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Abstract. In this article, we consider Fourier multiplier operators between
vector-valued Besov spaces with different integrability exponents p and q, which
depend on the type p and cotype q of the underlying Banach spaces. In a previ-
ous article, we considered Lp-Lq multiplier theorems. In the current article, we
show that in the Besov scale one can obtain results with optimal integrability
exponents. Moreover, we derive a sharp result in the Lp-Lq setting as well.

We consider operator-valued multipliers without smoothness assumptions.
The results are based on a Fourier multiplier theorem for functions with com-
pact Fourier support. If the multiplier has smoothness properties, then the
boundedness of the multiplier operator extrapolates to other values of p and q
for which 1

p − 1
q remains constant.

1. Introduction

In this article, we consider Fourier multiplier operators Tm(f) = F−1(mFf)
on vector-valued Besov spaces. Here F denotes the Fourier transform and m
is an operator-valued function on Rd. In [28] we considered such operators on
vector-valued Lp-spaces. The advantage of the Besov scale is that boundedness
of the Fourier multiplier operator can be obtained with optimal integrability
exponents p and q, where p is the type of X and q the cotype of Y .
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In the case p = q, Fourier multiplier operators on vector-valued Besov spaces
have been considered in [12] and [18] (and in [4] in the periodic setting). In
both papers it is shown that under Fourier-type assumptions on X, one can
obtain boundedness results under less restrictive smoothness conditions on the
multipliers than in the Lp-scale. Moreover, it was shown by Amann in [2] and
Weis in [35] that the unconditional martingale differences (UMD) condition on
the underlying space, which is required for multiplier theorems in the Lp-scale,
can be avoided in the Besov scale. Similar results on Triebel–Lizorkin spaces have
been obtained in [7] and [8]. In [31] some of the results of [12] have been extended
to the setting where p 6= q.

We aim to prove Fourier multiplier results on Besov spaces without any smooth-
ness conditions on the multiplier m. Our main result is as follows (for type and
cotype, see Section 4; for the definition of Besov spaces and the dyadic annuli Ik,
see Section 2.1; for a proof of this result, see Theorem 4.3).

Theorem 1.1. Let X be a Banach space with type p ∈ [1, 2], let Y be a Banach
space with cotype q ∈ [2,∞], and let r ∈ [1,∞] be such that 1

r
= 1

p
− 1

q
. Let

m : Rd → L(X,Y ) be an X-strongly measurable map such that (2kσγ({m(ξ) |
ξ ∈ Ik}))k∈N0 ∈ `u for some σ ∈ R and u ∈ [1,∞]. Then there exists a constant

C ≥ 0 independent of m such that Tm extends to a bounded linear map T̃m :

Bs
p,v(Rd;X) → B

s+σ−d/r
q,w (Rd;Y ) with

‖T̃m‖L(Bs
p,v(Rd;X),B

s+σ−d/r
q,w (Rd;Y ))

≤ C
∥∥(2kσγ({m(ξ)

∣∣ ξ ∈ Ik
}))

k

∥∥
`u

for all s ∈ R and all v, w ∈ [1,∞] with 1
w
≤ 1

u
+ 1

v
.

If m is scalar-valued, then the γ-bound reduces to a uniform bound. A similar
result is derived under Fourier-type assumptions and, in that case, the γ-bound
can also be replaced by a uniform bound. A version of Theorem 1.1 in the
Lp-Lq-scale was obtained in [28], where it is assumed that X has type p0 > p
and Y has cotype q0 < q. The proof of Theorem 1.1 is based on an Lp-Lq Fourier
multiplier result for functions with compact Fourier support. As a corollary of our
results on Besov spaces, we also obtain a multiplier theorem in the Lp-Lq-scale.

Under smoothness conditions on m (which depend on the Fourier type of X
and Y ), the boundedness result extends to all values of 1 < p ≤ q <∞ such that
1
p
− 1

q
= 1

r
. The latter statement was given in [28] without proof. Here we present

the proof which is an extension of the extrapolation results of the classical paper
of Hörmander [16] to the case p ≤ q. Part of our extrapolation result is new even
in the scalar case.

Fourier multiplier theorems on vector-valued Besov spaces have found appli-
cations to boundary-value problems, maximal regularity, the stability theory for
C0-semigroups, and functional calculus theory (see [2], [3], [35], [15]). The results
in this article have already been applied in [27] and in the forthcoming paper [29].

The article is organized as follows. In Section 2, we discuss preliminaries for the
rest of the paper. In Section 3, we introduce operator-valued Fourier multipliers
on vector-valued function spaces, and we consider some properties which are
specific to multipliers on Besov spaces. In Section 4, we prove our main multiplier
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theorems on Besov spaces, and we derive a corollary in the Lp-scale. Then in
Section 5 we prove our extrapolation results, first with conditions on the kernel
of the Fourier-multiplier operator, and then with conditions on the symbol of the
operator.

1.1. Notation and terminology. The natural numbers are N := {1, 2, 3, . . .},
and N0 := N∪{0}. Nonzero Banach spaces over the complex numbers are denoted
by X and Y , and the space of bounded linear operators from X to Y is L(X,Y ).
We set L(X) := L(X,X), and we write IX for the identity operator on X.

For p ∈ [1,∞] and a measure space (Ω, µ), we let Lp(Ω;X) be the Bochner space
of equivalence classes of strongly measurable X-valued functions on Ω which are
p-integrable. When, for a map f : Ω → X, we write ‖f‖Lp(Ω;X) < ∞, then it
is implicitly assumed that f is strongly measurable. We denote by p′ the Hölder
conjugate of p, which is defined by 1 = 1

p
+ 1

p′
. We let `p be the space of p-summable

sequences (xk)k∈N0 ⊆ C over N0, while `
p(Z) is the space of p-summable sequences

(xk)k∈Z ⊆ C over Z. A function m : Ω → L(X,Y ) is said to be X-strongly
measurable if ω 7→ m(ω)x is strongly measurable as a map from Ω to Y for all
x ∈ X. Throughout this article, we will identify a scalar functionm : Rd → C with
the associated operator-valued function m̃ : Rd → L(X) given by m̃(ξ) := m(ξ)IX
for ξ ∈ Rd.

For d ∈ N, the class of X-valued Schwartz functions is S(Rd;X), and S ′(Rd;X)
is the space of X-valued tempered distributions. We let S(Rd) := S(Rd;C), and
we denote by 〈·, ·〉 : S ′(Rd;X) × S(Rd) → X the X-valued duality between
S ′(Rd;X) and S(Rd). The Fourier transform of a Φ ∈ S ′(Rd;X) is denoted by

FΦ or Φ̂, and its inverse Fourier transform is denoted by F−1Φ or Φ̌. The Fourier
transform is normalized as

f̂(ξ) = Ff(ξ) :=
∫
Rd

e−2πiξ·tf(t) dt

for f ∈ L1(Rd;X) and ξ ∈ Rd. We denote by supp(Φ) ⊆ Rd the distributional
support of Φ ∈ S ′(Rd;X). For Ω ⊆ Rd, we define

SΩ(Rd;X) :=
{
f ∈ S(Rd;X)

∣∣ supp(f̂) ⊆ Ω
}
⊆ S(Rd;X) (1.1)

and, for p ∈ [1,∞],

Lp
Ω(R

d;X) :=
{
f ∈ Lp(Rd;X)

∣∣ supp(f̂) ⊆ Ω
}
⊆ Lp(Rd;X). (1.2)

A complex standard Gaussian random variable on a probability space (Ω,P)
is a random variable γ of the form γ = γr+iγi√

2
, where γr, γi : Ω → R are indepen-

dent real standard Gaussians on Ω. A Gaussian sequence is a (finite or infinite)
sequence (γk)k of independent complex standard Gaussian random variables on
some probability space.

2. Preliminaries on function spaces

In this section, we present some of the background on function-space theory
which will be used throughout this article.
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2.1. Besov spaces. We first define vector-valued Besov spaces. (For more details
on these spaces, see, e.g., [2], [6], [32].) Throughout this section, fix d ∈ N. Let
ψ ∈ S(R) be such that

supp(ψ̂) ⊆
[1
2
, 2
]
, ψ̂ ≥ 0 and

∞∑
k=−∞

ψ̂(2−kξ) = 1
(
ξ ∈ (0,∞)

)
. (2.1)

For k ∈ N, define

Ik :=
{
ξ ∈ Rd

∣∣ 2k−1 ≤ |ξ| ≤ 2k+1
}

and I0 :=
{
ξ ∈ Rd

∣∣ |ξ| ≤ 2
}
. (2.2)

Furthermore, let (ϕk)k∈N0 ⊆ S(Rd) be such that

ϕ̂k(ξ) = ψ̂
(
2−k|ξ|

)
for k ∈ N and ϕ̂0(ξ) = 1−

∞∑
k=1

ϕ̂k(ξ) (2.3)

for all ξ ∈ Rd. For notational simplicity, we let ϕk := 0 for k < 0. Then
∑∞

k=0 ϕ̂k =
1 for all ξ ∈ Rd, and for all k ∈ N0 it holds that supp(ϕ̂k) ⊆ Ik, ϕ̂k(ξ) = 0 if
ξ ∈ In for n /∈ {k−1, k, k+1} and ϕ̂k−1(ξ)+ ϕ̂k(ξ)+ ϕ̂k+1(ξ) = 1 if ξ ∈ supp(ϕ̂k).
Throughout this article, we keep the function ψ from (2.1) and the sequence
(ϕk)k∈N0 ⊆ S(Rd) from (2.3) fixed.

Let X be a Banach space, and let s ∈ R and p, v ∈ [1,∞]. The inhomogeneous
Besov space Bs

p,v(Rd;X) is the space of all f ∈ S ′(Rd;X) such that ϕk ∗ f ∈
Lp(Rd;X) for all k ∈ N0 and

‖f‖Bs
p,v(Rd;X) :=

∥∥(2ks‖ϕk ∗ f‖Lp(Rd;X)

)
k∈N0

∥∥
`v
<∞,

endowed with the norm ‖ · ‖Bs
p,v(Rd;X). Then B

s
p,v(R;X) is a Banach space and the

continuous inclusions

S(Rd;X) ⊆ Bs
p,v(Rd;X) ⊆ S ′(Rd;X)

hold. Here the second embedding has dense range, as does the first embedding
if p, v ∈ [1,∞). A different choice of ψ satisfying (2.1) would yield an equivalent
norm on Bs

p,v(Rd;X). Generally, s is called the smoothness index of Bs
p,v(Rd;X).

For p ∈ [1,∞], s, t ∈ R with t < s and v, w ∈ [1,∞] with v ≤ w, the following
embeddings hold:

Bs
p,v(Rd;X) ⊆ Bs

p,w(Rd;X) ⊆ Bt
p,1(Rd;X). (2.4)

Here the first embedding is a contraction, and the norm of the second embedding
is independent of X.

For later use we note, as is straightforward to check, that there exist constants
C1, C2 ∈ (0,∞) such that, for each Banach space X and all p, v ∈ [1,∞], s ∈ R,
n ∈ N and f ∈ Lp(Rd;X) with supp(f̂) ⊆ In,

C12
(n−1)|s|‖f‖Lp(Rd;X) ≤ ‖f‖Bs

p,v(Rd;X) ≤ C22
(n+1)|s|‖f‖Lp(Rd;X). (2.5)
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We will also consider homogeneous Besov spaces. To define these, we first intro-
duce vector-valued homogeneous distributions. Let

Ṡ(Rd;X) :=
{
f ∈ S(Rd;X) | Dαf̂(0) = 0 for all α ∈ Nd

0

}
.

Endow Ṡ(Rd;X) with the subspace topology of S(Rd;X), and let Ṡ(Rd) :=
Ṡ(Rd;C). Let Ṡ ′(Rd;X) be the space of continuous linear mappings from Ṡ(Rd)
to X. Each f ∈ S ′(Rd;X) induces an f�Ṡ(Rd) ∈ Ṡ ′(Rd;X) by restriction, and

for f, g ∈ S ′(Rd;X) one has f�Ṡ(Rd) = g�Ṡ(Rd) if and only if supp(f̂ − ĝ) ⊆ {0}.
Conversely, the following lemma shows that each f ∈ Ṡ ′(Rd;X) extends to an
element of S ′(Rd;X).

Lemma 2.1. Let X be a Banach space, and let u ∈ Ṡ ′(Rd;X). Then there exists
a ũ ∈ S ′(Rd;X) such that ũ�Ṡ(Rd) = u.

In the scalar case, the statement of the lemma is a straightforward consequence
of the Hahn–Banach theorem. Unfortunately, in the vector-valued setting, one
cannot argue in this way.

Proof. Let k ∈ N0 be such that

‖uf‖X ≤ C
∑

|α|,|β|≤k

‖xαDβf‖∞ (2.6)

for all f ∈ Ṡ(Rd). By an approximation argument, u can be extended to

Sk(Rd) :=
{
f ∈ S(Rd)

∣∣ Dαf̂(0) = 0 for all |α| ≤ k
}
.

Indeed, to see this by (2.6) it suffices to show that Ṡ(Rd) is dense in Sk(Rd) with
respect to the norm ∑

|α|,|β|≤k

∥∥xαDβ(·)
∥∥
∞. (2.7)

Let ϕ ∈ C∞(Rd) be such that ϕ(ξ) = 1 if |ξ| ≥ 2, ϕ(ξ) = 0 if |ξ| ≤ 1, and
0 ≤ ϕ ≤ 1. For n ∈ N and ξ ∈ Rd, let ϕn(ξ) := ϕ(nξ). For f ∈ Sk(Rd), let
fn := F−1(ϕn) ∗ f . By Taylor’s theorem, there exists a constant C ≥ 0 such that∥∥Dγ f̂(ξ)

∥∥ ≤ C|ξ|k+1−|γ|

for every |γ| ≤ k and ξ ∈ Rd with |ξ| ≤ 1. Using this, one readily checks that
fn → f in the norm (2.7).

Finally, we extend u from Sk(Rd) to S(Rd). In order to do so, fix gβ ∈ S(Rd)
such that Dαĝβ(0) = 1 if α = β and zero if α 6= β. Now let f ∈ S(Rd), and let
Lkf ∈ S(Rd) be given by

Lkf(ξ) :=
∑
|β|≤k

gβ(ξ)D
β f̂(0).
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Then f −Lkf ∈ Sk(Rd), and we can define vf := u(f −Lkf) ∈ X. Then vf = uf
if f ∈ Sk(Rd), since Lk vanishes on Sk(Rd). Moreover, by (2.6),

‖vf‖X ≤ C
∑

|α|,|β|≤k

∥∥xαDβ(f − Lkf)
∥∥
∞

≤ C
∑

|α|,|β|≤k

‖xαDβf‖∞ + C
∑

|α|,|β|≤k

‖xαDβLkf‖∞

≤ C̃
∑

|α|,|β|≤k

‖xαDβf‖∞

for a constant C̃ ≥ 0. Hence v ∈ S ′(Rd;X), and the proof is concluded. �

It follows from Lemma 2.1 and the statements preceding it that Ṡ ′(Rd;X) =

S ′(Rd;X)/P(Rd;X), where P(Rd;X) := {f ∈ S ′(Rd;X) | supp(f̂) ⊆ {0}}.
Moreover, P(Rd;X) = P(Rd) ⊗ X for P(Rd) the polynomials on Rd, as can be
shown in the same way as [13, Proposition 2.4.1]. If F (Rd;X) ⊆ S ′(Rd;X) is

a linear subspace such that, for all Φ ∈ F (Rd;X), Φ = 0 if supp(Φ̂) ⊆ {0},
then we identify F (Rd;X) with its image in Ṡ ′(Rd;X) under the quotient map
S ′(Rd;X) → Ṡ ′(Rd;X). This is the case if F (Rd;X) is a Besov space or an
Lp-space for some p ∈ [1,∞].

Let ψ ∈ S(R) be as in (2.1), and for k ∈ Z let

Jk :=
{
ξ ∈ Rd

∣∣ 2k−1 ≤ |ξ| ≤ 2k+1
}
. (2.8)

Let ψk ∈ S(Rd) be such that ψ̂(ξ) = ψ(2−k|ξ|) for ξ ∈ Rd. Throughout this
article, we will keep the sequence (ψk)k∈Z fixed.

Let s ∈ R and p, v ∈ [1,∞]. The homogeneous Besov space Ḃs
p,v(Rd;X) consists

of all f ∈ Ṡ ′(Rd;X) such that ψk ∗ f ∈ Lp(Rd;X) for each k ∈ Z and

‖f‖Ḃs
p,v(Rd;X) :=

∥∥(2ks‖ψk ∗ f‖Lp(Rd;X)

)
k∈Z

∥∥
`v(Z) <∞,

endowed with the norm ‖ · ‖Ḃs
p,v(Rd;X). Then Ḃ

s
p,v(Rd;X) is a Banach space and

Ṡ(Rd;X) ⊆ Ḃs
p,v(Rd;X) ⊆ Ṡ ′(Rd;X)

continuously, where the first embedding has dense range if p, v ∈ [1,∞). Again,
a different choice of ψ would lead to an equivalent norm on Ḃs

p,v(Rd;X). Finally,
the first embedding in (2.4) is clearly still true in the homogeneous setting.

2.2. Spaces of γ-radonifying operators. In this section, we present some of
the basics of the theory of γ-radonifying operators and γ-boundedness (see [20],
[22], [33]).

Let H be a Hilbert space, and let X be a Banach space. An operator T ∈
L(H,X) is γ-summing if

‖T‖γ∞(H,X) := sup
F

(
E
∥∥∥∑
h∈F

γhTh
∥∥∥2

X

)1/2

<∞,
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where the supremum is taken over all finite-orthonormal systems F ⊆ H and
(γh)h∈F is a Gaussian sequence. Let γ∞(H,X) be the space of all γ-summing
operators in L(H,X), endowed with the norm ‖ · ‖γ∞(H,X). Then the space of
finite-rank operators H ⊗X ⊆ L(H,X) is contained in γ∞(H,X), and∥∥∥ n∑

k=1

hk ⊗ xk

∥∥∥
γ∞(H,X)

=
(
E
∥∥∥ n∑
k=1

γkxk

∥∥∥2

X

)1/2

(2.9)

for all n ∈ N, h1, . . . , hn ⊆ H orthonormal and x1, . . . , xn ⊆ X. We let γ(H,X) be
the closure in γ∞(H,X) of the finite-rank operatorsH⊗X ⊆ L(H,X), and we call
γ(H,X) the space of γ-radonifying operators. If H is separable with orthonormal
basis (hk)k∈N ⊆ H and (γk)k∈N is a Gaussian sequence, then, by [33, Proposi-
tion 3.19], a T ∈ L(H,X) is γ-summing if and only if

sup
n∈N

E
∥∥∥ n∑
k=1

γkT (hk)
∥∥∥2

X
<∞,

in which case

‖T‖γ∞(H,X) = sup
n∈N

(
E
∥∥∥ n∑
k=1

γkT (hk)
∥∥∥2

X

)1/2

. (2.10)

Furthermore, T ∈ γ(H,X) if and only if
∑∞

k=1 γkT (hk) converges in L
2(Ω;X), in

which case (2.10) still holds and also equals the L2(Ω;X)-norm of the series.
The following lemma introduces a useful property of the spaces of γ-summing

and γ-radonifying operators, the ideal property (for a proof, see [33, Theorem 6.2]).

Lemma 2.2. Let H, K be Hilbert spaces, and let X, Y be Banach spaces. Let
R ∈ L(X,Y ), S ∈ γ∞(H,X), and T ∈ L(K,H). Then RST ∈ γ∞(K,Y ) with

‖RST‖γ∞(K,Y ) ≤ ‖R‖L(X,Y )‖S‖γ∞(H,X)‖T‖L(K,H).

If S ∈ γ(H,X), then RST ∈ γ(K,Y ).

For a measure space (Ω, µ), let γ(Ω;X) (resp., γ∞(Ω;X)) be the space of all
strongly measurable functions f : Ω → X such that 〈f, x∗〉 ∈ L2(Ω) for all
x∗ ∈ X∗ and for which the operator Jf ∈ L(L2(Ω), X), given by

Jf (g) :=

∫
Ω

gf dµ
(
g ∈ L2(Ω)

)
, (2.11)

is γ-radonifying (resp., γ-summing). Endow γ(Ω;X) and γ∞(Ω;X) with the norm
‖f‖γ(Ω;X) := ‖Jf‖γ∞(L2(Ω),X). We will identify elements f ⊗ x ∈ L2(Ω) ⊗X with
the corresponding functions g ∈ γ(Ω;X) given by g(ω) := f(ω)x for ω ∈ Ω. If
Ω = Rd, then the following continuous embeddings hold (see [21, Theorem 1.1]):

S(Rd;X) ↪→ γ(Rd;X) ↪→ S ′(Rd;X). (2.12)

Each of these embeddings has dense range and the same holds with S and S ′

replaced by Ṡ and Ṡ ′. In fact, since any f ∈ γ∞(Rd;X) with supp(f̂) ⊆ {0}
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satisfies f = 0, we may view γ∞(Rd;X) and γ(Rd;X) as subsets of Ṡ ′(Rd;X)
through the quotient map S ′(Rd;X) → Ṡ ′(Rd;X), and we will do so throughout.

Note also that f̂ ∈ γ(Rd;X) and

‖f‖γ(Rd;X) = ‖f̂‖γ(Rd;X) (2.13)

for each f ∈ γ(Rd;X), by Lemma 2.2.
Let X and Y be Banach spaces. A collection T ⊆ L(X,Y ) is said to be

γ-bounded if there is a constant C ≥ 0 such that(
E
∥∥∥ n∑
k=1

γkTkxk

∥∥∥2

Y

)1/2

≤ C
(
E
∥∥∥ n∑
k=1

γkxk

∥∥∥2

X

)1/2

(2.14)

for all n ∈ N, T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X, and each Gaussian sequence
(γk)

n
k=1. The smallest such C is the γ-bound of T , which will be denoted by γ(T ).

Often we simply write γ(T ) < ∞ to indicate that a collection T ⊆ L(X,Y ) is
γ-bounded. For example, when we write (γ({mk}))k ∈ `∞, where mk ⊆ L(X,Y )
for each k ∈ N0, then we implicitly mean that mk ⊆ L(X,Y ) is γ-bounded for
each k ∈ N0. By the Kahane–Khintchine inequalities, the L2-norm in (2.14) may
be replaced by an Lp-norm for each p ∈ [1,∞).

Each γ-bounded collection T is uniformly bounded by γ(T ). Conversely, each
uniformly bounded collection is γ-bounded if and only if X has cotype 2 and
Y has type 2 (see [3]). If T ⊆ L(X,Y ) is γ-bounded and λ ∈ [0,∞), then
Kahane’s contraction principle implies that the strong operator topology closure
of {zT | z ∈ C, |z| ≤ λ, T ∈ T } ⊆ L(X,Y ) is γ-bounded, and

γ
({
zT | z ∈ C, |z| ≤ λ, T ∈ T

}SOT)
≤ λγ(T ). (2.15)

If one replaces the Gaussian random variables in (2.14) by Rademacher vari-
ables, one obtains an R-bounded collection T ⊆ L(X,Y ). Each γ-bounded col-
lection is R-bounded, and the converse holds if and only if X has finite cotype
(see [24, Theorem 1.1]). However, the minimal constant C in (2.14) may depend
on whether one considers γ-boundedness or R-boundedness. In this article, we
work with γ-boundedness since we will obtain results for spaces which do not
have finite cotype. Moreover, the notion of γ-boundedness occurs naturally in the
context of γ-radonifying operators, as evidenced by the γ-multiplier theorem of
[22, Proposition 4.11] (see also [33, Theorem 5.2]).

Theorem 2.3 (γ-multiplier theorem). Let (Ω,Σ, µ) be a measure space, let X and
Y be Banach spaces, and let m : Ω → L(X,Y ) be an X-strongly measurable map-
ping such that {m(ω) | ω ∈ Ω} ⊆ L(X,Y ) is γ-bounded. Then mf ∈ γ∞(Ω;Y )
for all f ∈ γ(Ω;X), and

‖mf‖γ(Ω;Y ) ≤ γ
({
m(ω)

∣∣ ω ∈ Ω
})

‖f‖γ(Ω;X).

Moreover, if there exists a dense subset X0 ⊆ X such that 1Am(·)x ∈ γ(Ω;Y ) for
all x ∈ X0 and A ∈ Σ with µ(A) <∞, then mf ∈ γ(Ω;Y ) for all f ∈ γ(Ω;X).
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3. Fourier multipliers

In this section, we introduce operator-valued Fourier multipliers on vector-
valued function spaces. First, we consider their basic properties and prove an
approximation lemma which we will use later on, and then we discuss some of
the specifics of Fourier multiplier operators on vector-valued Besov spaces.

3.1. Basic properties of multipliers. Throughout this section, we fix d ∈ N
and Banach spaces X and Y . An X-strongly measurable m : Rd → L(X,Y ) is of
moderate growth at infinity if there are a constant α ∈ (0,∞) and a g ∈ L1(Rd)
such that (

1 + |ξ|
)−α∥∥m(ξ)

∥∥
L(X,Y )

≤ g(ξ) (ξ ∈ Rd).

For such an m, we let

Tm(f) := F−1(m · f̂) ∈ S ′(Rd;Y )
(
f ∈ S(Rd;X)

)
.

We call Tm : S(Rd;X) → S ′(Rd;Y ) the Fourier multiplier operator associated
with m, and we call m the multiplier or the symbol of Tm.

Let F (Rd;X) andG(Rd;Y ) be function spaces such that S(Rd;X)∩F (Rd;X) ⊆
F (Rd;X) is dense and such that G(Rd;Y ) ⊆ S ′(Rd;Y ). Then m is a bounded
(F (Rd;X), G(Rd;Y ))-Fourier multiplier if there is a constant C ∈ (0,∞) such
that Tm(f) ∈ G(Rd;Y ) and∥∥Tm(f)∥∥G(Rd;Y )

≤ C‖f‖F (Rd;X)

for all f ∈ S(Rd;X) ∩ F (Rd;X). In this case, Tm extends uniquely to a bounded

operator from F (Rd;X) to G(Rd;Y ) which will be denoted by T̃m, or just by Tm
when there is no danger of confusion. If X = Y and F (Rd;X) = G(Rd;Y ), then
we say that m is an F (Rd;X)-Fourier multiplier.

We will consider (F (Rd;X), G(Rd;X))-Fourier multipliers in the cases where
F (Rd;X) = Lp(Rd;X) or F (Rd;X) = Bs

p,v(Rd;X) for s ∈ R and p, v ∈ [1,∞),

and G(Rd;Y ) = Lq(Rd;Y ) or G(Rd;Y ) = Bt
q,w(Rd;Y ) for t ∈ R and q, w ∈ [1,∞].

We will also consider the case where F (Rd;X) = Lp
Ω(Rd;X) and G(Rd;Y ) =

Lq
Ω(Rd;Y ) for certain Ω ⊆ Rd, as in (1.2).
We also consider Fourier multipliers on homogeneous function spaces. Let X

and Y be Banach spaces, and let m : Rd \ {0} → L(X,Y ) be X-strongly mea-
surable. We say that m : Rd \ {0} → L(X,Y ) is of moderate growth at zero and
infinity if there exist a constant α ∈ (0,∞) and a g ∈ L1(Rd) such that

|ξ|α
(
1 + |ξ|

)−2α∥∥m(ξ)
∥∥
L(X,Y )

≤ g(ξ) (ξ ∈ Rd).

For such an m, let Ṫm : Ṡ(Rd;X) → S ′(Rd;Y ) be given by

Ṫm(f) := F−1(m · f̂)
(
f ∈ Ṡ(Rd;X)

)
,

where Ṫm(f) ∈ S ′(Rd;Y ) is well defined by definition of Ṡ(Rd;X). We use similar
terminology as before to discuss the boundedness of Ṫm with respect to various
homogeneous function spaces. When considering bounded Ṫm : Lp(Rd;X) →
Lq(Rd;Y ), we will sometimes simply write Tm = Ṫm.
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In later sections, we use that the space Lp
Ω(Rd;X) ∩ S(Rd;X) = SΩ(Rd;X) is

dense in Lp
Ω(Rd;X) for a large class of Ω ⊆ Rd. A similar result will be needed

for γ-spaces. For Ω ⊆ Rd, define

γΩ(Rd;X) :=
{
f ∈ γ(Rd;X)

∣∣ supp(f̂) ⊆ Ω
}
. (3.1)

In order to state such a denseness result, we need the following definition.
A bounded open set Ω ⊆ Rd is said to have the segment property if there exist
N ∈ N, open balls B1, . . . , BN in Rd, and y1, . . . , yN ∈ Rd such that Ω ⊆

⋃N
k=1Bk

and

(Ω ∩Bk) + tyk ⊆ Ω
(
k ∈ {1, . . . , N}, t ∈ (0, 1]

)
. (3.2)

Note that sets of the form (a, b)d for a, b ∈ R with a < b, and the interior of the
annuli Ik and Jk from (2.2) and (2.8) have the segment property.

The following result is known in the scalar case (cf. [32, Section 1.4.3]). For the
reader’s convenience we include a proof, and we consider the case of γ-spaces as
well.

Lemma 3.1. Let X be a Banach space, let p ∈ [1,∞), and let Ω ⊆ Rd have the
segment property. Then SΩ(Rd;X) is dense in Lp

Ω
(Rd;X) and in γΩ(Rd;X).

Proof. Let N ∈ N, and let open balls (Bk)
N
k=1 and (yk)

N
k=1 ⊆ Rd be such that Ω ⊆⋃N

k=1Bk and such that (3.2) holds. Let (χk)
N
k=1 ⊆ S(Rd) be such that

∑N
k=1 χ̂k = 1

on Ω and such that 0 ≤ χ̂k ≤ 1 and supp(χ̂k) ⊆ Bk for all k ∈ {1, . . . , N}.
Let f ∈ Lp

Ω
(Rd;X), and let fk := χk ∗ f ∈ Lp(Rd;X) for all k ∈ {1, . . . , N}.

Then

supp
(
F(e−2πityk·fk)

)
= supp

(
f̂k(·+ tyk)

)
⊆ Ω

for all k ∈ {1, . . . , N} and t ∈ (0, 1]. Moreover, by the dominated convergence
theorem, limt↓0 e

−2πityk·fk = fk in Lp(Rd;X). Let ε > 0, and let t ∈ (0, 1] be such
that gk := e−2πityk·fk satisfies

‖gk − fk‖Lp(Rd;X) < ε for all k ∈ {1, . . . , N}.

Let ϕ ∈ S(Rd) be such that ϕ(0) = 1 and supp(ϕ̂) ⊆ [−1, 1]d. Let gk,n(t) :=
ϕ( t

n
)gk(t) for k ∈ {1, . . . , N}, n ∈ N, and t ∈ Rd. Then ĝk,n = ndϕ̂(n·) ∗

ĝk ∈ S(Rd;X) (see [13, Theorem 2.3.20]) and, for all n ∈ N large enough,
supp(ĝk,n) ⊆ Ω. Furthermore, gk,n → gk in Lp(Rd;X) as n → ∞, by the domi-
nated convergence theorem. Fixing n ∈ N large enough, we obtain

gk,n ∈ SΩ(Rd;X) and ‖gk,n − gk‖Lp(Rd;X) < ε

for all k ∈ {1, . . . , N}. Let g :=
∑N

k=1 gk,n ∈ SΩ(Rd;X). Combining all these

estimates and using that f =
∑N

k=1 fk, we obtain

‖f − g‖p ≤
N∑
k=1

‖fk − gk,n‖p ≤
N∑
k=1

‖fk − gk‖p +
N∑
k=1

‖gk − gk,n‖p < 2Nε.

Letting ε decrease to zero now yields the first statement.
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Next, let f ∈ γΩ(Rd;X), and let ε > 0. Let (hk)k∈N ⊆ L2
Ω
(Rd) be an orthonor-

mal basis for L2
Ω
(Rd), and for n ∈ N let gn :=

∑n
k=1 hk ⊗ Jf (hk) ∈ γΩ(Rd;X).

Then, by (2.10),

‖f − gn‖γ(Rd;X) = ‖Jf − Jgn‖γ∞(L2(Rd),X) = ‖Jf − Jgn‖γ∞(L2
Ω
(Rd),X)

= sup
N∈N

(
E
∥∥∥ N∑
k=1

γk
(
Jf (hk)− Jg(hk)

)∥∥∥2

X

)1/2

= sup
N≥n

(
E
∥∥∥ N∑
k=n

γkJf (hk)
∥∥∥2

X

)1/2

→ 0

as n→ ∞. Hence it follows that we can find n ∈ N such that ‖f − gn‖γ(Rd;X) < ε.

Since (hk)k∈N ⊆ L2
Ω
(Rd), it follows from the previous part of the proof that

for each k ∈ N there exist ζk ∈ SΩ(Rd) such that ‖hk − ζk‖2 < ε
n
. Let g :=∑n

k=1 ζk ⊗ Jf (hk) ∈ SΩ(Rd;X). Then, by (2.9),

‖f − g‖γ(Rd;X) ≤ ‖f − gn‖γ(Rd;X) + ‖gn − g‖γ(Rd;X)

< ε+ ‖Jgn − Jg‖γ∞(L2(Rd),X)

≤ ε+
n∑

k=1

∥∥(hk − ζk)⊗ Jf (hk)
∥∥
γ∞(L2(Rd),X)

= ε+
n∑

k=1

∥∥Jf (hk)∥∥X
‖hk − ζk‖L2(Rd) < ε

(
1 + ‖Jf‖L(L2(Rd),X)

)
.

Letting ε tend to zero concludes the proof. �

3.2. Fourier multipliers on Besov spaces in an abstract setting. Fix p ∈
[1,∞) and q ∈ [1,∞]. For k ∈ N0, recall the definition of ϕk ∈ S(Rd) from (2.3)
and Ik ⊆ Rd from (2.2).

Below we consider X-strongly measurable m : Rd → L(X,Y ) of moderate
growth at infinity with the following property. There exist β ∈ R, u ∈ [1,∞] and
(ck)k∈N0 ∈ `u such that m is an (Lp

Ik
(Rd;X), Lq

Ik
(Rd;Y ))-Fourier multiplier for

each k ∈ N0, and∥∥Tm(f)∥∥Lq(Rd;Y )
≤ 2kβck‖f‖Lp(Rd;X)

(
f ∈ SIk(R

d;X)
)
. (3.3)

We will show how such an estimate can be used to obtain a Fourier multiplier
result in the Besov scale.

Let s ∈ R and v, w ∈ [1,∞] be such that 1
w
≤ 1

z
= 1

u
+ 1

v
. Note that

ϕ ∗ Tm(f) = F−1(ϕ̂ ·mf̂) = F−1(m · ϕ̂f̂) = Tm(ϕ ∗ f) (3.4)

for all f ∈ S(Rd;X) and ϕ ∈ S(Rd). Therefore, using the contractive inclusion
`z ⊆ `w and Hölder’s inequality, we obtain∥∥Tm(f)∥∥Bs−β

q,w (Rd;Y )
=

∥∥(2k(s−β)
∥∥ϕk ∗ Tm(f)

∥∥
Lq(Rd;Y )

)
k

∥∥
`w

≤
∥∥(2k(s−β)

∥∥Tm(ϕk ∗ f)
∥∥
Lq(Rd;Y )

)
k

∥∥
`z
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≤
∥∥(2ksck‖ϕk ∗ f‖Lp(Rd;X)

)
k

∥∥
`z

≤
∥∥(ck)k∥∥`u

‖f‖Bs
p,v(Rd;X) (3.5)

for all f ∈ S(Rd;X). Since S(Rd;X) is dense in Bs
p,v(Rd;X) for v ∈ [1,∞),

(3.5) implies that Tm is a bounded (Bs
p,v(Rd;X), Bs−β

q,w (Rd;Y ))-Fourier multiplier
if v < ∞. In the remainder of this section, we discuss a method that will allow
us to deal with all v ∈ [1,∞] simultaneously.

For n ∈ N0, denote by T
(n)
m ∈ L(Lp

In
(Rd;X), Lq

In
(Rd;Y )) the unique bounded

extension of Tm�SIn (Rd;X), which exists by (3.3) and Lemma 3.1 and which has

norm ‖T (n)
m ‖ ≤ 2nβcn. For later use we note, as follows easily from (3.4), that

ϕ ∗ T (n)
m (g) = T (n)

m (ϕ ∗ g) (3.6)

for all ϕ ∈ S(Rd), n ∈ N0, and g ∈ Lp
In
(Rd;X). Now define, for s ∈ R and

v ∈ [1,∞],

T̃m(f) :=
∞∑
n=0

T (n)
m (ϕn ∗ f)

(
f ∈ Bs

p,v(Rd;X)
)

(3.7)

as a convergent series in S ′(Rd;Y ). The following proposition shows in particular
that this is well defined. The assumption that m is of moderate growth at infinity
is only made to ensure that Tm : S(Rd;X) → S ′(Rd;Y ) is well defined.

Proposition 3.2. Let X and Y be Banach spaces, and let p ∈ [1,∞) and q ∈
[1,∞). Let m : Rd → L(X,Y ) be an X-strongly measurable map of moderate
growth at infinity such that (3.3) holds for all k ∈ N0 and for some β ∈ R,
u ∈ [1,∞], and (ck)k∈N0 ∈ `u. Then (3.7) defines an extension of Tm to a bounded

linear map T̃m from Bs
p,v(Rd;X) to Bs−β

q,w (Rd;Y ) of norm ‖Tm‖ ≤ ‖(ck)k‖`u for

all s ∈ R and all v, w ∈ [1,∞] with 1
w
≤ 1

u
+ 1

v
.

The extension of Tm is unique for v < ∞ by the density of S(Rd;X) in
Bs

p,v(Rd;X). The uniqueness of the extension for v = ∞ is discussed in Remark 3.3.

Proof. Let s ∈ R, v ∈ [1,∞], and f ∈ Bs
p,v(Rd;X). Then, using Hölder’s inequality

and the contractive inclusion `u ⊆ `∞, there exists a constant C ∈ (0,∞) such
that, for each ϕ ∈ S(Rd) and with the obvious modification for v = 1,

∞∑
n=0

∥∥〈T (n)
m (ϕn ∗ f), ϕ

〉∥∥
Y

=
∞∑
n=0

∥∥〈T (n)
m (ϕn ∗ f), (ϕn−1 + ϕn + ϕn+1) ∗ ϕ

〉∥∥
Y

≤
∞∑
n=0

∥∥T (n)
m (ϕn ∗ f)

∥∥
Lq(Rd;Y )

∥∥(ϕn−1 + ϕn + ϕn+1) ∗ ϕ
∥∥
Lq′ (Rd)

≤
∞∑
n=0

cn2
nβ‖ϕn ∗ f‖Lp(Rd;Y )

∥∥(ϕn−1 + ϕn + ϕn+1) ∗ ϕ
∥∥
Lq′ (Rd)
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≤
∥∥(cn)n∥∥`∞

∞∑
n=0

2ns‖ϕn ∗ f‖Lp(Rd;Y )2
n(β−s)

∥∥(ϕn−1 + ϕn + ϕn+1) ∗ ϕ
∥∥
Lq′ (Rd)

≤
∥∥(cn)n∥∥`∞

‖f‖Bs
p,v(Rd;X)

( ∞∑
n=0

2n(β−s)v′
∥∥(ϕn−1 + ϕn + ϕn+1) ∗ ϕ

∥∥v′

Lq′ (Rd)

)1/v′

≤
∥∥(cn)n∥∥`∞

‖f‖Bs
p,v(Rd;X)

( ∞∑
n=0

( n+1∑
k=n−1

2n(β−s)‖ϕk ∗ ϕ‖Lq′ (Rd)

)v′)1/v′

≤ C‖f‖Bs
p,v(Rd;X)

( ∞∑
n=0

2n(β−s)v′‖ϕn ∗ ϕ‖v
′

Lq′ (Rd)

)1/v′

= C‖f‖Bs
p,v(Rd;X)‖ϕ‖Bβ−s

q′,v′ (R
d).

Since S(Rd) ⊆ Bβ−s
q′,v′(Rd) continuously, T̃m(f) =

∑∞
n=0 T

(n)
m (ϕn ∗ f) converges as

a limit in S ′(Rd;Y ).
Now let w ∈ [1,∞] be such that 1

w
≤ 1

u
+ 1

v
. We claim that

ϕk ∗ T̃m(f) = T (k)
m (ϕk ∗ f)

for each k ∈ N0. Indeed, by Lemma 3.1 we can find (fj)j∈N ⊆ SIk(Rd;X) such that
fj → ϕk ∗ f in Lp(Rd;X) as j → ∞. Note that ϕk ∗ϕn = 0 if n /∈ {k− 1, k, k+1}
and that

∑k+1
n=k−1 ϕn ∗g = g if g ∈ S ′(Rd;Y ) is such that supp(ĝ) ⊆ Ik. Therefore,

using (3.6) and arguing in S ′(Rd;Y ), we find

ϕk ∗ T̃m(f) = ϕk ∗
∞∑
n=0

T (n)
m (ϕn ∗ f) =

∞∑
n=0

ϕk ∗ T (n)
m (ϕn ∗ f)

=
k+1∑

n=k−1

T (n)
m (ϕn ∗ ϕk ∗ f) =

k+1∑
n=k−1

lim
j→∞

Tm(ϕn ∗ fj)

= lim
j→∞

Tm

( k+1∑
n=k−1

ϕn ∗ fj
)
= lim

j→∞
Tm(fj) = T (k)

m (ϕk ∗ f),

as claimed. Now the required norm bound for T̃m follows as in (3.5). To see that

T̃m extends Tm, let f ∈ S(Rd;X). Then, arguing in S ′(Rd;Y ),

F
(
T̃m(f)

)
= F

( ∞∑
n=0

T (n)
m (ϕn ∗ f)

)
=

∞∑
n=0

F
(
Tm(ϕn ∗ f)

)
=

∞∑
n=0

m · ϕ̂nf̂ =
( ∞∑
n=0

ϕ̂n

)
m · f̂ = m · f̂ = F

(
Tm(f)

)
,

as required. �

Remark 3.3 (Uniqueness). In the case v = ∞, the operator T̃m from Bs
p,∞(Rd;X)

into Bs−β
q,w (Rd;Y ) given in Proposition 3.2 is also bounded from Bs−1

p,1 (Rd;X) to
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Bs−β−1
q,w (Rd;Y ). On this larger space (in which S(Rd;X) is dense) it is the unique

extension of Tm.

Remark 3.4. Considering functions f with suitable support, one sees that the
boundedness of Tm also implies (3.3) with ck replaced by K(ck−1 + ck + ck+1),
where K is a constant independent of f and (ck)k≥0, and c−1 = 0. In this sense,
the boundedness of Tm is equivalent to (3.3).

We will also consider Fourier multipliers on homogeneous Besov spaces. Let X
and Y be Banach spaces, and let p ∈ [1,∞) and q ∈ [1,∞]. For k ∈ Z, recall
the definition of ψk ∈ Ṡ(Rd) and Jk ⊆ Rd from Section 2.1. Let m : Rd \ {0} →
L(X,Y ) be an X-strongly measurable map of moderate growth at zero and infin-
ity and with the property that there exist β ∈ R, u ∈ [1,∞] and (ck)k∈Z ∈ `u(Z)
such that, for each k ∈ Z, m is an (Lp

Jk
(Rd;X), Lq

Jk
(Rd;Y ))-Fourier multiplier

and ∥∥Ṫm(f)∥∥Lq(Rd;Y )
≤ 2kβck‖f‖Lp(Rd;X)

(
f ∈ SJk(R

d;X)
)
. (3.8)

For n ∈ Z, denote by Ṫ
(n)
m ∈ L(Lp

Jn
(Rd;X), Lq

Jn
(Rd;Y )) the unique bounded

extension of Ṫm�SJn (Rd;X). For s ∈ R and v ∈ [1,∞], define

Tm(f) :=
∞∑

n=−∞

Ṫ (n)
m (ψn ∗ f)

(
f ∈ Ḃs

p,v(Rd;X)
)
. (3.9)

The following proposition is proved in the same way as Proposition 3.2.

Proposition 3.5. Let X and Y be Banach spaces, and let p ∈ [1,∞) and q ∈
[1,∞). Let m : Rd\{0} → L(X,Y ) be an X-strongly measurable map of moderate
growth at zero and infinity such that (3.8) holds for all k ∈ Z and for some β ∈ R,
u ∈ [1,∞], and (ck)k∈Z ∈ `u(Z). Then Tm extends Ṫm to a bounded linear operator
from Ḃs

p,v(Rd;X) into Ḃs−β
q,w (Rd;Y )) with

‖Tm‖L(Ḃs
p,v(Rd;X),Ḃs−β

q,w (Rd;Y )) ≤
∥∥(ck)k∥∥`u(Z)

for all s ∈ R and all v, w ∈ [1,∞] such that 1
w
≤ 1

u
+ 1

v
.

As before, the extension Tm is unique if v < ∞ by the density of Ṡ(Rd;X) in
Ḃs

p,v(Rd;X). If v = ∞, then one cannot argue as in Remark 3.3, and we leave
out any uniqueness assertions in this case. As in Remark 3.4, one sees that the
boundedness of Tm is equivalent to (3.8).

Remark 3.6. Using the technique of [28, Proposition 3.4], one can transfer the
results of Propositions 3.2 and 3.5 on Rd to the periodic setting Td. For the
definition of the periodic Besov spaces, we refer to [4] and [32]. Indeed, one can
apply (3.3) or (3.8) to suitable functions f with compact Fourier support as in
the proof of the transference result mentioned above. In particular, this yields
periodic analogues of Proposition 3.7 and Theorems 4.3 and 4.5. The details are
left to the reader.
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3.3. Fourier-type setting. In this section, we use that (3.3) holds under Fourier-
type conditions and apply Proposition 3.2 to obtain a first Fourier multiplier result
on Besov spaces.

A Banach spaceX is said to have Fourier type p ∈ [1, 2] if the Fourier transform
F : Lp(Rd;X) → Lp′(Rd;X) is bounded for some (and then for all) d ∈ N. So
that our terminology is consistent with results in the rest of the article, we say
that X has Fourier cotype q ∈ [2,∞] if X has Fourier type q′.

Proposition 3.7. Let X be a Banach space with Fourier type p ∈ [1, 2], let Y be
a Banach space with Fourier cotype q ∈ [2,∞], and let r ∈ [1,∞] be such that 1

r
=

1
p
− 1

q
. Let s ∈ R and v, w ∈ [1,∞] be such that 1

w
≤ 1

u
+ 1

v
. Let m : Rd → L(X,Y )

be an X-strongly measurable map such that ck := ‖[ξ 7→ ‖m(ξ)‖L(X,Y )]‖Lr(Ik) <∞
for all k ∈ N0. Assume that (ck)k ∈ `u for some u ∈ [1,∞]. Then Tm extends to
a bounded mapping from Bs

p,v(Rd;X) to Bs
q,w(Rd;Y ) of norm ‖Tm‖ ≤ C‖(ck)k‖`u

for some C ≥ 0 independent of m.

A similar result in the homogeneous setting follows from Proposition 3.5.

Proof. By the Fourier multiplier result of [28] under Fourier-type conditions, there
exists a constant C ≥ 0 independent of m such that∥∥Tm(f)∥∥Lq(Rd;Y )

≤ ck‖f‖Lp(Rd;X)

(
f ∈ SIk(R

d;X)
)

for all k ∈ N0. Consequently, the result follows from Proposition 3.2. �

4. Fourier multipliers under type and cotype conditions

In this section, we prove our main results. We obtain Fourier multiplier theo-
rems on Besov spaces under type and cotype conditions on the underlying spaces.
As a corollary, we derive a result for (Lp, Lq)-multipliers.

Let X be a Banach space, let (γn)n∈N be a Gaussian sequence on a probability
space (Ω,P), and let p ∈ [1, 2] and q ∈ [2,∞]. We say that X has (Gaussian) type
p if there exists a constant C ≥ 0 such that, for all m ∈ N and all x1, . . . , xm ∈ X,(

E
∥∥∥ m∑
n=1

γnxn

∥∥∥2)1/2

≤ C
( m∑
n=1

‖xn‖p
)1/p

. (4.1)

We say that X has (Gaussian) cotype q if there exists a constant C ≥ 0 such
that, for all m ∈ N and all x1, . . . , xm ∈ X,( m∑

n=1

‖xn‖q
)1/q

≤ C
(
E
∥∥∥ m∑
n=1

γnxn

∥∥∥2)1/2

, (4.2)

with the obvious modification for q = ∞. The minimal constants C in (4.1) and
(4.2) are called the (Gaussian-) type p constant and the (Gaussian-) cotype q
constant and will be denoted by τp,X and cq,X . We say that X has nontrivial type
if X has type p ∈ (1, 2] and finite cotype if X has cotype q ∈ [2,∞).

The Gaussian sequence in (4.1) and (4.2) is usually replaced by a Rademacher
sequence, that is, a sequence (rn)n∈N of independent identically distributed ran-
dom variables with P(r1 = 1) = P(r1 = −1) = 1

2
. This does not change the
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class of spaces under consideration, only the minimal constants in (4.1) and (4.2)
(see [10, Chapter 12]). We choose to work with Gaussian sequences because the
Gaussian constants τp,X and cq,X occur naturally in the results in this section.

Each Banach space X has type p = 1 and cotype q = ∞, with τ1,X = c∞,X = 1.
If X has type p and cotype q, then X has type r with τr,X ≤ τp,X for all r ∈ [1, p]
and cotype s with cs,X ≤ cq,X for all s ∈ [q,∞]. A Banach space with Fourier
type p ∈ [1, 2] has type p and cotype p′ (see [20]). By a result of Bourgain, a
Banach space has nontrivial type if and only if it has nontrivial Fourier type
(see [26, Section 5.6.30]; for more on type and cotype, see [1], [10], [20], and [25,
Section 9.2]).

4.1. Functions with compact Fourier support under type and cotype
conditions. Fix d ∈ N. For X a Banach space, Ω ⊆ Rd, and p ∈ [1,∞], recall
the definitions of SΩ(Rd;X), Lp

Ω(Rd;X), and γΩ(Rd;X) from (1.1), (1.2), and

(3.1). Note that distributions f ∈ S ′(Rd;X) with supp(f̂) ⊆ Ω for some compact
Ω ⊆ Rd satisfy f ∈ C∞(Rd;X) (see [13, Theorem 2.3.21]).

The following lemma is a consequence of [21, Lemma 2.1], which applies to
f ∈ S[0,1]d(Rd;X).

Lemma 4.1. Let X be a Banach space with type p ∈ [1, 2] and cotype q ∈ [2,∞].
Let a, b ∈ R with a < b. Then the following assertions hold:

(1) Lp
[a,b]d

(Rd;X) ⊆ γ[a,b]d(Rd;X) and

‖f‖γ(Rd;X) ≤ τp,X(b− a)d(
1
p
− 1

2
)‖f‖Lp(Rd;X)

for all f ∈ Lp
[a,b]d

(Rd;X);

(2) γ[a,b]d(Rd;X) ⊆ Lq
[a,b]d

(Rd;X) and

‖f‖Lq(Rd;X) ≤ cq,X(b− a)d(
1
2
− 1

q
)‖f‖γ(Rd;X)

for all f ∈ γ[a,b]d(Rd;X).

Proof. (1) First, assume that f ∈ S[a,b]d(Rd;X). Let g(t) := e−2πi b+a
2(b−a)

tf( t
b−a

) for

t ∈ Rd. Then g ∈ S[− 1
2
, 1
2
]d(Rd;X) and, by Lemma 2.2,

‖g‖Lp(Rd;X) = (b− a)
d
p‖f‖Lp(Rd;X) and ‖g‖γ(Rd;X) = (b− a)

d
2‖f‖γ(Rd;X).

By [21, Lemma 2.1] (note that F is normalized differently in [21]),

(b− a)
d
2‖f‖γ(Rd;X) = ‖g‖γ(Rd;X) ≤ τp,X‖g‖Lp(Rd;X) = τp,X(b− a)

d
p‖f‖Lp(Rd;X).

For a general f ∈ Lp
[a,b]d

(Rd;X), let (fn)n∈N ⊆ S[a,b]d(Rd;X) be such that ‖fn −
f‖Lp(Rd;X) → 0, as in Lemma 3.1. By the previous estimate,

‖fn‖γ(Rd;X) ≤ τp,X(b− a)d(
1
p
− 1

2
)‖fn‖Lp(Rd;X) (4.3)

for each n ∈ N. Since the same estimate holds with fn replaced by fn − fm for
m ∈ N with m ≥ n, it follows that (fn)n∈N is a Cauchy sequence in γ(Rd;X).
Therefore, with Jfn as in (2.11) for each n ∈ N, (Jfn)n∈N converges to some
operator T ∈ γ(L2(Rd), X) as n → ∞. We claim that T = Jf . Indeed, fix
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x∗ ∈ X∗. Then (Jfn)
∗x∗ → T ∗x∗ in L2(Rd). It is straightforward to check that

(Jfn)
∗x∗ = x∗ ◦ fn for each n ∈ N. Moreover, also (Jfn)

∗x∗ = x∗ ◦ fn → x∗ ◦ f =
(Jf )

∗x∗ in Lp(Rd) as n→ ∞. Choosing appropriate almost everywhere convergent
subsequences, we find that (Jf )

∗x∗ = T ∗x∗, which yields the claim. The required
estimate now follows by letting n→ ∞ in (4.3).

(2) This is proved in the same manner. �

The main result of this section is a consequence of the following proposition,
which is of independent interest.

Proposition 4.2. Let X be a Banach space with type p ∈ [1, 2], let Y be a Banach
space with cotype q ∈ [2,∞], and let r ∈ [1,∞] be such that 1

r
= 1

p
− 1

q
. Let a, b ∈ R

with a < b, and let m : Rd → L(X,Y ) be an X-strongly measurable map such that
{m(ξ) | ξ ∈ [a, b]d} ⊆ L(X,Y ) is γ-bounded. Then there exists a unique bounded
operator T ∈ L(Lp

[a,b]d
(Rd;X), Lq

[a,b]d
(Rd;Y )) such that

T (f) = F−1(m · f̂)
for each f ∈ S[a,b]d(Rd;X). Moreover,∥∥T (f)∥∥

Lq(Rd;Y )
≤ τp,Xcq,Y (b− a)d/rγ

({
m(ξ)

∣∣ ξ ∈ [a, b]d
})

‖f‖Lp(Rd;X)

for all f ∈ Lp
[a,b]d

(Rd;X).

It follows from an example in [28] that, in certain cases, the γ-boundedness
condition is necessary in Proposition 4.2 and in the results that follow from it.

Proof. By Lemma 3.1, it suffices to show that F−1(m · f̂) ∈ Lq(Rd;Y ) with∥∥F−1(m · f̂)
∥∥
Lq(Rd;Y )

≤ τp,Xcq,Y (b− a)d/rγ
({
m(ξ)

∣∣ ξ ∈ [a, b]d
})

‖f‖Lp(Rd;X)

for all f ∈ S[a,b]d(Rd;X). To this end, fix f ∈ S[a,b]d(Rd;X), and first assume that

[ξ 7→ m(ξ)x] ∈ C∞
c (Rd;Y ) for all x ∈ X. Then in fact m(·)x ∈ γ(Rd;Y ), by

(2.12), and by Lemma 2.2 also 1[a,b]d(·)m(·)x ∈ γ(Rd;Y ) for all x ∈ X. Now use
Lemma 4.1, (2.13), Theorem 2.3, (2.13), and Lemma 4.1 in sequence to obtain

that F−1(m · f̂) ∈ Lq(Rd;Y ) with∥∥F−1(m · f̂)
∥∥
Lq(Rd;Y )

≤ cq,Y (b− a)d(
1
2
− 1

q
)
∥∥F−1(m · f̂)

∥∥
γ(Rd;Y )

= cq,Y (b− a)d(
1
2
− 1

q
)‖m · f̂‖γ(Rd;Y )

= cq,Y (b− a)d(
1
2
− 1

q
)‖1[a,b]dm · f̂‖γ(Rd;Y )

≤ cq,Y (b− a)d(
1
2
− 1

q
)γ
({
m(ξ)

∣∣ ξ ∈ [a, b]d
})

‖f̂‖γ(Rd;X)

= cq,Y (b− a)d(
1
2
− 1

q
)γ
({
m(ξ)

∣∣ ξ ∈ [a, b]d
})

‖f‖γ(Rd;X)

≤ τp,Xcq,Y (b− a)d(
1
p
− 1

q
)γ
({
m(ξ)

∣∣ ξ ∈ [a, b]d
})

‖f‖Lp(Rd;X),

as required.
Now let m : Rd → L(X,Y ) be a general X-strongly measurable map such that

{m(ξ) | ξ ∈ [a, b]d}) ⊆ L(X,Y ) is γ-bounded. Since F−1(m·f̂) = F−1(1[a,b]dm·f̂),
we may assume that supp(m) ⊆ [a, b]d. Let (hn)n∈N ⊆ C∞

c (Rd) be an approximate
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identity with ‖hn‖L1(Rd) ≤ 1 for all n ∈ N, and define mn(ξ)x := (hn ∗m(·)x)(ξ)
for n ∈ N, x ∈ X, and ξ ∈ Rd. Then [ξ 7→ mn(ξ)x] ∈ C∞

c (Rd;Y ) and m(ξ)x =
limn→∞mn(ξ)x for all x ∈ X and almost all ξ ∈ Rd. Moreover,

γ
({
mn(ξ)

∣∣ ξ ∈ Rd
})

≤ γ
({
m(ξ)

∣∣ ξ ∈ Rd
})

for each n ∈ N, by (2.15) (see also [23, Corollary 2.14]). In particular,

sup
ξ∈Rd

sup
n∈N

∥∥mn(ξ)
∥∥
L(X,Y )

<∞.

Now, by what we have already shown and by [28, Lemma 3.1], Tm(f) ∈ Lq(Rd;Y )
with ∥∥Tm(f)∥∥Lq(Rd;Y )

≤ lim inf
n→∞

∥∥Tmn(f)
∥∥
Lq(Rd;Y )

≤ τp,Xcq,Y (b− a)d/rγ
({
m(ξ)

∣∣ ξ ∈ [a, b]d
})

‖f‖Lp(Rd;X),

which concludes the proof. �

4.2. Multipliers on Besov spaces under type and cotype assumptions.
If m : Rd → L(X,Y ) is an X-strongly measurable map of moderate growth at
infinity such that {m(ξ) | ξ ∈ In} ⊆ L(X,Y ) is γ-bounded for each n ∈ N0, then
by Proposition 4.2 (applied to 1Inm) m is an (Lp

In
(Rd;X), Lq

In
(Rd;Y ))-Fourier

multiplier for each n ∈ N0. As in Section 3.2, let T
(n)
m ∈ L(Lp

In
(Rd;X), Lq

In
(Rd;Y ))

be the unique bounded extension of Tm�SIn (Rd;X) to Lp
In
(Rd;X). Recall that in

(3.7) we defined, for s ∈ R and v ∈ [1,∞],

T̃m(f) :=
∞∑
n=0

T (n)
m (ϕn ∗ f)

(
f ∈ Bs

p,v(Rd;X)
)

(4.4)

as a limit in S ′(Rd;Y ). The following result was already stated in the Introduction
as Theorem 1.1.

Theorem 4.3. Let X be a Banach space with type p ∈ [1, 2], let Y be a Banach
space with cotype q ∈ [2,∞], and let r ∈ [1,∞] be such that 1

r
= 1

p
− 1

q
. Let

m : Rd → L(X,Y ) be an X-strongly measurable map such that (2kσγ({m(ξ) | ξ ∈
Ik}))k∈N0 ∈ `u for some σ ∈ R and u ∈ [1,∞]. Then the operator T̃m defined by

(4.4) extends Tm to a bounded linear map T̃m : Bs
p,v(Rd;X) → B

s+σ−d/r
q,w (Rd;Y )

with

‖T̃m‖L(Bs
p,v(Rd;X),B

s+σ−d/r
q,w (Rd;Y ))

≤ 4d/rτp,Xcq,Y
∥∥(2kσγ({m(ξ)

∣∣ ξ ∈ Ik
}))

k

∥∥
`u

for all s ∈ R and all v, w ∈ [1,∞] with 1
w
≤ 1

u
+ 1

v
.

In the case of scalar-valued multipliers, the γ-bound of course reduces to a
uniform bound. For the uniqueness of the extensions, we refer to Remark 3.3.

Proof. First note that m is of moderate growth at infinity, so Tm : S(Rd;X) →
S ′(Rd;Y ) is well defined. By Proposition 4.2 applied to 1Ikm,∥∥Tm(f)∥∥Lq(Rd;Y )

≤ τp,Xcq,Y (2 · 2k+1)d/rγ
({
m(ξ)

∣∣ ξ ∈ Ik
})

‖f‖Lp(Rd;X)
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for all k ∈ N0 and all f ∈ SIk(Rd;X). Letting β := d
r
− σ and, for k ∈ N0,

ck := τp,Xcq,Y 4
d/r2kσγ({m(ξ) | ξ ∈ Ik}), the proof is concluded by appealing to

Proposition 3.2. �

Remark 4.4. It also follows from [27] that the smoothness parameter d
r
in Theo-

rem 4.3 is sharp, since the results in [27] are derived from Theorem 4.3 and are
sharp with respect to this parameter (see [27, Remark 6.5]).

In the same manner, we derive the following result from Proposition 3.5.

Theorem 4.5. Let X be a Banach space with type p ∈ [1, 2], let Y be a Banach
space with cotype q ∈ [2,∞], and let r ∈ [1,∞] be such that 1

r
= 1

p
− 1

q
. Let

m : Rd → L(X,Y ) be an X-strongly measurable map such that (2kσγ({m(ξ) | ξ ∈
Jk}))k∈Z ∈ `u(Z) for some σ ∈ R and u ∈ [1,∞]. Then (3.9) defines an extension

Tm ∈ L(Ḃs
p,v(Rd;X), Ḃ

s+σ−d/r
q,w (Rd;Y )) of Ṫm such that

‖Tm‖L(Ḃs
p,v(Rd;X),Ḃ

s+σ−d/r
q,w (Rd;Y ))

≤ 4d/rτp,Xcq,Y
∥∥(2kσγ({m(ξ)

∣∣ ξ ∈ Jk
}))

k

∥∥
`u(Z)

for all s ∈ R and all v, w ∈ [1,∞] with 1
w
≤ 1

u
+ 1

v
.

As a consequence, we can derive an (Lp, Lq)-multiplier result.

Theorem 4.6. Let X be a Banach space with type p ∈ [1, 2], let Y be a Banach
space with cotype q ∈ [2,∞], and let r ∈ [1,∞] be such that 1

r
= 1

p
− 1

q
. Let

m : Rd \ {0} → L(X,Y ) be an X-strongly measurable map such that(
2kd/rγ

({
m(ξ)

∣∣ ξ ∈ Jk
}))

k∈Z ∈ `1(Z). (4.5)

Then Tm extends uniquely to a bounded map T̃m ∈ L(Lp(Rd;X), Lq(Rd;Y )) with

‖T̃m‖L(Lp(Rd;X),Lq(Rd;Y )) ≤ C4d/rτp,Xcq,Y
∥∥(2kd/rγ({m(ξ)

∣∣ ξ ∈ Jk
}))

k

∥∥
`1(Z),

where C ≥ 0 is a constant which depends only on p and d.

In [28, Theorem 1.1] we derived a similar result, with (4.5) replaced by the
assumption that {|ξ|d/rm(ξ) | ξ ∈ Rd \ {0}} is γ-bounded. However, there we
used that X has type p0 > p and Y cotype q0 < q. Note that this is not needed
in Theorem 4.6, at the cost of a more restrictive γ-boundedness condition.

Proof. First note that Tm : Ṡ(Rd;X) → S ′(Rd;Y ) is well defined since m is of
moderate growth at infinity, where we use that (2kd/rγ({m(ξ) | ξ ∈ Jk}))k∈Z ∈
`1(Z). Furthermore, since Ṡ(Rd;X) ⊆ Lp(Rd;X) is dense, it suffices to show that∥∥Tm(f)∥∥Lq(Rd;Y )

≤ C4d/rτp,Xcq,Y
∥∥(2kd/rγ({m(ξ) | ξ ∈ Jk

}))
k

∥∥
`1(Z)‖f‖Lp(Rd;X)

for all f ∈ Ṡ(Rd;X). To this end, note that it is straightforward to show that
the contractive inclusion Ḃ0

q,1(Rd;Y ) ↪→ Lq(Rd;Y ) and the continuous inclusion

Lp(Rd;X) ↪→ Ḃ0
p,∞(Rd;X) hold. Using these inclusions, the required estimate

follows from Theorem 4.5 with u = w = 1 and v = ∞. �

Theorem 4.6 can be improved for UMD spaces. For details on UMD spaces, we
refer to [9], [30], and to the recent monograph [19].
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Remark 4.7. Suppose, in addition to the assumptions of Theorem 4.6, that X
is a UMD space with cotype q0 ∈ [2,∞) and that Y is a UMD space with type
p0 ∈ (1, 2]. Then the homogeneous version of [34, Proposition 3.1] (proved in
the same way as in the inhomogeneous case) yields the continuous embeddings
Lp(Rd;X) ↪→ Ḃ0

p,q0
(Rd;X) and Ḃ0

q,p0
(Rd;X) ↪→ Lq(Rd;X). Following the proof of

Theorem 4.6, it then suffices to assume that for 1
r0

= 1
p0

− 1
q0
, one has(

2kd/rγ
({
m(ξ)

∣∣ ξ ∈ Ik
}))

k∈Z ∈ `r0 .

Remark 4.8. It is straightforward to check that the condition onm in Theorem 4.6
holds if {|ξ|σm(ξ) | |ξ| ≥ 1} ∪ {|ξ|µm(ξ) | |ξ| ≤ 1} ⊆ L(X,Y ) is γ-bounded for
some σ, µ ∈ R with σ > d

r
> µ. The exponent d

r
cannot be improved, as can be

seen from the scalar case and the Hardy–Littlewood–Sobolev inequality (see [14,
Theorem 6.1.3]).

As a consequence, by applying the same method as in [28, Lemma 3.26, Propo-
sition 3.27], one sees that, in certain cases, the type p of X and cotype q of Y are
necessary for Theorem 4.6 and hence for Theorem 4.5.

5. Extrapolation

In this section, we give a proof of [28, Theorem 4.1] and use it to extrapolate
our Fourier multiplier results on Besov spaces to different integrability exponents.
To prove the extrapolation result, we extend several results of Hörmander in [16]
to the vector-valued setting and p ≤ q.

For a, p, q ∈ [1,∞] with a 6= ∞, consider the following identity:

1

p
− 1

q
= 1− 1

a
. (5.1)

5.1. Kernels and extrapolation. Throughout this section, we fix d ∈ N and
Banach spaces X and Y . Consider the following variant of Hörmander’s condition
which we formulate in the strong operator topology.

(H)a Let K : Rd \ {0} → L(X,Y ) be such that for all x ∈ X, t 7→ K(t)x is
locally integrable on Rd \ {0}. Suppose there exists a constant CH,a ≥ 0
such that (∫

|s|≥2|t|

∥∥K(s− t)x−K(s)x
∥∥a
ds
) 1

a

≤ CH,a‖x‖
(
x ∈ X, t ∈ Rd \ {0}

)
.

We denote the infimum over all Hörmander constants CH,a by CH,a(K).

Remark 5.1. In particular, the condition (H)a holds with constant CH,a > 0 if K
is X-strongly measurable and(∫

|s|≥2|t|

∥∥K(s− t)−K(s)
∥∥a

L(X,Y )
ds
) 1

a ≤ CH,a

(
t ∈ Rd \ {0}

)
, (5.2)

where we assume that the integrand is measurable (or at least 1|s|≥2|t|‖K(s −
t) −K(s)‖ ≤ ft(s), where f is measurable and satisfies ‖ft‖La(Rd) ≤ CH,a for all
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t 6= 0). Under the appropriate measurability conditions on K∗, (5.2) implies (H)a
for K∗ as well. The advantage of (H)a over (5.2) will become clear in the proof of
Theorem 5.6.

Let L∞
c (Rd) ⊆ L∞(Rd) denote the subset of functions which have compact

support. Let L∞
c (Rd) ⊗X be the linear span of the functions t 7→ (f ⊗ x)(t) :=

f(t)x, where f ∈ L∞
c (Rd) and x ∈ X. Let K : Rd \ {0} → L(X,Y ) be such that

for all x ∈ X, t 7→ K(t)x is locally integrable on Rd \ {0}. For a bounded linear
operator T : Lp(Rd;X) → Lq(Rd;Y ) and p, q ∈ [1,∞], consider the following
condition: for all f ∈ L∞

c (Rd)⊗X

Tf(s) =

∫
Rd

K(s− t)f(t) dt for almost all s ∈
(
supp(f)

)c
. (5.3)

The following result is a vector-valued extension of [16, Theorem 2.2]. Recall that
the norm of the space Lp,∞(Rd;X) is given by

‖f‖Lp,∞(Rd;X) := sup
α>0

αλf (α)
1
p <∞, (5.4)

where λf (α) := µ({s ∈ Rd | ‖f(s)‖X > α}) for α > 0 and µ is the Lebesgue
measure.

Proposition 5.2 (Extrapolation to L1 → La,∞). Let p, q ∈ (1,∞] and a ∈
[1,∞) satisfy (5.1). Let K : Rd \ {0} → L(X,Y ) satisfy condition (H)a. Let
T : Lp(Rd;X) → Lq(Rd;Y ) be a bounded linear operator of norm B satisfying
(5.3). Then T : L1(Rd;X) → La,∞(Rd;Y ) is bounded and

‖T‖L(L1(Rd;X),La,∞(Rd;Y )) ≤ Cd,aB + 4CH,a(K),

where Cd,a := 2 + 2d
d
2a4

d
a .

Proof. We adopt the presentation from [13, Theorem 4.3.3] and show that it
extends to the vector-valued setting with general p ≤ q. Assume that q <∞ (the
case q = ∞ is left to the reader, see [13, Exercise 4.3.7]). In order to prove the
result, it suffices to show that, for each simple function f ∈ L∞

c (Rd;X) of norm
‖f‖L1(Rd;X) ≤ 1,

‖Tf‖a,∞ ≤ Cd,aB + 4CH,a(K). (5.5)

We apply the Calderón–Zygmund decomposition of height γαa to write f as
the sum of a good and bad part g + b. Here α > 0 is fixed for the moment, and
we set

γ := B−a2−(d+a). (5.6)

To obtain this decomposition, note that [13, Theorem 4.3.1, Remark 4.3.2] have
a straightforward generalization to the vector-valued setting. The decomposition
given there yields f = g+ b, where b =

∑
j∈N bj for simple bj ∈ L∞

c (Rd)⊗X, and

the existence of a sequence of disjoint cubes (Qj)j∈N in Rd such that the following
properties are satisfied, for each j ∈ N:

‖g‖1 ≤ 1, ‖g‖∞ ≤ 2dγαa, ‖g‖p ≤ 2
d
p′ γ

1
p′α

a
p′ , ‖b‖1 ≤ 2, (5.7)
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supp(bj) ⊆ Qj,

∫
bj(t) dt = 0,

∑
k∈N

|Qk| ≤
1

γαa
. (5.8)

By subadditivity, we can write (see below (5.4) for the definition of λf )

λTf (α) ≤ λTg(α/2) + λTb(α/2).

The good part Tg can be estimated directly using the boundedness of T and
(5.7):

λTg(α/2) ≤
2q

αq
‖Tg‖qq ≤

2qBq

αq
‖g‖qp ≤

2qBq

αq
2

qd
p′ α

qa
p′ γ

q
p′ =

2aBa

αa
, (5.9)

where we used (5.1) and the choice of γ given in (5.6) in the last step. The bad
part we split into two parts again. Let Q∗

j be the unique cube with sides parallel

to Qj and the same center as Qj, but such that `(Q∗
j) = 2

√
d`(Qj), where `(Q)

denotes the side length of a cube Q. Setting Ω =
⋃

j≥1Q
∗
j , we can write

λTb(α/2) ≤ |Ω|+
∣∣∣{s ∈ Ωc :

∥∥Tb(s)∥∥
Y
>
α

2

}∣∣∣ ≤ |Ω|+ 2a

αa

∫
Ωc

∥∥Tb(s)∥∥a
ds. (5.10)

By the choice of Q∗
j and by (5.8) and (5.6),

|Ω| ≤
∑
j≥1

|Q∗
j | ≤

(2
√
d)d

γαa
=

4dd
d
2 2aBa

αa
. (5.11)

For the second part of (5.10), note that by the triangle inequality

‖1ΩcTb‖a ≤
∑
j≥1

‖1ΩcTbj‖a ≤
∑
j≥1

‖1(Q∗
j )

cTbj‖a. (5.12)

We first estimate each term of this series separately. Let tj denote the center of
Qj. By (5.3) and (5.8) (twice),

‖1(Q∗
j )

cTbj‖a =
(∫

Rd\Q∗
j

∥∥∥∫
Qj

K(s− t)bj(t) dt
∥∥∥a

ds
) 1

a

=
(∫

(Q∗
j )

c

∥∥∥∫
Qj

K(s− t)bj(t)−K(s− tj)bj(t) dt
∥∥∥a

ds
) 1

a

(i)

≤
∫
Qj

(∫
(Q∗

j )
c

∥∥K(s− t)bj(t)−K(s− tj)bj(t)
∥∥a
ds
) 1

a
dt

=

∫
Qj

(∫
(Q∗

j )
c−tj

∥∥K(
s− (t− tj)

)
bj(t)−K(s)bj(t)

∥∥a
ds
) 1

a
dt

(ii)

≤
∫
Qj

(∫
|s|≥2|t−tj |

∥∥K(
s− (t− tj)

)
bj(t)−K(s)bj(t)

∥∥a
ds
) 1

a
dt

(iii)

≤ CH,a(K)

∫
Qj

∥∥bj(t)∥∥ dt = CH,a(K)‖bj‖1.
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In (i), we applied Minkowski’s inequality. The estimate (ii) follows from |s| ≥
1
2
`(Q∗

j) =
√
d`(Qj) ≥ 2|t − tj| for s ∈ (Q∗

j)
c − tj and t ∈ Qj. In (iii), we applied

(H)a. With (5.12), (5.7), and (5.8) we can conclude that

‖1ΩcTb‖a ≤ CH,a(K)
∑
j≥1

‖bj‖1 = CH,a(K)‖b‖1 ≤ 2CH,a(K). (5.13)

Now (5.10), (5.11), and (5.13) yield

λTb(α/2) ≤
4dd

d
2 2aBa

αa
+

4aCH,a(K)a

αa
. (5.14)

Finally, combining the good part (5.9) and the bad part (5.14), we obtain

αλTf (α)
1
a ≤

(
2aBa + 4dd

d
2 2aBa + 4aCH,a(K)a

) 1
a .

Now (5.5) follows from the estimate (xα + yα)
1
α ≤ x + y, for x, y > 0, and by

taking the supremum over all α > 0. �

Corollary 5.3 (Extrapolation I, kernel condition). Let p0, q0 ∈ (1,∞] and a ∈
[1,∞) be such that 1

p0
− 1

q0
= 1− 1

a
. Let K : Rd \ {0} → L(X,Y ) satisfy (H)a. Let

T : Lp0(Rd;X) → Lq0(Rd;Y ) be a bounded linear operator of norm B satisfying
(5.3). Then, for all (p, q) satisfying p ∈ (1, p0] and (5.1), T : Lp(Rd;X) →
Lq(Rd;Y ) is bounded and

‖T‖L(Lp(Rd;X),Lq(Rd;Y )) ≤ Cp0,q0,p,d

(
B + CH,a(K)

)
,

where Cp0,q0,p,d ∼ (p− 1)−1 as p ↓ 1.

Proof. By Proposition 5.2, we find that also T : L1(Rd;X) → La,∞(Rd;Y ) is
bounded. From the Marcinkiewicz interpolation theorem (see [17] for a formu-
lation with explicit constants which extends to the vector-valued setting), we
deduce the required boundedness and estimate. �

Under other conditions on K, we can extrapolate to p > p0.

Corollary 5.4 (Extrapolation II, kernel condition). Let p0, q0, a ∈ [1,∞) with
q0 6= 1 be such that 1

p0
− 1

q0
= 1 − 1

a
. Let K : Rd → L(X,Y ) be such that K(·)x

and K∗(·)y are locally integrable on Rd for all x ∈ X and y∗ ∈ Y ∗. Suppose that
K∗ satisfies (H)a. Let T : Lp0(Rd;X) → Lq0(Rd;Y ) be a bounded linear operator
of norm B such that Tf = K ∗ f for all f ∈ L∞

c (Rd) ⊗ X. Then, for all (p, q)
satisfying q ∈ [q0,∞) and (5.1), T : Lp(Rd;X) → Lq(Rd;Y ) is bounded and

‖T‖L(Lp(Rd;X),Lq(Rd;Y )) ≤ Cp0,q0,q,d

(
B + CH,a(K

∗)
)
,

where Cp0,q0,p,d ∼ q as q ↑ ∞.

Proof. For g ∈ L∞
c (Rd)⊗ Y ∗ and t ∈ Rd, let Sg(t) ∈ X∗ be defined by

Sg(t) :=

∫
Rd

K(s− t)∗g(s) ds.

One can check that

〈f, Sg〉 = 〈Tf, g〉
(
f ∈ L∞

c (Rd)⊗X, g ∈ L∞
c (Rd)⊗ Y ∗). (5.15)
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Thus, by a density argument, S extends to a bounded mapping from Lq′0(Rd;Y ∗)
into Lp′0(Rd;X∗) of norm B. By Corollary 5.3, S extends to a bounded mapping
from Lq′(Rd;Y ∗) into Lp′(Rd;X∗) for all (p, q) satisfying q′ ∈ (1, q′0] and (5.1).
The proof is concluded by using (5.15) once again. �

Remark 5.5.

(i) The extrapolation result of Hörmander [16, Theorem 2.1] was extended by
Benedek, Calderón, and Panzone in [5, Theorem 2] to the vector-valued
setting in the case p = q. Moreover, they also considered extensions to
Lp for vectors p ∈ (1,∞)d. It is sometimes overlooked that the kernels
in [5, Theorem 2] are assumed to be locally integrable on Rd, hence in
particular integrable at zero. This assumption only plays a role in the
duality argument. (See [5, Theorem 3] for other possible conditions in the
case where X and Y are Hilbert spaces.)

(ii) To weaken the assumption of local integrability on Rd in the operator-
valued setting in Proposition 5.2 and Corollaries 5.3 and 5.4, one can
check that it suffices to assume that t 7→ K(t)x and t 7→ K(t)y∗ are
locally integrable on Rd only for x and y∗ in a dense subspace of X and
Y ∗, respectively.

(iii) A slightly different presentation in the case p = q ∈ [1,∞] is given in
[11, Theorem V.3.4], where the condition (5.2) is used. The argument
given there has the advantage that no duality arguments are required. To
extrapolate to p ∈ (p0,∞), one first proves that T maps L∞ into BMO,
after which an interpolation argument can be applied again.

5.2. Multipliers and extrapolation. In this section, we use the extrapolation
results from above to prove an extension of the extrapolation theorem for Fourier
multipliers in [16, Theorem 2.5]. Let m : Rd \ {0} → L(X,Y ) be a strongly
measurable map of moderate growth at zero and infinity. For r ∈ [1,∞), % ∈
[1,∞), and n ∈ N, consider the following variants of the Mikhlin–Hörmander
condition.

(M1)r,%,n There exists a constantM1 ≥ 0 such that, for all multi-indices |α| ≤ n,

R|α|+ d
r
− d

%

(∫
R≤|ξ|<2R

∥∥∂αm(ξ)x
∥∥%
dξ
)1/%

≤M1‖x‖ (x ∈ X,R > 0).

(M2)r,%,n There exists a constantM2 ≥ 0 such that, for all multi-indices |α| ≤ n,

R|α|+ d
r
− d

%

(∫
R≤|ξ|<2R

∥∥∂αm(ξ)∗y∗
∥∥%
dξ
)1/%

≤M2‖y∗‖ (y∗ ∈ Y ∗, R > 0).

For % = 2, r = 1, X = Y = R, condition (M1)r,%,n reduces to the classical
Hörmander condition in [16, Theorem 2.5] (see also [13, Theorem 5.2.7]).

Now we can now prove the main result of this section. The following theorem
was already stated as [28, Theorem 4.1] without proof, and extends [16, Theo-
rem 2.5] to the vector-valued setting and to general exponents p, q ∈ (1,∞).

Theorem 5.6 (Extrapolation, multiplier condition). Let p0, q0, r ∈ [1,∞] with
r 6= 1 be such that 1

p0
− 1

q0
= 1

r
. Letm : Rd\{0} → L(X,Y ) be a strongly measurable
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map of moderate growth at zero and infinity. Suppose that Tm : Lp0(Rd;X) →
Lq0(Rd;Y ) is bounded of norm B.

(1) Suppose that p0 ∈ (1,∞], that Y has Fourier type % ∈ [1, 2] with % ≤ r,
and that (M1)r,%,n holds for n := bd

%
− d

r
c + 1. Then Tm ∈ L(Lp(Rd;X),

Lq(Rd;Y )) and

‖Tm‖L(Lp(Rd;X),Lq(Rd;Y )) ≤ Cp0,q0,p,d(M1 +B) (5.16)

for all (p, q) such that p ∈ (1, p0] and
1
p
− 1

q
= 1

r
, where Cp0,q0,p,d ∼ (p−1)−1

as p ↓ 1.
(2) Suppose that q0 ∈ (1,∞), that X has Fourier type % ∈ [1, 2] with % ≤ r,

and that (M2)r,%,n holds for n := bd
%
− d

r
c + 1. Then Tm ∈ L(Lp(Rd;X),

Lq(Rd;Y )) and

‖Tm‖L(Lp(Rd;X),Lq(Rd;Y )) ≤ Cp0,q0,q,d(M2 +B) (5.17)

for all (p, q) satisfying q ∈ [q0,∞) and 1
p
− 1

q
= 1

r
, where Cp0,q0,q,d ∼ q as

q ↑ ∞.

As in [28], we can deduce the following corollary from Theorem 5.6.

Corollary 5.7. Let p0, q0, r ∈ [1,∞] with q0 6= 1 and r 6= 1 be such that 1
p0

−
1
q0

= 1
r
. Let X and Y both have Fourier type % ∈ [1, 2] % ≤ r, and let n :=

bd
%
− d

r
c + 1. Let m : Rd \ {0} → L(X,Y ) be such that, for all multi-indices

|α| ≤ n, ∥∥∂αm(ξ)
∥∥ ≤ C|ξ|−|α|− d

r , ξ ∈ Rd \ {0}. (5.18)

Suppose that Tm : Lp0(Rd;X) → Lq0(Rd;Y ) is bounded of norm B. Then, for all
exponents p and q satisfying 1 < p ≤ q < ∞ and 1

p
− 1

q
= 1

r
, Tm : Lp(Rd;X) →

Lq(Rd;Y ) is bounded and

‖Tm‖L(Lp(Rd;X),Lq(Rd;Y )) ≤ Cp,q,d(B + C)

for some constant Cp,q,d ≥ 0.

Note that one can always take % = 1 and n = b d
r′
c+ 1 in the results above.

Remark 5.8. If p0 = q0 = 1, then the results above are true with % = 1. Indeed,
one can repeat the proof of Theorem 5.6 using the trivial Fourier type 1 of L(X,Y )
and apply [11, Theorem V.3.4] (see Remark 5.5).

Proof of Theorem 5.6. We follow the line of reasoning from [13, Theorem 5.2.7].
(1) By replacing % by a slightly smaller number if necessary, we can assume

that % < r. Let η ∈ S(Rd) be such that

η̂(ξ) ∈ [0, 1] for ξ ∈ Rd, η̂ = 1 if |ξ| ≤ 1, η̂ = 0 if |ξ| ≥ 3

2
. (5.19)

Let (ζj)j∈Z ⊆ S(Rd) be such that ζ̂0(ξ) := η̂(ξ)− η̂(2ξ) and ζ̂j(ξ) := ζ̂0(2
−jξ) for

ξ ∈ Rd and j ∈ Z. Then supp(ζ̂j) ⊆ {ξ ∈ Rd | |ξ| ∈ [2j−1, 3
2
2j]} and∑

j∈Z

ζ̂j(ξ) = 1
(
ξ ∈ Rd \ {0}

)
.
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Set mj(ξ) := ζ̂j(ξ)m(ξ) for j ∈ Z. Let Kj := F−1(mj) ∈ L∞(Rd;L(X,Y )). We

fix N ∈ N, and we let K(N) =
∑N

j=−N Kj. Then,

K(N) ∗ f = Tm(N)f = TmTgf, for all f ∈ C∞
c (Rd)⊗X, (5.20)

where m(N) = ĝ(N)m and ĝ(N) =
∑N

j=−N ζ̂j = (η̂(2−N−1ξ) − η̂(2N+1ξ)). Since

‖g(N)‖L1(Rd) ≤ 2, also ‖KN ∗f‖Lq0 (Rd;Y ) ≤ 2B‖f‖Lp0 (Rd;X) for all f ∈ C∞
c (Rd)⊗X.

We will prove that (5.16) holds with m replaced by m(N). Since m(N)(ξ) → m(ξ)
for almost all ξ ∈ Rd as N → ∞, [28, Lemma 3.1] would then conclude the
proof of (1). For this, we will check the conditions of Corollary 5.3 with constants
independent of N .

By the preceding discussion, from now on we may assume that m = m(N) and
K = K(N). We first claim that (5.20) extends to all f ∈ L∞

c (Rd) ⊗ X. This is
clear if p0 < ∞ by a density argument. Next consider p0 = q0 = ∞. Using the
Hahn–Banach theorem, we can reduce to the scalar case. Fix x ∈ X and y∗ ∈ Y ,
and let Kx,y∗(t) := 〈K(t)x, y∗〉 and mx,y∗(t) := 〈mx, y∗〉. Since Tmx,y∗ is bounded

on L∞(Rd), by duality Tmx,y∗ is also bounded on L1(Rd). Now we can apply the
same density argument as before.

Let δ > 0 be a constant which is chosen suitably small below, and let x ∈ X.
We claim that there exists a constant Cd ≥ 0 such that

sup
j∈Z

T1,j := sup
j∈Z

(∫
Rd

∥∥Kj(s)x
∥∥r′(

1 + 2j|s|
)δ
ds
) 1

r′ ≤ CdM1‖x‖X , (5.21)

sup
j∈Z

T2,j := sup
j∈Z

2−j
(∫

Rd

∥∥∇Kj(s)x
∥∥r′(

1 + 2j|s|
)δ
ds
) 1

r′ ≤ CdM1‖x‖X . (5.22)

Indeed, by Hölder’s inequality, with 1 = r′

%′
+ 1

b
for some b ∈ [1,∞),

T1,j =
(∫

Rd

∥∥Kj(s)x
∥∥r′(

1 + 2j|s|
)δ
ds
) 1

r′

≤
(∫

Rd

∥∥Kj(s)x
∥∥%′(

1 + 2j|s|
)%′n

ds
) 1

%′
(∫

Rd

(
1 + 2j|s|

)(−nr′+δ)b
ds
) 1

r′b

≤ C2
−jd( 1

r′−
1
%′ )
(∫

Rd

∥∥Kj(s)x
∥∥%′(

1 + 2j|s|
)%′n

ds
) 1

%′
,

since (−nr′ + δ)b < −d, or equivalently n > d
%
− d

r
+ δ

r′
, for δ > 0 small enough.

Writing (1 + 2j|s|)n ≤ C
∑

|γ|≤n |(2js)γ| and using the Fourier type % of Y , it
follows that

T1,j ≤ C2−j( 1
%
− 1

r
)
∑
|γ|≤n

2j|γ|
(∫

Rd

∥∥sγKj(s)x
∥∥%′

ds
) 1

%′

≤ C2−j( 1
%
− 1

r
)
∑
|γ|≤n

2j|γ|
(∫

Rd

∥∥∂γmj(ξ)x
∥∥%
dξ
) 1

%
.
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Using the Leibniz rule, the support condition of ζ̂j, and the assumption (M1)r,%,n,
as in [13, Theorem 5.2.7] we find that(∫

Rd

∥∥∂γmj(ξ)x
∥∥%
dξ
) 1

% ≤ CM12
jd( 1

%
− 1

r
)2−j|γ|‖x‖.

Therefore, (5.21) follows if we combine the estimates. The proof of (5.22) is sim-
ilar. The extra factor 2−j cancels out because of the extra factor |ξ| which comes
from the Fourier transform of ∇Kj.

It remains to check that K satisfies (H)r′ . By the triangle inequality, it suffices
to prove that∑

j∈Z

(∫
|s|≥2|t|

∥∥Kj(s− t)x−Kj(s)x
∥∥r′

ds
) 1

r′ ≤ CM1‖x‖X (t 6= 0, x ∈ X) (5.23)

for a constant C ≥ 0 independent of m. Let x ∈ X and t ∈ Rd \ {0}, and choose
k ∈ Z such that 2−k ≤ |t| ≤ 2−k+1. Then, by (5.21), for the part of the sum with
j > k, we find that∑

j>k

(∫
|s|≥2|t|

∥∥Kj(s− t)x−Kj(s)x
∥∥r′

ds
) 1

r′

≤
∑
j>k

2
(∫

|s|≥|t|

∥∥Kj(s)x
∥∥r′

ds
) 1

r′

≤
∑
j>k

2
(∫

|s|≥|t|

∥∥Kj(s)x
∥∥r′ (1 + 2j|s|)δ

(1 + 2j|s|)δ
ds
) 1

r′

≤
∑
j>k

2CdM1‖x‖
(1 + 2j|t|)δ

≤
∑
j>k

2CdM1‖x‖
(1 + 2j−k)δ

= CM1‖x‖.

For the part with j ≤ k, it follows from Minkowski’s inequality and (5.22) that∑
j≤k

(∫
|s|≥2|t|

∥∥Kj(s− t)x−Kj(s)x
∥∥r′

ds
) 1

r′

=
∑
j≤k

(∫
|s|≥2|t|

∥∥∥∫ 1

0

−t · ∇Kj(s− θt)x dθ
∥∥∥r′

ds
) 1

r′

≤
∑
j≤k

|t|
∫ 1

0

(∫
Rd

∥∥∇Kj(s− θt)x
∥∥r′

ds
) 1

r′
dθ

≤
∑
j≤k

2−k+1

∫ 1

0

(∫
Rd

∥∥∇Kj(s− θt)x
∥∥r′(

1 + 2j|s− θt|
)δ
ds
) 1

r′
dθ

≤
∑
j≤k

2−k+12jCdM1‖x‖ = CM1‖x‖.

Now Corollary 5.3 concludes the proof.
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(2) Again, it suffices to prove (5.17) with m replaced by m(N) with constants
independent of N . So fix N ∈ N, and write m = m(N) and K = K(N) again. It
follows as in the proof of (1) that K satisfies the hypotheses of Corollary 5.4. �

5.3. Applications. A straightforward application of Corollary 5.7 is that, under
suitable smoothness conditions on m, one can extrapolate the result of Theo-
rem 4.6 (assuming X has type p0 and Y has cotype q0) to all values of 1 < p ≤
q <∞ with 1

p
− 1

q
= 1

p0
− 1

q0
.

Next, we wish to extrapolate the result of Theorem 4.5. To this end, we first
extrapolate Proposition 4.2, as it forms the basis of our results on Besov spaces.

Lemma 5.9. Let X be a Banach space with type p0 ∈ [1, 2], let Y be a Banach
space with cotype q0 ∈ [2,∞], and let r ∈ [1,∞] be such that 1

p0
− 1

q0
= 1

r
. Let

m : Rd \ {0} → L(X,Y ) be an X-strongly measurable map such that {m(ξ) |
|ξ| ∈ [2k−2, 2k+2]} ⊆ L(X,Y ) is γ-bounded by 2−kσM for some k ∈ Z, σ ∈ R,
and M ≥ 0. Suppose that X and Y both have Fourier type % ∈ [1, 2] with % ≤ r,
and let n := bd(1

%
− 1

r
)c + 1. Assume that, for a constant C ≥ 0 and for all

multi-indices |α| ≤ n,∥∥∂αm(ξ)
∥∥
L(X,Y )

≤ C|ξ|−|α|−σ
(
|ξ| ∈ [2k−2, 2k+2]

)
. (5.24)

Then, for all 1 < p ≤ q <∞ such that 1
p
− 1

q
= 1

r
, the operator Tm : SJk(Rd;X) →

S ′(Rd;Y ) extends to a bounded operator T̃m ∈ L(Lp
Jk
(Rd;X), Lq

Jk
(Rd;Y )). More-

over, ∥∥T̃m(f)∥∥Lq(Rd;Y )
≤ Cd,p,q(C +M)2kd/r2−kσ‖f‖Lp(Rd;X) (5.25)

for all f ∈ Lp
Jk
(Rd;X) and some Cd,p,q ≥ 0.

Proof. Fix ζ ∈ S(Rd) such that ζ(ξ) = 1 if |ξ| ∈ [1
2
, 2] and ζ(ξ) = 0 if |ξ| /∈

[1
4
, 4]. Let ζk(ξ) := ζ(2−kξ). If we set mk := ζkm, then clearly Tmk

f = Tmf for

f ∈ SJk(Rd;X). Using Leibniz’s rule, one may check that mk still satisfies (5.24)
with a bound independent of k. Note that ζ̌k ∗ f ∈ S[−2k+2,2k+2]d(Rd;X) for each

f ∈ S(Rd;X). By Proposition 4.2,∥∥Tmk
(f)

∥∥
Lq0 (Rd;Y )

=
∥∥Tm(ζ̌k ∗ f)∥∥Lq0 (Rd;Y )

≤ τp0,Xcq0,Y 2
(k+3)d/r2−kσM‖f‖Lp0 (Rd;X),

hence Tmk
extends to a bounded linear operator from Lp0(Rd;X) into Lq0(Rd;Y ).

By Corollary 5.7, (5.25) holds with Tm replaced by Tmk
(even without the support

condition on f). Specializing to f ∈ SJk(Rd;X) and using that Tmk
f = Tmf , the

required result follows from Lemma 3.1. �

Now we can extrapolate Theorem 4.5 to other values of p and q.

Theorem 5.10. Assume the conditions of Theorem 4.5, and suppose that X and
Y both have Fourier type % ∈ [1, 2] with % ≤ r. Let n := bd(1

%
− 1

r
)c + 1. Assume

that, for a constant C ≥ 0 and for all k ∈ Z and all multi-indices |α| ≤ n,∥∥∂αm(ξ)
∥∥
L(X,Y )

≤ C|ξ|−|α|−σ
(
|ξ| ∈ [2k−2, 2k+2]

)
. (5.26)
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Then, for all 1 < p̃ ≤ q̃ < ∞ satisfying 1
p̃
− 1

q̃
= 1

r
, the operator Tm is bounded

from Ḃs
p̃,v(Rd;X) to Ḃ

s+σ−d/r
q̃,w (Rd;Y ).

Proof. This is immediate from Lemma 5.9 and Proposition 3.5. �

Remark 5.11. Lemma 5.9 also holds with Jk (see (2.8)) replaced by Ik (see (2.2))
if instead of (5.24) one assumes for k = 0 that {m(ξ) | |ξ| ∈ [0, 4]} ⊆ L(X,Y ) is
γ-bounded and that, for all |α| ≤ n,∥∥∂αm(ξ)

∥∥
L(X,Y )

≤ C
(
1 + |ξ|

)−|α|− d
r (ξ ∈ Rd)

(
|ξ| ∈ [0, 4]

)
.

Hence under this additional assumption, Theorem 4.3 also extrapolates to all p
and q as above.
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