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Abstract. In this article, we use fixed-point methods and measure of non-
compactness theory to focus on the problem of establishing the existence of at
least a solution for the following functional integral equation

u(t) = g
(
t, u(t)

)
+

∫ t

0

G
(
t, s, u(s)

)
ds, t ∈ [0,+∞[,

in the space of all bounded and continuous real functions on R+, under suitable
assumptions on g and G. Also, we establish an extension of Darbo’s fixed-point
theorem and discuss some consequences.

1. Introduction

In this article, we study the functional integral equation

u(t) = g
(
t, u(t)

)
+

∫ t

0

G
(
t, s, u(s)

)
ds, t ∈ [0,+∞[,

in the space of all bounded and continuous real functions on [0,+∞[, under suit-
able assumptions on g and G. We obtain the existence of at least a solution by
using fixed-point methods and measure of noncompactness theory. In fact, from
the original paper of Kuratowski [16], the concept measure of noncompactness
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attracted the interest of mathematicians working in various fields such as differ-
ential equations, fixed-point theory, and optimization, among others. We give the
formal definition of this concept later in this article. For now, a measure of non-
compactness is a function suitable for measuring the degree of noncompactness of
a given set; of course, to every compact set is associated a measure equal to zero.
This theory is largely investigated in the setting of Banach spaces with inter-
esting characterizations of various operators and consequences (see, e.g., [6]). In
particular, we are interested in the applications of the measures of noncompact-
ness to fixed-point theory, following a recent trend in the literature (see [3], [10]).
The motivation is that the fixed-point theory furnishes efficient methods based on
simple mathematical reasoning to solve (exactly or approximately) different prob-
lems arising in the applied sciences. The cornerstone at the junction between the
theories of measure of noncompactness and fixed points is recognized in a theoret-
ical result established by Darbo [12, p. 90]. In fact, Darbo gave a nice extension
of a celebrated fixed-point theorem of Schauder. We recall its statement.

Theorem 1 (Schauder fixed-point theorem; [1, Theorem 4.14]). Let M be a
nonempty, bounded, closed, and convex subset of a Banach space X. Then each
continuous and compact operator T : M → M has at least one fixed point in the
set M .

The main idea in the analogous theorem of Darbo is to relax the hypothesis
of compactness of the operator T by using a Lipschitz condition involving a
measure of noncompactness (see Theorem 3 in Section 2). We point out here
that Theorem 1 above is itself an extension of the Brouwer fixed-point theorem
from real-valued functions to topological vector spaces. Also, a consequence of
Theorem 1, say, Schaefer’s fixed-point theorem, is a powerful tool for proving
the existence of at least a solution to nonlinear partial differential equations (see
[6], [15], and the references therein). Our preceding few lines here underscore the
relevance of these kind of results for the development of nonlinear analysis and
topology in general.

Thus, we prove an existence result of a solution for the functional integral
equation given at the beginning of this section. In so doing, we also establish
an extension of Darbo’s fixed-point theorem, by adapting the original proof to
the relaxed assumption. The rest of this article is organized as follows. First, we
provide the tools necessary to obtain the main result, then we present its proof,
and finally, we discuss some auxiliary facts.

2. Preliminaries and statements

We start by recalling two ways to compute a measure of noncompactness (for
more details, we refer the interested reader to [6], [16]). Later, the consolidated
notation is used and hence, first, we assume that M is a bounded subset of a
metric space X. Since a bounded set can be encased in a ball of fixed radius, then
a basic measure of noncompactness is given by

χ(M) = inf{ε > 0 such that there exist finitely many balls of radius

at most ε which cover M}.
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On the other hand, Kuratowski [16] proposed the following definition:

α(M) = inf{δ > 0 such that there exist finitely many sets of diameter

at most δ which cover M}.
From now on, we denote by

diamM = sup
{
d(x, y) : x, y ∈M

}
the diameter of a set M ⊂ X. Note that

χ(M) ≤ α(M) ≤ 2χ(M).

However, our research setting is more generally represented by Banach spaces
and hence in the following text we will denote by X a Banach space endowed with
norm ‖ · ‖. This assumption is made based on [5], where the following definition
is given (see also [4], [13], [18]). Again,M is a nonempty subset of X; in addition,

we denote by M and conv(M) the closure and the convex hull closure of M ,
respectively.

Definition 2. Let B(X) and Kr(X) be the family of all nonempty bounded sub-
sets of X and the subfamily consisting of all relatively compact subsets of X,
respectively. Then, we consider that φ : B(X) → [0,+∞[ is a measure of non-
compactness in X if the following conditions hold true:

(m1) kerφ = {A ∈ B(X) : φ(A) = 0} is nonempty and kerφ ⊂ Kr(X);
(m2) Z ⊂ Y implies φ(Z) ≤ φ(Y );
(m3) φ(A) = φ(A);

(m4) φ(conv(A)) = φ(A);
(m5) φ(λZ + (1− λ)Y ) ≤ λφ(Z) + (1− λ)φ(Y ) for all λ ∈ [0, 1];
(m6) if {Mn} is a sequence of closed sets from B(X) such that Mn+1 ⊂ Mn

for all n ∈ N and limn→+∞ φ(Mn) = 0, then the intersection set M∞ =⋂+∞
n=1Mn is nonempty.

Note that the family kerφ considered above is universally known as the kernel
of the measure of noncompactness φ. Since φ(M∞) ≤ φ(Mn) for all n ∈ N, we
deduce that φ(M∞) = 0, that is, M∞ ∈ kerφ. Also, as M∞ is a closed set, then
it is compact.

Finally, we recall the statement of Darbo’s fixed-point theorem.

Theorem 3 (Darbo’s fixed-point theorem). Let M be a nonempty, bounded,
closed, and convex subset of a Banach space X, and let T :M →M be a contin-
uous operator. Assume that there exists a constant k ∈ [0, 1[ such that

φ(TZ) ≤ kφ(Z) for any nonempty Z ⊂M,

where φ is a measure of noncompactness defined in X. Then T has a fixed point
in the set M .

Note that the inequality in Theorem 3 is the Lipschitz condition mentioned
in the Introduction; more precisely, it is known as a k-contraction condition.
The main statement of this section is an existence result of fixed point, which
is inspired by Theorem 3. Precisely, we extend Theorem 3 by involving a V -φ-
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contraction condition, which is more general than the k-contraction condition
above. Thus, before establishing our result, we introduce a family V of V -
functions. Indeed, a function ρ : [0,+∞[ × [0,+∞[ → R is a V -function if the
following condition holds:

(v1) if {an} ⊂ ]0,+∞[ is a sequence such that ρ(an+1, an) > 0 for all n ∈ N,
then limn→+∞ an = 0.

We use V -functions to define a V -φ-contraction condition as follows.

Definition 4. Let M be a nonempty, bounded, closed, and convex subset of a
Banach space X, let φ be a measure of noncompactness in X, and let T :M →M
be a continuous operator. Then, T is a V -φ-contraction if there exists a V -function
ρ : [0,+∞[× [0,+∞[ → R such that

ρ
(
φ(TZ), φ(Z)

)
> 0 for all Z ⊂M,φ(Z) > 0. (1)

As a result, we state the existence of a fixed point for a continuous (but not
necessarily compact) operator satisfying a V -φ-contraction condition.

Theorem 5. Let M be a nonempty, bounded, closed, and convex subset of a
Banach space X, and let T : M → M be a continuous V -φ-contraction. Then T
has a fixed point in the set M .

Theorem 5 has the merit of being consistent with current ideas about how
to generalize the fixed-point theory, by involving in a certain sense an implicit
definition of the contraction condition. It furnishes a more flexible result than the
existing ones, which can better represent specific situations, by particularizing
the V -function.

3. Functional integral equations

Under the previous context, the main motivation of this section is to establish
the existence of at least a solution for a functional integral equation in the space
of all bounded and continuous real functions on [0,+∞[, or CB([0,+∞[) for short.
We refer to consolidated arguments in the literature (see [8], [11]) and, according
to the notation therein, CB([0,+∞[) is endowed with the supremum norm

‖u‖ = sup
{∣∣u(t)∣∣ : t ∈ [0,+∞[

}
.

Moreover, we consider a nonempty, bounded subset Z of CB([0,+∞[) and a
positive constant β. Thus, for u ∈ Z and positive constant ε, we denote by
ωβ(u, ε) the modulus of continuity of the function u on [0, β], that is,

ωβ(u, ε) = sup
{∣∣u(t)− u(s)

∣∣ : t, s ∈ [0, β], |t− s| ≤ ε
}
.

For further convenience, we denote

ωβ(Z, ε) = sup
{
ωβ(u, ε) : u ∈ Z

}
, ωβ

0 (Z) = lim
ε→0

ωβ(Z, ε),

and

ω0(Z) = lim
β→+∞

ωβ
0 (Z).
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Finally, for a fixed number t ∈ [0,+∞[, we write Z(t) = {u(t) : u ∈ Z} so that
one can define the function φ on the family of all nonempty bounded subsets of
CB([0,+∞[), or B(CB([0,+∞[)) for short, as

φ(Z) = ω0(Z) + lim sup
t→+∞

diamZ(t), (2)

where, in light of the notation at the beginning of Section 2, diamZ(t) is given
by

diamZ(t) = sup
{∣∣u(t)− v(t)

∣∣ : u, v ∈ Z
}
.

Interest in the above functional is motivated by [2], [5], and [7], where it is shown
that φ is a measure of noncompactness in CB([0,+∞[). With all these elements
in place, we are able to start the study of the functional integral equation

u(t) = g
(
t, u(t)

)
+

∫ t

0

G
(
t, s, u(s)

)
ds, t ∈ [0,+∞[, (3)

where we assume that the following conditions hold:

(i) g : [0,+∞[ × R → R is a continuous function; moreover, the function
t→ g(t, 0) is an element of CB([0,+∞[);

(ii) there exists a nondecreasing right-continuous function ϕ : [0,+∞[ → [0, 1[
such that, for each t ∈ [0,+∞[ and for all u, v ∈ R, we have∣∣g(t, u)− g(t, v)

∣∣ ≤ ϕ
(
|u− v|

)
|u− v|;

(iii) G : [0,+∞[× [0,+∞[× R → R is a continuous function, and there exist
two continuous functions f, l : [0,+∞[ → [0,+∞[ such that

lim
t→+∞

f(t)

∫ t

0

l(s) ds = 0 and
∣∣G(t, s, u)∣∣ ≤ f(t)l(s)

for all t, s ∈ [0,+∞[ with s ≤ t, and for all u ∈ R;
(iv) there exists a positive solution r0 of the inequality rϕ(r) + µ ≤ r, with

constant µ given by

µ = sup
{∣∣g(t, 0)∣∣+ f(t)

∫ t

0

l(s) ds : t ∈ [0,+∞[
}
.

Before establishing the main theorem of this section, we prove an auxiliary
proposition.

Proposition 6. Suppose that the conditions (i)–(iv) hold true, and let r0 be a
positive solution of the inequality rϕ(r) + µ ≤ r. Then, the operator T defined by

(Tu)(t) = g
(
t, u(t)

)
+

∫ t

0

G
(
t, s, u(s)

)
ds,

for all t ∈ [0,+∞[ and u ∈ CB

(
[0,+∞[

)
(4)

is continuous from B(r0) = {u ∈ CB([0,+∞[) : ‖u‖ ≤ r0} into itself.
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Proof. The proof of Proposition 6 shows that the operator T is well defined and
continuous on B(r0). In fact, from (4), and by the above conditions on g and G,
we deduce that Tu is a continuous function for each u ∈ CB([0,+∞[). Also, we
have ∣∣Tu(t)∣∣ = ∣∣∣g(t, u(t))− g(t, 0) + g(t, 0) +

∫ t

0

G
(
t, s, u(s)

)
ds
∣∣∣

≤
∣∣g(t, u(t))− g(t, 0)

∣∣+ ∣∣g(t, 0)∣∣+ ∣∣∣∫ t

0

G
(
t, s, u(s)

)
ds
∣∣∣

≤ ϕ
(∣∣u(t)∣∣)∣∣u(t)∣∣+ ∣∣g(t, 0)∣∣+ f(t)

∫ t

0

l(s) ds

≤ ϕ
(∣∣u(t)∣∣)∣∣u(t)∣∣+ µ,

where µ is given in condition (iv). Then, by condition (ii) the function ϕ is
nondecreasing, and hence we get that

‖Tu‖ ≤ ϕ
(
‖u‖

)
‖u‖+ µ ≤ ϕ(r0)r0 + µ ≤ r0.

Therefore, T maps the space B(r0) into B(r0). Next, we show that T is continuous
on B(r0). We proceed by fixing a positive number ε so that, for u, v ∈ B(r0) with
‖u− v‖ ≤ ε, we have∣∣Tu(t)− Tv(t)

∣∣
≤ ϕ

(∣∣u(t)− v(t)
∣∣)∣∣u(t)− v(t)

∣∣+ ∫ t

0

∣∣G(t, s, u(s))−G
(
t, s, v(s)

)∣∣ ds
≤ ϕ

(∣∣u(t)− v(t)
∣∣)∣∣u(t)− v(t)

∣∣+ ∫ t

0

(∣∣G(t, s, u(s))∣∣+ ∣∣G(t, s, v(s))∣∣) ds
≤ ϕ

(∣∣u(t)− v(t)
∣∣)∣∣u(t)− v(t)

∣∣+ 2f(t)

∫ t

0

l(s) ds (5)

for all t ∈ [0,+∞[. On the other hand, by condition (iii), it follows the existence
of a positive constant β such that

2f(t)

∫ t

0

l(s) ds ≤ ε for all t ≥ β. (6)

Consequently, by combining the inequalities (5) and (6), and by also keeping in
mind that the function ϕ is nondecreasing, we deduce that∣∣Tu(t)− Tv(t)

∣∣ ≤ 2ε for all t ≥ β. (7)

Then, in light of the modulus of continuity at the beginning of this section, we
have

ωβ(G, ε) = sup
{∣∣G(t, s, u)−G(t, s, v)

∣∣ : t, s ∈ [0, β], u, v ∈ [−r0, r0], |u− v| ≤ ε
}
.

Note that G(t, s, u) is uniformly continuous on [0, β]× [0, β]× [−r0, r0], and that
hence we conclude that

lim
ε→0

ωβ(G, ε) = 0.
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By returning to the inequality in (5), for an arbitrarily fixed t ∈ [0, β], one quickly
arrives at the inequality∣∣Tu(t)− Tv(t)

∣∣ ≤ ε+

∫ t

0

ωβ(G, ε) ds = ε+ βωβ(G, ε),

which in light of (7) and the above fact concerning ωβ(G, ε), leads one to conclude
that T is a continuous operator on B(r0). �

The existence of at least a solution of the functional integral equation (3) can be
established in the form of the following theorem. We use arguments of fixed-point
theory in Banach spaces.

Theorem 7. Suppose that conditions (i)–(iv) hold true. Then, the functional
integral equation (3) has at least one solution in the space CB([0,+∞[).

Proof. The proof of Theorem 7 shows that the operator T defined by (4) has a
fixed point in B(r0). In fact, let Z be an arbitrary nonempty subset of B(r0).
Thus, fixing two positive numbers ε and β, one can choose arbitrarily t, s ∈ [0, β]
such that |t− s| ≤ ε. Here, it is not restrictive to suppose that s < t and hence,
for u ∈ Z, we write∣∣Tu(t)− Tu(s)

∣∣
≤

∣∣g(t, u(t))− g
(
s, u(s)

)∣∣+ ∣∣∣∫ t

0

G
(
t, τ, u(τ)

)
dτ −

∫ s

0

G
(
s, τ, u(τ)

)
dτ

∣∣∣
≤

∣∣g(t, u(t))− g
(
s, u(t)

)∣∣+ ∣∣g(s, u(t))− g
(
s, u(s)

)∣∣
+

∫ t

0

∣∣G(t, τ, u(τ))−G
(
s, τ, u(τ)

)∣∣ dτ + ∫ t

s

∣∣G(s, τ, u(τ))∣∣ dτ
≤ ωβ

1 (g, ε) + ϕ
(
ωβ(u, ε)

)
ωβ(u, ε) +

∫ t

0

ωβ
1 (G, ε) dτ + f(s)

∫ t

s

l(τ) dτ

≤ ωβ
1 (g, ε) + ϕ

(
ωβ(u, ε)

)
ωβ(u, ε) + βωβ

1 (G, ε)

+ ε sup
{
f(s)l(t) : t, s ∈ [0, β]

}
, (8)

where

ωβ
1 (g, ε) = sup

{∣∣g(t, u)− g(s, u)
∣∣ : t, s ∈ [0, β], u ∈ [−r0, r0], |t− s| ≤ ε

}
and

ωβ
1 (G, ε) = sup

{∣∣G(t, τ, u)−G(s, τ, u)
∣∣ : t, s, τ ∈ [0, β], u ∈ [−r0, r0], |t− s| ≤ ε

}
.

Moreover, in light of the uniform continuity of g on [0, β] × [−r0, r0] and G on
[0, β]× [0, β]× [−r0, r0], we obtain

lim
ε→0

ωβ
1 (g, ε) = 0 and lim

ε→0
ωβ
1 (G, ε) = 0.

By the hypotheses on functions f and l, we get that sup{f(s)l(t) : t, s ∈ [0, β]}
is finite. All these remarks and the inequalities in (8) imply that

ωβ
0 (TZ) ≤ lim

ε→0
ϕ
(
ωβ(Z, ε)

)
ωβ(Z, ε).
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Since the function ϕ is right-continuous, we can write

ωβ
0 (TZ) ≤ ϕ

(
ωβ
0 (Z)

)
ωβ
0 (Z)

and hence

ω0(TZ) ≤ ϕ
(
ω0(Z)

)
ω0(Z). (9)

The next step is realized by choosing two arbitrary functions u, v ∈ Z so that,
for t ∈ [0,+∞[, we have∣∣Tu(t)− Tv(t)

∣∣
≤

∣∣g(t, u(t))− g
(
t, v(t)

)∣∣+ ∫ t

0

∣∣G(t, s, u(s))∣∣ ds+ ∫ t

0

∣∣G(t, s, v(s))∣∣ ds
≤ ϕ

(∣∣u(t)− v(t)
∣∣)∣∣u(t)− v(t)

∣∣+ 2f(t)

∫ t

0

l(s) ds.

Starting from the above inequality, using the notion of diameter of a set, we
deduce that

diam(TZ)(t) ≤ ϕ
(
diamZ(t)

)
diamZ(t) + 2f(t)

∫ t

0

l(s) ds.

Since the function ϕ is right-continuous and nondecreasing, we obtain

lim sup
t→+∞

diam(TZ)(t) ≤ ϕ
(
lim sup
t→+∞

diamZ(t)
)
lim sup
t→+∞

diamZ(t). (10)

Combining (2), (9), and (10), and again taking into account that the function
ϕ is nondecreasing, we deduce that

φ(TZ) ≤ ϕ
(
φ(Z)

)
φ(Z).

Thus, it remains to show that the function ρ : [0,+∞[× [0,+∞[ → R defined by

ρ(t, s) = sϕ(s)− t for all t, s ∈ [0,+∞[

is a V -function. In fact, if {an} ⊂]0,+∞[ is such that

0 < ρ(an+1, an) = anϕ(an)− an+1

for all n ∈ N, then {an} is a decreasing sequence, and hence there exists a
nonnegative real number r such that limn→+∞ an = r. Since ϕ : [0,+∞[ → [0, 1[
is a right-continuous function, if r > 0, we get

0 ≤ lim sup
n→+∞

[
anϕ(an)− an+1

]
≤ rϕ(r)− r < 0,

which is a contradiction, and hence r = 0. Therefore, by an application of The-
orem 5 we conclude that the operator T has a fixed point in B(r0) and hence in
CB([0,+∞[). Thus, by the definition of the operator T , the existence of at least
a solution of (3) in CB([0,+∞[) is proved. �

It is an easy matter to show that Theorem 7 continues to be true by replacing
the above conditions (ii) and (iv) with the following:
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(ii)′ there exists a nondecreasing right-continuous function ϕ : [0,+∞[ →
[0,+∞[ such that ϕ(t) < t/2 for all t ∈ [0,+∞[ and∣∣g(t, u)− g(t, v)

∣∣ ≤ ϕ
(
|u− v|

)
for all t ∈ [0,+∞[ and u, v ∈ R;

(iv)′ there exists a positive solution r0 of the inequality ϕ(r) + µ ≤ r, with
constant µ given by

µ = sup
{∣∣g(t, 0)∣∣+ f(t)

∫ t

0

l(s) ds : t ∈ [0,+∞[
}
.

We leave it to the reader to check this claim by adapting the proof of Theorem 7.
Here, we give a numerical example.

Example 8. Consider the following functional integral equation

u(t) =
1 + t2

2 + t2
ln(1 + |u(t)|)

2 + ln(1 + |u(t)|)
+ 2e−t +

∫ t

0

cosu(t)

1 + t2
e−te

s
2 ds, t ∈ [0,+∞[,

in the space CB([0,+∞[). Clearly, g : [0,+∞[× R → R given by

g(t, u) =
1 + t2

2 + t2
ln(1 + |u(t)|)

2 + ln(1 + |u(t)|)
+ 2e−t

is continuous and is such that the function t→ g(t, 0) is an element of CB([0,+∞[).
Moreover, with respect to ϕ : [0,+∞[ → [0,+∞[ given by

ϕ(t) =
ln(1 + t)

2 + ln(1 + t)
for all t ∈ [0,+∞[,

we have

0 ≤
∣∣g(t, u)− g(t, v)

∣∣ = 1 + t2

2 + t2

∣∣∣ ln(1 + |u(t)|)
2 + ln(1 + |u(t)|)

− ln(1 + |v(t)|)
2 + ln(1 + |v(t)|)

∣∣∣
≤ 2

| ln(1 + |u(t)|)− ln(1 + |v(t)|)|
[2 + ln(1 + |u(t)|)][2 + ln(1 + |v(t)|)]

≤
| ln(1 + 1+|u(t)|−1−|v(t)|

1+|v(t)| )|
2 + ln(1 + |u(t)|) + ln(1 + |v(t)|)

≤ ln(1 + |u(t)− v(t)|)
2 + ln(1 + |u(t)|+ |v(t)|)

≤ ln(1 + |u(t)− v(t)|)
2 + ln(1 + |u(t)− v(t)|)

= ϕ
(∣∣u(t)− v(t)

∣∣).
Let f, l : [0,+∞[ → [0,+∞[ be defined by

f(t) = e−t and l(s) = e
s
2 for all t, s ∈ [0,+∞[.

Then we have ∣∣G(t, s, u)∣∣ = | cosu(t)|
1 + t2

e−te
s
2 ≤ e−te

s
2
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for all t, s ∈ [0,+∞[; clearly,

lim
t→+∞

e−t

∫ t

0

e
s
2 ds = lim

t→+∞
2e−t(e

t
2 − 1) = 0.

Also,

µ = sup
{∣∣g(t, 0)∣∣+ f(t)

∫ t

0

l(s) ds : t ∈ [0,+∞[
}

= sup
{
2e−t + 2e−t(e

t
2 − 1) : t ∈ [0,+∞[

}
= 2,

and hence r0 = 3 is a solution of the inequality ϕ(r)+µ ≤ r. Thus, conditions (i)
and (iii) of Theorem 7 hold true; moreover conditions (ii)′ and (iv)′ are satisfied,
and so the functional integral equation has at least a solution in CB([0,+∞[), in
light of the preceding facts.

4. Examples of V -functions and proof of Theorem 5

We can easily give examples where the condition (v1) is fulfilled to show the
fairness of this assumption in the practical context.

Definition 9 ([9, Definition 6]). Let ϕ, ψ : [0,+∞[ → R be two functions. The pair
(ϕ, ψ) is said to be a pair of shifting distance functions if the following conditions
hold:

(i) for u, v ∈ [0,+∞[, if ϕ(u) ≤ ψ(v), then u ≤ v;
(ii) for {un}, {vn} ⊂ [0,+∞[ with limn→+∞ un = limn→+∞ vn = r, if ϕ(un) ≤

ψ(vn) for all n ∈ N, then r = 0.

Consider a pair of shifting distance functions (ϕ, ψ) and a function h ∈ H,
where

H =
{
h : [0,+∞[ → [0,+∞[ : lim

n→+∞
h(an) = 0 implies lim

n→+∞
an = 0

}
.

Then, define the function ρ : [0,+∞[× [0,+∞[ → R by

ρ(t, s) = ψ
(
h(s)

)
− ϕ

(
h(t)

)
for all t, s ∈ [0,+∞[.

Clearly, ρ is a V -function. In fact, if {an} ⊂]0,+∞[ and

0 < ρ(an+1, an) = ψ
(
h(an)

)
− ϕ

(
h(an+1)

)
,

then

h(an+1) ≤ h(an) for all n ∈ N.
This implies that there exists a real number r ≥ 0 such that limn→+∞ h(an) = r.
Moreover, by Definition 9(ii) with un = h(an+1) and vn = h(an), we deduce that
r = 0 and hence, since h ∈ H, we get that limn→+∞ an = 0.

Here, we give two numerical examples.

Example 10. The function ρ : [0,+∞[× [0,+∞[ → R defined by

ρ(t, s) = ln
1 + s

3
− ln

1 + 2t

3
for all t, s ∈ [0,+∞[

is a V -function.
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Example 11. The function ρ : [0,+∞[× [0,+∞[ → R defined by

ρ(t, s) = ln
3 +

∫ s

0
γ(τ) dτ

3
− ln

3 + 2
∫ t

0
γ(τ) dτ

3
for all t, s ∈ [0,+∞[

is a V -function, where γ : [0,+∞[ → [0,+∞[ is a Lebesgue-integrable function
such that

∫ ε

0
γ(t) dt > ε for all ε > 0.

Again, we merge some classes of functions to get an implicit statement of
V -function.

Consider four functions h, k, ϕ, ψ : [0,+∞[ → [0,+∞[ such that the following
conditions hold:

(i) ϕ is nondecreasing and continuous,
(ii) ψ is a lower-semicontinuous function such that ψ−1({0}) = {0},
(iii) h, k ∈ H and k−1({0}) = {0}.

Then, define the function ρ : [0,+∞[× [0,+∞[ → R by

ρ(t, s) = ϕ
(
h(s)

)
− ψ

(
k(s)

)
− ϕ

(
h(t)

)
for all t, s ∈ [0,+∞[.

Clearly, ρ is a V -function. In fact, if {an} ⊂]0,+∞[ and

0 < ρ(an+1, an) = ϕ
(
h(an)

)
− ψ

(
k(an)

)
− ϕ

(
h(an+1)

)
, (11)

then

ϕ
(
h(an+1)

)
< ϕ

(
h(an)

)
since ψ(k(an)) > 0. By (i), this implies that

h(an+1) < h(an) for all n ∈ N

and hence there exists r ∈ [0,+∞[ such that limn→+∞ h(an) = r. Moreover,
passing to the limit as n→ +∞ in (11), by using the continuity of the function ϕ,
one has that there exists limn→+∞ ψ(k(an)) = 0. By the hypotheses on function ψ
in (ii), we deduce that there exists limn→+∞ k(an) = 0 and hence limn→+∞ an = 0
too, in light of (iii).

By arguments similar to those in the proof of Theorem 3, we obtain the exis-
tence of a fixed point for the continuous V -φ-contraction operator T : M → M .
Thus, we give the following proof of Theorem 5.

Proof of Theorem 5. Our proof shows that there exists a sequence {Mn} of
nonempty, closed, and convex subsets of M such that

TMn ⊂Mn ⊂Mn−1 for all n ∈ N.

In fact, letM0 =M , and define the sequence {Mn} by adopting the iterative rule

Mn = conv(TMn−1) for all n ∈ N. (12)

Since T is a self-operator on M , then TM0 ⊂M0 trivially. Thus, suppose that
the condition TMn ⊂ Mn ⊂ Mn−1 holds for a finite set of natural numbers, say,
up to n. Therefore, in light of the iterative rule in (12), we get that TMn ⊂ Mn

implies that Mn+1 = conv(TMn) ⊂Mn and hence

TMn+1 ⊂ TMn ⊂Mn+1 for all n ∈ N ∪ {0}.
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Of course, if there exists a natural number m such that φ(Mm) = 0, thenMm is a
compact set. Moreover, since T is a self-operator on Mm, the existence of a fixed
point of T in Mm follows by an application of Theorem 1; also, from the above
range restrictions, it is clear that the fixed point belongs to M . Now, we suppose
that φ(Mn) > 0 for all n ∈ N and we prove that limn→+∞ φ(Mn) = 0. In fact, by
using the V -φ-contraction condition (1) with Z =Mn, we get

0 < ρ
(
φ(TMn), φ(Mn)

)
= ρ

(
φ
(
conv(TMn)

)
, φ(Mn)

)
= ρ

(
φ(Mn+1), φ(Mn)

)
,

and so the property (v1) of the function ρ ensures that limn→+∞ φ(Mn) = 0.
Furthermore, in light of property (m6) of a measure of noncompactness (see Def-
inition 2), we have M∞ =

⋂+∞
n=1Mn 6= ∅. Since TMn ⊂ Mn, then TM∞ ⊂ M∞.

Moreover, M∞ ∈ kerφ. Indeed, from property (m2) of a measure of noncompact-
ness, one has that φ(M∞) ≤ φ(Mn) for all n ∈ N, which leads to φ(M∞) = 0 and
so M∞ ∈ kerφ. Finally, since M∞ is a closed set, then it is a compact set. Thus,
by an application of Theorem 1, we conclude that T has a fixed point in M∞ and
hence in M . �

This short proof does not upset the simplicity and effectiveness of the original
proof in [12], but with a few focused changes we think that it is more effective
and general. We note that Darbo’s fixed-point theorem follows immediately from
Theorem 5 by choosing as V -function ρ(t, s) = ks − t for all t, s ∈ [0,+∞[ with
k ∈ [0, 1[.

5. Consequences in fixed-point theory

Furthermore, there are some interesting consequences of Theorem 5 which
deserve to be stated, such as the following corollary.

Corollary 12. Let M be a nonempty, bounded, closed, and convex subset of a
Banach space X, and let T : M → M be a continuous operator. Assume that
there exist a pair of shifting distance functions (ϕ, ψ) and a function h ∈ H such
that

ϕ
(
h
(
φ(TZ)

))
≤ ψ

(
h
(
φ(Z)

))
for all Z ⊂M,φ(Z) > 0.

Then T has a fixed point in the set M .

By appropriately choosing the function h in Corollary 12, one can obtain known
results, for instance, Theorem 2.1 of [10] and Theorem 6 of [17]. On the other
hand, as a particular case of Corollary 12, we give the following result, which is
a generalization of Corollary 2.1 of [11].

Corollary 13. Let M be a nonempty, bounded, closed, and convex subset of a
Banach space X, let φ be a measure of noncompactness on X, and let T :M →M
be a continuous operator. Assume that there exist two functions ψ, ϕ : [0,+∞[ →
[0,+∞[ such that

ϕ
(
φ(TZ)

)
≤ ψ

(
φ(Z)

)
for all Z ⊂M,φ(Z) > 0.

If ψ(t) < t ≤ ϕ(t) for all t > 0, ϕ−1({0}) = {0}, ψ−1({0}) = {0}, ψ is upper-
semicontinuous, and ϕ is lower-semicontinuous, then T has a fixed point in the
set M .
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The proof of Corollary 13 shows that (ϕ, ψ) is a pair of shifting distance func-
tions. In fact, condition (i) of Definition 9 is a consequence of the inequalities
ψ(t) < t ≤ ϕ(t), for all t > 0. Moreover, if {un} and {vn} are as in condition (ii)
of Definition 9, then we conclude that

ϕ(r) ≤ lim inf
n→+∞

ϕ(un) ≤ lim sup
n→+∞

ψ(vn) ≤ ψ(r).

But this condition holds only if r = 0.
By keeping in mind the implicit statement of V -function given in Section 4, we

propose the following corollary.

Corollary 14. Let M be a nonempty, bounded, closed, and convex subset of a
Banach space X, let φ be a measure of noncompactness on X, and let T : M →
M be a continuous operator. Assume that there exist four functions h, k, ϕ, ψ :
[0,+∞[ → [0,+∞[ such that

ϕ
(
h
(
φ(TZ)

))
≤ ϕ

(
h
(
φ(Z)

))
− ψ

(
k
(
φ(Z)

))
for all Z ⊂M,φ(Z) > 0,

where

(i) ϕ is nondecreasing and continuous,
(ii) ψ is a lower-semicontinuous function such that ψ−1({0}) = {0},
(iii) h, k ∈ H and k−1({0}) = {0}.

Then T has a fixed point in the set M .

Corollary 14 is a generalization of Theorem 2.1 of [14], Theorem 2.7 of [10],
and Corollary 2.2 of [11]. In the recent literature on fixed points, there are various
classes of functions fulfilling the condition (v1). Here, we use some functions in
these classes for establishing other corollaries; but we leave to the reader the
simple task of recognizing which options are adopted. The following result is a
generalization of Corollary 2.5 of [11].

Corollary 15. Let M be a nonempty, bounded, closed, and convex subset of a
Banach space X, let φ be a measure of noncompactness on X, and let T :M →M
be a continuous operator. Assume that there exists a function ϕ : [0,+∞[ →
[0,+∞[ such that

ϕ
(
φ(TZ)

)
≤ φ(Z) for all Z ⊂M,φ(Z) > 0.

If ϕ is a lower-semicontinuous function such that ϕ(t) > t for all t ∈ [0,+∞[,
then T has a fixed point in the set M .

The proof of Corollary 15 shows that the function ρ : [0,+∞[ × [0,+∞[ → R
defined by

ρ(t, s) = s− ϕ(t) for all t, s ∈ [0,+∞[

is a V -function. In fact, if {an} ⊂]0,+∞[ is such that

0 < ρ(an+1, an) = an − ϕ(an+1) < an − an+1

for all n ∈ N, then {an} is a decreasing sequence and hence there exists r ∈
[0,+∞[ such that limn→+∞ an = r. The lower-semicontinuity of ϕ ensures that
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ϕ(r) ≤ lim inf
n→+∞

ϕ(an) ≤ lim
n→+∞

an = r,

which is a contradiction if r > 0 and hence r = 0.

Corollary 16. Let M be a nonempty, bounded, closed, and convex subset of a
Banach space X, let φ be a measure of noncompactness on X, and let T :M →M
be a continuous operator. Assume that there exists a function ϕ : [0,+∞[ → [0, 1[
such that

φ(TZ) ≤ ϕ
(
φ(Z)

)
φ(Z) for all Z ⊂M,φ(Z) > 0.

If ϕ is a function such that lim supt→r+ ϕ(t) < 1 for all r > 0, then T has a fixed
point in the set M .

The proof of Corollary 16 shows that the function ρ : [0,+∞[ × [0,+∞[ → R
defined by

ρ(t, s) = sϕ(s)− t for all t, s ∈ [0,+∞[

is a V -function. In fact, if {an} ⊂]0,+∞[ is such that

0 < ρ(an+1, an) = anϕ(an)− an+1

for all n ∈ N, then {an} is a decreasing sequence and hence there exists r ∈
[0,+∞[ such that limn→+∞ an = r. Now, if r > 0, we get

0 ≤ lim sup
n→+∞

[
anϕ(an)− an+1

]
≤ r lim sup

n→+∞
ϕ(an)− r < 0,

which is a contradiction and hence r = 0.

Remark 17. The previous corollary holds also if ϕ : [0,+∞[ → [0, 1[ is a monotone
function, as it is shown at the end of the proof of Theorem 7.

Corollary 18. Let M be a nonempty, bounded, closed, and convex subset of a
Banach space X, let φ be a measure of noncompactness on X, and let T :M →M
be a continuous operator. Assume that there exists a function ϕ : [0,+∞[ →
[0,+∞[ such that

φ(TZ) ≤ ϕ
(
φ(Z)

)
for all Z ⊂M,φ(Z) > 0.

If ϕ is an upper-semicontinuous function such that ϕ(t) < t for all t > 0, then T
has a fixed point in the set M .

The proof of Corollary 18 shows that the function ρ : [0,+∞[ × [0,+∞[ → R
defined by

ρ(t, s) = ϕ(s)− t for all t, s ∈ [0,+∞[

is a V -function. In fact, if {an} ⊂]0,+∞[ is such that

0 < ρ(an+1, an) = ϕ(an)− an+1

for all n ∈ N, then {an} is a decreasing sequence and hence there exists r ∈
[0,+∞[ such that limn→+∞ an = r. Now, if r > 0, we get that

r = lim sup
n→+∞

an+1 ≤ lim sup
n→+∞

ϕ(an) ≤ ϕ(r),

which is a contradiction and hence r = 0.
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6. Conclusions

The measures of noncompactness in Banach spaces represent an interesting way
for improving the study of functional integral equations by focusing on the prob-
lem of the existence of at least one solution. Here, we extend Darbo’s fixed-point
theorem and work with methods of fixed-point theory to establish the main result
of the article. The proposed approach is useful for generalizing and interrelating
various results in the existing literature.
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