17)

where C > 0 does not depend on λ ∈ C \ R and f ∈ L2(R).
The case where Ha is not similar to a self-adjoint operator in L2(R) deals

with the existence of special spectral points of Ha which are impossible for the
spectra of self-adjoint operators. Traditionally, these spectral points are called
spectral singularities if they are located on the continuous spectrum of Ha. This
particular role pertaining to spectral singularities was discovered for the first time
by Naimark [26]. Recently, various aspects of spectral singularities, including their
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physical meaning and possible practical applications, have been analyzed with a
wealth of technical tools (see, e.g., [20], [25]).

It is natural to suppose that a spectral singularity λ0 ∈ (0,∞) of Ha is charac-
terized by atypical behavior of the resolvent (Ha−λI)−1 in a neighborhood of λ0.
This assumption leads to the following definition: a positive number λ0 is called
a spectral singularity of Ha if there exists f ∈ L2(R) such that the evaluation
(5.17) does not hold when a nonreal λ tends to λ0.

Theorem 5.7. Let λ0 ∈ (0,∞), and let there exist a sequence of nonreal λn’s

such that λn → λ0 and limn→∞ W̃λn = a ∈ C\R. Then λ0 is a spectral singularity
of the non-self-adjoint operators Ha and Ha∗.

Proof. The inequality (5.17) is equivalent to the inequality∥∥Ξ(λ)f∥∥ ≤ C

| Imλ|
‖f‖, (5.18)

where Ξ(λ) is defined by (5.13). Moreover, it follows from the proof of Theorem 5.4
that it is sufficient to verify (5.18) for f = uλ∗ only. By virtue of (5.15) and the
proof of Theorem 5.4,∥∥Ξ(λ)uλ∗

∥∥ =
‖γ(λ)γ(λ∗)†uλ∗‖

|a− W̃λ|
=

Im W̃λ

Imλ

‖uλ‖
|a− W̃λ|

. (5.19)

It follows from (5.16) that ‖uλ‖ = ‖uλ∗‖. Replacing ‖uλ‖ by ‖uλ∗‖ in (5.19), we
rewrite (5.18) in the following equivalent form:

| Im W̃λ|
|a− W̃λ|

≤ C, λ ∈ C \ R. (5.20)

If the condition of Theorem 5.7 is satisfied, then the inequality (5.20) cannot
be true in a neighborhood of λ0. Therefore, λ0 should be a spectral singularity
of Ha. The same result holds for Ha∗ if we consider the sequences λ∗

n → λ0,
Wλ∗

n
= W ∗

λn
→ a∗ and take into account that H†

a = Ha∗ . �

If λ = k2 with k ∈ R \ {0}, then the formula (5.11) allows one to define two
functions u±

λ corresponding to positive/negative values of k, respectively. In this
case, the formula

W̃±
λ = [u±′

λ ]s(0)− (q, u±
λ ) = 2ik

(
1 +

i

k

∫ ∞

0

eiksqev(s) ds
)
− (q, u±

λ )

(qev is the even part of q) gives two values of the Weyl–Titchmarsh function W̃λ

on (0,∞).

Let q be chosen such that the W̃±
λ ’s are well posed (i.e., W̃±

λ 6= ∞). Then, the

functions W̃±
λ can be interpreted as limits on (0,∞) of the holomorphic functions

W̃λ considered on C±, respectively. Taking the relation W̃ ∗
λ = W̃λ∗ , λ ∈ C\ [0,∞)

into account, we deduce that (W̃+
λ )∗ = W̃−

λ for λ > 0. This relation and the

definition of W̃±
λ imply that u+

λ and u−
λ are generalized eigenfunctions of the

operators Ha and Ha∗ , respectively, with a = W̃+
λ .
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If a = W̃+
λ is nonreal, then, due to Theorem 5.7, λ is a spectral singularity of

the non-self-adjoint operators Ha and Ha∗ . The corresponding generalized eigen-

functions coincide with u+
λ and u−

λ . If a = W̃+
λ is real, then the evaluation (5.17)

holds (since Ha is self-adjoint) and λ cannot be a spectral singularity of Ha.

6. Examples

6.1. Ordinary δ-interaction. This simplest case corresponds to q = 0. The
operators Ha = − d2

dx2 have the domains

D(Ha) =

{
f ∈ W 2

2

(
R\{0}

)
:
f(0−) = f(0+) ≡ f(0)

f ′(0+)− f ′(0−) = af(0)

}
.

The Weyl–Titchmarsh function has the form W̃λ = 2ik = 2i
√
λ. There are

no exceptional points for operators Ha because W̃ ′
λ = i/

√
λ does not vanish on

C \ [0,∞).

The limit functions W̃±
λ = 2ik, k > 0/k < 0 take nonreal values. Hence, the

operators HW̃+
λ
and HW̃−

λ
have the spectral singularity λ = k2.

The ordinary δ-interactions have been well studied (see [19], [22]), and the
evolution of spectral properties of Ha when a runs C can be illustrated as follows:

Re(a)

Im(a)

self-adjointness
spectral singularities (zero
point is excluded)
nonreal eigenvalues
similarity to self-adjoint
operator

6.2. The case of an odd function. Let q be an odd function. Then the Weyl–

Titchmarsh function W̃λ takes the especially simple form

W̃λ = 2ik − (q, uλ) = 2ik + (q,G ∗ q), λ = k2, k ∈ C+. (6.1)

The last equality in (6.1) follows from (5.10) since (G ∗ q)(0) = (G ∗ q∗)(0) = 0
for odd functions q, while the first one is the consequence of (5.7) and the fact
that [u′

λ]s(0) = 2ik[1 + (G ∗ q)(0)] = 2ik.
Let us consider, for simplicity, the odd function

q(x) = Z sign(x)χ[−ρ,ρ](x) =


Z, 0 ≤ x ≤ ρ,

−Z, −ρ ≤ x < 0,

0, x ∈ R \ [−ρ, ρ],

Z ∈ C, ρ > 0.
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The corresponding operators Haf = −d2f
dx2 + f(0)Zsign(x)χ[−ρ,ρ](x) with domains

of definition

D(Ha) =

{
f ∈ W 2

2

(
R\{0}

)
:
f(0−) = f(0+) ≡ f(0)

f ′(0+)− f ′(0−) = af(0) + Z∗ ∫ ρ

−ρ
sign(x)f(x) dx

}
have no positive eigenvalues (see Example 5.3). After the substitution of q into
(6.1) and elementary calculations with the use of (5.11), we obtain the explicit
expression of the Weyl–Titchmarsh function

W̃λ = 2ik − |Z|2

ik3

[
(eikρ − 2)2 + 2ikρ− 1

]
, λ = k2, k ∈ C+. (6.2)

The limit functions W̃±
λ are determined by (6.2) for k > 0 and k < 0, respec-

tively. It is easy to check that the imaginary part of W̃±
λ ,

Im W̃±
λ = 2k +

|Z|2

k3
(2 cos2 kρ− 4 cos kρ+ 2),

does not vanish when k runs R \ {0}. Hence, any positive λ turns out to be a
spectral singularity for some operators Ha. Namely, the operators Ha and Ha∗

with a = W̃+
λ will have the spectral singularity λ.

6.3. The case of an even function q = ce−µ|x| (µ > 0). The corresponding

operators Haf = −d2f
dx2 + f(0)ce−µ|x| have the domains

D(Ha) =

{
f ∈ W 2

2

(
R\{0}

)
:
f(0−) = f(0+) ≡ f(0)

f ′(0+)− f ′(0−) = af(0) + c∗
∫
R e

−µ|x|f(x) dx

}
.

The eigenfunctions uλ (see (5.11)) are given by the expression

uλ =
(
1− c

µ2 + λ

)
eik|x| +

q(x)

µ2 + λ
, λ = k2. (6.3)

The Weyl–Titchmarsh function

W̃λ = 2ik − (q, uλ) = 2ik − 4Re c

µ− ik
+

‖q‖2

(µ− ik)2
(6.4)

is defined on C \ [0,∞) and its limit functions W̃±
λ are determined by (6.4) with

k > 0 and k < 0, respectively. Each λ ∈ C\ [0,∞) is an eigenvalue of the operator

Ha with a = W̃λ, and the corresponding eigenfunction is given by (6.3).
It follows from (6.3) that a positive eigenvalue λ exists for some operator Ha if

and only if c ≥ µ2. In this case, λ = c− µ2, the corresponding eigenfunction uλ

coincides with q(x)
µ2+λ

= e−µ|x|, and uλ is an eigenfunction of a self-adjoint operator

Ha with a = W̃±
λ = −3µ− λ

µ
.

Let us assume for the simplicity that c ∈ iR and ‖q‖2 = |c|2
µ

= 1. Then

W̃λ = 2ik +
1

(µ− ik)2
= 2i

√
λ+

1

(µ− i
√
λ)2

. (6.5)
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If k is real in (6.5), then the imaginary part of W̃±
λ ,

Im W̃±
λ = 2k +

2kµ

|µ− ik|2
,

does not vanish when λ = k2 ∈ (0,∞). Hence, any positive λ is a spectral

singularity of operators Ha and Ha∗ with a = W̃+
λ .

It follows from (6.5) that

W̃ ′
λ =

i

k

[
1 +

1

(µ− ik)3

]
=

i√
λ

[
1 +

1

(µ− i
√
λ)3

]
.

Therefore, W̃ ′
λ = 0 for certain λ ∈ C \ [0,∞) if and only if (µ − ik)3 = −1 for

k ∈ C+. The latter equation has two required solutions,

k0 =

√
3

2
+ i

(1
2
− µ

)
, k1 = −k∗

0,

when 0 < µ < 1
2
. By virtue of Theorem 5.4, λ0 = k2

0 is an exceptional point of
the operator Ha with

a = W̃λ1 = 2ik0 +
1

(µ− ik0)2
= 2ik0 +

µ− ik0
(µ− ik0)3

= 3ik0 − µ,

while λ1 = k2
1 = λ∗

0 will be an exceptional point of its adjoint Ha∗ = H†
a (see

Corollary 5.6).
The obtained result shows that the existence of exceptional points for some

operators from the collection {Ha}a∈C depends on the behavior of the function
q(x) = ce−µ|x|. If q(x) decreases (relatively) slowly on ∞ (the case 0 < µ < 1

2
),

then there exist two operators Ha and H†
a with exceptional points λ0 and λ∗

0,
respectively.

Appendix: Boundary triplets

Let Smin be a closed symmetric (densely defined) operator in a Hilbert space

H with inner product (·, ·). Denote Smax = S†
min. Obviously, Smin ⊂ Smax.

A triplet (H,Γ0,Γ1), where H is an auxiliary Hilbert space and Γ0, Γ1 are
linear mappings of D(Smax) into H, is called a boundary triplet of Smax if Green’s
identity

(Smaxf, g)− (f, Smaxg) = (Γ1f,Γ0g)H − (Γ0f,Γ1g)H, f, g ∈ D(Smax)

is satisfied and the map (Γ0,Γ1) : D(Smax) → H⊕H is surjective.
The symmetric operator Smin is the restriction of Smax onto D(Smin) = {f ∈

D(Smax) : Γ0f = Γ1f = 0}. The defect indices of Smin coincide with the dimension
of H. Boundary triplets of Smax are not determined uniquely and they exist only
in the case where the symmetric operator Smin has self-adjoint extensions (see
[5], [11], [17], [21] for various generalizations of boundary triplets).

Let (H,Γ0,Γ1) be a boundary triplet of Smax. Then the operator

H∞ = Smax �D(H∞), D(H∞) =
{
f ∈ D(Smax) : Γ0f = 0

}
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is a self-adjoint extension of Smin. The Weyl–Titchmarsh function Wλ associated
to the boundary triplet (H,Γ0,Γ1) is defined for all λ ∈ ρ(H∞) (see [16]):

WλΓ0fλ = Γ1fλ, ∀fλ ∈ ker(Smax − λI).

The operator-valued function Wλ is holomorphic on ρ(H∞) and the adjoint of the
operator Wλ in H coincides with Wλ∗ .

Let fλ ∈ ker(Smax − λI). It follows from Green’s identity that

(Imλ)‖fλ‖2 =
(
Γ0fλ, (ImWλ)Γ0fλ

)
, where ImWλ =

Wλ −W †
λ

2i
. (A.1)

Therefore, (Imλ)(ImWλ) > 0 for nonreal λ. The latter means that Wλ is a
Herglotz–Nevanlinna function (see [18]).

Let T be a bounded operator in the auxiliary Hilbert space H. The operator

HT = Smax �D(HT), D(HT) =
{
f ∈ D(Smax) : TΓ0f = Γ1f

}
is a proper extension of Smin (i.e., Smin ⊂ HT ⊂ Smax). Moreover, the adjoint oper-

ator H†
T is also a proper extension and H†

T = HT† , where T† is the adjoint oper-
ator of T in the auxiliary space H. Hence, the self-adjointness of the unbounded
operator HT in H is equivalent to the self-adjointness of the bounded operator T
in the auxiliary space H.

The spectrum of HT is described in terms of T and Wλ. Namely (see [16]),
λ ∈ ρ(H∞) belongs to the point σp(HT), to the residual σr(HT), and to the
continuous σc(HT) parts of the spectrum of HT if and only if 0 belongs to the
same parts of the spectrum of T−Wλ; that is,

λ ∈ ρ(H∞) ∩ σα(HT) ⇐⇒ 0 ∈ σα(T−Wλ), α ∈ {p, r, c}. (A.2)

For each λ ∈ ρ(H∞), the operator Γ0 is a bijective mapping of the subspace
ker(Smax − λI) onto H. Its bounded inverse

γ(λ) = (Γ0 �ker(Smax−λI))
−1 : H → ker(Smax − λI)

is called the γ-field associated with (H,Γ0,Γ1).
The γ-field γ(·) is a holomorphic operator-valued function on ρ(H∞) and (see

[27, Propositions 14.14, 14.15])

γ(λ∗)† = Γ1(H∞ − λI)−1,
d

dλ
Wλ = γ(λ∗)†γ(λ), (A.3)

where the adjoint operator γ(λ∗)† maps ker(Smax − λ∗I) into H. For any λ ∈
ρ(H∞) ∩ ρ(HT), the Krein–Naimark resolvent formula

(HT − λI)−1 − (H∞ − λI)−1 = γ(λ)(T−Wλ)
−1γ(λ∗)† (A.4)

holds (see [27, Theorem 14.18]).
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E-mail address: znojil@ujf.cas.c

http://www.ams.org/mathscinet-getitem?mr=1318517
http://dx.doi.org/10.1007/BF02367240
http://www.emis.de/cgi-bin/MATH-item?0961.30027
http://www.ams.org/mathscinet-getitem?mr=1784638
http://dx.doi.org/10.1002/1522-2616(200010)218:1<61::AID-MANA61>3.3.CO;2-4
http://dx.doi.org/10.1002/1522-2616(200010)218:1<61::AID-MANA61>3.3.CO;2-4
http://www.emis.de/cgi-bin/MATH-item?1313.81011
http://www.ams.org/mathscinet-getitem?mr=3242121
http://dx.doi.org/10.1007/s12043-009-0111-y
http://www.emis.de/cgi-bin/MATH-item?0930.47003
http://www.ams.org/mathscinet-getitem?mr=1687336
http://www.emis.de/cgi-bin/MATH-item?1105.81031
http://www.ams.org/mathscinet-getitem?mr=2269700
http://dx.doi.org/10.1088/0305-4470/39/43/008
http://www.emis.de/cgi-bin/MATH-item?1208.81095
http://www.ams.org/mathscinet-getitem?mr=2749385
http://dx.doi.org/10.1142/S0219887810004816
http://dx.doi.org/10.1142/S0219887810004816
http://www.emis.de/cgi-bin/MATH-item?1226.81067
http://www.ams.org/mathscinet-getitem?mr=2826566
http://dx.doi.org/10.1088/1751-8113/44/37/375302
http://dx.doi.org/10.1088/1751-8113/44/37/375302
http://www.emis.de/cgi-bin/MATH-item?1337.34088
http://www.ams.org/mathscinet-getitem?mr=3629670
http://www.ams.org/mathscinet-getitem?mr=0117382
http://www.emis.de/cgi-bin/MATH-item?1257.47001
http://www.ams.org/mathscinet-getitem?mr=2953553
http://dx.doi.org/10.1007/978-94-007-4753-1
http://dx.doi.org/10.1007/978-94-007-4753-1
http://www.emis.de/cgi-bin/MATH-item?1072.81058
http://www.ams.org/mathscinet-getitem?mr=2148642
http://dx.doi.org/10.1088/0305-4470/38/22/024
http://dx.doi.org/10.1088/0305-4470/38/22/024
mailto:kuzhel@agh.edu.pl
mailto:znojil@ujf.cas.c

	1 Introduction
	2 One-point interactions
	2.1 Ordinary one-point interactions
	2.2 Nonlocal one-point interactions

	3 Special cases of nonlocal one-point interactions
	3.1 Self-adjoint nonlocal one-point interactions
	3.2 PT-symmetric nonlocal one-point interactions
	3.3 P-self-adjoint nonlocal one-point interactions

	4 Spectral analysis of HT
	4.1 Eigenfunctions of Smax
	4.2 The Weyl–Titchmarsh function associated to (C2, Gamma0, Gamma1)

	5 Nonlocal delta-interaction
	5.1 Definition and description of eigenvalues
	5.2 Exceptional points
	5.3 Spectral singularities

	6 Examples
	6.1 Ordinary delta-interaction
	6.2 The case of an odd function
	6.3 The case of an even function q=ce-µ|x | (µ>0)

	Appendix: Boundary triplets
	Acknowledgment
	References
	Author's addresses

