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Abstract. Let α be an orientation-preserving homeomorphism of [0,∞] onto
itself with only two fixed points at 0 and ∞, whose restriction to R+ = (0,∞)
is a diffeomorphism, and let Uα be the isometric shift operator acting on the
Lebesgue space Lp(R+) with p ∈ [1,∞] by the rule Uαf = (α′)1/p(f ◦ α).
We establish criteria of the two-sided and one-sided invertibility of functional
operators of the form

A =
∑
k∈Z

akU
k
α where ‖A‖W =

∑
k∈Z

‖ak‖L∞(R+) < ∞,

on the spaces Lp(R+) under the assumptions that the functions logα′ and
ak for all k ∈ Z are bounded and continuous on R+ and may have slowly
oscillating discontinuities at 0 and ∞. The unital Banach algebra AW of such
operators is inverse-closed: if A ∈ AW is invertible on Lp(R+) for p ∈ [1,∞],
then A−1 ∈ AW . Obtained criteria are of two types: in terms of the two-sided
or one-sided invertibility of so-called discrete operators on the spaces lp and in
terms of conditions related to the fixed points of α and the orbits {αn(t) : n ∈
Z} of points t ∈ R+.

1. Introduction

Let B(X,Y ) be the Banach space of all bounded linear operators acting from
a Banach space X to a Banach space Y . We abbreviate B(X,X) to B(X). An
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operator A ∈ B(X,Y ) is called left invertible (resp., right invertible) if there
exists an operator B ∈ B(Y,X) such that BA = IX (resp., AB = IY ) where IX ∈
B(X) and IY ∈ B(Y ) are the identity operators on X and Y , respectively. The
operator B is called a left (resp., right) inverse of A. An operator A ∈ B(X,Y )
is considered to be (two-sided) invertible if it is left invertible and right invertible
simultaneously. We say that A is strictly left (resp., right) invertible if it is left
(resp., right) invertible, but not invertible. If the operator A is invertible only
from one side, then the corresponding inverse is not uniquely defined (see [9,
Section 2.5] for further properties of one-sided invertible operators).

Let Cb(R+) denote the C
∗-algebra of all bounded continuous functions on R+ :=

(0,+∞). Following [36, p. 820] and [29], a function f ∈ Cb(R+) is called slowly
oscillating (at 0 and ∞) if for each (equivalently, for some) λ ∈ (0, 1),

lim
r→s

osc
(
f, [λr, r]

)
= 0, s ∈ {0,∞},

where

osc
(
f, [λr, r]

)
:= sup

{∣∣f(t)− f(τ)
∣∣ : t, τ ∈ [λr, r]

}
is the oscillation of f on the segment [λr, r] ⊂ R+. Obviously, the set SO(R+)
of all slowly oscillating (at 0 and ∞) functions in Cb(R+) is a unital commu-
tative C∗-algebra. This algebra properly contains C(R+), the C

∗-algebra of all
continuous functions on R+ := [0,+∞].

Let α be an orientation-preserving homeomorphism of R+ onto itself, which
has only two fixed points at 0 and ∞. Thus, α(0) = 0, α(∞) = ∞, but α(t) 6= t
for all t ∈ R+. The function α is referred to as a shift. Since the function α
strictly monotonically increases on R+, its derivative exists and is positive almost
everywhere on R+. If logα′ ∈ L∞(R+), then the weighted shift operator Uα

defined by

Uαϕ = (α′)1/p(ϕ ◦ α)
is an isometry on the Lebesgue space Lp(R+) for every p ∈ [1,∞], and therefore
the operator Uα is invertible on this space.

We say that the considered homeomorphism α : R+ → R+ is a slowly oscillating
shift if its restriction to R+ is a diffeomorphism and logα′ ∈ SO(R+). The set of
all slowly oscillating shifts is denoted by SOS(R+) (see [13]).

Given p ∈ [1,∞], let Ap,SO stand for the unital Banach subalgebra of B(Lp(R+))
which is generated by all operators of multiplication by functions in SO(R+) and
by the shift operators Uα and U−1

α , where α ∈ SOS(R+). Operators A ∈ Ap,SO

are called functional operators.
Let AW := Wp,SO be the unital Banach algebra of all operators of the form

A =
∑
k∈Z

akU
k
α ∈ B

(
Lp(R+)

)
, (1.1)

where ak ∈ SO(R+) for all k ∈ Z, α ∈ SOS(R+), and the norm is given by

‖A‖W :=
∑
k∈Z

‖ak‖Cb(R+) <∞. (1.2)
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By analogy with the Wiener algebra of absolutely convergent Fourier series, we
call AW the Wiener algebra. Obviously, AW ⊂ Ap,SO for all p ∈ [1,∞].

Functional operators of the form A =
∑

g∈G agUg with different classes of coef-

ficients ag and shift operators Ug : f 7→ f ◦ g associated with groups G = {g} of
diffeomorphisms play an important role in studying the solvability of functional
and integro-functional equations (see [1], [10], [19]), functional-differential and
pseudodifference equations (see [2], [20], [33]), and nonlocal boundary value prob-
lems (see [22]–[24] and the references therein). The theory of functional operators
is closely related to the theory of dynamical systems and the theory of represen-
tations of C∗-algebras extended by automorphisms, endomorphisms, and partial
isometries (see, e.g., [3], [6], [21]).

The invertibility criterion for the binomial functional operators A = aI − bUα

with data a, b, logα′ ∈ C(R+) on the Lebesgue spaces Lp(R+), where p ∈ (1,∞),
easily follows from that established by Kravchenko in [18] (also see [19]). Criteria
of the one-sided invertibility of such operators on the spaces Lp(R+) are similar
to those obtained in [25] (also see [11] for generalizations of these results to the
case of reflexive rearrangement-invariant spaces). On the other hand, replacing
(0, 1) by R+ in [12], we get a criterion for the two-sided invertibility of binomial
functional operators with coefficients in L∞(R+) and logα′ ∈ L∞(R+) on every
space Lp(R+) with p ∈ [1,∞].

The study of the two-sided and one-sided invertibility of binomial functional
operators with slowly oscillating coefficients and a slowly oscillating shift was
culminated in [15], where the criteria of the two-sided and one-sided invertibility
of the operators A = aI − bUα with data a, b, logα′ ∈ SO(R+) were established
on the Lebesgue spaces Lp(R+) with p ∈ (1,∞). The slow oscillation of data
functions in comparison with data functions in L∞(R+) allows one to obtain
sufficiently effective criteria of the two-sided and one-sided invertibility for con-
sidered operators.

For p ∈ (1,∞), two-sided invertibility criteria for any operator in the Banach
algebra Ap,C(R+) ⊂ B(Lp(R+)) generated by the operators An =

∑
|k|≤n akU

k
α

(n ∈ N) with coefficients ak ∈ C(R+) and logα′ ∈ C(R+) easily follow from the
criteria obtained in [17] (see also [19], [26], [27]).

We also mention the article [12], where, for p ∈ [1,∞], criteria for the two-sided
invertibility of operators in the Banach subalgebra Ap,L∞(0,1) of B(Lp(0, 1)) gener-
ated by the operators An =

∑
|k|≤n akU

k
α (n ∈ N) with coefficients ak ∈ L∞(0, 1)

and logα′ ∈ L∞(0, 1) were established in terms of discrete operators associated
with the orbits Ot of points t ∈ (0, 1) under the action of the cyclic group G
generated by the shift α.

The present article is devoted to studying the two-sided invertibility of oper-
ators A ∈ Ap,SO and the one-sided invertibility of operators A ∈ AW on the
Lebesgue spaces Lp(R+). Thus, we generalize results of [15] to the Wiener-type
series of functional operators, as well as uniform limits of functional polynomi-
als. The main difficulty in studying such operators is related to oscillations of
coefficients and the shift derivative α′ in neighborhoods of 0 and ∞.
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This article has the following organization. In Section 2, we collect the most
important properties of slowly oscillating functions and slowly oscillating shifts,
including the description of the maximal ideal space of SO(R+). In Section 3,
for every p ∈ [1,∞], we study relations of functional operators A acting on the
space Lp(R+) and discrete operators A(t) acting on the space lp and associated
with the orbits Ot of the points t ∈ R+ under the actions of the cyclic group
G generated by the shift α, and we obtain two-sided invertibility criteria for
functional operators belonging to the Banach subalgebra Ap,SO of B(Lp(R+))
in terms of invertibility of discrete operators A(t) on lp. We prove that in the
case of slowly oscillating behavior of coefficients and the derivatives of shifts the
B(lp)-valued function t 7→ A(t) is bounded and continuous on R+, which allowed
us to avoid the condition of uniform boundedness of the norms of inverse discrete
operators (which arose, e.g., in [4, Theorem 8.4]) in the invertibility criterion for
considered functional operators (see Theorem 3.4). Thus, by this theorem, the
invertibility of any functional operator A ∈ Ap,SO for p ∈ [1,∞] is equivalent
to the invertibility of all discrete operators A(t) for t ∈ R+. These results were
generalized here to a bigger Banach subalgebra Ap,S of B(Lp(R+)) as well.

In Section 4, we study limit operators for the one-sided invertible functional
operators A ∈ AW ⊂ B(Lp(R+)) for p ∈ (1,∞) and for their discrete analogues
A(t) ∈ B(lp) (t ∈ R+) (see [32] and [33] for the definition, properties, and appli-
cations of limit operators), and we prove according to [15, Theorem 3.1] that the
limit operators for any left invertible operator A ∈ AW have trivial kernels and
closed images. The Fredholmness and invertibility of discrete (band-dominated)
operators with slowly oscillating or bounded coefficients on the spaces lp with
entries in a Banach space X in terms of limit operators were studied in [30], [31],
[33, Chapter 2], and [37].

Section 5 is devoted to necessary conditions for the one-sided invertibility of
operators A ∈ AW and A(t) for t ∈ R+, which are obtained on the basis of Sec-
tion 4 and are related to the fixed points of the shift α. For any left or right invert-
ible functional operator A =

∑
k∈Z akU

k
α ∈ AW with coefficients ak ∈ SO(R+), we

prove the two-sided invertibility of its limit operators Aξ =
∑

k∈Z ak(ξ)U
k
α ∈ AW

associated with the points ξ ∈ ∆, where

∆ :=M0

(
SO(R+)

)
∪M∞

(
SO(R+)

)
(1.3)

and Ms(SO(R+)) are fibers of the maximal ideal space of SO(R+) over points
s ∈ R+. This implies for operators Aξ the invertibility of their Gelfand transforms
given by

Aξ(z) =
∑
k∈Z

ak(ξ)z
k for all z ∈ T :=

{
ζ ∈ C : |ζ| = 1

}
. (1.4)

In Section 6, applying the representation of functional operators A ∈ AW as a
3× 3 operator matrix, we first prove the two-sided invertibility of the outermost
blocks and then show the equivalence of the one-sided invertibility for the opera-
tor A and a modified central block of the mentioned operator matrix. The proof
of the two-sided invertibility of the outermost blocks is based on the simultaneous
factorization of absolutely convergent Fourier series (1.4) parameterized by the
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points ξ ∈Ms(SO(R+)) for each s ∈ {0,∞} and a subsequent operator factoriza-
tion of the mentioned blocks (see key Theorem 6.1). This important result gives
necessary conditions for the two-sided and one-sided invertibility of functional
operators, which are related to points t ∈ R+. A discrete version of these results
is also presented in this section.

Section 7 deals with studying relations of the one-sided invertibility of func-
tional operators A ∈ AW and corresponding discrete operators. For the Wiener-
type functional operators A ∈ AW = Wp,SO and p ∈ (1,∞), we obtain here the
important analogues of Theorem 3.4, which says that the one-sided invertibility
of functional operators A ∈ AW on the space Lp(R+) is equivalent to the cor-
responding one-sided invertibility of all discrete operators A(t) for t ∈ R+ on
the space lp (see Theorem 7.8). We also prove here the inverse closedness of the
Banach algebra AW in the Banach algebra B(Lp(R+)) for every p ∈ [1,∞] (see
Theorem 7.4).

Finally, in Section 8 we establish a criterion for the two-sided invertibility of
operators A ∈ AW on the spaces Lp(R+) for p ∈ [1,∞] (see Theorem 8.1), which
is more effective than that obtained in Section 3, and sufficiently effective criteria
for the one-sided invertibility of operators A ∈ AW on the spaces Lp(R+) for p ∈
(1,∞) (see Theorems 8.2 and 8.3). Theorems 8.1–8.3, along with Theorems 3.4,
7.4, and 7.8, are our main results here.

2. Slowly oscillating functions and shifts

2.1. The maximal ideal space of SO(R+). Let M(A) denote the maximal
ideal space of a unital commutative Banach algebra A. Identifying the points
t ∈ R+ with the evaluation functionals t(f) = f(t) for f ∈ C(R+), we get
M(C(R+)) = R+. Consider the fibers

Ms

(
SO(R+)

)
:=

{
ξ ∈M

(
SO(R+)

)
: ξ|C(R+) = s

}
of the maximal ideal spaceM(SO(R+)) over points s ∈ {0,∞}. AsMt(SO(R+)) =
{t} for all t ∈ R+, we get M(SO(R+)) = ∆ ∪ R+, where ∆ is given by (1.3). In
what follows, we write a(ξ) := ξ(a) for every a ∈ SO(R+) and every ξ ∈ ∆.

By analogy with [5, Propositions 4.1, 4.2, and Corollary 4.3], we have the
following two assertions.

Lemma 2.1 ([16, Proposition 2.1]). The set ∆ = M0(SO(R+)) ∪M∞(SO(R+))
coincides with the set closSO∗ R+ \ R+, where closSO∗ R+ is the weak-star closure
of R+ in the dual space of SO(R+).

Lemma 2.2 ([16, Proposition 2.2]). Suppose that {ak}k∈N is a countable subset
of the space SO(R+) and s ∈ {0,∞}. For each ξ ∈ Ms(SO(R+)) there exists a
sequence {tn}n∈N ⊂ R+ such that tn → s as n→ ∞ and

ξ(ak) = ak(ξ) = lim
n→∞

ak(tn) for all k ∈ N. (2.1)

Conversely, if {tn}n∈N ⊂ R+ is a sequence such that tn → s as n → ∞ and
the limits limn→∞ ak(tn) exist for all k ∈ N, then there exists a functional ξ ∈
Ms(SO(R+)) such that (2.1) holds.
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We also need below the following important fact.

Lemma 2.3 ([14, Lemma 2.2]). The fibers M0(SO(R+)) and M∞(SO(R+)) are
connected compact Hausdorff spaces.

2.2. Properties of slowly oscillating functions and shifts. Let α be an
orientation-preserving homeomorphism of R+ onto itself, which has only two fixed
points at 0 and ∞. Then α(0) = 0, α(∞) = ∞, but α(t) 6= t for all t ∈ R+.
Suppose that α0(t) := t and αn(t) := α[αn−1(t)] for all n ∈ Z and t ∈ R+. Let
G := {αn}n∈Z be the cyclic group generated by the shift α. Then G is isomorphic
to the group Z. Given τ ∈ R+, we put

τ− := lim
n→−∞

αn(τ), τ+ := lim
n→+∞

αn(τ).

The points τ+ and τ− are called attracting and repelling points of α, respectively.
Then either τ− = 0 and τ+ = ∞, or τ− = ∞ and τ+ = 0.

Fix τ ∈ R+, and let γ be a semisegment of R+ with endpoints τ and α(τ),
where τ ∈ γ and α(τ) /∈ γ. Then we obtain the following orbital decomposi-
tion

R+ =
⋃
n∈Z

αn(γ), αi(γ) ∩ αj(γ) = ∅ for i 6= j. (2.2)

Below we also assume that α ∈ SOS(R+), that is, the restriction of α to R+ is
a diffeomorphism and logα′ ∈ SO(R+).

Lemma 2.4 ([13, Lemmas 2.3–2.4]). If c ∈ SO(R+) and α ∈ SOS(R+), then
α−1 ∈ SOS(R+), c ◦ α belongs to SO(R+) and

lim
t→s

[
c(t)− c

(
α(t)

)]
= 0 for s ∈ {0,∞}.

Lemma 2.4 immediately implies the following assertion.

Corollary 2.5. If α ∈ SOS(R+), then αj ∈ SOS(R+) for every j ∈ Z.

3. Two-sided invertibility of functional operators in terms of
discrete operators

3.1. Functional operators with slowly oscillating data. Let p ∈ [1,∞].
Consider the unital Banach algebra AW = Wp,SO ⊂ B(Lp(R+)) consisting of all
operators of the form (1.1) with norm (1.2), where ak ∈ SO(R+) for all k ∈ Z
and α ∈ SOS(R+). Obviously, AW ⊂ Ap,SO ⊂ B(Lp(R+)) for all p ∈ [1,∞], where
Ap,SO is the closure of AW in B(Lp(R+)).

Given p ∈ [1,∞], we also consider the Banach space lp consisting of the vectors
f = {fj}j∈Z with entries in C and the norm

‖f‖lp =

{
(
∑

j∈Z |fj|p)1/p if 1 ≤ p <∞,

supj∈Z |fj| if p = ∞,
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and define the unital commutative Banach algebra D̂ ⊂ B(lp) given by

D̂ :=
{
d = diag{dj}j∈ZI : dj ∈ C, lim

n→±∞
(dn+j − dn) = 0 for all j ∈ Z,

‖d‖B(lp) = sup
j∈Z

|dj| <∞
}
. (3.1)

It is easily seen that, for every a ∈ SO(R+) and all t ∈ R+, the associated

operators d = diag{a[αj(t)]}j∈ZI belong to the Banach algebra D̂.
We now define the unital Banach subalgebra Dp of B(lp) generated by the

isometric operators V ,V−1 ∈ B(lp) and by all operators d ∈ D̂, where V =
(δi,j−1)i,j∈ZI and δi,j stands for the Kronecker delta. The operators B ∈ Dp are
called discrete (or band-dominated) operators.

We also consider the unital Banach algebra Wp ⊂ Dp given by

Wp :=
{
B =

∑
k∈Z

bkVk : all bk ∈ D̂ and ‖B‖W :=
∑
k∈Z

‖bk‖B(lp) <∞
}
. (3.2)

Furthermore, we introduce the isometric isomorphism

σ : Lp(R+) → Lp(γ, lp), f 7→ ψ;
(3.3)

ψ : γ → lp, t 7→
{
(Un

αf)(t)
}
n∈Z.

Let us show that for every functional operator A ∈ Ap,SO the discrete operators
A(t) ∈ B(lp) can be defined for all t ∈ R+, and the function t 7→ A(t) is bounded
and continuous on R+.

Theorem 3.1. If p ∈ [1,∞] and A =
∑

k∈Z akU
k
α ∈ AW ⊂ B(Lp(R+)), then the

function A, defined by

A(t) =
(
aj−i

[
αi(t)

])
i,j∈ZI for all t ∈ R+, (3.4)

is a bounded continuous B(lp)-valued operator function on R+, and

max
t∈R+

∥∥A(t)
∥∥
B(lp) ≤ ‖A‖W . (3.5)

Proof. If A =
∑

k∈Z akU
k
α ∈ AW , then for every t ∈ R+ and every p ∈ [1,∞]

the operator A(t) given by (3.4) is bounded on the space lp. Indeed, take the
operators

dk(t) := diag
{
ak
[
αj(t)

]}
j∈ZI ∈ D̂, V = (δi,j−1)i,j∈ZI, (3.6)

where D̂ is given by (3.1). By (3.2), (3.4), and (3.6), we infer that the operator
A(t) =

∑
k∈Z dk(t)Vk belongs to the algebra Wp for every t ∈ R+ and∥∥A(t)

∥∥
B(lp) ≤

∑
k∈Z

∥∥dk(t)∥∥B(lp) =
∑
k∈Z

sup
j∈Z

∣∣ak[αj(t)
]∣∣ ≤ ‖A‖W . (3.7)

Moreover, by (3.4) (see also [12, Lemma 8]),

A
[
αn(t)

]
= VnA(t)V−n for all t ∈ γ and all n ∈ Z. (3.8)
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Fix ε > 0, and consider the operators An =
∑

|k|≤n akU
k
α (n ∈ N) associated

with the operator A =
∑

k∈Z akU
k
α ∈ AW . Obviously, there is an n ∈ N such that

‖A − An‖W < ε/3. Taking t1, t2 ∈ γ, where γ ⊂ R+ is the closure of γ, we infer
from (3.4) and (3.7) that∥∥A(t1)−A(t2)

∥∥
B(lp) <

∥∥An(t1)−An(t2)
∥∥
B(lp) + 2ε/3

≤
∑
|k|≤n

sup
i∈Z

∣∣ak[αi(t1)
]
− ak

[
αi(t2)

]∣∣+ 2ε/3.

Thus, ‖A(t1)−A(t2)‖B(lp) < ε if there exists a δ > 0 such that

sup
|k|≤n

sup
i∈Z

∣∣ak[αi(t1)
]
− ak

[
αi(t2)

]∣∣ < ε̃ :=
ε

3(2n+ 1)
(3.9)

if t1, t2 ∈ γ and |t1 − t2| < δ.
Let, for example, γ = [τ, α(τ)] (for γ = [α(τ), τ ] the proof is analogous). Then

αj(t1), αj(t2) ∈ [αj(τ), αj+1(τ)] for every j ∈ Z. Since M := supx∈R+
α′(x) > 1

because

1 <
αj+1(τ)

αj(τ)
=

1

αj(τ)

∫ αj(τ)

0

α′(x) dx ≤M,

we conclude that [αj(τ), αj+1(τ)] ⊂ [rj,Mrj], where rj = αj(τ). Hence, for every
function ak ∈ SO(R+) (|k| ≤ n) and arbitrary points t1, t2 ∈ γ,

lim
j→±∞

∣∣ak[αj(t1)
]
− ak

[
αj(t2)

]∣∣ ≤ lim
j→±∞

sup
x,y∈[rj ,Mrj ]

∣∣ak(x)− ak(y)
∣∣ = 0.

Thus, there is a number N ∈ N such that, for all |k| ≤ n and all |j| > N ,∣∣ak[αj(t1)
]
− ak

[
αj(t2)

]∣∣ < ε̃ if t1, t2 ∈ γ. (3.10)

Let Γ =
⋃

|j|≤N αj(γ). Since the functions ak are uniformly continuous on the

segment Γ ⊂ R+, we conclude that there is a δ̃ > 0 such that∣∣ak(x)− ak(y)
∣∣ < ε̃ for all |k| ≤ n if x, y ∈ Γ and |x− y| < δ̃. (3.11)

Taking K = infx∈R+ α
′(x) > 0 and M = supx∈R+

α′(x) < ∞, it remains to put

δ := δ̃min{M−j, Kj : j = 0, 1, . . . , N}. Then |αj(t1)− αj(t2)| < δ̃ for all |j| ≤ N
and all t1, t2 ∈ γ with |t1 − t2| < δ. Hence, taking into account (3.11), we infer
that, for all |k| ≤ n and all |j| ≤ N ,∣∣ak[αj(t1)

]
− ak

[
αj(t2)

]∣∣ < ε̃ if t1, t2 ∈ γ and |t1 − t2| < δ. (3.12)

Combining (3.10) and (3.12), we obtain (3.9) for all t1, t2 ∈ γ such that |t1− t2| <
δ. Thus, the function t 7→ A(t) with values in B(lp) is continuous on the segment
γ. Applying (3.8), we obtain the continuity of the function t 7→ A(t) on the whole
R+ and the property

max
t∈αn(γ)

∥∥A(t)
∥∥
B(lp) = max

t∈γ

∥∥A(t)
∥∥
B(lp) for all n ∈ Z, (3.13)

which implies (3.5) in view of (2.2) and (3.7). �

Applying Theorem 3.1 and [12, Proposition 6], we obtain the following.
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Theorem 3.2. If p ∈ [1,∞] and A =
∑

k∈Z akU
k
α ∈ AW ⊂ B(Lp(R+)), then the

operator Â := σAσ−1 ∈ B(Lp(γ, lp)) is given by Â = A|γI, where the operator-
valued function A ∈ Cb(R+,B(lp)) is defined by (3.4) and

‖A‖B(Lp(R+)) = max
t∈γ

∥∥A(t)
∥∥
B(lp) = max

t∈R+

∥∥A(t)
∥∥
B(lp). (3.14)

Proof. If A =
∑

k∈Z akU
k
α ∈ AW , then for every p ∈ [1,∞] and every ψ ∈ Lp(γ, lp)

the direct computation shows that

(Âψ)(t) = (σAσ−1ψ)(t) = A(t)ψ(t) for every t ∈ γ,

where A(t) is given by (3.4). Then

‖A‖B(Lp(R+)) = ‖Â‖B(Lp(γ,lp)). (3.15)

Since by Theorem 3.1 the operator function A : R+ → B(lp) is continuous on γ,
we infer from [12, Proposition 6] that

‖Â‖B(Lp(γ,lp)) =
∥∥∥∥A(·)

∥∥
B(lp)

∥∥
L∞(γ)

= max
t∈γ

∥∥A(t)
∥∥
B(lp),

which gives (3.14) in view of (3.15) and (3.13). �

If now A ∈ Ap,SO \ AW , then there is a sequence of operators An ∈ AW such
that limn→∞ ‖A − An‖B(Lp(R+)) = 0. Then, by Theorem 3.1, An ∈ Cb(R+,B(lp))
for all n ∈ N. The operator-valued function A : R+ → B(lp) is defined as the
uniform limit of the sequence of the operator-valued functions An ∈ Cb(R+,B(lp))
in the norm of L∞(R+,B(lp)), where {An}n∈N is a Cauchy sequence in view of
the equalities

max
t∈R+

∥∥An(t)−Am(t)
∥∥
B(lp) = ‖An − Am‖B(Lp(R+)) (n,m ∈ N)

followed from Theorem 3.2. Then the limitA = limn→∞An belongs to the Banach
algebra Cb(R+,B(lp)), is independent of a choice of the sequence {An} ⊂ AW ,
and satisfies (3.8) and (3.14) along with all An. Moreover, the matrix function
A(·) has the form (3.4) with entries being uniform limits of the corresponding
entries of the matrix functions An(·), and

σAσ−1 = A|γI for all A ∈ Ap,SO. (3.16)

Thus, Theorems 3.1 and 3.2, by the density of AW in Ap,SO, imply the following.

Corollary 3.3. For every p ∈ [1,∞] and every A ∈ Ap,SO, the operator-valued
function A : R+ → B(lp) is bounded and continuous on R+, and satisfies (3.8),
(3.14), and (3.16).

Applying Corollary 3.3 and (3.16), we immediately establish the following
invertibility criterion for the operators A ∈ Ap,SO, which strengthens [12, Theo-
rem 9].

Theorem 3.4. For p ∈ [1,∞], a functional operator A ∈ Ap,SO is invertible on
the space Lp(R+) if and only if for all t ∈ γ (equivalently, for all t ∈ R+) the
discrete operators A(t), given by (3.4) and Corollary 3.3, are invertible on the
space lp.
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Remark 3.5. Since the discrete operators A(τ) and A[α(τ)] defined at the end-
points τ and α(τ) of γ are invertible on the space lp only simultaneously in view
of (3.8), Theorem 3.4 remains valid with γ replaced by γ.

3.2. Functional operators with coefficients in a subalgebra S of L∞(R+).
A function f ∈ L∞(R+) is called slowly oscillating (at 0 and ∞) if for each
(equivalently, for some) λ ∈ (0, 1),

lim
r→s

ess sup
{∣∣f(t)− f(τ)

∣∣ : t, τ ∈ [λr, r]
}
= 0, s ∈ {0,∞}.

Let S denote the C∗-subalgebra of L∞(R+) consisting of all functions on R+ that
are continuous on every semisegment αn(γ) (n ∈ Z), have finite one-sided limits
at the points αn(τ) (n ∈ Z), where τ is the endpoint of γ that belongs to γ, and
are slowly oscillating at 0 and ∞.

We now consider the unital Banach algebra Wp,S consisting of all functional
operators of the form A =

∑
k∈Z akU

k
α with coefficients ak ∈ S and the norm

‖A‖W :=
∑

k∈Z ‖ak‖L∞(R+) < ∞. Let the unital Banach algebra Ap,S be the
closure of Wp,S in the norm of B(Lp(R+)).

Slightly modifying the proof of Theorem 3.1, we obtain the following.

Lemma 3.6. If A ∈ Wp,S for p ∈ [1,∞], then the operator-valued function
A : γ → B(lp) given by (3.4) for all t ∈ γ, where its values at the endpoints τ
and α(τ) of γ are defined by

A(τ) =
(

lim
t∈γ,t→τ

aj−i

[
αi(t)

])
i,j∈Z,

(3.17)
A
[
α(τ)

]
=

(
lim

t∈γ,t→α(τ)
aj−i

[
αi(t)

])
i,j∈Z,

is continuous on the segment γ.

Since the algebra Wp,S is dense in the Banach algebra Ap,S, we conclude from
Lemma 3.6 that for every A ∈ Ap,S the operator-valued function A : γ → B(lp)
is also continuous on the segment γ. Applying now [12, Theorem 9], and the
continuity of the function A : γ → B(lp), we immediately obtain the following
generalization of Theorem 3.4.

Theorem 3.7. Given p ∈ [1,∞], a functional operator A ∈ Ap,S is invertible
on the space Lp(R+) if and only if for all t ∈ γ the discrete operators A(t) are
invertible on the space lp.

4. Limit operators and their application to left invertible
functional operators

4.1. Abstract approach. Let X be a Banach space, let X∗ be its dual space,
let A ∈ B(X), and let U = {Un}∞n=1 be a sequence of isometries. If the strong
limit

AU := s-lim
n→∞

(U−1
n AUn)
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exists in B(X), then it is referred to as the limit operator for A with respect to
the sequence U . Note that sometimes the existence of the strong limit

AU∗ := s-lim
n→∞

(U−1
n AUn)

∗

in B(X∗) is also required in the definition of limit operator, and then (AU)
∗ = AU∗ .

The following statement is a variation of [8, Chapter 3, Lemma 1.1].

Theorem 4.1 ([15, Theorem 3.1]). Let X be a Banach space, let A ∈ B(X), and
let U = {Un}∞n=1 ⊂ B(X) be a sequence of isometries such that the limit operator
AU exists. If the operator A is left invertible in B(X), then KerAU = {0}, ImAU
is a closed subspace of X, and the limit operator AU is invertible as the operator
acting from X to ImAU .

Theorem 4.1 implies the following corollary (see [8, Chapter 3, Lemma 1.1] and
[33, Proposition 1.2.9]).

Corollary 4.2. If an operator A ∈ B(X) is invertible in B(X) and the strong lim-
its AU ∈ B(X) and AU∗ ∈ B(X∗) exist with respect to a sequence U of isometries
in B(X), then the limit operator AU is also invertible in B(X).

4.2. An application of limit operators to functional operators A ∈ AW .
We now apply the technique of limit operators [5] to studying the two-sided and
one-sided invertibility of operators A ∈ AW given by (1.1)–(1.2) on the Lebesgue
spaces Lp(R+), p ∈ (1,∞). Limit operators are related to points ξ of the set ∆
given by (1.3).

By analogy with [15, Lemma 3.2], we obtain the following.

Lemma 4.3. Let p ∈ [1,∞), and let A =
∑

k∈Z akU
k
α ∈ AW ⊂ B(Lp(R+)), where

all ak ∈ SO(R+) and α ∈ SOS(R+). Then for every ξ ∈ ∆ there is a sequence of
isometries U on Lp(R+) such that

AU = Aξ :=
∑
k∈Z

ak(ξ)U
k
α ∈ AW . (4.1)

Proof. Let us show that for every s ∈ {0,∞} and every ξ ∈ Ms(SO(R+)) there
is a strictly increasing sequence {kn}n∈N of numbers kn ∈ N such that (4.1) holds
for the sequence of isometries U ⊂ B(Lp(R+)) given by

U :=

{
{U−kn

α }n∈N if s is the attracting point of α,

{Ukn
α }n∈N if s is the repelling point of α.

Let, for example, s = ∞ be the attracting point of α, that is,

lim
n→+∞

αn(t) = τ+ = s = ∞ for all t ∈ R+.

Then 0 < t < αm(t) for all m ∈ N and all t ∈ R+, and hence

αm(t)

t
=

1

t

∫ t

0

α′
m(x) dx ≤ sup

t∈R+

[
α′(t)

]m
:=Mm,



TWO-SIDED AND ONE-SIDED INVERTIBILITY OF FUNCTIONAL OPERATORS 565

where 1 < M := supt∈R+
α′(t) < ∞. Fix ξ ∈ Ms(SO(R+)). By Lemma 2.2, for

the countable set {ak ∈ SO(R+) : k ∈ Z} there is a monotonically increasing
sequence {tn} ⊂ R+ such that tn → τ+ as n→ ∞ and

lim
n→∞

ak(tn) = ak(ξ) for all k ∈ Z. (4.2)

Let kn ∈ N be such that tn ∈ [αkn(1), αkn+1(1)], where t1 ≥ α(1). Since

Ukn
α

(∑
k∈Z

akU
k
α

)
U−kn
α =

∑
k∈Z

(ak ◦ αkn)U
k
α for all n ∈ N,

where ak ◦αkn ∈ SO(R+) by Lemma 2.4 and Corollary 2.5, it is sufficient to prove
that

s-lim
n→∞

(ak ◦ αkn)I = ak(ξ)I for every k ∈ Z. (4.3)

Then we will conclude that

s-lim
n→∞

∑
k∈Z

(ak ◦ αkn)U
k
α =

∑
k∈Z

ak(ξ)U
k
α = Aξ,

where the operator Aξ belongs to the algebra AW along with A because

‖Aξ‖W =
∑
k∈Z

∣∣ak(ξ)∣∣ ≤ ∑
k∈Z

‖ak ◦ αkn‖Cb(R+) =
∑
k∈Z

‖ak‖Cb(R+) <∞.

Thus, to get (4.3), it remains to prove that, for any c ∈ {ak ∈ SO(R+) : k ∈ Z},
any m ∈ N, and any function f ∈ Lp(R+) with support in [α−m(1), αm(1)],

lim
n→∞

∥∥(c ◦ αkn)f − c(tn)f
∥∥
Lp(R+)

= 0.

This will follow if

lim
n→∞

max
t∈[α−m(1),αm(1)]

∣∣c[αkn(t)
]
− c(tn)

∣∣ = 0. (4.4)

Clearly, for every t ∈ [α−m(1), αm(1)] we get

αkn(t), tn ∈
[
αkn−m(1), αkn+m(1)

]
⊂ [rn,M

2mrn], (4.5)

where rn := αkn−m(1). Since c ∈ SO(R+), we infer from (4.5) that

lim
n→∞

max
t∈[α−m(1),αm(1)]

∣∣c[αkn(t)
]
− c(tn)

∣∣ ≤ lim
n→∞

max
t,τ∈[rn,M2mrn]

∣∣c(t)− c(τ)
∣∣ = 0,

which implies (4.4). Hence

s-lim
n→∞

[
(ak ◦ αkn)I

]
= s-lim

n→∞

[
ak(tn)I

]
= lim

n→∞

[
ak(tn)I

]
= ak(ξ)I (k ∈ Z),

which completes the proof in the case s = τ+ = ∞.
The cases s = τ− = ∞, s = τ+ = 0, and s = τ− = 0 are treated analogously. �

Theorem 4.1 and Lemma 4.3 imply the following.
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Corollary 4.4. If p ∈ [1,∞) and the operator A =
∑

k∈Z akU
k
α ∈ AW with

coefficients ak ∈ SO(R+) and a shift α ∈ SOS(R+) is left invertible on the space
Lp(R+), then for all ξ ∈ ∆ =M0(SO(R+)) ∪M∞(SO(R+)) the limit operators

Aξ =
∑
k∈Z

ak(ξ)U
k
α ∈ AW (4.6)

possess the properties: KerAξ = {0}, ImAξ is a closed subspace of Lp(R+), and
the Aξ’s are invertible operators from Lp(R+) onto ImAξ.

Applying Corollary 4.4 to the invertible operator A ∈ AW ⊂ B(Lp(R+)) and
its adjoint operator A∗ ∈ AW ⊂ B(Lq(R+)), where p ∈ (1,∞) and 1/p+1/q = 1,
we immediately obtain the following.

Corollary 4.5. If p ∈ (1,∞) and the operator A =
∑

k∈Z akU
k
α ∈ AW with

coefficients ak ∈ SO(R+) and a shift α ∈ SOS(R+) is invertible on the space
Lp(R+), then for all ξ ∈ ∆ the limit operators (4.6) also are invertible on this
space.

Lemma 4.6 ([15, Theorem 2.5]). If α ∈ SOS(R+), then the spectrum of the
isometric operator Uα coincides with the unit circle T = {z ∈ C : |z| = 1}.

Consider the unital commutative Banach algebra of all absolutely convergent
series

W =
{
f =

∑
k∈Z

ckz
k : ck ∈ C, z ∈ T, ‖f‖W :=

∑
k∈Z

|ck| <∞
}
⊂ C(T). (4.7)

As is well known (see, e.g., [7, pp. 22–23]), the maximal ideal space M(W ) of the
algebra W can be identified with the unit circle T.

Along withW we also consider the unital commutative Banach subalgebraWp,C
of AW ⊂ B(Lp(R+)) that consists of all functional operators A =

∑
k∈Z akU

k
α ∈

AW with constant coefficients ak ∈ C. Since the Banach algebras W and Wp,C are
isometrically isomorphic, the maximal ideal space of the algebra Wp,C can also be
identified with T, and the Gelfand transform of the operators A =

∑
k∈Z akU

k
α ∈

Wp,C is given by A(z) :=
∑

k∈Z akz
k for all z ∈ T, where the function A(·) belongs

to the algebra W .
Hence, for each ξ ∈ ∆ the limit operator Aξ =

∑
k∈Z ak(ξ)U

k
α ∈ AW is invertible

on the Lebesgue space Lp(R+) (1 ≤ p < ∞) if and only if its Gelfand transform
Aξ(·) is invertible in C(T), that is,

Aξ(z) :=
∑
k∈Z

ak(ξ)z
k 6= 0 for all z ∈ T. (4.8)

While all limit operators Aξ are invertible for each invertible operator A ∈ AW

by Corollary 4.5, and hence (4.8) holds, this fact for strictly one-sided invertible
operators A ∈ AW we still need to prove.
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4.3. Limit operators for discrete operators associated with operators
A ∈ AW . Consider the isometry V of the space lp onto itself, which is given
by Vf = {fk+1}k∈Z ∈ lp for every vector f = {fk}k∈Z ∈ lp. Taking the orbit
O(t) := {αn(t) : n ∈ Z} of any point t ∈ R+, one can easily deduce from the
proof of Lemma 4.3 the following discrete analogue of Lemma 4.3.

Lemma 4.7. Let p ∈ [1,∞), and let A =
∑

k∈Z akU
k
α ∈ AW with all ak ∈ SO(R+)

and α ∈ SOS(R+). Then for every s ∈ {0,∞} and every ξ ∈ Ms(SO(R+)) there
is a sequence {kn}n∈N ⊂ N of numbers kn ∈ N such that kn → ∞ as n→ ∞ and,
for every t ∈ R+ and every discrete operator A(t) ∈ Wp given by (3.4) on the
space lp,

s-lim
n→∞

V±knA(t)V∓kn = Âξ :=
∑
k∈Z

ak(ξ)Vk for s = τ±. (4.9)

Proof. Let A ∈ AW , and let limn→+∞ αn(t) = τ+ = s = ∞ for all t ∈ R+. Apply-
ing (4.2) and (4.4) for all c ∈ {ak : k ∈ Z}, we infer that for any ξ ∈Mτ+(SO(R+))
there is a sequence {kn}n∈N of numbers kn ∈ N such that limn→∞ kn = ∞ and

lim
n→∞

max
t∈[α−m(1),αm(1)]

∣∣ak[αkn(t)
]
− ak(ξ)

∣∣ = 0 for all k ∈ Z. (4.10)

Hence, from (4.10) and the definition of SO(R+) it follows that

lim
n→∞

ak
[
αkn(t)

]
= ak(ξ) for all t ∈ R+ and all k ∈ Z. (4.11)

Analogously, for every ξ ∈ Mτ−(SO(R+)) there exists a sequence {kn}n∈N of
numbers kn ∈ N such that limn→∞ kn = ∞ and

lim
n→∞

ak
[
α−kn(t)

]
= ak(ξ) for all t ∈ R+ and all k ∈ Z. (4.12)

Taking the discrete operator A(t) with entries in the orbit O(t) = {αn(t) : n ∈ Z}
of any point t ∈ R+, we infer from (4.11), (4.12), and (3.8) by analogy with the
proof of Lemma 4.3 that for every ξ ∈ ∆ = M0(SO(R+)) ∪M∞(SO(R+)) and

every t ∈ R+ there exists the limit operator Âξ =
∑

k∈Z ak(ξ)Vk ∈ B(lp) satisfying
(4.9). Moreover, the set of limit operators {Âξ : ξ ∈ ∆} is the same for every
discrete operator A(t) ∈ Wp given for t ∈ R+. �

Theorem 4.1 and Lemma 4.7 imply the following.

Corollary 4.8. If p ∈ [1,∞), A =
∑

k∈Z akU
k
α ∈ AW , and for some t ∈ R+ the

discrete operator A(t) ∈ Wp given by (3.4) is left invertible on the space lp, then
for all ξ ∈ ∆ the limit operators

Âξ :=
∑
k∈Z

ak(ξ)Vk ∈ Wp (4.13)

possess the properties: Ker Âξ = {0}, Im Âξ is a closed subspace of lp, and Âξ are

invertible operators from lp onto Im Âξ.

Applying Corollary 4.8 to invertible operatorsA(t) ∈ Wp ⊂ B(lp) and (A(t))∗ ∈
Wq ⊂ B(lq) associated with A =

∑
k∈Z akU

k
α ∈ AW and t ∈ R+, where p ∈ (1,∞)

and 1/p+ 1/q = 1, we immediately obtain the following.
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Corollary 4.9. If p ∈ (1,∞), A =
∑

k∈Z akU
k
α ∈ AW , and for some t ∈ R+ the

discrete operator A(t) ∈ Wp given by (3.4) is invertible on the space lp, then for
all ξ ∈ ∆ the limit operators (4.13) also are invertible on the space lp.

Given p ∈ (1,∞), it is easily seen that for every ξ ∈ ∆ the limit operators
Aξ ∈ AW related to the operators A ∈ AW are isometrically isomorphic to the

limit operators Âξ ∈ Wp related to the discrete operators A(t) ∈ Wp for any
point t ∈ R+. Since the Banach algebras of such limit operators are commutative

and the Gelfand transforms for the limit operators Aξ ∈ AW and Âξ ∈ Wp can
be identified, we conclude that for every ξ ∈ ∆ the limit operators Aξ ∈ AW

related to the operators A ∈ AW are invertible on the space Lp(R+) if and only

if the limit operators Âξ ∈ Wp related to discrete operators A(t) ∈ Wp for any
point t ∈ R+ are invertible on the space lp. Hence, the two-sided invertibility of
any discrete operator A(t) ∈ Wp related to an operator A ∈ AW implies that
Aξ(z) 6= 0 for all ξ ∈ ∆ and all z ∈ T.

5. Necessary one-sided invertibility conditions at fixed points of
the shift

In what follows, we assume that 1 < p <∞.

5.1. Necessary conditions for functional operators at fixed points of the
shift.

Lemma 5.1. If p ∈ (1,∞),M ∈ N, and the functional operator A =
∑

|k|≤M akU
k
α

with coefficients ak ∈ SO(R+) and a shift α ∈ SOS(R+) is left or right invertible
on the Lebesgue space Lp(R+), then

Aξ(z) =
∑
|k|≤M

ak(ξ)z
k 6= 0 for all ξ ∈ ∆ and all z ∈ T. (5.1)

Proof. Let the operator A =
∑

|k|≤M akU
k
α be left invertible on the space Lp(R+),

and, on the contrary, suppose that Aξ(z0) = 0 for some ξ ∈ ∆ and some z0 ∈ T.
Take the limit operator

Aξ =
∑
|k|≤M

ak(ξ)U
k
α ∈ B

(
Lp(R+)

)
.

Since the operator A is left invertible on the space Lp(R+), we infer from Corol-
lary 4.4 that KerAξ = {0} and ImAξ is closed in Lp(R+).

Since KerAξ = {0}, we conclude that Aξ(z) 6≡ 0. Indeed, if Aξ(z) ≡ 0, then
ak(ξ) = 0 for all |k| ≤ M , and therefore KerAξ = Lp(R+), which is impossible.
Hence, there exist numbersm1,m2 ∈ {−M, . . . ,M} such thatm1 < m2, ak(ξ) 6= 0
for k ∈ {m1,m2} and ak(ξ) = 0 for all k < m1 and all k > m2. Representing the
function Aξ(·) in the form

Aξ(z) =

m2∑
k=m1

ak(ξ)z
k = am2(ξ)z

m1

m2−m1∏
k=1

(z − zk) for z ∈ T, (5.2)



TWO-SIDED AND ONE-SIDED INVERTIBILITY OF FUNCTIONAL OPERATORS 569

where all zk ∈ C and where at least one zk coincides with z0 ∈ T because Aξ(z0) =
0, we infer that

Aξ = am2(ξ)U
m1
α

m2−m1∏
k=1

(Uα − zkI).

Passing to the adjoint operator, we obtain

A∗
ξ = am2(ξ)U

m1
α−1

m2−m1∏
k=1

(Uα−1 − zkI) ∈ B
(
Lq(R+)

)
, (5.3)

where 1/p+1/q = 1 and for every k = 1, 2, . . . ,m2 −m1 either |zk| 6= 1 and then
the operator Uα−1 − zkI is invertible on the space Lq(R+), or |z0| = 1 and then it
follows that Ker(Uα−1 − z0I) = {0}. Indeed, in the latter case, according to the
proof of [15, Lemma 4.1], we consider the equation

(Uα−1f)(x)− z0f(x) = 0 for f ∈ Lq(R+) and x ∈ R+. (5.4)

Let γn = αn(γ) (n ∈ Z), where γ is the segment of R+ with endpoints 1 and α(1).
Because |z0| = 1, we deduce from (5.4) that

‖f |γn‖
q
Lq(γn)

=
∥∥(Un

α−1
f)|γn

∥∥q

Lq(γn)
= ‖f |γ0‖

q
Lq(γ0)

for all n ∈ Z,

which implies for q ∈ (1,∞) that Ker(Uα−1 − z0I) = {0}. Hence, by (5.3),
KerA∗

ξ = {0}. Since ImAξ is closed in Lp(R+), KerAξ = {0}, and KerA∗
ξ = {0},

we conclude that the operator Aξ is invertible on the space Lp(R+). But then the
Gelfand transform Aξ(·) of the operator Aξ should be separated from zero for all
z ∈ T, which contradicts the assumption that Aξ(z0) = 0.

If the operator A =
∑

|k|≤M akU
k
α is right invertible on the space Lp(R+), then

passing to the left invertible adjoint operator

A∗ =
∑
|k|≤M

(ak ◦ α−k)U
k
α−1

∈ B
(
Lq(R+)

)
,

where 1/p+ 1/q = 1 and, by Lemma 2.4 and Corollary 2.5,

ak ◦ α−k ∈ SO(R+) and (ak ◦ α−k)(ξ) = ak(ξ) for all ξ ∈ ∆,

we obtain (5.1) from the part already proved. �

We now pass to functional operators A in the Banach algebra AW .

Theorem 5.2. Let p ∈ (1,∞). If the functional operator A =
∑

k∈Z akU
k
α ∈ AW

with coefficients ak ∈ SO(R+) and a shift α ∈ SOS(R+) is left or right invertible
on the Lebesgue space Lp(R+), then

Aξ(z) =
∑
k∈Z

ak(ξ)z
k 6= 0 for all ξ ∈ ∆ and all z ∈ T. (5.5)
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Proof. Let the operator A =
∑

k∈Z akU
k
α be left invertible on the space Lp(R+),

and, on the contrary, suppose that Aξ(z0) = 0 for some ξ ∈ ∆ and some z0 ∈ T.
Take the limit operator

Aξ =
∑
k∈Z

ak(ξ)U
k
α ∈ AW ⊂ B

(
Lp(R+)

)
.

By the stability of the left invertibility, there is an ε > 0 such that every operator

Ã ∈ B(Lp(R+)) with ‖A − Ã‖B(Lp(R+)) < ε also is left invertible on the space
Lp(R+). We now choose M ∈ N such that the polynomial functional operator

Ã :=
∑

|k|≤M akU
k
α satisfies the inequalities

‖A− Ã‖B(Lp(R+)) ≤ ‖A− Ã‖W < ε/2. (5.6)

Since Aξ(z0) = 0 and since

max
z∈T

∣∣Aξ(z)− Ãξ(z)
∣∣ ≤ ‖Aξ − Ãξ‖B(Lp(R+)) ≤ ‖A− Ã‖B(Lp(R+)) < ε/2

for all ξ ∈ ∆, we deduce that ∣∣Ãξ(z0)
∣∣ < ε/2. (5.7)

We now consider the polynomial functional operator B := Ã− Ãξ(z0)I. Then
we infer from (5.6) and (5.7) that

‖A−B‖B(Lp(R+)) ≤ ‖A− Ã‖B(Lp(R+)) +
∣∣Ãξ(z0)

∣∣ < ε,

and therefore the operator B is left invertible on the space Lp(R+) along with

A. Since Bξ = Ãξ − Ãξ(z0)I and hence Bξ(z) = Ãξ(z) − Ãξ(z0), it follows that
Bξ(z0) = 0, which is impossible in view of Lemma 5.1.

If the operator A =
∑

k∈Z akU
k
α ∈ AW is right invertible on the space Lp(R+),

then passing to the left invertible adjoint operator

A∗ =
∑
k∈Z

(ak ◦ α−k)U
k
α−1

∈ AW ⊂ B
(
Lq(R+)

)
,

where 1/p+ 1/q = 1, we obtain (5.5) from the part already proved. �

Corollary 5.3. If p ∈ (1,∞) and a functional operator A ∈ AW is left or right
invertible on the Lebesgue space Lp(R+), then for all ξ ∈ ∆ the limit operators
Aξ ∈ AW are two-sided invertible on the space Lp(R+).

Proof. Since the operator A ∈ AW is one-sided invertible on the space Lp(R+) for
p ∈ (1,∞), we infer from Theorem 5.2 that Aξ(z) 6= 0 for all ξ ∈ ∆ and all z ∈ T.
Hence, for every ξ ∈ ∆ the Gelfand transform Aξ(·) of the limit operator Aξ is
invertible in the algebra C(T), which implies the invertibility of the operator Aξ

on the space Lp(R+). �

Under conditions of Theorem 5.2, for every ξ ∈ ∆, we can define the Cauchy
indices for the invertible functions z 7→ Aξ(z) by letting

indAξ(·) :=
1

2π

{
argAξ(z)

}
z∈T, (5.8)
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where {argAξ(z)}z∈T denotes the increment of any continuous branch of argAξ(z)
as z traces T counterclockwise.

Corollary 5.4. If the functional operator A =
∑

k∈Z akU
k
α ∈ AW with coefficients

ak ∈ SO(R+) and a shift α ∈ SOS(R+) is left or right invertible on the Lebesgue
space Lp(R+) with p ∈ (1,∞), then the Cauchy indices indAξ(·) given by (5.8)
coincide for all ξ ∈Mτ+(SO(R+)) and, respectively, for all ξ ∈Mτ−(SO(R+)).

Proof. By Theorem 5.2, the one-sided invertibility of the operator A ∈ AW implies
the fulfillment of (5.5). Hence the Cauchy indices indAξ(·) are defined for all
ξ ∈ Mτ±(SO(R+)). Since the fibers Mτ±(SO(R+)) for τ± ∈ {0,∞} are connected
compact Hausdorff spaces by Lemma 2.3, and since the function ξ 7→ Aξ(·) with
values in the unital Banach algebra W ⊂ C(T) given by (4.7) is continuous on
the compacts Mτ+(SO(R+)) and Mτ−(SO(R+)) for every left or right invertible
operator A ∈ AW , we infer that the function ξ 7→ indAξ(·) is a constant for all
ξ ∈Mτ+(SO(R+)) and, respectively, for all ξ ∈Mτ−(SO(R+)). �

By Corollary 5.4, the numbers indAξ(·) do not depend on ξ ∈ Ms(SO(R+))
and can only depend on s ∈ {0,∞}. Hence, we uniquely define the numbers

N± := indAξ(·) for all ξ ∈Mτ±

(
SO(R+)

)
, (5.9)

where τ± ∈ {0,∞}.

5.2. Necessary conditions for discrete operators at fixed points of the

shift. Since the Gelfand transforms for the limit operators Aξ ∈ AW and Âξ ∈ Wp

are the same, and since for every p ∈ (1,∞) and every z0 ∈ C the kernels of the
operators V±1 − z0I on the space lp are trivial, we obtain the following result by
analogy with Lemma 5.1.

Lemma 5.5. If p ∈ (1,∞), M ∈ N, A =
∑

|k|≤M akU
k
α ∈ AW , and for some

t ∈ R+ the discrete operator

A(t) =
∑
|k|≤M

diag
{
ak
[
αj(t)

]}
j∈ZV

k ∈ Wp (5.10)

is left or right invertible on the space lp, then (5.1) holds.

Proof. Let p ∈ (1,∞), and let for some t ∈ R+ the discrete operator (5.10) be
left invertible on the space lp. On the contrary, suppose that Aξ(z0) = 0 for
some ξ ∈ ∆ and some z0 ∈ T. Then we deduce from Corollary 4.8 that for this

ξ ∈ ∆ the limit operator Âξ :=
∑

|k|≤M ak(ξ)Vk ∈ Wp possesses the properties:

Ker Âξ = {0} and Im Âξ is a closed subspace of lp. Since Ker Âξ = {0}, we
conclude that the Gelfand transform z 7→ Âξ(z) of the operator Âξ is not equal

to zero identically, because otherwise Ker Âξ = lp. As the Gelfand transforms

for the limit operators Âξ ∈ Wp and Aξ ∈ AW are the same, we conclude that
there exist numbers m1,m2 ∈ {−M, . . . ,M} such that m1 < m2, ak(ξ) 6= 0 for
k ∈ {m1,m2} and, according to (5.2),

Âξ(z) = Aξ(z) = am2(ξ)z
m1

m2−m1∏
k=1

(z − zk) for z ∈ T, (5.11)
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where all zk ∈ C. Since Âξ(z0) = Aξ(z0) = 0, we conclude that at least one zk in
(5.11) coincides with z0 ∈ T. Further, from (5.11) it follows that

Âξ = am2(ξ)Vm1

m2−m1∏
k=1

(V − zkI) ∈ B(lp).

Passing to the adjoint operator, we obtain

Â∗
ξ = am2(ξ)V−m1

m2−m1∏
k=1

(V−1 − zkI) ∈ B(lq), (5.12)

where 1/p+1/q = 1 and for every k = 1, 2, . . . ,m2−m1 either |zk| 6= 1 or |z0| = 1.
If |zk| 6= 1, then the operator V−1 − zkI is invertible on the space lq because V is
an isometric operator on lq. If |z0| = 1, then any solution f = {fj}j∈Z ∈ lq of the
equation V−1f − z0f = 0 possesses the property: |fj| = |f0| for all j ∈ Z, which
implies that Ker(V−1 − z0I) = {0}. Hence, by (5.12), Ker Â∗

ξ = {0}. Since ImAξ

is closed in lp, Ker Âξ = {0}, and Ker Â∗
ξ = {0}, we conclude that the operator Âξ

is invertible on the space lp. But then the Gelfand transform Âξ(·) of the operator
Âξ should be separated from zero for all z ∈ T, which contradicts the assumption
that Aξ(z0) = 0.

If the operator A(t) =
∑

|k|≤M diag{ak[αj(t)]}j∈ZVk ∈ Wp is right invertible on
the space lp, then passing to the left invertible adjoint operator(

A(t)
)∗

=
∑
|k|≤M

diag
{
ak
[
αj−k(t)

]}
j∈ZV

−k ∈ Wq,

where 1/p + 1/q = 1 and taking into account the fact that ak ◦ αj−k ∈ SO(R+)

and that (ak ◦ α−k)(ξ) = ak(ξ) for all ξ ∈ ∆ (see Lemma 2.4 and Corollary 2.5),
we conclude from the part already proved that

Â∗
ξ(z) =

∑
|k|≤M

ak(ξ)z
−k 6= 0 for all ξ ∈ ∆ and all z ∈ T,

which implies (5.1). �

Lemma 5.5, similarly to Theorem 5.2, leads to the following assertion.

Theorem 5.6. If p ∈ (1,∞) and for some t ∈ R+ the discrete operator

A(t) =
∑
k∈Z

diag
{
ak
[
αj(t)

]}
j∈ZV

k ∈ Wp, (5.13)

associated with an operator A =
∑

k∈Z akU
k
α ∈ AW , is left or right invertible on

the space lp, then (5.5) holds and the numbers N± are uniquely defined by (5.9).

Proof. Let for some t ∈ R+ the discrete operator (5.13) be left invertible on the
space lp, and, contrary to (5.5), we suppose that Aξ(z0) = 0 for some ξ ∈ ∆ and
some z0 ∈ T. For A(t) ∈ Wp and given ξ ∈ ∆, we take the limit operator

Âξ =
∑
k∈Z

ak(ξ)Vk ∈ Wp.
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By the stability of the left invertibility, there is an ε > 0 such that every discrete
operator F(t) ∈ Wp with ‖A(t)−F(t)‖B(lp) < ε is also left invertible on the space
lp. We now choose M ∈ N such that the discrete operator

F(t) :=
∑
|k|≤M

diag
{
ak
[
αj(t)

]}
j∈ZV

k ∈ Wp

satisfies the inequalities∥∥A(t)−F(t)
∥∥
B(lp) ≤

∥∥A(t)−F(t)
∥∥
W
< ε/2. (5.14)

Since the functions Aξ(z) and Fξ(z) :=
∑

|k|≤M ak(ξ)z
k on T are the Gelfand

transforms for the limit operators Âξ ∈ Wp and F̂ξ :=
∑

|k|≤M ak(ξ)Vk ∈ Wp, and
since

max
z∈T

∣∣Aξ(z)− Fξ(z)
∣∣ ≤ ‖Âξ − F̂ξ‖B(lp) ≤

∥∥A(t)−F(t)
∥∥
B(lp) < ε/2

for all ξ ∈ ∆, we deduce from the equality Aξ(z0) = 0 that∣∣Fξ(z0)
∣∣ < ε/2. (5.15)

We now consider the discrete operator H(t) := F(t)− Fξ(z0)I ∈ Wp. Then we
infer from (5.14) and (5.15) that∥∥A(t)−H(t)

∥∥
B(lp) ≤

∥∥A(t)−F(t)
∥∥
B(lp) +

∣∣Fξ(z0)
∣∣ < ε,

and therefore the discrete operator H(t) ∈ Wp is left invertible on the space lp

along with A(t). Finally, since Ĥξ = F̂ξ − Fξ(z0)I and hence Hξ(z) = Fξ(z) −
Fξ(z0), we conclude that Hξ(z0) = 0, which is impossible in view of Lemma 5.5.

If the discrete operator (5.13) is right invertible on the space lp, then passing
to the left invertible adjoint operator(

A(t)
)∗

=
∑
k∈Z

diag
{
ak
[
αj−k(t)

]}
j∈ZV

−k ∈ Wq,

where 1/p+ 1/q = 1, we conclude from the part already proved that

A∗
ξ(z) =

∑
k∈Z

ak(ξ)z
−k 6= 0 for all ξ ∈ ∆ and all z ∈ T,

which implies (5.5).
Finally, by the proof of Corollary 5.4, the numbers N± are uniquely defined by

(5.9) as soon as (5.5) holds. �

In view of Theorem 5.6, for any one-sided invertible discrete operator A(t) ∈
Wp, we also can uniquely define the numbers N±.
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6. Necessary one-sided invertibility conditions related to points
t ∈ R+

6.1. Invertibility of outermost blocks. Fix a point τ ∈ R+, and let γ be
a semisegment of R+ with endpoints τ and α(τ), where τ ∈ γ and α(τ) /∈ γ.
Consider the intervals

γ+n :=
∞⋃
k=n

αk(γ), γ−n :=
∞⋃
k=n

α−k(γ), γ0n :=
n−1⋃

k=−n+1

αk(γ). (6.1)

Let χ±
n and χ0

n denote the operators of multiplication by the characteristic func-
tions of γ±n and γ0n, respectively.

Let A±
W be the unital Banach subalgebras of the unital Banach algebra AW ,

which are given, respectively, by

A±
W :=

{
A =

∑
k∈Z+

a±k U
±k
α : a±k ∈ SO(R+), ‖A‖W =

∑
k∈Z+

‖a±k ‖Cb(R+) <∞
}
,

where Z+ := N∪ {0}. Let W ⊂ C(T) be the unital Banach algebra (4.7), and let
W± be the unital Banach subalgebras of W which are given by

W± =
{
f =

∑
k∈Z+

a±k z
±k : a±k ∈ C, z ∈ T, ‖f‖W :=

∑
k∈Z+

|a±k | <∞
}
. (6.2)

Theorem 6.1. If p ∈ [1,∞], A ∈ AW ⊂ B(Lp(R+)), Aξ(z) 6= 0 for all (ξ, z) ∈
∆×T, and the numbers N± are given by (5.9), then there exists a number n0 ∈ N
such that for all n ≥ n0 the operators

χ+
nAχ

+
n+N+

: χ+
n+N+

Lp(R+) → χ+
nL

p(R+), (6.3)

χ−
nAχ

−
n−N−

: χ−
n−N−

Lp(R+) → χ−
nL

p(R+) (6.4)

are invertible.

Proof. It is sufficient to prove the invertibility of operator (6.3) (the proof for the
operator (6.4) is analogous). Moreover, we may assume without loss of generality
that N+ = 0. Indeed, taking into account the equalities{

χ+
nU

k
αχ

+
n = χ+

nU
k
α = Uk

αχ
+
n+k

χ+
nU

−k
α χ+

n = U−k
α χ+

n = χ+
n+kU

−k
α

for k ∈ Z+, (6.5)

we infer for N+ ∈ Z that

(χ+
nAχ

+
n+N+

)(χ+
n+N+

U−N+
α χ+

n ) = χ+
n (AU

−N+
α )χ+

n ,

where ind(AU−N+
α )ξ(·) = 0 for all ξ ∈Mτ+(SO(R+)) and

(χ+
n+N+

U−N+
α χ+

n )
−1 = χ+

nU
N+
α χ+

n+N+
.

Thus, it remains to prove that for sufficiently large n ∈ N the operator χ+
nAχ

+
n

is invertible on the space χ+
nL

p(R+) if indAξ(·) = 0 for all ξ ∈Mτ+(SO(R+)).
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Since Aξ(z) 6= 0 for all ξ ∈Mτ+(SO(R+)) and all z ∈ T, and since indAξ(·) = 0
for these ξ, we infer from [9, Chapter 3, Corollary 3.2] that for all ξ ∈
Mτ+(SO(R+)) the functions z 7→ Aξ(z) admit canonical factorizations

Aξ(z) = A+
ξ (z)A

−
ξ (z) (z ∈ T), (6.6)

where the functions A±
ξ (·), (A

±
ξ (·))−1 belong to the unital Banach algebras W± ⊂

C(T) given by (6.2). Then 1
2π

∫
TA

±
ξ (z)|dz| 6= 0, and therefore factorization (6.6)

is unique if, for example, 1
2π

∫
TA

+
ξ (z)|dz| = 1. Note that ξ 7→ A±

ξ (·) and ξ 7→
(A±

ξ (·))−1 are continuousW±-valued functions with respect to ξ ∈Mτ+(SO(R+)).

The functions A±
ξ (·) and their inverses are represented in the form

A±
ξ (z) =

∑
k∈Z+

b±k,ξz
±k,

(
A±

ξ (z)
)−1

=
∑
k∈Z+

c±k,ξz
±k, (6.7)

where b+0,ξ = c+0,ξ = 1, b−0,ξc
−
0,ξ = 1, b±k,ξ, c

±
k,ξ ∈ C for all k ∈ N and∥∥A±

ξ (·)
∥∥
W

=
∑
k∈Z+

|b±k,ξ| <∞,
∥∥(A±

ξ (·)
)−1∥∥

W
=

∑
k∈Z+

|c±k,ξ| <∞. (6.8)

The functions A±
ξ (·), (A

±
ξ (·))−1 are analytic on the domains D± := {z ∈ C :

|z|±1 < 1}.
The functions ξ 7→ b±k,ξ and ξ 7→ c±k,ξ for k ∈ Z+ are continuous on the compact

Mτ+(SO(R+)) of the Hausdorff space M(SO(R+)). With functions (6.7) given for
every ξ ∈Mτ+(SO(R+)) we associate the functional operators

B± =
∑
k∈Z+

b±k U
±k
α ∈ A±

W , C± =
∑
k∈Z+

c±k U
±k
α ∈ A±

W , (6.9)

where b±k and c±k are functions in SO(R+) such that b±k (ξ) = b±k,ξ and c
±
k (ξ) = c±k,ξ

for all ξ ∈ Mτ+(SO(R+)) and all k ∈ Z+. Representing the functions b±k and
c±k as continuous functions on the normal topological space M(SO(R+)) that are
extensions of continuous functions b±k |Mτ+ (SO(R+)) and c

±
k |Mτ+ (SO(R+)) (we save here

the notation b±k and c±k for the Gelfand transforms of these functions) and applying
the Urysohn–Tietze extension theorem to their real and imaginary parts, we can
attain the properties:

‖Re b±k ‖Cb(R+) = ‖Re b±k |Mτ+ (SO(R+))‖C(Mτ+ (SO(R+))),

‖ Im b±k ‖Cb(R+) = ‖ Im b±k |Mτ+ (SO(R+))‖C(Mτ+ (SO(R+))),

‖Re c±k ‖Cb(R+) = ‖Re c±k |Mτ+ (SO(R+))‖C(Mτ+ (SO(R+))),

‖ Im c±k ‖Cb(R+) = ‖ Im c±k |Mτ+ (SO(R+))‖C(Mτ+ (SO(R+))).

These equalities imply that

‖b±k ‖Cb(R+) ≤ 2‖b±k |Mτ+ (SO(R+))‖C(Mτ+ (SO(R+))) = 2 max
ξ∈Mτ+ (SO(R+))

|b±k,ξ|,

‖c±k ‖Cb(R+) ≤ 2‖c±k |Mτ+ (SO(R+))‖C(Mτ+ (SO(R+))) = 2 max
ξ∈Mτ+ (SO(R+))

|c±k,ξ|.
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Hence the operators B±, C± belong to the Banach subalgebras A±
W of AW , and

D± := B±C± =
∑
k∈Z+

d±k U
±k
α ∈ A±

W , d±k =
k∑

j=0

b±j (c
±
k−j ◦ α±j),

D̃± := C±B± =
∑
k∈Z+

d̃±k U
±k
α ∈ A±

W , d̃±k =
k∑

j=0

c±j (b
±
k−j ◦ α±j),

(6.10)

where d±k , d̃
±
k ∈ SO(R+) according to Lemma 2.4 and Corollary 2.5.

Applying the equalities (6.5), we obtain the following relations:

(χ+
nB

+χ+
n )(χ

+
nC

+χ+
n ) = χ+

nD
+ = χ+

n

∑
k∈Z+

d+k U
k
α,

(χ+
nC

+χ+
n )(χ

+
nB

+χ+
n ) = χ+

n D̃
+ = χ+

n

∑
k∈Z+

d̃+k U
k
α,

(χ+
nB

−χ+
n )(χ

+
nC

−χ+
n ) = D−χ+

n =
∑
k∈Z+

d−k U
−k
α χ+

n ,

(χ+
nC

−χ+
n )(χ

+
nB

−χ+
n ) = D̃−χ+

n =
∑
k∈Z+

d̃−k U
−k
α χ+

n ,

(6.11)

where for every ξ ∈ Mτ+(SO(R+)) we infer in view of (6.9) and the equalities

b±k (ξ) = b±k,ξ, c
±
k (ξ) = c±k,ξ, b

+
0,ξ = c+0,ξ = 1, and b−0,ξc

−
0,ξ = 1 that d±0 (ξ) = d̃±0 (ξ) = 1

and d±k (ξ) = d̃±k (ξ) = 0 for all k ∈ N. Hence, the functions d±k and d̃±k for all
k ∈ Z+ are continuous at the point τ+, and therefore for every ε ∈ (0, 1) there
exists an N ∈ N such that for every n ≥ N the following inequalities hold:∥∥∥χ+

n

(∑
k∈Z+

d±k U
±k
α − I

)
χ+
n

∥∥∥
B(χ+

nLp(R+))
< ε,∥∥∥χ+

n

(∑
k∈Z+

d̃±k U
±k
α − I

)
χ+
n

∥∥∥
B(χ+

nLp(R+))
< ε.

To this end, we first approximate the corresponding operator series by functional

polynomials
∑K

k=0 d
±
k U

±k
α and

∑K
k=0 d̃

±
k U

±k
α with sufficiently large K ∈ N in the

Banach algebras A±
W , respectively, and then choose n ∈ N in view of the continuity

of the coefficients of these operators at the point τ+. Consequently, the operators

χ+
nD

±χ+
n = χ+

n

(∑
k∈Z+

d±k U
±k
α

)
χ+
n and χ+

n D̃
±χ+

n = χ+
n

(∑
k∈Z+

d̃±k U
±k
α

)
χ+
n

are invertible on the subspace χ+
nL

p(R+), which implies (due to (6.11)) the invert-
ibility of the operators χ+

nB
±χ+

n and χ+
nC

±χ+
n on this subspace. Moreover, the

operators χ+
nD

±χ+
n , χ

+
n D̃

±χ+
n , and hence the operators χ+

nB
±χ+

n , χ
+
nC

±χ+
n are

invertible in the Banach subalgebras χ+
nA

±
Wχ

+
n of Wp,S, respectively.
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The operator C+AC− belongs to the Banach algebra AW along with A, and
from (6.7) and (6.9) it follows that, for all ξ ∈Mτ+(SO(R+)) and all z ∈ T,

(C+AC−)ξ(z) =
(
A+

ξ (z)
)−1

Aξ(z)
(
A−

ξ (z)
)−1

= 1,

whence all coefficients of the operator C+AC− are continuous at the point τ+,
and therefore for every sufficiently large n ∈ N, the operator χ+

n (C
+AC−)χ+

n is
close to the identity operator on the subspace χ+

nL
p(R+). Consequently, for such

n ∈ N the operator χ+
n (C

+AC−)χ+
n is invertible on the subspace χ+

nL
p(R+). Since

(χ+
nC

+χ+
n )(χ

+
nAχ

+
n )(χ

+
nC

−χ+
n ) = χ+

n (C
+AC−)χ+

n ,

we conclude that for every sufficiently large n ∈ N, the operator χ+
nAχ

+
n is invert-

ible on the subspace χ+
nL

p(R+) along with χ+
n (C

+AC−)χ+
n and χ+

nC
±χ+

n . More-
over, the operator χ+

n (C
+AC−)χ+

n is close to the identity operator in the Banach
subalgebra χ+

nWp,Sχ
+
n of the Wiener-type algebra Wp,S. Hence, the operators

χ+
n (C

+AC−)χ+
n and χ+

nAχ
+
n are invertible in the algebra χ+

nWp,Sχ
+
n .

Similarly, since Aξ(z) 6= 0 for all ξ ∈Mτ−(SO(R+)) and all z ∈ T, and therefore
N− = indAξ(·) for all these ξ’s, we can reduce the study to the case N− = 0.
Hence, we conclude that for every ξ ∈ Mτ−(SO(R+)) the function z 7→ Aξ(z)
admits the canonical factorization (6.6) with functions A±

ξ (·), (A
±
ξ (·))−1 ∈ W±

satisfying (6.7) and (6.8), where b+0,ξ = c+0,ξ = 1, b−0,ξc
−
0,ξ = 1 and b±k,ξ, c

±
k,ξ ∈ C for

all k ∈ N and all ξ ∈Mτ−(SO(R+)).
With functions (6.7) given for every ξ ∈Mτ−(SO(R+)), we associate the func-

tional operators (6.9) where now b±k and c±k are functions in SO(R+) such that
b±k (ξ) = b±k,ξ and c

±
k (ξ) = c±k,ξ for all k ∈ Z+ and all ξ ∈Mτ−(SO(R+)).

Applying the equalities{
χ−
nU

k
αχ

−
n = Uk

αχ
−
n = χ−

n+kU
k
α

χ−
nU

−k
α χ−

n = χ−
nU

−k
α = U−k

α χ−
n+k

for k ∈ Z+,

we deduce in contrast to (6.11) that

(χ−
nB

+χ−
n )(χ

−
nC

+χ−
n ) = D+χ−

n =
∑
k∈Z+

d+k U
k
αχ

−
n ,

(χ−
nC

+χ−
n )(χ

−
nB

+χ−
n ) = D̃+χ−

n =
∑
k∈Z+

d̃+k U
k
αχ

−
n ,

(χ−
nB

−χ−
n )(χ

−
nC

−χ−
n ) = χ−

nD
− = χ−

n

∑
k∈Z+

d−k U
−k
α ,

(χ−
nC

−χ−
n )(χ

−
nB

−χ−
n ) = χ−

n D̃
− = χ−

n

∑
k∈Z+

d̃−k U
−k
α ,

where the operatorsD±, D̃± and coefficients d±k , d̃
±
k ∈ SO(R+) are given by (6.10).

We can then infer by analogy with the part already proved that for all sufficiently
large n ∈ N the operators χ−

nB
±χ−

n and χ−
nC

±χ−
n are invertible on the subspace

χ−
nL

p(R+).
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The operator C−AC+ belongs to the Banach algebra AW along with A, and
from (6.7) and (6.9) it follows that, for all ξ ∈Mτ+(SO(R+)) and all z ∈ T,

(C−AC+)ξ(z) =
(
A−

ξ (z)
)−1

Aξ(z)
(
A+

ξ (z)
)−1

= 1,

whence all coefficients of the operator C−AC+ are continuous at the point τ−,
and therefore for every sufficiently large n ∈ N the operator χ−

n (C
−AC+)χ−

n is
close to the identity operator on the subspace χ−

nL
p(R+). Consequently, for such

n ∈ N the operator χ−
n (C

−AC+)χ−
n is invertible on the subspace χ−

nL
p(R+). Since

(χ−
nC

−χ−
n )(χ

−
nAχ

−
n )(χ

−
nC

−χ−
n ) = χ−

n (C
−AC+)χ−

n ,

it follows that for every sufficiently large n ∈ N the operator χ−
nAχ

−
n is invertible

on the subspace χ−
nL

p(R+) along with χ−
n (C

−AC+)χ−
n and χ−

nC
±χ−

n . Moreover,
by analogy with the case of Mτ+(SO(R+)), the operator χ−

nAχ
−
n is invertible in

the Banach subalgebra χ−
nWp,Sχ

−
n of Wp,S, which completes the proof. �

Remark 6.2. It follows from the proof of Theorem 6.1 that under the conditions
of this theorem the inverses to the operators (6.3) and (6.4) belong to the subsets
χ+
n+N+

Wp,Sχ
+
n and χ−

n−N−
Wp,Sχ

−
n of Wp,S, respectively.

Theorem 5.2, Corollary 5.4, Theorem 6.1, and Remark 6.2 imply the following.

Theorem 6.3. If p ∈ (1,∞) and the functional operator A =
∑

k∈Z akU
k
α ∈ AW

with coefficients ak ∈ SO(R+) and a shift α ∈ SOS(R+) is left or right invertible
on the space Lp(R+), then there exists a number n0 ∈ N such that for all n ≥ n0

the operators (6.3) and (6.4) are invertible, and their inverses belong, respectively,
to the subsets χ+

n+N+
Wp,Sχ

+
n and χ−

n−N−
Wp,Sχ

−
n of Wp,S.

6.2. One-sided invertibility of a modified central block. Representing the
operator A ∈ AW acting from the direct sum of spaces

χ−
n−N−

Lp(R+)
·
+ χ0

n−N−,n+N+
Lp(R+)

·
+ χ+

n+N+
Lp(R+)

to the direct sum of spaces χ−
nL

p(R+)
·
+ χ0

nL
p(R+)

·
+ χ+

nL
p(R+) as the operator

matrix

D :=

χ−
nAχ

−
n−N−

χ−
nAχ

0
n−N−,n+N+

χ−
nAχ

+
n+N+

χ0
nAχ

−
n−N−

χ0
nAχ

0
n−N−,n+N+

χ0
nAχ

+
n+N+

χ+
nAχ

−
n−N−

χ+
nAχ

0
n−N−,n+N+

χ+
nAχ

+
n+N+

 , (6.12)

where χ±
n , χ

0
n and χ0

n−N−,n+N+
are the operators of multiplication by the char-

acteristic functions of the sets γ±n , γ
0
n given in (6.1) and the set γ0n−N−,n+N+

:=⋃n+N+−1
k=−n+N−+1 αk(γ), respectively. Since

lim
n→∞

‖χ−
nAχ

+
n+N+

‖B(χ+
n+N+

Lp(R+),χ−
nLp(R+)) = 0,

lim
n→∞

‖χ+
nAχ

+
n−N−

‖B(χ−
n−N−

Lp(R+),χ+
nLp(R+)) = 0,

we conclude that the invertibility of the operators

χ−
nAχ

−
n−N−

∈ B
(
χ−
n−N−

Lp(R+), χ
−
nL

p(R+)
)
,

χ+
nAχ

+
n+N+

∈ B
(
χ+
n+N+

Lp(R+), χ
+
nL

p(R+)
)



TWO-SIDED AND ONE-SIDED INVERTIBILITY OF FUNCTIONAL OPERATORS 579

for all sufficiently large n ∈ N implies the invertibility of the operator

Dn,∞ :=

[
χ−
nAχ

−
n−N−

χ−
nAχ

+
n+N+

χ+
nAχ

−
n−N−

χ+
nAχ

+
n+N+

]
, (6.13)

which acts from the Banach space χ−
n−N−

Lp(R+)
·
+ χ+

n+N+
Lp(R+) onto the Banach

space χ−
nL

p(R+)
·
+ χ+

nL
p(R+). Moreover, from Theorem 6.3 it follows that the

operator Dn,∞, which belongs to the set (χ−
n +χ+

n )Wp,S(χ
−
n−N−

+χ+
n+N+

) has the

inverse operator D−1
n,∞ ∈ (χ−

n−N−
+ χ+

n+N+
)Wp,S(χ

−
n + χ+

n ).

Setting D̃n,0 := χ0
nAχ

0
n−N−,n+N+

,

Dn,1 :=
[
χ0
nAχ

−
n−N−

χ0
nAχ

+
n+N+

]
, Dn,2 :=

[
χ−
nAχ

0
n−N−,n+N+

χ+
nAχ

0
n−N−,n+N+

]
,

we can write the operator matrix D in the form

D =

[
D̃n,0 Dn,1

Dn,2 Dn,∞

]
with the entries D̃n,0 ∈ χ0

nWp,Sχ
0
n−N−,n+N+

, Dn,1 ∈ χ0
nWp,S(χ

−
n−N−

+ χ+
n+N+

),

Dn,2 ∈ (χ−
n + χ+

n )Wp,Sχ
0
n−N−,n+N+

, and Dn,∞ ∈ (χ−
n + χ+

n )Wp,S(χ
−
n−N−

+ χ+
n+N+

).

Since the block Dn,∞ given by (6.13) is invertible, we infer that

D =

[
D̃n,0 Dn,1

Dn,2 Dn,∞

]
=

[
I Dn,1

0 Dn,∞

] [
D̃n,0 −Dn,1D

−1
n,∞Dn,2 0

D−1
n,∞Dn,2 I

]
. (6.14)

Hence, the left (resp., right) invertibility of the operator matrix D is equivalent
to the left (resp., right) invertibility of the operator

Dn,0 := D̃n,0 −Dn,1D
−1
n,∞Dn,2 ∈ χ0

nWp,Sχ
0
n−N−,n+N+

, (6.15)

where N+ ≤ N− in the case of left invertibility, and N+ ≥ N− in the case of right
invertibility.

Given n ∈ N, let Lp
n(γ) be the Banach space of n-dimensional vector functions

ψ = {ψk}nk=1 with entries ψk ∈ Lp(γ) and the norm ‖ψ‖Lp
n(γ) =

(
∑n

k=1 ‖ψk‖pLp(γ))
1/p. Consider the isometric isomorphisms

σ0 : χ
0
nL

p(R+) → Lp
2n−1(γ), χ0

nf 7→
{
(Uk

αf)|γ
}n−1

k=−n+1
,

σ̃0 : χ
0
n−N−,n+N+

Lp(R+) → Lp
2n−1+N+−N−

(γ),

χ0
n−N−,n+N+

f 7→
{
(Uk

αf)|γ
}n+N+−1

k=−n+N−+1
.

Then the operator

σ0Dn,0σ̃
−1
0 : Lp

2n−1+N+−N−
(γ) → Lp

2n−1(γ)

is the operator of multiplication by a (2n − 1) × (2n − 1 + N+ − N−) matrix
function Dn,0(·), which according to the definition of the algebra Wp,S becomes
continuous on γ if we put Dn,0(α(τ)) := limt→α(τ),t∈γ Dn,0(t).
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Let the operator Dn,0 be left invertible (the case of right invertibility is treated
analogously). The operator Dn,0(·)I ∈ B(Lp

2n−1+N+−N−
(γ), Lp

2n−1(γ)) is left invert-

ible along with Dn,0, and hence N+ ≤ N−. Moreover, then rankDn,0(t) = 2n −
1 +N+ −N− for all t ∈ γ. Indeed, if

rankDn,0(t0) < 2n− 1 +N+ −N− for some t0 ∈ γ, (6.16)

then by a small perturbation of the operator Dn,0(·)I we can attain the equality
Dn,0(t) = Dn,0(t0) for all t’s in a small neighborhood of t0, which in view of
(6.16) implies the existence of a nontrivial kernel for the perturbed operator.
This contradicts the stability of the left invertibility for the perturbed operator.

Conversely, let N+ ≤ N− and rankDn,0(t) = 2n− 1+N+−N−. Then for every
point t ∈ γ the (2n− 1)× (2n− 1 +N+ −N−) matrix function Dn,0(·) contains
its (2n− 1+N+ −N−)× (2n− 1+N+ −N−) block Mt(·) with detMt(t) 6= 0. In
view of the continuity on γ of all entries of the matrix function Dn,0(·), for every
t ∈ γ there exists its open neighborhood ut ⊂ R+ such that

inf
x∈ut∩γ

∣∣detMt(x)
∣∣ > 0. (6.17)

Consider the open covering of the segment γ by the sets ut (t ∈ γ), and choose
a finite subcovering uti (i = 1, 2, . . . , k) of γ. According to [35, Theorem 2.13],
there exists a partition {η1, . . . , ηk} of unity on γ, subordinate to the covering
{ut1 , . . . , utk}, that is, ηi ∈ C(R+), 0 ≤ ηi ≤ 1, supp ηi ⊂ uti for all i = 1, 2, . . . , k
and

k∑
i=1

ηi(x) = 1 for all x ∈ γ. (6.18)

By (6.17), for each i = 1, 2, . . . , k, there exists a (2n− 1 +N+ −N−)× (2n− 1)
matrix function Fti(·) defined on uti ∩ γ, which consists of the block M−1

ti (·) and
the zero supplementary block, and such that

Fti(x)Dn,0(x) =M−1
ti

(x)Mti(x) = I2n−1+N+−N− for all x ∈ uti ∩ γ.

Then, by (6.18), the continuous on γ matrix function DL
n,0(·) :=

∑k
i=1 ηiFti is a left

inverse to the matrix function Dn,0(·). Hence, the operatorDL
n,0 = σ̃−1

0 (DL
n,0(·)I)σ0

is a left inverse of the operator Dn,0. In view of the continuity on γ of all entries
of the matrix function DL

n,0(·), we infer from the definitions of the isomorphisms

σ̃−1
0 and σ0 that DL

n,0 ∈ χ0
n−N−,n+N+

Wp,Sχ
0
n.

Thus, if the operator Dn,0 is one-sided invertible or, equivalently, if the operator
Dn,0(·)I is one-sided invertible from Lp

2n−1+N+−N−
(γ) to Lp

2n−1(γ), then there is its

one-sided inverse D(−1)
n,0 (·)I : Lp

2n−1(γ) → Lp
2n−1+N+−N−

(γ) such that the operator

D
(−1)
n,0 = σ̃−1

0

(
D(−1)

n,0 (·)I
)
σ0 ∈ χ0

n−N−,n+N+
Wp,Sχ

0
n

is the corresponding one-sided inverse to the operator Dn,0.

Clearly, the operator D
(−1)
n,0 ∈ χ0

n−N−,n+N+
Wp,Sχ

0
n is a right inverse to the oper-

ator Dn,0 if N+ ≥ N−, and a left inverse to the operator Dn,0 if N+ ≤ N−. By
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(6.14) and (6.15), the operator

D(−1) =

[
D

(−1)
n,0 −D(−1)

n,0 Dn,1D
−1
n,∞

−D−1
n,∞Dn,2D

(−1)
n,0 D−1

n,∞Dn,2D
(−1)
n,0 Dn,1D

−1
n,∞ +D−1

n,∞

]
is a right (resp., left) inverse to the operator D if D

(−1)
n,0 is a right (resp., left)

inverse to the operator Dn,0. Since D
(−1)
n,0 ∈ χ0

n−N−,n+N+
Wp,Sχ

0
n and

−D−1
n,∞Dn,2D

(−1)
n,0 ∈ (χ−

n−N−
+ χ+

n+N+
)Wp,Sχ

0
n,

−D(−1)
n,0 Dn,1D

−1
n,∞ ∈ χ0

n−N−,n+N+
Wp,S(χ

−
n + χ+

n ),

D−1
n,∞Dn,2D

(−1)
n,0 Dn,1D

−1
n,∞ +D−1

n,∞ ∈ (χ−
n−N−

+ χ+
n+N+

)Wp,S(χ
−
n + χ+

n ),

we conclude that the corresponding one-sided inverse D(−1) to the operator D
belongs to the Wiener-type algebra Wp,S.

Thus, we have proved the following result.

Theorem 6.4. If 1 < p <∞, A ∈ AW , and the operators

χ−
nAχ

−
n−N−

∈ B
(
χ−
n−N−

Lp(R+), χ
−
nL

p(R+)
)
,

χ+
nAχ

+
n+N+

∈ B
(
χ+
n+N+

Lp(R+), χ
+
nL

p(R+)
)

are invertible for all sufficiently large n ∈ N, then there exists a number n0 ∈ N
such that for all n ≥ n0 the left (resp., right) invertibility of the operator A ∈ AW

is equivalent to the left (resp., right) invertibility of the operator

Dn,0 = χ0
nAχ

0
n−N−,n+N+

−
[
χ0
nAχ

−
n−N−

χ0
nAχ

+
n+N+

]
×

[
χ−
nAχ

−
n−N−

χ−
nAχ

+
n+N+

χ+
nAχ

−
n−N−

χ+
nAχ

+
n+N+

]−1 [
χ−
nAχ

0
n−N−,n+N+

χ+
nAχ

0
n−N−,n+N+

]
, (6.19)

which acts from the space χ0
n−N−,n+N+

Lp(R+) to the space χ0
nL

p(R+). Moreover,

then there exists a left (resp., right) one-sided inverse operator A(−1) to A which
belongs to the Wiener-type algebra Wp,S.

Thus, if N+ 6= N−, then the operator Dn,0 cannot be invertible. Moreover, if the
operator Dn,0 is invertible (resp., strictly left invertible, strictly right invertible),
then N− = N+ (resp., N− > N+, N− < N+).

Hence, Theorems 6.3 and 6.4 imply the following corollary.

Corollary 6.5. If the functional operator A ∈ AW is invertible (resp., strictly left
invertible, strictly right invertible) on the Lebesgue space Lp(R+) with p ∈ (1,∞),
then N− = N+ (resp., N− > N+, N− < N+).

6.3. Discrete version. Let A ∈ AW . Given n ∈ Z, we consider the projections

P±
n = diag{P±

s,n}s∈ZI ∈ B(lp),
where

P+
s,n =

{
0 if s < n,

1 if s ≥ n,
P−
s,n =

{
1 if s ≤ −n,
0 if s > −n.
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Theorem 6.6. If p ∈ [1,∞], A ∈ AW ⊂ B(Lp(R+)), Aξ(z) 6= 0 for all (ξ, z) ∈
∆×T, and the numbers N± are given by (5.9), then there exists a number n0 ∈ N
such that for all n ≥ n0 the operators

A+
n (t) = P+

n A(t)P+
n+N+

: P+
n+N+

lp → P+
n l

p,

A−
n (t) = P−

n A(t)P−
n−N−

: P−
n−N−

lp → P−
n l

p
(6.20)

are invertible for all t ∈ γ.

Proof. Since the operators

χ+
nAχ

+
n+N+

: χ+
n+N+

Lp(R+) → χ+
nL

p(R+),

χ−
nAχ

−
n−N−

: χ−
n−N−

Lp(R+) → χ−
nL

p(R+)

are invertible by Theorem 6.1, we conclude that the operators

χ+
nAχ

+
n+N+

+ (I − χ+
n )U

N+
α (I − χ+

n+N+
),

χ−
nAχ

−
n−N−

+ (I − χ−
n )U

N−
α (I − χ+

n−N−
)

(6.21)

are invertible on the space Lp(R+). As σχ
±
nσ

−1 = P±
n , where σ is given by (3.3)

and I is the identity operator on the space Lp(γ, lp), we infer that

A+
n (·)I = P+

n A(·)P+
n+N+

I = σ(χ+
nAχ

+
n+N+

)σ−1,

A−
n (·)I = P−

n A(·)P−
n−N−

I = σ(χ−
nAχ

−
n−N−

)σ−1.

Then, by (6.21) and Theorem 3.7, the discrete operators

A+
n (t) + (I − P+

n )VN+(I − P+
n+N+

),

A−
n (t) + (I − P−

n )VN−(I − P−
n−N−

)

are invertible on the space lp, which in view of the invertibility of the operators

(I − P+
n )VN+(I − P+

n+N+
) : P−

−n−N++1l
p → P−

−n+1l
p,

(I − P−
n )VN−(I − P−

n−N−
) : P+

−n+N−+1l
p → P+

−n+1l
p

implies the assertion of the theorem. �

Combining Theorem 5.2, Corollary 5.4, and Theorem 6.6, we obtain the fol-
lowing.

Theorem 6.7. If the functional operator A =
∑

k∈Z akU
k
α ∈ AW with coefficients

ak ∈ SO(R+) and a shift α ∈ SOS(R+) is left or right invertible on the Lebesgue
space Lp(R+) with p ∈ (1,∞), then there exists a number n0 ∈ N such that for
all n ≥ n0 the operators (6.20) are invertible for all t ∈ γ.

We immediately infer the following result from Theorems 5.6 and 6.6.

Theorem 6.8. If p ∈ (1,∞), A =
∑

k∈Z akU
k
α ∈ AW , and for some t ∈ γ

the discrete operator A(t) =
∑

k∈Z diag{ak[αj(t)]}j∈ZVk ∈ Wp is left or right
invertible on the space lp, then for this t ∈ γ there exists a number n0 ∈ N such
that for all n ≥ n0 the operators (6.20) are invertible.
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6.4. Necessary one-sided invertibility conditions for discrete operators.
Furthermore, by applying the transform A 7→ σAσ−1, we deduce from (6.12) the
following representation of every discrete operator A(t) ∈ B(lp) (t ∈ γ) as the
operator matrix

A(t) =

P−
n A(t)P−

n−N−
P−
n A(t)P 0

n−N−,n+N+
P−
n A(t)P+

n+N+

P 0
nA(t)P−

n−N−
P 0
nA(t)P 0

n−N−,n+N+
P 0
nA(t)P+

n+N+

P+
n A(t)P−

n−N−
P+
n A(t)P 0

n−N−,n+N+
P+
n A(t)P+

n+N+


acting from the space P−

n−N−
lp

·
+ P 0

n−N−,n+N+
lp

·
+ P+

n+N+
lp to the space P−

n l
p

·
+

P 0
n l

p
·
+ P+

n l
p, where P 0

n−N−,n+N+
:= I − P−

n−N−
− P+

n+N+
and P 0

n := I − P−
n − P+

n .

If the discrete operator A(t) is one-sided invertible for some t ∈ γ, then by
Theorem 6.8 the operators (6.20) are invertible for this t ∈ γ and all sufficiently
large n ∈ N. Hence, the operator

Dn,∞(t) :=

[
P−
n A(t)P−

n−N−
P−
n A(t)P+

n+N+

P+
n A(t)P−

n−N−
P+
n A(t)P+

n+N+

]
, (6.22)

which acts from the space P−
n−N−

lp
·
+ P+

n+N+
lp onto the space P−

n l
p

·
+ P+

n l
p, is

also invertible for all sufficiently large n ∈ N along with the operators (6.20).
Then we infer by analogy with Theorem 6.4 and (6.19) that the left (resp., right)
invertibility of the operator A(t) is equivalent to the left (resp., right) invertibility
of the operator

Dn,0(t) := P 0
nA(t)P 0

n−N−,n+N+
−
[
P 0
nA(t)P−

n−N−
P 0
nA(t)P+

n+N+

]
×

[
P−
n A(t)P−

n−N−
P−
n A(t)P+

n+N+

P+
n A(t)P−

n−N−
P+
n A(t)P+

n+N+

]−1 [
P−
n A(t)P 0

n−N−,n+N+

P+
n A(t)P 0

n−N−,n+N+

]
, (6.23)

which acts from the space P 0
n−N−,n+N+

lp to the space P 0
n l

p (below we identify the
operator Dn,0(t) and the matrix Dn,0(t)). Clearly, if N+ 6= N−, then the operator
Dn,0(t) cannot be invertible. Thus, the operator Dn,0(t) is two-sided invertible if
and only if N− = N+ and detDn,0(t) 6= 0, the operator Dn,0(t) is strictly left
invertible if and only if N− > N+ and rankDn,0(t) = 2n− 1 +N+ −N−, and the
operator Dn,0(t) is strictly right invertible if N− < N+ and rankDn,0(t) = 2n− 1.
This in view of Theorems 5.6 and 6.8 immediately implies the following result.

Theorem 6.9. Given p ∈ (1,∞) and t ∈ γ, an operator A(t) ∈ Wp is two-sided
(resp., strictly left, strictly right) invertible on the space lp if and only if (5.5)
holds, N− = N+, and there exists a number n0 ∈ N such that for every n ≥ n0 the
operator Dn,∞(t) is invertible and detDn,0(t) 6= 0 (resp., (5.5) holds, N− > N+,
and there exists a number n0 ∈ N such that for every n ≥ n0 the operator Dn,∞(t)
is invertible and rankDn,0(t) = 2n − 1 + N+ − N−; (5.5) holds, N− < N+, and
there exists a number n0 ∈ N such that for every n ≥ n0 the operator Dn,∞(t)
is invertible and rankDn,0(t) = 2n − 1), where Dn,∞(t) and Dn,0(t) are given by
(6.22) and (6.23), respectively.
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7. One-sided invertibility of functional operators in terms of
discrete operators

According to [28, Section 23, Corollary 2], the left (resp., right) invertibility of
an element b in a C∗-algebra B is equivalent to the two-sided invertibility of the
element b∗b (resp., bb∗) in the C∗-algebra B. Applying this fact to the C∗-algebra
A2,SO ⊂ B(L2(R+)), we immediately infer from Theorem 3.4 the following crite-
rion for the one-sided invertibility of functional operators A ∈ A2,SO on the space
L2(R+).

Theorem 7.1. A functional operator A ∈ A2,SO is invertible (left invertible, right
invertible) on the space L2(R+) if and only if for all t ∈ γ, the discrete operators
A(t) are invertible (left invertible, right invertible) on the space l2.

Given p ∈ [1,∞] and following [12, Section 2.3], we denote by Wp,L∞ the
unital Banach algebra of all functional operators of the form A =

∑
k∈Z akU

k
α ∈

B(Lp(R+)), where ak ∈ L∞(R+) for all k ∈ Z, logα′ ∈ L∞(R+) and

‖A‖Wp,L∞ :=
∑
k∈Z

‖ak‖L∞(R+) < +∞.

For a unital algebra B, let GB denote the group of all invertible elements in
B. Let C be a subalgebra of B with the same identity element. The algebra C is
said to be inverse-closed in B (see [34, Section 1.2.5]), if for every c ∈ C such that
c ∈ GB, we have c ∈ GC.

Slightly modifying the proof of [12, Theorem 3], we obtain the following.

Theorem 7.2. For every p ∈ [1,∞], the Wiener algebra Wp,L∞ is inverse-closed
in the unital Banach algebra B(Lp(R+)).

Theorem 7.2 immediately implies the following.

Corollary 7.3. Every functional operator A =
∑

k∈Z akU
k
α ∈ Wp,L∞ is invertible

on all spaces Lp(R+) with p ∈ [1,∞] if it is invertible on some space Lp0(R+),
where p0 ∈ [1,∞].

Theorem 6.4 and Corollary 7.3 allow us to get the following analogue of The-
orem 7.2.

Theorem 7.4. The Wiener algebra AW is inverse-closed in the Banach algebra
B(Lp(R+)) for every p ∈ [1,∞].

Proof. Fix p ∈ (1,∞), and take an operator A ∈ AW invertible on the space
Lp(R+). Then from Theorem 3.4 it follows that for all t ∈ γ the discrete operators
A(t) given by Theorem 3.1 are invertible on the space lp, and hence, in view
of Corollary 3.3, the operator-valued function A−1 : γ → B(lp) is continuous.
Moreover, by (3.8),

A−1
[
α(τ)

]
= VA−1(τ)V−1. (7.1)

Further, by Theorem 6.4, the inverse operator A−1 for A ∈ AW belongs to
the Wiener-type algebra Wp,S, and therefore the coefficients of the operator A−1

being functions in S can admit discontinuities on R+ in view of (3.17) only on
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the set Oτ = {αn(τ) : n ∈ Z}. By Lemma 3.6, the operator-valued function
A−1 : γ → B(lp) is continuous. On the other hand, since SO ⊂ S and therefore
(7.1) holds, we infer from that equality that the coefficients of the operator A−1

are continuous at the points t ∈ Oτ as well. Hence, the coefficients of the operator
A−1 are continuous on R+. But every continuous function inS belongs to SO(R+),
which implies that A−1 ∈ AW .

Let now an operator A =
∑

k∈Z akU
k
α ∈ AW be invertible on the space Lp(R+)

with p ∈ {1,∞}. Since AW ⊂ Wp,L∞ , we infer from Corollary 7.3 that the operator
A is invertible on the space L2(R+) and therefore, by the part already proved,
A−1 ∈ AW = W2,SO. But this means that A−1 ∈ AW = Wp,SO for all p ∈
[1,∞]. �

For every operator A =
∑

k∈Z akU
k
α ∈ AW we define its formally adjoint oper-

ator A� :=
∑

k∈Z(ak ◦ α−k)U
−k
α ∈ AW .

Theorem 7.5. If a functional operator A ∈ AW is left invertible (resp., right
invertible) on the space Lp(R+) for some p ∈ (1,∞), then for all t ∈ γ the
discrete operators A(t) are left invertible (resp., right invertible) on the space lp.

Proof. Consider the case of left invertibility (the case of right invertibility is
reduced to the previous one by passing to adjoint operators).

Let an operator A ∈ AW be left invertible on some space Lp(R+). Then from
Theorems 6.3 and 6.4, it follows that A is left invertible in the unital Banach
algebraWp,S. ThenA is left invertible in the Banach algebraW2,S and hence in the
C∗-algebra B(L2(R+)). Therefore, by [28, Section 23, Corollary 2], the operator
A∗A is two-sided invertible in the C∗-algebra B(L2(R+)). But the operator A�A
belongs to the Banach algebra AW = Wp,SO along with A. Consequently, by
Corollary 7.3, the operator A�A is two-sided invertible on the space Lp(R+).
Hence, by Theorem 3.4, for all t ∈ γ the discrete operatorsA�(t)A(t) are two-sided
invertible on the space lp. Then for every t ∈ γ the operator (A�(t)A(t))−1A�(t)
is a left inverse of the operator A(t) in the Banach algebra B(lp). �

For every operator B =
∑

k∈Z bkVk ∈ Wp, where bk ∈ D̂ for all k ∈ Z, D̂ is given
by (3.1), Vf = {fj+1}j∈Z for f = {fj}j∈Z ∈ lp, and ‖B‖W :=

∑
k∈Z ‖bk‖B(lp) <∞,

we define the formally adjoint operator by B� :=
∑

k∈Z diag{bk,j−k}j∈ZV−k ∈ Wp.

Theorem 7.6. For every p ∈ (1,∞), an operator A ∈ AW is left invertible
(resp., right invertible) on the Lebesgue space Lp(R+) if for all t ∈ γ the discrete
operators A(t) ∈ Wp are left invertible (resp., right invertible) in the Banach
algebra Wp.

Proof. For every t ∈ γ, let the discrete operator A(t) ∈ Wp be left invertible in
the Banach algebra Wp. Then A(t) is left invertible in the Banach algebra W2

and hence in the C∗-algebra B(l2). Therefore, by [28, Section 23, Corollary 2],
for every t ∈ γ the discrete operator (A(t))∗A(t) ∈ W2 is two-sided invertible
in the C∗-algebra B(l2). Since A ∈ AW , we conclude that A∗A ∈ AW as well.
Consequently, we infer from Theorem 3.4 that the operator A∗A ∈ AW is two-
sided invertible on the space L2(R+). Then from Corollary 7.3, it follows that
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the operator A�A ∈ AW is two-sided invertible on the space Lp(R+). Finally, the
operator (A�A)−1A� is a left inverse of the operator A on the space Lp(R+).

The case of right invertibility is treated by passing to adjoint operators on dual
spaces. �

Theorem 7.7. If A ∈ AW and for some t ∈ γ the discrete operator A(t) is left
(resp., right) invertible on the space lp for some p ∈ (1,∞), then there exists its
left (resp., right) inverse (A(t))(−1) which belongs to the Wiener-type algebra Wp.

Proof. Fix p ∈ (1,∞), and for A ∈ AW suppose that the discrete operator A(t) ∈
Wp is one-sided invertible on the space lp for some t ∈ γ. We then infer from
Theorem 5.6 that Aξ(z) 6= 0 for all (ξ, z) ∈ ∆× T and therefore, by the proof of
Corollary 5.4, the numbers N± are given by (5.9). Hence, from Theorem 6.1 it
follows that the operators

χ+
nAχ

+
n+N+

: χ+
n+N+

Lp(R+) → χ+
nL

p(R+),

χ−
nAχ

−
n−N−

: χ−
n−N−

Lp(R+) → χ−
nL

p(R+)

are invertible. Since by Theorem 6.3 the inverse operators

(χ+
nAχ

+
n+N+

)−1 : χ+
nL

p(R+) → χ+
n+N+

Lp(R+),

(χ−
nAχ

−
n−N−

)−1 : χ−
nL

p(R+) → χ−
n−N−

Lp(R+)

belong, respectively, to the subsets χ+
n+N+

Wp,Sχ
+
n and χ−

n−N−
Wp,Sχ

−
n of Wp,S, we

deduce by applying the mapping

(χ±
nAχ

±
n±N±

)−1 7→ σ(χ±
nAχ

±
n±N±

)−1σ−1

that for every t ∈ γ the operators(
A+

n (t)
)−1

=
(
P+
n A(t)P+

n+N+

)−1
: P+

n l
p → P+

n+N+
lp,(

A−
n (t)

)−1
=

(
P−
n A(t)P−

n−N−

)−1
: P−

n l
p → P+

n−N−
lp

belong, respectively, to the subsets P+
n+N+

WpP
+
n and P−

n−N−
WpP

−
n . Then, by anal-

ogy with the proof of Theorem 6.4, we infer that the left (resp., right) invertibil-
ity of the discrete operator A(t) on the space lp implies that there exists its left
(resp., right) inverse (A(t))(−1) which belongs to the Wiener-type Banach algebra
Wp. �

Theorem 7.8. A functional operator A ∈ AW is left (resp., right) invertible on
the space Lp(R+) for some p ∈ (1,∞) if and only if for all t ∈ γ (equivalently,
for all t ∈ R+) the discrete operators A(t) ∈ Wp are left (resp., right) invertible
on the space lp.

Proof. Fix p ∈ (1,∞). If a functional operator A ∈ AW is left (resp., right)
invertible on the space Lp(R+), then from Theorem 7.5 it follows that for all
t ∈ γ the discrete operators A(t) ∈ Wp are left (resp., right) invertible on the
space lp.

Conversely, if for all t ∈ γ the discrete operators A(t) are left (resp., right)
invertible on the space lp, then by Theorem 7.7 for all t ∈ γ the operators A(t) ∈
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Wp have some of their left (resp., right) inverses in the Banach algebra Wp. This
in view of Theorem 7.6 implies the left (resp., right) invertibility of the functional
operator A ∈ AW on the space Lp(R+), which completes the proof for t ∈ γ. The
proof for t ∈ R+ is reduced to t ∈ γ in view of (3.8). �

8. Criteria of two-sided and one-sided invertibility of operators
A ∈ AW

Combining Corollary 7.3, Theorem 3.4, Remark 3.5, and Theorem 6.9, we
obtain the following invertibility criterion.

Theorem 8.1. The functional operator A =
∑

k∈Z akU
k
α ∈ AW with coefficients

ak ∈ SO(R+) and a shift α ∈ SOS(R+) is invertible on the space Lp(R+) (1 ≤
p ≤ ∞) if and only if

(i) Aξ(z) :=
∑

k∈Z ak(ξ)z
k 6= 0 for every ξ ∈ ∆ and every z ∈ T;

(ii) N− = N+, where N± := indAξ(·) for every ξ ∈Mτ±(SO(R+));
(iii) there exists an n0 ∈ N such that for every t ∈ γ and every n > n0 the

operator Dn,∞(t) given by (6.22) is invertible and detDn,0(t) 6= 0, where
the (2n− 1)× (2n− 1) matrices Dn,0(t) are given by (6.23).

Proof. By Corollary 7.3, the operator A ∈ AW either is invertible on all the
spaces Lp(R+) for p ∈ [1,∞], or on none of them. Hence, we may consider only
p ∈ (1,∞).

By Theorem 3.4 and Remark 3.5, the functional operator A ∈ AW is invertible
on the space Lp(R+) with p ∈ (1,∞) if and only if for all t ∈ γ (equivalently,
for all t ∈ γ) the discrete operators A(t) are invertible on the space lp. In view
of Theorem 6.9, the invertibility of the operators A(t) on the space lp for all
t ∈ γ is equivalent to conditions (i)–(iii) of the present theorem, where n0 ∈ N is
sufficiently large and independent of t ∈ γ due to Theorem 6.7. �

Theorem 8.2. The functional operator A =
∑

k∈Z akU
k
α ∈ AW with coefficients

ak ∈ SO(R+) and a shift α ∈ SOS(R+) is strictly left invertible on the space
Lp(R+) (1 < p <∞) if and only if

(i) Aξ(z) :=
∑

k∈Z ak(ξ)z
k 6= 0 for every ξ ∈ ∆ and every z ∈ T;

(ii) N− > N+, where N± = indAξ(·) for every ξ ∈Mτ±(SO(R+));
(iii) there exists an n0 ∈ N such that for every t ∈ γ and every n > n0 the

operator Dn,∞(t) given by (6.22) is invertible and rankDn,0(t) = 2n− 1+
N+ −N−, where the (2n− 1 +N+ −N−)× (2n− 1) matrices Dn,0(t) are
given by (6.23).

Proof. Fix p ∈ (1,∞). By Theorems 7.8, 3.4, and Remark 3.5, the functional
operator A ∈ AW is strictly left invertible on the space Lp(R+) if and only if for
all t ∈ γ the discrete operators A(t) are strictly left invertible on the space lp.
According to Theorem 6.9, the strict left invertibility of the operators A(t) on the
space lp for all t ∈ γ is equivalent to conditions (i)–(iii) of the present theorem,
where n0 ∈ N is sufficiently large and independent of t ∈ γ (see Theorem 6.7). �

Analogously to Theorem 8.2 or passing to adjoint operators, one can prove the
following criterion of the right invertibility of the operators A ∈ AW .
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Theorem 8.3. The functional operator A =
∑

k∈Z akU
k
α ∈ AW with coefficients

ak ∈ SO(R+) and a shift α ∈ SOS(R+) is strictly right invertible on the space
Lp(R+) (1 < p <∞) if and only if

(i) Aξ(z) :=
∑

k∈Z ak(ξ)z
k 6= 0 for every ξ ∈ ∆ and every z ∈ T;

(ii) N− < N+, where N± = indAξ(·) for every ξ ∈Mτ±(SO(R+));
(iii) there exists an n0 ∈ N such that for every t ∈ γ and every n > n0 the

operator Dn,∞(t) given by (6.22) is invertible and rankDn,0(t) = 2n − 1,
where the (2n − 1 + N+ − N−) × (2n − 1) matrices Dn,0(t) are given by
(6.23).
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