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CONVOLUTION PRODUCTS ASSOCIATED WITH GAUSSIAN
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Abstract. Using Gaussian processes, we define a very general convolution
product of functionals on Wiener space and we investigate fundamental rela-
tionships between the generalized Fourier–Feynman transforms and the gen-
eralized convolution products. Using two rotation theorems of Gaussian pro-
cesses, we establish that both of the generalized Fourier–Feynman transform of
the generalized convolution product and the generalized convolution product
of the generalized Fourier–Feynman transforms of functionals on Wiener space
are represented as products of the generalized Fourier–Feynman transforms of
each functional, with examples.

1. Introduction

Let C0[0, T ] denote 1-parameter Wiener space, that is, the space of all real-
valued continuous functions x on [0, T ] with x(0) = 0. Let M denote the class of
all Wiener measurable subsets of C0[0, T ], and let m denote the Wiener measure.
Then, as is well known, (C0[0, T ],M,m) is a complete measure space. Throughout
this article, we will denote the Wiener integral of a Wiener measurable functional
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F by

E[F ] ≡ Ex

[
F (x)

]
=

∫
C0[0,T ]

F (x) dm(x).

A subset B of C0[0, T ] is said to be scale-invariant measurable (s.i.m.) provided
ρB ∈ M for all ρ > 0, and a scale-invariant measurable set N is said to be
scale-invariant null provided that m(ρN) = 0 for all ρ > 0. A property that
holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere (s-a.e.). If two functionals F and G are equal s-a.e., we write F ≈ G.
Note that the relation ≈ is an equivalence relation.

The concept of the analytic Fourier–Feynman transform (FFT) on the Wiener
space C0[0, T ], initiated by Brue [2], has been developed further in the literature.
This transform and its properties are similar in many respects to the ordinary
Fourier transform (for an elementary introduction to the analytic FFT, see [21]
and the references cited therein). First, we refer to [21] for the precise definitions
and the notations of the analytic FFT and of the convolution product (CP) of
functionals on the Wiener space C0[0, T ]. In [10], Huffman, Park, and Skoug
defined a CP for functionals on C0[0, T ] and obtained various results for the
analytic FFT and the CP (see [11]–[13]). In previous research involving [10]–[13],
the authors have established the relationship between the analytic FFT and the
CP of functionals F and G on C0[0, T ], in the form

Tq

(
(F ∗G)q

)
(y) = Tq(F )

( y√
2

)
Tq(G)

( y√
2

)
(1.1)

for scale-almost every y ∈ C0[0, T ].
An essential structure hidden in the proof of equation (1.1) is based on the fact

that the Gaussian processes

Z+ ≡
{x1 + x2√

2
: x1, x2 ∈ C0[0, T ]

}
and

Z− ≡
{x1 − x2√

2
: x1, x2 ∈ C0[0, T ]

}
are independent, and the processes Z+ and Z− are equivalent to the standard
Wiener process. More precisely, the product Wiener measure m× m is rotation-
invariant in C2

0 [0, T ] (see [4, Lemmas 1 and 2]). As discussed in [4], those rotation-
invariant properties of m×m were concretely realized by Bearman [1].

Recently in [8], the present authors and Skoug used another rotation form of
Wiener measure m to define a multiple generalized FFT associated with Gaussian
processes Zh (Zh-GFFT) on C0[0, T ]. The rotation form used in [8] is a general-
ization of Bearman’s celebrated result and is intended to interpret behaviors of
nonstationary Gaussian processes on C0[0, T ]. The authors also investigated var-
ious relationships which exist between the multiple GFFT and the corresponding
CP associated with the Gaussian processes on C0[0, T ]. In this paper, motivated
by the results in [7], [10]–[13], we study the fundamental relationships between
the analytic Zh-GFFTs and the generalized CPs (GCP) on Wiener space.

This paper is organized as follows. In Section 2, we briefly recall well-known
results for Gaussian processes on Wiener space and introduce the concepts of
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the Zh-GFFT and the GCP of functionals on Wiener space. In Section 3, we
emphasize the main purpose of this paper via specific examples. To do this, we
introduce the partially exponential-type functionals on C0[0, T ]. In Section 4, as
preliminary results, we investigate rotation properties of the Gaussian processes
on product Wiener spaces. In Section 5, we also investigate fundamental relation-
ships between the analytic Zh-GFFTs and the GCPs. Finally, in Section 6, we
present examples which shed light upon the conditions in our two main assertions,
and which also illustrate that the conclusions of the main assertions are valid.

2. Preliminaries

In this section, we first present the brief backgrounds which are needed
in the following sections. For each v ∈ L2[0, T ] and x ∈ C0[0, T ], we let 〈v, x〉 =∫ T

0
v(t) dx(t) denote the Paley–Wiener–Zygmund stochastic integral (see

[8], [15]–[17]). It is known that for each v ∈ L2[0, T ], the Paley–Wiener–Zygmund
stochastic integral 〈v, x〉 exists for s-a.e. x ∈ C0[0, T ], and it is a Gaussian random
variable with mean zero and variance ‖v‖22, where ‖·‖2 denotes the L2[0, T ]-norm.
Thus, using the change of variable formula, one can establish the integration for-
mula on C0[0, T ]:

Ex

[
exp

{
〈v, ρx〉

}]
= exp

{ρ2

2
‖v‖22

}
(2.1)

for every v ∈ L2[0, T ] and ρ ∈ R \ {0}.
For any h ∈ L2[0, T ] with ‖h‖2 > 0, let Zh be the stochastic process (see

[9], [13], [18], [20]) on C0[0, T ]× [0, T ] given by

Zh(x, t) =

∫ t

0

h(s) dx(s) = 〈hχ[0,t], x〉. (2.2)

Of course, if h(t) ≡ 1 on [0, T ], then Zh(x, t) = x(t) is an ordinary Wiener process.

Given h ∈ L2[0, T ] with ‖h‖2 > 0, let βh(t) =
∫ t

0
h2(u) du. It is easy to see that

Zh is a Gaussian process with mean zero and covariance function

Ex

[
Zh(x, s)Zh(x, t)

]
=

∫ min{s,t}

0

h2(u) du = β
(
min{s, t}

)
.

In addition, Zh(·, t) is stochastically continuous in t on [0, T ] and for any h1, h2 ∈
L2[0, T ],

Ex

[
Zh1(x, s)Zh2(x, t)

]
=

∫ min{s,t}

0

h1(u)h2(u) du. (2.3)

It is known (see [9]) that, for v ∈ L2[0, T ] and h ∈ L∞[0, T ],〈
v,Zh(x, ·)

〉
= 〈vh, x〉 (2.4)

for s-a.e. x ∈ C0[0, T ].
Throughout this paper, we will assume that each functional F (or G) we con-

sider satisfies the conditions:

F : C0[0, T ] → C is s-a.e. defined and s.i.m., (2.5)
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and for all h ∈ L2[0, T ] and each ρ > 0,

Ex

[∣∣F(
ρZh(x, ·)

)∣∣] < +∞. (2.6)

Next, let BV [0, T ] denote the space of functions of bounded variation on [0, T ].

Also, let C, C+, and C̃+ denote the set of complex numbers, complex numbers
with positive real part, and nonzero complex numbers with nonnegative real part,

respectively. For each λ ∈ C̃+, λ
1/2 denotes the principal square root of λ (i.e.,

λ1/2 is always chosen to have positive real part so that λ−1/2 = (λ−1)1/2 is in C+

for all λ ∈ C̃+).

Definition 2.1. Let F satisfy conditions (2.5) and (2.6) above. Let Zh be the
Gaussian process given by (2.2), and for λ > 0 let J(h;λ) = Ex[F (λ−1/2Zh(x, ·))].
If there exists a function J∗(h; ·) analytic on C+ such that J∗(h;λ) = J(h;λ)
for all λ > 0, then J∗(h;λ) is defined to be the analytic Zh-Wiener integral
(namely, the generalized analytic Wiener integral associated with the Gaussian
paths Zh(x, ·)) of F over C0[0, T ] with parameter λ. In this case, for λ ∈ C+ we
write

Ean wλ
x

[
F
(
Zh(x, ·)

)]
= J∗(h;λ).

Let q 6= 0 be a real number, and let F be a functional such that the analytic
Zh-Wiener integral Ean wλ

x [F (Zh(x, ·))] exists for all λ ∈ C+. If the following
limit exists, we call it the analytic Zh-Feynman integral (namely, the generalized
analytic Feynman integral associated with the Gaussian paths Zh(x, ·)) of F with
parameter q, and we write

Ean fq
x

[
F
(
Zh(x, ·)

)]
= lim

λ→−iq

λ∈C+

Ean wλ
x

[
F
(
Zh(x, ·)

)]
. (2.7)

Note that if h ≡ 1 on [0, T ], then these definitions agree with the previous
definitions of the analytic Wiener integral and the analytic Feynman integral (see
[3], [5], [10]–[12], [14], [19]).

Next (see [7], [8], [13], [20]), we state the definition of the GFFT.

Definition 2.2. For k ∈ L2[0, T ] \ {0}, λ ∈ C+, and y ∈ C0[0, T ], let

Tλ,k(F )(y) = Ean wλ
x

[
F
(
y + Zk(x, ·)

)]
. (2.8)

We define the L1 analytic Zk-GFFT (namely, the GFFT associated with the

Gaussian paths Zk(x, ·)), T (1)
q,k (F ) of F , by the formula

T
(1)
q,k (F )(y) = lim

λ→−iq

λ∈C+

Tλ,k(F )(y),

for s-a.e. y ∈ C0[0, T ] whenever this limit exists.

We note that if T
(1)
q,k (F ) exists and if F ≈ G, then T

(1)
q,k (G) exists and T

(1)
q,k (G) ≈

T
(1)
q,k (F ). One can see that, for each k ∈ L2[0, T ] \ {0}, T (1)

q,k (F ) ≈ T
(1)
q,−k(F ) since∫

C0[0,T ]

F (x) dm(x) =

∫
C0[0,T ]

F (−x) dm(x).
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By Definitions 2.1 and 2.2, it is easy to see that for a nonzero real number q,

T
(1)
q,k (F )(y) = Ean fq

x

[
F
(
y + Zk(x, ·)

)]
(2.9)

for s-a.e. y ∈ C0[0, T ] if both sides exist. We now present the definition of the
GCP, which involves various kinds of CPs studied in previous research.

Definition 2.3. Let F and G be functionals on C0[0, T ]. For λ ∈ C̃+, g1, g2 ∈
BV [0, T ] and h1, h2 ∈ L2[0, T ] \ {0}, we define their GCP with respect to {Zg1 ,
Zg2 , Zh1 , Zh2} (if it exists) by

(F ∗G)
(g1,g2;h1,h2)
λ (y)

=


Ean wλ

x [F (Zg1(y, ·) + Zh1(x, ·))G(Zg2(y, ·) + Zh2(x, ·))],
λ ∈ C+

E
an fq
x [F (Zg1(y, ·) + Zh1(x, ·))G(Zg2(y, ·) + Zh2(x, ·))],
λ = −iq, q ∈ R, q 6= 0.

(2.10)

When λ = −iq, we will denote (F ∗G)
(g1,g2;h1,h2)
λ by (F ∗G)

(g1,g2;h1,h2)
q .

Remark 2.4.

(i) Given a function h in L2[0, T ] with ‖h‖2 > 0, letting h1 = −h2 = h/
√
2

and g1 = g2 ≡ 1/
√
2, equation (2.10) yields the CP studied in [7], [8], [13],

[20]:

(F ∗G)(g1,g2;h1,h2)
q (y) = Ean fq

x

[
F
(y + Zh(x, ·)√

2

)
G
(y −Zh(x, ·)√

2

)]
.

(ii) Choosing h1 = −h2 = g1 = g2 ≡ 1/
√
2, equation (2.10) yields the CP

studied in [10]–[12]:

(F ∗G)(g1,g2;h1,h2)
q (y) = Ean fq

x

[
F
(y + x√

2

)
G
(y − x√

2

)]
.

(iii) Choosing h1 = h2 = g1 = −g2 = 1/
√
2 and λ = 1, equation (2.10) yields

the CP studied in [22]:

(F ∗G)(g1,g2;h1,h2)(y) = Ex

[
F
(y + x√

2

)
G
(−y + x√

2

)]
.

If h is of bounded variation on [0, T ], then Zh(x, t) is continuous in t for all
x ∈ C0[0, T ] (i.e., Zh(·, ·) is a continuous process on C0[0, T ] × [0, T ]). Thus
throughout the remainder of this paper, we require h (or k) to be in BV [0, T ]
and with ‖h‖2 > 0 for each process Zh.

3. Observations on the class E(C0[0, T ])

Let E be the class of all functionals having the form

Ψu(x) = exp
{
〈u, x〉

}
(3.1)
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for m-a.e. x ∈ C0[0, T ], where u ∈ L2[0, T ], and given q ∈ R \ {0}, v ∈ L2[0, T ],
and k ∈ BV [0, T ], let Eq,v,k be the class of all functionals having the form

Ψq,v,k
u (x) = Ψu(x) exp

{ i

2q
‖vk‖22

}
(3.2)

for m-a.e. x ∈ C0[0, T ], where Ψu is given by equation (3.1). For notational
convenience, let Ψ0,v,k

u (x) = Ψu(x) and let E0,v,k = E .
The functionals given by equation (3.2) and linear combinations (with complex

coefficients) of the Ψq,v,k
u ’s are called the partially exponential-type functionals

on C0[0, T ]. The functionals given by (3.1) are also partially exponential-type
functionals because Ψq,v,0

u (x) = Ψu(x) for m-a.e. x ∈ C0[0, T ].
For each (q, v, k) ∈ R × L2[0, T ] × BV [0, T ], the class Eq,v,k is dense in

L2(C0[0, T ]). Furthermore, Span Eq,v,k, the linear manifold generated by Eq,v,k in
L2(C0[0, T ]), is closed under the ordinary multiplication because

Ψq,v,k
u1

(x)Ψq,v,k
u2

(x) = α exp
{
〈u1 + u2, x〉+

i

2q
‖vk‖22

}
= αΨq,v,k

u1+u2
(x)

for m-a.e. y ∈ C0[0, T ], where the complex coefficient α is given by
exp{(i/2q)‖vk‖22}. Thus the class Span Eq,v,k is a commutative algebra over the
complex field C.

In fact, using the fact that

Ψq1,v1,k1
u1

(x)Ψq2,v2,k2
u2

(x) = β exp
{
〈u1 + u2, x〉

}
= βΨu1+u2(x)

with

β = exp
{ i

2q1
‖v1k1‖22 +

i

2q2
‖v2k2‖22

}
,

one can see that

Span
( ⋃

q∈R
v∈L2[0,T ]

k∈BV [0,T ]

Eq,v,k
)
= Span E .

We denote the set of all partially exponential-type functionals on C0[0, T ] by
E(C0[0, T ]) (i.e., E(C0[0, T ]) = Span E).

Note that every partially exponential-type functional is scale-invariant measur-
able. Since we will identify functionals which coincide s-a.e. on C0[0, T ], E(C0[0, T ])
can be regarded as the space of all s-equivalence classes of partially exponential-
type functionals. Throughout this article, we let equation (3.1) holds for s-a.e.
x ∈ C0[0, T ]. Strictly speaking, the quotient space E(C0[0, T ])/ ≈ is again denoted
by the same symbol E(C0[0, T ]) in the rest of this paper.

From now on, we reveal the main purpose of this paper via specific examples.
First, using (2.7) with F replaced with Ψu, (2.4), (2.1), it follows that for all
k ∈ BV [0, T ] \ {0},

Ean fq
x

[
Ψu

(
Zk(x, ·)

)]
= exp

{ i

2q
‖uk‖22

}
. (3.3)
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Thus, using equations (2.9), (3.3), and (3.2), we see that the L1 analytic Zk-GFFT,

T
(1)
q,k (Ψu) of Ψu, exists for all q ∈ R \ {0}, and it is given by

T
(1)
q,k (Ψu)(y) = Ψu(y)E

an fq
x

[
Ψu

(
Zk(x, ·)

)]
= Ψq,u,k

u (y) (3.4)

for s-a.e. y ∈ C0[0, T ]. From equation (3.4), we also see that T
(1)
q,k : E(C0[0, T ]) →

E(C0[0, T ]) is well defined.
Next, using (2.10) with F and G replaced with Ψu and Ψv, it follows that

for all real q ∈ R \ {0} and g1, g2, h3, h4 ∈ BV [0, T ], the GCP of Ψu and Ψv,

(Ψu ∗Ψv)
(g1,g2;h3,h4)
q , exists and is given by

(Ψu ∗Ψv)
(g1,g2;h1,h2)
q (y) = exp

{
〈ug1 + vg2, y〉+

i

2q
‖uh1 + vh2‖22

}
(3.5)

for s-a.e. y ∈ C0[0, T ]. Also, the functional (Ψu ∗ Ψv)
(g1,g2;h3,h4)
q ≡ Ψq,uh1+vh2,1

ug1+vg2 is
an element of E(C0[0, T ]).

Using (3.5) and applying the techniques similar to those used in the calculation
of (3.4), one can see that, for s-a.e. y ∈ C0[0, T ],

T
(1)
q,k

(
(Ψu ∗Ψv)

(g1,g2;h1,h2)
q

)
(y)

= exp
{
〈ug1 + vg2, y〉+

i

2q
‖uh1 + vh2‖22 +

i

2q

∥∥(ug1 + vg2)k
∥∥2

2

}
= exp

{
〈ug1 + vg2, y〉+

i

q

∫ T

0

u(t)v(t)
(
h1(t)h2(t) + g1(t)g2(t)k

2(t)
)
dt

+
i

2q

∫ T

0

u2(t)
(
h2
1(t) + g21(t)k

2(t)
)
dt+

i

2q

∫ T

0

v2(t)
(
h2
2(t) + g22(t)k

2(t)
)
dt
}
.

In order to obtain an equation similar to (1.1), one may put the condition that

h1(t)h2(t) + g1(t)g2(t)k
2(t) = 0 mL-a.e. on [0, T ], (3.6)

where mL denotes the Lebesgue measure on [0, T ]. Then we can expect the fol-
lowing equation:

T
(1)
q,k

(
(Ψu ∗Ψv)

(g1,g2;h1,h2)
q

)
(y) = T (1)

q,s1
(Ψu)

(
Zg1(y, ·)

)
T (1)
q,s2

(Ψv)
(
Zg2(y, ·)

)
(3.7)

for s-a.e. y ∈ C0[0, T ], where si (i = 1, 2) is the function of bounded variation
on [0, T ] such that s2i (t) = g2i (t)k

2(t) + h2
i (t) for mL-a.e. on [0, T ]. On the other

hand, using (3.4) and (2.10), we also obtain that for s-a.e. y ∈ C0[0, T ],(
T

(1)
q,k1

(Ψu) ∗ T (1)
q,k2

(Ψv)
)(g1,g2;h3,h4)

q
(y)

= exp
{
〈ug1 + vg2, y〉+

i

q

∫ T

0

u(t)v(t)h3(t)h4(t) dt

+
i

2q

∫ T

0

u2(t)
(
h2
3(t) + k2

1(t)
)
dt+

i

2q

∫ T

0

v2(t)
(
h2
4(t) + k2

2(t)
)
dt
}
,

and under the condition

mL

(
supp(h3) ∩ supp(h4)

)
= 0 (3.8)
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it follows that (
T

(1)
q,k1

(Ψu) ∗ T (1)
q,k2

(Ψv)
)(g1,g2;h3,h4)

q
(y)

= T (1)
q,s3

(Ψu)
(
Zg1(y, ·)

)
T (1)
q,s4

(Ψv)
(
Zg2(y, ·)

)
(3.9)

for s-a.e. y ∈ C0[0, T ], where s3 and s4 are the functions of bounded variation on
[0, T ] such that s23(t) = h2

3(t) + k2
1(t) and s24(t) = h2

4(t) + k2
2(t).

In Section 5 below, we establish the relationships appearing in (3.7) and (3.9)
for general functionals F and G on Wiener space. Equations (3.6) and (3.8) play
key roles in our main theorems (see Theorems 5.3 and 5.5 below).

4. Rotation properties of Gaussian processes

The essential purpose of this section is to establish two rotation properties
of Gaussian processes on the product Wiener spaces C2

0 [0, T ] and C3
0 [0, T ]. For

nonzero functions h1 and h2 in BV [0, T ], let Zh1 and Zh2 be the Gaussian pro-
cesses given by (2.2) with h replaced with h1 and h2, respectively. Then the
process

Zh1,h2 : C0[0, T ]× C0[0, T ]× [0, T ] → R
given by

Zh1,h2(x1, x2, t) = Zh1(x1, t) + Zh2(x2, t)

is also a Gaussian process with mean zero and covariance function

vh1,h2

(
min{s, t}

)
≡ Ex1

[
Ex2

[
Zh1,h2(x1, x2, s)Zh1,h2(x1, x2, t)

]]
= βh1

(
min{s, t}

)
+ βh2

(
min{s, t}

)
.

On the other hand, let h1 and h2 be nonzero functions of BV [0, T ]. Then there
exists a nonzero function s ∈ BV [0, T ] such that

s2(t) = h2
1(t) + h2

2(t) (4.1)

for mL-a.e. t ∈ [0, T ]. Note that the function s satisfying (4.1) is not unique. We
will use the symbol s(h1, h2) for the functions s that satisfy (4.1) above.

Given nonzero functions h1 and h2 in BV [0, T ], we consider the stochastic pro-
cess Zs(h1,h2). Then Zs(h1,h2) is a Gaussian process with mean zero and covariance

Ex

[
Zs(h1,h2)(x, s)Zs(h1,h2)(x, t)

]
=

∫ min{s,t}

0

s2(h1, h2)(u) db(u)

=

∫ min{s,t}

0

(
h2
1(u) + h2

2(u)
)
db(u)

= βh1

(
min{s, t}

)
+ βh2

(
min{s, t}

)
= vh1,h2

(
min{s, t}

)
.

From these facts, one can see that Zh1,h2 and Zs(h1,h2) have the same distribution
and that for any random variable F on C0[0, T ],

Ex1

[
Ex2

[
F
(
Zh1(x1, ·) + Zh2(x2, ·)

)]] ∗
= Ex

[
F
(
Zs(h1,h2)(x, ·)

)]
, (4.2)
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where by
∗
= we mean that if either side exists, then both sides exist and equality

holds.

4.1. A rotation property of Gaussian processes on C2
0 [0, T ]. The following

lemma will be very useful in the proof of our main theorem in this subsection.

Lemma 4.1. Given nonzero functions h1, h2, h3, and h4 in BV [0, T ], let the two
stochastic processes Zh1,h2 and Zh3,h4 on C2

0 [0, T ]× [0, T ] be given by

Zh1,h2(x1, x2, t) = Zh1(x1, t) + Zh2(x2, t) (4.3)

and

Zh3,h4(x1, x2, t) = Zh3(x1, t) + Zh4(x2, t), (4.4)

respectively. Then the following assertions are equivalent:

(i) Zh1,h2 and Zh3,h4 are independent processes,
(ii) h1h3 + h2h4 = 0.

Proof. Since the processes Zh1,h2 and Zh3,h4 are Gaussian, we know that Zh1,h2

and Zh3,h4 are independent if and only if

Ex2

[
Ex1

[
Zh1,h2(x1, x2, s)Zh3,h4(x1, x2, t)

]]
= 0

for all s, t ∈ [0, T ]. But using the Fubini theorem and equation (2.3), we have

Ex2

[
Ex1

[
Zh1,h2(x1, x2, s)Zh3,h4(x1, x2, t)

]]
= Ex2

[
Ex1

[(
Zh1(x1, s)Zh3(x1, t) + Zh1(x1, s)Zh4(x2, t)

+ Zh2(x2, s)Zh3(x1, t) + Zh2(x2, s)Zh4(x2, t)
)]]

=

∫ min{s,t}

0

h1(u)h3(u) du+

∫ min{s,t}

0

h2(u)h4(u) du

=

∫ min{s,t}

0

(
h1(u)h3(u) + h2(u)h4(u)

)
du.

From this we can obtain the desired result. �

Theorem 4.2. Let h1, h2, h3, and h4 be nonzero functions in BV [0, T ] with

h1h3 + h2h4 = 0,

and let F : C2
0 [0, T ] → C be a m×m-integrable functional. Then

Ex1

[
Ex2

[
F
(
Zh1(x1, ·) + Zh2(x2, ·),Zh3(x1, ·) + Zh4(x2, ·)

)]]
= Ey

[
Ex

[
F
(
Zs(h1,h2)(x, ·),Zs(h3,h4)(y, ·)

)]]
.

Proof. Let the processes Zh1,h2 ,Zh3,h4 : C
2
0 [0, T ]× [0, T ] → R be given by equation

(4.3) and (4.4) respectively. Since hi’s are functions of bounded variation, for all
(x1, x2) ∈ C2

0 [0, T ] the sample paths Zh1,h2(x1, x2, ·) and Zh3,h4(x1, x2, ·) of the
processes are continuous functions on [0, T ]. Let Xh1,h2 and Xh3,h4 be measurable
transforms from C2

0 [0, T ] into C2
0 [0, T ] given by

Xh1,h2(x1, x2) = Zh1,h2(x1, x2, ·)
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and

Xh3,h4(x1, x2) = Zh3,h4(x1, x2, ·),
respectively. Also let P ≡ Xh1,h2(C

2
0 [0, T ]) and Q ≡ Xh3,h4(C

2
0 [0, T ]) be the image

spaces of the measurable transforms Xh1,h2 and Xh3,h4 respectively. For simplicity,
let m2 denote the product Wiener measure m×m on C2

0 [0, T ].
By Lemma 4.1, we see that Zh1,h2 and Zh3,h4 are independent processes on

C2
0 [0, T ] and so Xh1,h2 and Xh3,h4 are independent measurable transforms. Thus,

by the change of variables formula, the Fubini theorem and (4.2), it follows that

Ex2

[
Ex1

[
F
(
Zh1,h2(x1, x2, ·),Zh3,h4(x1, x2, ·)

)]]
=

∫
C2

0 [0,T ]

F
(
Xh1,h2(x1, x2), Xh3,h4(x1, x2)

)
dm2(x1, x2)

=

∫
P×Q

F(z1, z2) d
[
(m2 ◦X−1

h1,h2
)× (m2 ◦X−1

h3,h4
)
]
(z1, z2)

=

∫
Q

[∫
P

F(z1, z2) d(m
2 ◦X−1

h1,h2
)(z1)

]
d(m2 ◦X−1

h3,h4
)(z2)

=

∫
Q

[∫
C2

0 [0,T ]

F
(
Xh1,h2(x1, x2), z2

)
dm2(x1, x2)

]
d(m2 ◦X−1

h3,h4
)(z2)

=

∫
Q

[∫
C2

0 [0,T ]

F
(
Zh1(x1, ·) + Zh2(x2, ·), z2

)
dm2(x1, x2)

]
d(m2 ◦X−1

h3,h4
)(z2)

=

∫
Q

[∫
C0[0,T ]

F
(
Zs(h1,h2)(x, ·), z2

)
dm(x)

]
d(m2 ◦X−1

h3,h4
)(z2)

=

∫
C0[0,T ]

[∫
Q

F
(
Zs(h1,h2)(x, ·), z2

)
d(m2 ◦X−1

h3,h4
)(z2)

]
dm(x)

=

∫
C0[0,T ]

[∫
C2

0 [0,T ]

F
(
Zs(h1,h2)(x, ·), Xh3,h4(x1, x2)

)
dm2(x1, x2)

]
dm(x)

=

∫
C0[0,T ]

[∫
C2

0 [0,T ]

F
(
Zs(h1,h2)(x, ·),Zh3(x1, ·) + Zh4(x2, ·)

)
dm2(x1, x2)

]
dm(x)

=

∫
C0[0,T ]

[∫
C0[0,T ]

F
(
Zs(h1,h2)(x, ·),Zs(h3,h4)(y, ·)

)
dm(y)

]
dm(x).

Thus we obtain the desired result. �

The following corollaries are very simple consequences of Theorem 4.2.

Corollary 4.3. Let h1 and h2 be nonzero functions in BV [0, T ], and let F :
C2

0 [0, T ] → C be a m2-integrable functional. Then

Ex2

[
Ex1

[
F
(
Zh1(x1, ·)−Zh2(x2, ·),Zh2(x1, ·) + Zh1(x2, ·)

)]]
= Ey

[
Ex

[
F
(
Zs(h1,h2)(x, ·),Zs(h1,h2)(y, ·)

)]]
. (4.5)

Remark 4.4. For any function θ(·) of bounded variation, choosing h1(t) = cos θ(t)
and h2(t) = sin θ(t) on [0, T ] in equation (4.5) yields the main result in [1, p. 130].
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Corollary 4.5. Let h1, h2, h3, and h4 be as in Theorem 4.2. Let F and G be
m-integrable functionals. Then

Ex1

[
Ex2

[
F
(
Zh1(x1, ·) + Zh2(x2, ·)

)
G
(
Zh3(x1, ·) + Zh4(x2, ·)

)]]
= Ex

[
F
(
Zs(h1,h2)(x, ·)

)]
Ex

[
G
(
Zs(h3,h4)(x, ·)

)]
. (4.6)

4.2. A rotation property of Gaussian processes on C3
0 [0, T ].

Lemma 4.6. Given nonzero functions h1, h2, h3, and h4 in BV [0, T ], let the two
stochastic processes Zh1,h2,0 and Zh3,0,h4 on C3

0 [0, T ]× [0, T ] be given by

Wh1,h2,0(x1, x2, x3, t) = Zh1(x1, t) + Zh2(x2, t) (4.7)

and

Wh3,0,h4(x1, x2, x3, t) = Zh3(x1, t) + Zh4(x3, t), (4.8)

respectively. If mL(supp(h1)∩ supp(h3)) = 0, then Wh1,h2,0 and Wh3,0,h4 are inde-
pendent processes.

Remark 4.7. By the consistency property, the processes Wh1,h2,0 and Wh1,0,h3 can
be considered as processes on C2

0 [0, T ]× [0, T ].

Proof of Lemma 4.6. Since the processes Wh1,h2,0 and Wh3,h4 are Gaussian, we
know that Wh1,h2,0 and Wh3,0,h4 are independent if and only if

Ex3

[
Ex2

[
Ex1

[
Wh1,h2,0(x1, x2, x3, s)Wh3,0,h4(x1, x2, x3, t)

]]]
= 0

for all s, t ∈ [0, T ]. But using the Fubini theorem and equation (2.3), we have

Ex3

[
Ex2

[
Ex1

[
Wh1,h2,0(x1, x2, x3, s)Wh3,0,h4(x1, x2, x3, t)

]]]
= Ex3

[
Ex2

[
Ex1

[
Zh1(x1, s)Zh3(x1, t) + Zh1(x1, s)Zh4(x3, t)

+ Zh2(x2, s)Zh3(x1, t) + Zh2(x2, s)Zh4(x3, t)
]]]

=

∫ min{s,t}

0

h1(u)h3(u) du.

From this we can obtain the desired result. �

Theorem 4.8. Let h1, h2, h3, and h4 be nonzero functions in BV [0, T ] with

mL

(
supp(h1) ∩ supp(h3)

)
= 0,

and let F : C2
0 [0, T ] → C be a m2-integrable functional. Then

Ex3

[
Ex2

[
Ex1

[
F
(
Zh1(x1, ·) + Zh2(x2, ·),Zh3(x1, ·) + Zh4(x3, ·)

)]]]
= Ey

[
Ex

[
F
(
Zs(h1,h2)(x, ·),Zs(h3,h4)(y, ·)

)]]
.

Proof. Let the processes Wh1,h2,0,Wh3,0,h4 : C3
0 [0, T ] × [0, T ] → R be given by

equation (4.7) and (4.8), respectively. Since hi’s are functions of bounded vari-
ation, for all (x1, x2, x3) ∈ C3

0 [0, T ] the sample paths Wh1,h2,0(x1, x2, x3, ·) and
Wh3,0,h4(x1, x2, x3, ·) of the processes are continuous functions on [0, T ]. Let Yh1,h2,0

and Yh3,0,h4 be measurable transforms from C3
0 [0, T ] into C3

0 [0, T ] given by

Yh1,h2,0(x1, x2, x3) = Wh1,h2,0(x1, x2, x3, ·)
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and

Yh3,0,h4(x1, x2, x3) = Wh3,0,h4(x1, x2, x3, ·),

respectively. Also let M ≡ Yh1,h2,0(C
3
0 [0, T ]) and N ≡ Yh3,0,h4(C

3
0 [0, T ]) be the

image spaces of the measurable transforms Yh1,h2,0 and Yh3,0,h4 , respectively. For
simplicity, let m3 denote the product Wiener measure m×m×m on C3

0 [0, T ].
By Lemma 4.6, we see that Wh1,h2,0 and Wh3,0,h4 are independent processes on

C3
0 [0, T ] and so Yh1,h2,0 and Yh3,0,h4 are independent measurable transforms. Thus,

by the change of variables formula, the Fubini theorem, and (4.2), it follows that

Ex3

[
Ex2

[
Ex1

[
F
(
Zh1(x1, ·) + Zh2(x2, ·),Zh3(x1, ·) + Zh4(x3, ·)

)]]]
=

∫
C3

0 [0,T ]

F
(
Yh1,h2,0(x1, x2, x3), Yh3,0,h4(x1, x2, x3)

)
dm3(x1, x2, x3)

=

∫
N×M

F(w1, w2) d
[
(m3 ◦ Y −1

h1,h2,0
)× (m3 ◦ Y −1

h3,0,h4
)
]
(w1, w2)

=

∫
N

[∫
M

F(w1, w2) d(m
3 ◦ Y −1

h1,h2,0
)(w1)

]
d(m3 ◦ Y −1

h3,0,h4
)(w2)

=

∫
N

[∫
C3

0 [0,T ]

F
(
Yh1,h2,0(x1, x2, x3), w2

)
dm3(x1, x2, x3)

]
d(m3 ◦ Y −1

h3,0,h4
)(w2)

=

∫
N

[∫
C2

0 [0,T ]

F
(
Zh1(x1, ·) + Zh2(x2, ·), w2

)
dm2(x1, x2)

]
d(m3 ◦ Y −1

h3,0,h4
)(w2)

=

∫
N

[∫
C0[0,T ]

F
(
Zs(h1,h2)(x, ·), w2

)
dm(x)

]
d(m3 ◦ Y −1

h3,0,h4
)(w2)

=

∫
C0[0,T ]

[∫
N

F
(
Zs(h1,h2)(x, ·), w2

)
d(m3 ◦ Y −1

h3,0,h4
)(w2)

]
dm(x)

=

∫
C0[0,T ]

[∫
C3

0 [0,T ]

F
(
Zs(h1,h2)(x, ·), Yh3,0,h4(x1, x2, x3)

)
dm3(x1, x2, x3)

]
dm(x)

=

∫
C0[0,T ]

[∫
C2

0 [0,T ]

F
(
Zs(h1,h2)(x, ·),Zh3(x1, ·) + Zh4(x3, ·)

)
dm2(x1, x3)

]
dm(x)

=

∫
C0[0,T ]

[∫
C0[0,T ]

F
(
Zs(h1,h2)(x, ·),Zs(h3,h4)(y, ·)

)
dm(y)

]
dm(x).

Thus we obtain the desired result. �

The following corollary is a very simple consequence of Theorem 4.8.

Corollary 4.9. Let h1, h2, h3, and h4 be as in Theorem 4.8. Let F and G be
m-integrable functionals. Then

Ex3

[
Ex2

[
Ex1

[
F
(
Zh1(x1, ·) + Zh2(x2, ·)

)
G
(
Zh3(x1, ·) + Zh4(x3, ·)

)]]]
= Ex

[
F
(
Zs(h1,h2)(x, ·)

)]
Ex

[
G
(
Zs(h3,h4)(x, ·)

)]
. (4.9)
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5. Fourier–Feynman transforms and convolution products

In this section, we will establish that the GFFT of the GCP is a product of
the GFFTs (see Theorem 5.3 below) and that the GCP of the GFFTs is also a
product of the GFFTs (see Theorem 5.5 below).

5.1. Transform of generalized convolution products. It will be helpful to
establish the following lemma before giving the first theorem in this section.

Lemma 5.1. Let g1, g2, h1, h2, and k be nonzero functions in BV [0, T ]. For
each j ∈ {1, 2}, let s(gjhj, hj) be the function in BV [0, T ] satisfying equation
(4.1) with h1 and h2 replaced with gjhj and hj. Also, let F and G be C-valued
scale-invariant measurable functionals on C0[0, T ] such that the analytic trans-

forms Tλ,s(g1k,h1)(F )(y), Tλ,s(g2k,h2)(G)(y), and the GCP (F ∗G)
(g1,g2;h1,h2)
λ (y) exist

for every λ ∈ C and s-a.e. y ∈ C0[0, T ]. Furthermore, assume that given nonzero

function k in BV [0, T ], the analytic transform of (F ∗ G)
(g1,g2;h1,h2)
λ1

, Tλ2,k((F ∗
G)

(g1,g2;h1,h2)
λ1

)(y) exists for every (λ1, λ2) ∈ C+ × C+ and s-a.e. y ∈ C0[0, T ].
Suppose that

g1g2k
2 + h1h2 = 0.

Then for each λ ∈ C+ and s-a.e. y ∈ C0[0, T ],

Tλ,k

(
(F ∗G)

(g1,g2;h1,h2)
λ

)
(y)

= Tλ,s(g1k,h1)(F )
(
Zg1(y, ·)

)
Tλ,s(g2k,h2)(G)

(
Zg2(y, ·)

)
. (5.1)

Remark 5.2 (Comments on the assumptions in Lemma 5.1). Let a function y ∈
C0[0, T ] be given. For (λ1, ρ2) ∈ C+ × (0,+∞), let

Jλ∗
1
(k; ρ2)

≡ Tk,ρ2

(
(F ∗G)

(g1,g2;h1,h2)
λ1

)
(y)

= Ex2

[
(F ∗G)

(g1,g2;h1,h2)
λ1

(
y + ρ

−1/2
2 Zk(x2, ·)

)]
= Ex2

[
E

an wλ1
x1

[
F
(
Zg1

(
y + ρ

−1/2
2 Zk(x2, ·)

)
+ Zh1(x1, ·)

)
×G

(
Zg2

(
y + ρ

−1/2
2 Zk(x2, ·)

)
+ Zh2(x1, ·)

)]]
= Ex2

[
E

an wλ1
x1

[
F
(
Zg1(y, ·) + ρ

−1/2
2 Zg1k(x2, ·) + Zh1(x1, ·)

)
×G

(
Zg2(y, ·) + ρ

−1/2
2 Zg2k(x2, ·) + Zh2(x1, ·)

)]]
.
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For (ρ1, λ2) ∈ (0,+∞)× C+, let

Jλ∗
2
(h1, h2; ρ1)

≡ Tk,λ2

(
(F ∗G)(g1,g2;h1,h2)

ρ1

)
(y)

= E
an wλ2
x2

[
(F ∗G)(g1,g2;h1,h2)

ρ1

(
y + Zk(x2, ·)

)]
= E

an wλ2
x2

[
Ex1

[
F
(
Zg1

(
y + Zk(x2, ·)

)
+ ρ

−1/2
1 Zh1(x1, ·)

)
×G

(
Zg2

(
y + Zk(x2, ·)

)
+ ρ

−1/2
1 Zh2(x1, ·)

)]]
= E

an wλ2
x2

[
Ex1

[
F
(
Zg1(y, ·) + Zg1k(x2, ·) + ρ

−1/2
1 Zh1(x1, ·)

)
×G

(
Zg2(y, ·) + Zg2k(x2, ·) + ρ

−1/2
1 Zh2(x1, ·)

)]]
.

Finally, for (ρ1, ρ2) ∈ (0,+∞)× (0,+∞), let

J(F,G)(k, h1, h2; ρ1, ρ2)

≡ Tk,ρ2

(
(F ∗G)(g1,g2;h1,h2)

ρ1

)
(y)

= Ex2

[
(F ∗G)(g1,g2;h1,h2)

ρ1

(
y + ρ

−1/2
2 Zk(x2, ·)

)]
= Ex2

[
Ex1

[
F
(
Zg1

(
y + ρ

−1/2
2 Zk(x2, ·)

)
+ ρ

−1/2
1 Zh1(x1, ·)

)
×G

(
Zg2

(
y + ρ

−1/2
2 Zk(x2, ·)

)
+ ρ

−1/2
1 Zh2(x1, ·)

)]]
= Ex2

[
Ex1

[
F
(
Zg1(y, ·) + ρ

−1/2
2 Zg1k(x2, ·) + ρ

−1/2
1 Zh1(x1, ·)

)
×G

(
Zg2(y, ·) + ρ

−1/2
2 Zg2k(x2, ·) + ρ

−1/2
1 Zh2(x1, ·)

)]]
.

Next, let J∗
λ∗
1
(k;λ2), λ2 ∈ C+, denote the analytic continuation of Jλ∗

1
(k; ρ2); let

J∗
λ∗
2
(h1, h2;λ1), λ1 ∈ C+, denote the analytic continuation of Jλ∗

2
(h1, h2; ρ1); and

let J∗∗
(F,G)(k, h1, h2; ·, ·) denote the analytic continuation of J(F,G)(k, h1, h2; ρ1, ρ2)

on C+ × C+. From the assumptions in Lemma 5.1, one can see that the three
analytic Wiener integrals J∗

λ∗
1
(k;λ2), J

∗
λ∗
2
(h1, h2;λ1), and J∗∗

(F,G)(k, h1, h2;λ1, λ2) all
exist, and that

J∗
λ∗
1
(k;λ2) = J∗

λ∗
2
(h1, h2;λ1) = J∗∗

(F,G)(k, h1, h2;λ1, λ2) (5.2)

for all (λ1, λ2) ∈ C+ × C+.

Proof of Lemma 5.1. In view of equations (2.8) and (2.10), we first note that the
existences of the analytic Wiener integrals

Tλ,s(g1k,h1)(F )(y), Tλ,s(g2k,h2)(G)(y), (F ∗G)
(g1,g2;h1,h2)
λ (y)

and

Tλ2,k

(
(F ∗G)

(g1,g2;h1,h2)
λ1

)
(y)

guarantee that the five Wiener integrals

(i) Ex

[
F
(
y + λ−1/2Zs(g1k,h1)(x, ·)

)]
,

(ii) Ex

[
F
(
y + λ−1/2Zs(g2k,h2)(x, ·)

)]
,

(iii) Ex

[
F
(
Zg1(y, ·) + λ−1/2Zh1(x, ·)

)
G(Zg2(y, ·) + λ−1/2Zh2(x, ·)

]
,
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(iv) Ex2

[
Ex1

[
F
(
Zg1(y, ·) + λ

−1/2
2 Zg1k(x2, ·) + λ

−1/2
1 Zh1(x1, ·)

)
×G

(
Zg2(y, ·) + λ

−1/2
2 Zg2k(x2, ·) + λ

−1/2
1 Zh2(x1, ·)

)]]
,

and

(v) Ex2

[
E

anζ1
x1

[
F
(
Zg1(y, ·) + ζ

−1/2
2 Zg1k(x2, ·) + Zh1(x1, ·)

)
×G

(
Zg2(y, ·) + ζ

−1/2
2 Zg2k(x2, ·) + Zh2(x1, ·)

)]]
all exist for any λ > 0, λ1 > 0, λ2 > 0, ζ1 ∈ C+, ζ2 > 0, and s-a.e. y ∈ C0[0, T ].

Next, the existence of the analytic Wiener integral

J(λ1, λ2) ≡ Tλ2,k

(
(F ∗G)

(g1,g2;h1,h2)
λ1

)
= E

an wλ2
x2

[
E

an wλ1
x1

[
F
(
Zg1(y, ·) + Zg1k(x2, ·) + Zh1(x1, ·)

)
×G

(
Zg2(y, ·) + Zg2k(x2, ·) + Zh2(x1, ·)

)]]
(5.3)

also ensures that the analytic Wiener integral

J(λ, λ) = Ean wλ
x2

[
Ean wλ

x1

[
F
(
Zg1(y, ·) + Zg1k(x2, ·) + Zh1(x1, ·)

)
×G

(
Zg2(y, ·) + Zg2k(x2, ·) + Zh2(x1, ·)

)]]
is well-defined for all λ ∈ C+. In equation (5.3) above, by the observation in
Remark 5.2, we see that J(λ1, λ2) means the three analytic function space integrals
in equation (5.2) above. On the other hand, using the Fubini theorem and (4.6),
it follows that for all λ > 0 and s-a.e. y ∈ C0[0, T ],

Tλ,k

(
(F ∗G)

(g1,g2;h1,h2)
λ

)
(y)

= J(λ, λ)

= Ex2

[
Ex1

[
F
(
Zg1(y, ·) + λ−1/2Zg1k(x2, ·) + λ−1/2Zh1(x1, ·)

)
×G

(
Zg2(y, ·) + λ−1/2Zg2k(x2, ·) + λ−1/2Zh2(x1, ·)

)]]
= Ex2

[
Ex1

[
F
(
Zg1(y, ·) + λ−1/2

[
Zg1k(x2, ·) + Zh1(x1, ·)

])
×G

(
Zg2(y, ·) + λ−1/2

[
Zg2k(x2, ·) + Zh2(x1, ·)

])]]
= Ex

[
F
(
Zg1(y, ·) + λ−1/2Zs(g1k,h1)(x, ·)

)]
× Ex

[
G
(
Zg2(y, ·) + λ−1/2Zs(g2k,h2)(x, ·)

)]
= Tλ,Zs(g1k,h1)

(F )
(
Zg1(y, ·)

)
Tλ,Zs(g2k,h2)

(G)
(
Zg2(y, ·)

)
.

We now use the analytic continuation to obtain our desired conclusion. �

Theorem 5.3. Let g1, g2, h1, h2, k, s(g1h1, h1), and s(g2h2, h2) be as in Lem-
ma 5.1. Let q be a nonzero real number, and let F and G be C-valued scale-
invariant measurable functionals on C0[0, T ] such that the L1 analytic GFFTs

T
(1)
q,s(g1k,h1)

(F )(y), T
(1)
q,s(g2k,h2)

(G)(y), and the GCP (F ∗ G)
(g1,g2;h1,h2)
q (y) exist for

s-a.e. y ∈ C0[0, T ]. Furthermore, assume that given nonzero function k in
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BV [0, T ], the analytic GFFT of (F ∗G)
(g1,g2;h1,h2)
q , T

(1)
q,k ((F ∗G)

(g1,g2;h1,h2)
q )(y) exists

for s-a.e. y ∈ C0[0, T ]. Now suppose that

g1g2k
2 + h1h2 = 0.

Then for s-a.e. y ∈ C0[0, T ],

T
(1)
q,k

(
(F ∗G)(g1,g2;h1,h2)

q

)
(y)

= T
(1)
q,s(g1k,h1)

(F )
(
Zg1(y, ·)

)
T

(1)
q,s(g2k,h2)

(G)
(
Zg2(y, ·)

)
. (5.4)

Remark 5.4 (Comments on the assumptions in Theorem 5.3). Before giving the
proof of Theorem 5.3, we will emphasize the following assertions.

(i) The existence conditions for

T
(1)
q,s(g1k,h1)

(F ), T
(1)
q,s(g2k,h2)

(G) and (F ∗G)(g1,g2;h1,h2)
q

say that

Tλ,s(g1k,h1)(F )(y), Tλ,s(g2k,h2)(G)(y) and (F ∗G)
(g1,g2;h1,h2)
λ (y)

all exist for all λ ∈ C+ and s-a.e. y ∈ C0[0, T ].

(ii) The existence conditions for (F ∗G)
(g1,g2;h1,h2)
q and T

(1)
q,k ((F ∗G)

(g1,g2;h1,h2)
q )

say that

• Tλ,k((F ∗G)
(g1,g2;h1,h2)
q )(y) exists for every λ ∈ C+ and s-a.e. y ∈ C0[0, T ];

and
• Tλ2,k((F ∗ G)

(g1,g2;h1,h2)
λ1

)(y) exists for every (λ1, λ2) ∈ C+ × C+ and s-a.e.
y ∈ C0[0, T ].

Thus the assumptions in Theorem 5.3 involve the assumptions in Lemma 5.1.

Proof of Theorem 5.3. To obtain equation (5.4), one may establish that

T
(1)
q,k

(
(F ∗G)(g1,g2;h1,h2)

q

)
(y)

= lim
λ2→−iq

λ2∈C+

E
an wλ2
x2

[
(F ∗G)(g1,g2;h1,h2)

q

(
y + Zk(x2, ·)

)]
= lim

λ1,λ2→−iq

λ1,λ2∈C+

E
an wλ2
x2

[
E

an wλ1
x1

[
F
(
Zg1(y, ·) + Zg1k(x2, ·) + Zh1(x1, ·)

)
×G

(
Zg2(y, ·) + Zg2k(x2, ·) + Zh2(x1, ·)

)]]
= lim

λ→−iq

λ∈C+

Ean wλ
x

[
F
(
Zg1(y, ·) + Zs(g1k,h1)(x, ·)

)]
× lim

λ→−iq

λ∈C+

Ean wλ
x

[
G
(
Zg2(y, ·) + Zs(g2k,h2)(x, ·)

)]
= T

(1)
q,s(g1k,h1)

(F )
(
Zg(y, ·)

)
T

(1)
q,s(g2k,h2)

(G)
(
Zg(y, ·)

)
.
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But, as was shown in the proof of Lemma 5.1, the assertions in Remark 5.4 that
the analytic Wiener integrals

Tλ,s(g1k,h1)(F )(y) = Ean wλ
x

[
F
(
y + Zs(g1k,h1)(x, ·)

)]
,

Tλ,s(g2k,h2)(G)(y) = Ean wλ
x

[
G
(
y + Zs(g2k,h2)(x, ·)

)]
and

(F ∗G)
(g1,g2;h1,h2)
λ (y) = Ean wλ

x

[
F
(
Zg1(y, ·) + Zh1(x, ·)

)
G
(
Zg2(y, ·) + Zh2(x, ·)

)]
exist for every λ ∈ C+ and s-a.e. y ∈ C0[0, T ] and the fact that the analytic
Wiener integral

Tλ2,k

(
(F ∗G)

(g1,g2;h1,h2)
λ1

)
(y)

= E
an wλ2
x2

[
E

anλ1
x1

[
F
(
Zg1(y, ·) + Zg1k(x2, ·) + Zh1(x1, ·)

)
×G

(
Zg2(y, ·) + Zg2k(x2, ·) + Zh2(x1, ·)

)]]
exists for every (λ1, λ2) ∈ C+ × C+ establish that Tλ,s(g1k,h1)(F )(y)
and Tλ,s(g2k,h2)(G)(y) are analytic on C+, as functions of λ, and also establish

that Tλ2,k((F ∗G)
(g1,g2;h1,h2)
λ1

)(y) is analytic on C+ ×C+, as a function of (λ1, λ2).
Thus, to establish equation (5.4), it will suffice to show that

T
(1)
q,k

(
(F ∗G)(g1,g2;h1,h2)

q

)
(y)

= lim
λ→−iq

λ∈C+

Ean wλ
x2

[
Ean wλ

x1

[
F
(
Zg1(y, ·) + Zg1k(x2, ·) + Zh1(x1, ·)

)
×G

(
Zg2(y, ·) + Zg2k(x2, ·) + Zh2(x1, ·)

)]]
= lim

λ→−iq

λ∈C+

Ean wλ
x

[
F
(
Zg1(y, ·) + Zs(g1k,h1)(x, ·)

)]
× lim

λ→−iq

λ∈C+

Ean wλ
x

[
G
(
Zg2(y, ·) + Zs(g2k,h2)(x, ·)

)]
= T

(1)
q,s(g1k,h1)

(F )
(
Zg1(y, ·)

)
T

(1)
q,s(g2k,h2)

(G)
(
Zg2(y, ·)

)
.

But it follows from equation (5.1) and the analytic continuation. �

5.2. Generalized convolution products of transforms. In our second theo-
rem, we establish that the GCP of the GFFTs is a product of the GFFTs.

Theorem 5.5. Let g1, g2, k1, k2, h3, and h4 be nonzero functions in BV [0, T ] and
let s(h3, k1) and s(h4, k2) be given as in equation (4.1). Also, let q be a nonzero real
number, and let F and G be C-valued scale-invariant measurable functionals on

C0[0, T ] such that the L1 analytic GFFTs T
(1)
q,k1

(F ), T
(1)
q,k2

(G), T
(1)
q,s(g1k,h1)

(F ), and

T
(1)
q,s(g2k,h2)

(G) exist for s-a.e. y ∈ C0[0, T ]. Furthermore, assume that the GCP

(T
(1)
q,k1

(F ) ∗ T (1)
q,k2

(G))
(g1,g2;h3,h4)
q exists for s-a.e. y ∈ C0[0, T ]. Now suppose that

mL

(
supp(h3) ∩ supp(h4)

)
= 0. (5.5)
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Then s-a.e. y ∈ C0[0, T ],(
T

(1)
q,k1

(F ) ∗ T (1)
q,k2

(G)
)(g1,g2;h3,h4)

q
(y)

= T
(1)
q,s(h3,k1)

(F )
(
Zg1(y, ·)

)
T

(1)
q,s(h4,k2)

(G)
(
Zg2(y, ·)

)
. (5.6)

Proof. By similar arguments in Remarks 5.2 and 5.4, the following analytic con-
tinuations of the following seven Wiener integrals

J1(ρ1, ρ2, ρ3) =
(
Tρ1,k1(F ) ∗ Tρ2,k2(G)

)(g1,g2;h3,h4)

ρ3
(y), ρ1, ρ2, ρ3 ∈ (0,+∞),

J2(ρ2, ρ3;λ1) =
(
Tλ1,k1(F ) ∗ Tρ2,k2(G)

)(g1,g2;h3,h4)

ρ3
(y), ρ2, ρ3 ∈ (0,+∞), λ1 ∈ C+,

J3(ρ1, ρ3;λ2) =
(
Tρ1,k1(F ) ∗ Tλ2,k2(G)

)(g1,g2;h3,h4)

ρ3
(y), ρ1, ρ3 ∈ (0,+∞), λ2 ∈ C+,

J4(ρ1, ρ2;λ3) =
(
Tρ1,k1(F ) ∗ Tρ2,k2(G)

)(g1,g2;h3,h4)

λ3
(y), ρ1, ρ2 ∈ (0,+∞), λ3 ∈ C+,

J5(ρ3;λ1, λ2) =
(
Tλ1,k1(F ) ∗ Tλ2,k2(G)

)(g1,g2;h3,h4)

ρ3
(y), ρ3 ∈ (0,+∞), λ1, λ2 ∈ C+,

J6(ρ2;λ1, λ3) =
(
Tλ1,k1(F ) ∗ Tρ2,k2(G)

)(g1,g2;h3,h4)

λ3
(y), ρ2 ∈ (0,+∞), λ1, λ3 ∈ C+

and

J7(ρ1;λ2, λ3) =
(
Tρ1,k1(F ) ∗ Tλ2,k2(G)

)(g1,g2;h3,h4)

λ3
(y), ρ1 ∈ (0,+∞), λ2, λ3 ∈ C+

all exist and have the same analytic continuation

J∗(λ1, λ2, λ3) =
(
Tλ1,k1(F ) ∗ Tλ2,k2(G)

)(g1,g2;h3,h4)

λ3
, λ1, λ2, λ3 ∈ C+.

Thus, by similar arguments as in the proofs of Lemma 5.1 and Theorem 5.3, it
will suffice to show that equation (5.6) holds for all λ > 0 and s-a.e. y ∈ C0[0, T ].

Using the Fubini theorem and applying equation (4.9) with the condition (5.5),
it follows that for all λ > 0 and s-a.e. y ∈ C0[0, T ],(
Tλ,k1(F ) ∗ Tλ,k2(G)

)(g1,g2;h3,h4)

λ
(y)

= Ex1

[
Tλ,k1(F )

(
Zg1(y, ·) + λ−1/2Zh3(x1, ·)

)
× Tλ,k2(G)

(
Zg2(y, ·) + λ−1/2Zh4(x1, ·)

)]
= Ex1

[
Ex2

[
F
(
Zg1(y, ·) + λ−1/2Zh3(x1, ·) + λ−1/2Zk1(x2, ·)

)]
× Ex3

[
G
(
Zg2(y, ·) + λ−1/2Zh4(x1, ·) + λ−1/2Zk2(x3, ·)

)]]
= Ex1

[
Ex2

[
Ex3

[
F
(
Zg1(y, ·) + λ−1/2

(
Zh3(x1, ·) + Zk1(x2, ·)

))
×G(Zg2(y, ·) + λ−1/2

(
Zh4(x1, ·) + Zk2(x3, ·)

)]]]
= Ex

[
F
(
Zg1(y, ·) + λ−1/2Zs(h3,k1)(x, ·)

)]
Ex

[
G
(
Zg2(y, ·) + λ−1/2Zs(h4,k2)(x, ·)

)]
= Tλ,s(h3,k1)(F )

(
Zg1(y, ·)

)
Tλ,s(h4,k2)(G)

(
Zg2(y, ·)

)
as desired. �
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6. Further results and examples

The assertions in Theorems 5.3 and 5.5 above can be applied to many large
classes of functionals on C0[0, T ]. These classes of functionals are discussed in
[3], [5], [10]–[14], [19]. In Theorem 5.3, we established that a GFFT of a GCP of
functionals on C0[0, T ] is a product of GFFTs, and in Theorem 5.5, we established
that a GCP of GFFTs is also a product of GFFTs under appropriate conditions.
This leads to the following question: how can we relate the two results in Theorems
5.3 and 5.5? In other words, how can we find the conditions on the GFFTs and
the GCPs in the next equation?

T
(1)
q,k

(
(F ∗G)(g1,g2;h1,h2)

q

)
(y) =

(
T

(1)
q,k1

(F ) ∗ T (1)
q,k2

(G)
)(g1,g2;h3,h4)

q
(y). (6.1)

In view of the assumptions in Theorems 5.3 and 5.5, we have to check that
there exist solutions {g1, g2, k, k1, k2, h1, h2, h3, h4} of the system



(i) g1g2k
2 + h1h2 = 0,

(ii) mL(supp(h3) ∩ supp(h4)) = 0,

(iii) s(g1k, h1) = s(h3, k1),

i.e., g21(t)k
2(t) + h2

1(t) = h2
3(t) + k2

1(t) mL-a.e. t ∈ [0, T ],

(iv) s(g2k, h2) = s(h4, k2),

i.e., g22(t)k
2(t) + h2

2(t) = h2
4(t) + k2

2(t) mL-a.e. t ∈ [0, T ].

(6.2)

to establish equation (6.1) above.
In the remainder of this paper, we present three examples which shed light

upon the conditions in Theorems 5.3 and 5.5 above, and which also illustrate
that the conclusions of two theorems are valid.

Example 6.1. The set {g1, g2, k, k1, k2, h1, h2, h3, h4} of functions in BV [0, T ] with

g1(t) = 2 cos
(2πt

T

)
χ[0,T/2](t), g2(t) =

[
3− 4 sin2

(2πt
T

)]
χ[T/2,T ](t),

k(t) = sin
(2πt

T

)
k1(t) = sin

(4πt
T

)
, k2(t) = sin

(6πt
T

)
,

h1(t) = χ[T/2,T ](t), h2(t) = χ[0,T/2](t),

h3(t) = cos
(4πt

T

)
χ[T/2,T ](t), h4(t) = cos

(6πt
T

)
χ[0,T/2](t),

is a solution of the system (6.2).
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Example 6.2. Given positive integers l, m, and n with l < m < n, let

g1(t) = sin
( lπt
T

)
, g2(t) = sin

(mπt

T

)
,

k(t) = cos
(nπt

T

)
,

k1(t) =
√
2 sin

( lπt
T

)
cos

(nπt
T

)
χB(t), k2(t) =

√
2 sin

(mπt

T

)
cos

(nπt
T

)
χA(t),

h1(t) = sin
( lπt
T

)
cos

(nπt
T

)
, h2(t) = − sin

(mπt

T

)
cos

(nπt
T

)
,

h3(t) =
√
2 sin

( lπt
T

)
cos

(nπt
T

)
χA(t), h4(t) =

√
2 sin

(mπt

T

)
cos

(nπt
T

)
χB(t).

Then the set S = {g1, g2, k, k1, k2, h1, h2, h3, h4} is a solution of the system (6.2).
In fact, the solution sets S can be obtained by the following procedures. First,

let {A,B} be a measurable partition of [0, T ] with mL(A) > 0 and mL(B) > 0.
Next, given any functions g1, g2, and k in BV [0, T ], let

k1(t) =
√
2g1(t)k(t)χB(t), k2(t) =

√
2g2(t)k(t)χA(t),

h1(t) = g1(t)k(t), h2(t) = −g2(t)k(t),

h3(t) =
√
2g1(t)k(t)χA(t), h4(t) =

√
2g2(t)k(t)χB(t).

Then one can see that the set {g1, g2, k, h1, h2, h3, h4, k1, k2} is a solution of the
system (6.2).

Example 6.3. Let H = {hn}∞n=1 be the sequence of Haar functions on [0, T ]. (For
more details, see [6].) It is well known that H is a complete orthonormal set on
L2[0, T ] which consists of nonsmooth functions.

Consider the intervals A = [0, T/2] and B = [T/2, T ]. Then, for each n ∈ N
with n > 2, either supp(hn) ⊂ A or supp(hn) ⊂ B.

Let PA = {n ∈ N : supp(hn) ⊂ A} and let PB = {n ∈ N : supp(hn) ⊂ B}.
Then, clearly, ⋃

n∈PA

supp(hn) = A and
⋃

n∈PB

supp(hn) = B.

Let PA = {h1χA} ∪ {hn : n ∈ PA} and let PB = {h1χB} ∪ {hn : n ∈ PB}.
Next let HA ≡ {hA

n}∞n=1 and HB ≡ {hB
n }∞n=1 be the normalization of PA and PB,

respectively. Then it follows that

(i) HA is a complete orthogonal set in L2(A) = L2[0, T/2], and
(ii) HB is a complete orthogonal set in L2(B) = L2[T/2, T ].

As discussed in Example 6.2 above, given g1, g2, and k in BV [0, T ], let

k1(t) =
√
2g1(t)k(t)χB(t), k2(t) =

√
2g2(t)k(t)χA(t),

h1(t) = g1(t)k(t), h2(t) = −g2(t)k(t),

h3(t) =
√
2g1(t)k(t)χA(t), h4(t) =

√
2g2(t)k(t)χB(t).
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In these settings, for j ∈ {1, 2}, let
∞∑
n=1

α(j)
n hA

n ≡
∑
n

α(j)
n hA

n

be the Fourier series of
√
2gjk with respect to HA on A ≡ [0, T/2], and let

∞∑
n=1

β(j)
n hB

n ≡
∑
n

β(j)
n hB

n

be the Fourier series of
√
2gjk with respect to HB on B ≡ [T/2, T ]. Then, one

can see that

(i) g1g2(t)k
2(t) + h1(t)h2(t) = g1g2(t)k

2(t)− g1g2(t)k
2(t) = 0,

(ii) mL(supp(h3) ∩ supp(h4)) = mL(A ∩B) = 0,
(iii) for mL-a.e. t ∈ [0, T ],

g21(t)k
2(t) + h2

1(t) = 2g21(t)k
2(t) =

[√
2g1(t)k(t)

]2
=

[√
2g1(t)k(t)χA(t) +

√
2g1(t)k(t)χB(t)

]2
= 2g21(t)k

2(t)χA(t) + 2g21(t)k
2(t)χB(t)

=
( ∞∑
n=1

α(1)
n hA

n

)2

(t) +
( ∞∑
n=1

β(1)
n hB

n

)2

(t),

(iv) for mL-a.e. t ∈ [0, T ],

g22(t)k
2(t) + h2

2(t) = 2g22(t)k
2(t) =

[√
2g2(t)k(t)

]2
=

[√
2g2(t)k(t)χA(t) +

√
2g1(t)k(t)χB(t)

]2
= 2g22(t)k

2(t)χA(t) + 2g22(t)k
2(t)χB(t)

=
( ∞∑
n=1

α(2)
n hA

n

)2

(t) +
( ∞∑
n=1

β(2)
n hB

n

)2

(t).

Thus, given nonzero functions g1, g2, and k in BV [0, T ], it follows that

T
(1)
q,k

(
(F ∗G)(g1,g2;g1k,−g2k)

q

)
(y)

=
(
T

(1)

q,
∑

n β
(1)
n hB

n

(F ) ∗ T (1)

q,
∑

n α
(2)
n hA

n

(G)
)(g1,g2;∑n α

(1)
n hA

n ,
∑

n β
(2)
n hB

n )

q
(y)

for s-a.e. y ∈ C0[0, T ].
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