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Abstract. Given an integer n ≥ 2, in this article we provide a complete
description of all additive surjective maps on the algebra of all bounded linear
operators acting on an infinite-dimensional complex Banach space, preserving
in both directions the set of Drazin invertible operators of index n.

1. Introduction

Throughout this paper, X denotes an infinite-dimensional complex Banach
space, and B(X) denotes the algebra of all bounded linear operators acting on X.
An operator T ∈ B(X) is said to be Drazin invertible if there exist an operator
S ∈ B(X) and a nonnegative integer k such that

TS = ST, S2T = S, and T k+1S = T k. (1.1)

Such an operator S is unique, and it is called the Drazin inverse of T , and it is
denoted by S = TD. The Drazin index of T , designated by i(T ), is the smallest
nonnegative integer k satisfying (1.1). Clearly, every invertible operator is Drazin
invertible with index zero.

The concept of Drazin inverse was introduced in [6], and it has numerous
applications in matrix theory, iterative methods, singular differential equations,
and Markov chains (see, for instance, [2], [4], [16], [22], and the references therein).
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Let Λ be a subset of B(X). A map Φ : B(X) → B(X) is said to preserve Λ in
both directions if, for every T ∈ B(X),

T ∈ Λ if and only if Φ(T ) ∈ Λ.

The problem of studying linear maps on Banach algebras that leave certain
subsets invariant has attracted the attention of many mathematicians in the last
decades. For excellent expositions on linear preserver problems, we refer the reader
to [8], [10], [13], [15], [18], [20], [21], and the references therein.

In [13], the authors have characterized surjective additive continuous maps
Φ : B(H) → B(H), where H is a separable infinite-dimensional complex Hilbert
space, preserving the set of all Drazin invertible operators in both directions. It
should be mentioned that the characterization of such maps in the setting of
Banach spaces is still an open question.

For each positive integer n, let Dn(X) denote the set of all Drazin invertible
operators in B(X) of index n.

The authors of this note obtain in [15] a complete description of additive sur-
jective maps Φ : B(X) → B(X) preserving D1(X) in both directions. In this
paper, we establish a similar result for Dn(X) where n ≥ 2, and hence we com-
pliment and extend the main conclusion in [15]. Our arguments are influenced
by ideas from [15] and the approaches given therein, but the proof of our main
result requires new ingredients as illustrated in Example 2.3 and the remark pre-
ceding it. Contrary to what could be expected, the techniques used here do not
allow us to include the special case of D1(X) as a consequence. For these reasons
reference [15] and this note are complementary papers which deserve their own
independent study.

Let X∗ denote the topological dual space of X, and let T ∗ denote the Banach
space adjoint of T . The main result of this article can be stated as follows.

Theorem 1.1. Let Φ : B(X) → B(X) be an additive surjective map, and let
n ≥ 2 be an integer. Then Φ preserves Dn(X) in both directions if and only if
one of the following assertions holds.

(1) There is a nonzero α ∈ C, and there is a bijective continuous mapping
A : X → X, either linear or conjugate linear, such that

Φ(T ) = αATA−1 for all T ∈ B(X).

(2) There is a nonzero α ∈ C, and there is a bijective continuous mapping
B : X∗ → X, either linear or conjugate linear, such that

Φ(T ) = αBT ∗B−1 for all T ∈ B(X).

For T ∈ B(X), we denote by Pn(T ) the set of all the poles of order n of its
resolvent. It follows by [23, Theorems 10.1 and 10.2] that λ ∈ Pn(T ) if and only if
T−λ ∈ Dn(X). As a consequence of the previous theorem, we derive the following
corollary.

Corollary 1.2. Let Φ : B(X) → B(X) be an additive surjective map, and let
n ≥ 2 be an integer. Then Pn(Φ(T )) = Pn(T ) for all T ∈ B(X) if and only if one
of the following assertions holds.
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(1) There is a bijective continuous mapping A : X → X, either linear or
conjugate linear, such that

Φ(T ) = ATA−1 for all T ∈ B(X).

(2) There is a bijective continuous mapping B : X∗ → X, either linear or
conjugate linear, such that

Φ(T ) = BT ∗B−1 for all T ∈ B(X).

The present article is organized as follows. In the second section, we establish
some useful results on the perturbation of Drazin invertible operators of index n.
These results will be needed for proving the main theorem and its corollary in
the last section.

2. Dn(X) under rank 1 perturbations

Throughout the rest of this paper, n is an integer greater than 1. For an operator
T ∈ B(X), write ker(T ) for its kernel, write ran(T ) for its range, and write σ(T )
for its spectrum. The ascent a(T ) and descent d(T ) of T are defined respectively
by

a(T ) = inf
{
k ≥ 0 : ker(T k) = ker(T k+1)

}
and

d(T ) = inf
{
k ≥ 0 : ran(T k) = ran(T k+1)

}
,

where the infimum over the empty set is taken to be infinite (see [19], [23]). From
[7, Lemma 1.1], given a nonnegative integer k, we have

a(T ) ≤ k ⇔ ker(Tm)∩ran(T k) = {0} for some (equivalently, all) m ≥ 1, (2.1)

and

d(T ) ≤ k ⇔ ker(T k) + ran(Tm) = X for some (equivalently, all) m ≥ 1. (2.2)

Remark 2.1. Let T ∈ B(X). Then T is Drazin invertible if and only if T has
finite ascent and descent (see [11, Theorem 4]). Moreover, we have in this case
the following well-known assertions (see [19, Corollary 20.5 and Theorem 22.10]):

(1) a(T ) = d(T ), and this value coincides with the Drazin index i(T );
(2) X = ker(T k)⊕ ran(T k), where k = i(T ) and the direct sum is topological;
(3) 0 is a pole of T of order k when k ≥ 1.

Let z ∈ X, and let f ∈ X∗. As usual, we denote by z ⊗ f the rank 1 operator
given by (z ⊗ f)(x) = f(x)z for all x ∈ X. Note that every rank 1 operator in
B(X) can be written in this form.

Proposition 2.2. Let T ∈ B(X) be such that a(T ) ≤ m where m ≥ 1 is an
integer, and let F ∈ B(X) be a rank 1 operator. Assume that a(T +αF ) > m and
a(T + βF ) > m for two different nonzero scalars α, β ∈ C. Then a(T + cF ) > m
for every nonzero c ∈ C.
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Proof. Let F = z⊗f , where z ∈ X and f ∈ X∗ are nonzero. Then it follows from
[13, Lemma 2.2] that there exist two sequences {xk}mk=0 and {yk}mk=0 of linearly
independent vectors and two integers 0 ≤ i, j ≤ m such that

(T + αF )x0 = (T + βF )y0 = 0,

(T + αF )xk = xk−1 and (T + βF )yk = yk−1 for 1 ≤ k ≤ m,

f(xk) = δki and f(yk) = δkj for 0 ≤ k ≤ m.

From this, one can easily see that{
Txi = xi−1 − αz,

Tyj = yj−1 − βz,
and

{
Txk = xk−1 for 0 ≤ k 6= i ≤ m,

Tyk = yk−1 for 0 ≤ k 6= j ≤ m,
(2.3)

where we set formally xs = ys = 0 for s < 0.
We claim that i = j. Suppose to the contrary that i 6= j. We may assume

without loss of generality that i < j. Let uk = αyk − βxk+i−j for 0 ≤ k ≤ m. We
have u0 = αy0 and uj = αyj − βxi. Hence Tu0 = 0 because j 6= 0, and, using
(2.3), we also get

Tuj = α(yj−1 − βz)− β(xi−1 − αz) = uj−1

and

Tuk = uk−1 for 1 ≤ k 6= j ≤ m.

Consequently, Tmum = u0 6= 0, and hence u0 ∈ ker(T ) ∩ ran(Tm). Thus a(T ) ≥
m+ 1 by (2.1), the desired contradiction.

Fix an arbitrary nonzero c ∈ C. Let vk = −αyk+βxk, and let wk = vk+ c(yk−
xk) for 0 ≤ k ≤ m, and put vs = ws = 0 for s < 0. In particular, we have

f(wi) = f(vi) = −α + β and f(wk) = f(vk) = 0 for 0 ≤ k 6= i ≤ m.

Furthermore, using (2.3), we obtain that
Tvi = −α(yj−1 − βz) + β(xi−1 − αz) = vi−1,

(T + cF )wi = vi−1 + c(yj−1 − βz − xi−1 + αz) + c(β − α)z = wi−1,

T vk = vk−1 and (T + cF )wk = Twk = wk−1 for 0 ≤ k 6= i ≤ m.

Hence we get that Tmvm = v0 and Tm+1vm = 0. Since a(T ) ≤ m, it follows
that v0 = −αy0 + βx0 = 0, and so y0 = α−1βx0 and w0 = v0 + c(y0 − x0) =
c(α−1β−1)x0 6= 0. Finally, since (T +cF )mwm = w0 6= 0 and (T +cF )m+1vm = 0,
we obtain that a(T + cF ) > m. �

Let T be an operator in B(X). One can easily show that it follows from
Remark 2.1 and (2.1) that

T ∈ Dn(X) if and only if T n ∈ D1(X) and T n−1 /∈ D1(X). (2.4)

We also note that T ∈ Dn(X) if and only if T ∗ ∈ Dn(X
∗). Indeed, it follows

easily from [19, Theorem A.1.14 and Corollary A.1.17] that a(T ) = d(T ) = n if
and only if a(T ∗) = d(T ∗) = n.
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It is noteworthy that the study of additive maps Φ on B(X) preserving Dn(X)
in both directions is based on the characterization of rank 1 operators in terms
of elements in Dn(X). Namely, we establish in [15] that a nonzero operator F is
of rank 1 if and only if for every T ∈ D1(X) such that T + F ∈ D1(X) at least
one of the operators T +2F or T − 2F belongs to D1(X). The following example
shows that this characterization does not hold for Dn(X) where n ≥ 2, which
constrains to search additional conditions for obtaining a similar characterization
in Proposition 2.4 and Theorem 2.7.

Example 2.3. Consider the following matrices:

T =


0 0 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 and F =


0 0 0 0
−1 0 −1 0
0 0 0 0
0.5 0 0.5 0

 .

Clearly, F is of rank 1. Furthermore, by computing the minimal polynomial of
each matrix T , T +F , T −2F , and T +2F , it follows from [2, Theorem 1, p. 136]
that i(T ) = i(T + F ) = 2, i(T − 2F ) = 4 and i(T + 2F ) = 1.

Proposition 2.4. Let T ∈ Dn(X), and let F ∈ B(X) be a rank 1 operator
such that T + F ∈ Dn(X) and T − F /∈ Dn(X). Then T + 2F ∈ Dn(X) or
T − 2F ∈ Dn(X).

Before proving this proposition, we need to establish the following lemma which
has been already proved for D1(X) in [15, Lemma 2.5].

Lemma 2.5. Let T ∈ Dn(X), and let F ∈ B(X) be a finite rank operator. Then

T + F ∈ Dn(X) ⇔ d(T + F ) = n ⇔ a(T + F ) = n.

Proof. Observe that (T + F )n = T n +K, where K ∈ B(X) is finite rank. Note
also that it suffices to show that T + F ∈ Dn(X) whenever a(T + F ) = n or
d(T + F ) = n. Suppose that a(T + F ) = n. Then a((T + F )n) = a(T n +K) = 1
and a((T+F )n−1) 6= 1. Since T n ∈ D1(X) by (2.4), it follows from [15, Lemma 2.5]
that (T + F )n = T n +K ∈ D1(X). On the other hand, as a((T + F )n−1) 6= 1, we
have (T + F )n−1 /∈ D1(X). Hence we obtain again by (2.4) that T + F ∈ Dn(X).

The case d(T + F ) = n can be dealt with in a similar way. �

Proof of Proposition 2.4. Let F be a rank 1 operator such that T + F ∈ Dn(X)
and T − F /∈ Dn(X). According to the previous lemma, it suffices to show that
a(T + 2F ) = n or a(T − 2F ) = n. Since a(T ) = a(T + F ) = n, it follows from
Proposition 2.2 that

a(T + 2F ) ≤ n or a(T − 2F ) ≤ n.

There is no loss of generality in assuming that a(T +2F ) ≤ n. If a(T +2F ) = n,
then the proposition is proved. Assume that a(T + 2F ) ≤ n− 1. Since

a(T + 2F − 2F ) = a(T + 2F − F ) = n,

Proposition 2.2 implies that

a(T + 2F + cF ) > n− 1 for every nonzero c ∈ C.



DRAZIN INVERTIBLE OPERATORS OF INDEX n 421

In particular, we have a(T −2F ) ≥ n and a(T −F ) > n because T −F /∈ Dn(X).
Now, using again Proposition 2.2 for T , we obtain that

a(T − 2F ) ≤ n or a(T − F ) ≤ n.

This shows that a(T − 2F ) = n, which completes the proof. �

For an integer k ≥ 2, we denote by Jk the k × k nilpotent matrix of order k
with 1 in the diagonal directly below the main diagonal and 0 elsewhere. Notice
that a nilpotent operator T of order k is Drazin invertible of index k and TD = 0.

The following example shows both that Dn(X) is not stable under rank 1
perturbations, and that the assumptions T +F ∈ Dn(X) and T −F /∈ Dn(X) in
Proposition 2.4 are necessary.

Example 2.6. Let Y ⊂ X be a subspace of dimension n, and write X = Y ⊕ Z,
where Z is a closed subspace. With respect to an arbitrary basis of Y , consider
the operators T, F ∈ B(X) given by

T = Jn ⊕ I and F = E1,n ⊕ 0,

where E1,n is the n × n matrix whose only nonzero entry is 1 in position (1, n).
Clearly, F is rank 1, and T ∈ Dn(X). However, the matrix Jn+αE1,n is invertible,
and so T + αF is invertible for every nonzero α ∈ C.

The following theorem, which is interesting in itself, allows us to establish in
the next section that every additive surjective map Φ preserving Dn(X) in both
directions is bijective and preserves rank 1 operators in both directions.

Theorem 2.7. Let F ∈ B(X) be nonzero. Then the following assertions hold:

(1) there exists T ∈ Dn(X) such that T + 2F /∈ Dn(X);
(2) if dim ran(F ) ≥ 2, then there exists T ∈ Dn(X) such that T +F ∈ Dn(X)

and T − cF /∈ Dn(X) for every c ∈ {1,±2}.

Before proving this theorem, some auxiliary results should be established first.

Lemma 2.8. Let Y and Z be two nontrivial closed subspaces such that X =
Y ⊕ Z, and let T ∈ B(X) have the operator matrix form

T =

[
A B
0 C

]
,

where C is invertible. Then T is Drazin invertible if and only if A is Drazin
invertible, and in this case i(T ) = i(A).

Proof. See [5, Corollary 5.2] and [24, Theorem 2.1]. �

We would like to mention that the previous lemma remains true for finite-
dimensional spaces. Indeed, every operator acting on a finite-dimensional space
has finite ascent and descent, and, consequently, it is Drazin invertible. The equal-
ity of the indices follows from [17, Corollary 2.1]. It should also be noted that, by
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passing to the adjoint, one can easily show that the same conclusion holds true
for lower triangular operator matrix

T =

[
A 0
D C

]
.

The following lemma shows that the proof of Theorem 2.7 can be reduced to the
case where the space is finite-dimensional.

Lemma 2.9. Let F ∈ B(X), and let F1 be its restriction to an F -invariant
subspace Y of finite dimension. Then every operator S ∈ B(Y ) can be extended
to an operator T ∈ B(X) such that T + αF is Drazin invertible and

i(T + αF ) = i(S + αF1) for every α ∈ {0,±1,±2}.

Proof. Let Z be a closed subspace such that X = Y ⊕ Z. With respect to this
decomposition, the operator F can be expressed as follows:

F =

[
F1 F2

0 F3

]
.

Consider also the operator T ∈ B(X) represented by the matrix

T =

[
S 0
0 cI

]
,

where c is a nonzero complex number such that cI+αF3 is invertible for every α ∈
{0,±1,±2}. Now, using Lemma 2.8, we obtain that T + αF is Drazin invertible
and i(T + αF ) = i(S + αF1) for every α ∈ {0,±1,±2}. �

Lemma 2.10. Let Y be a complex Banach space such that dim(Y ) ≥ n+ 3. Let
F ∈ B(Y ) be a rank 1 operator, and let c ∈ {−2, 2}. Then there exists T ∈ B(Y )
such that T + αF is Drazin invertible for every α ∈ {0,±1, c} and

i(T ) = i(T + F ) = n, i(T − F ) = n− 1, and i(T + cF ) > n.

Proof. Let F = z ⊗ f where z ∈ Y and f ∈ Y ∗ are nonzero. Choose xn+2 ∈ Y
linearly independent of z and such that f(xn+2) = 1. Since Y = Span{xn+2, z}+
ker(f), there are linearly independent vectors xn+1, . . . , x3, x2, x0 forming with
{xn+2, z} a linearly independent set and such that f(x2) = 1 and f(xi) = f(x0) =
0 for 3 ≤ i ≤ n+ 1. Let x1 = (1 + c)xn+1 − cz. Then {xn+2, . . . , x0} is a linearly
independent set, and

f(xn+2) = f(x2) = 1, f(x1) = −cf(z),

f(xi) = f(x0) = 0 for 3 ≤ i ≤ n+ 1,

z = (1 + c−1)xn+1 − c−1x1.

(2.5)

Put Z = Span{xn+2, . . . , x0}, and consider the operator S ∈ B(Z) represented by
the matrix

S =

[
Jn 0
0 U

]
where U =

0 0 1
1 0 0
0 1 0

 .
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Let Fo = F|Z , ε ∈ {0,±1}, and let un+2 = εc−1x2 + (1 − εc−1)xn+2. We get by
(2.5) that

(S + εFo)un+2 = εc−1x1 + (1− εc−1)xn+1 + εz = (1 + ε)xn+1,

(S + εFo)xi = Sxi = xi−1 for 4 ≤ i ≤ n+ 1,

(S + εFo)x3 = 0.

With respect to the basis {un+2, xn+1, . . . , x0}, we have

S + εFo =

[
Nε A
0 Vε

]
,

where Nε and Vε are given by

Nε =


0 0 0 . . . 0

1 + ε 0 0 . . . 0
0 1 0 . . . 0
...

...
. . . . . .

...
0 0 . . . 1 0

 and Vε =

 0 0 1
1− εc−1 εf(z) 0

0 1 0

 .

Obviously, Nε is nilpotent and Vε is invertible. Since i(N0) = i(N1) = n and
i(N−1) = n− 1, we obtain that i(S) = i(S + Fo) = n and i(S − Fo) = n− 1. On
the other hand, we have

(S + cFo)x0 = x2, (S + cFo)x2 = (1 + c)xn+1,

(S + cFo)xk = xk−1 for 4 ≤ k ≤ n+ 1,

(S + cFo)x3 = 0.

Then (S+ cFo)
nx0 = (1+ c)x3 6= 0 and (S+ cFo)

n+1x0 = 0. Thus a(S+ cFo) > n,
and so i(S + cFo) > n. Finally, using Lemma 2.9, we get the desired operator T .

�

We mention that this lemma does not hold for n = 1. Indeed, let F ∈ B(X) be
a rank 1 operator, and let T ∈ B(X). If T − F is invertible, then it follows from
[21, Lemma 2.1] that (T − F ) + F = T is invertible or (T − F ) + 2F = T + F is
invertible.

If T has a diagonal representation T = T1 ⊕ T2, then one can easily show that
T is Drazin invertible if and only if T1 and T2 are Drazin invertible, and in this
case i(T ) = max{i(T1), i(T2)}.
Lemma 2.11. Let F ∈ B(X) be such that dimker(F ) = ∞ and dim ran(F ) ≥ 2.
Assume that there exist x1, x2 ∈ X such that

(1) the sum Span{x1, Fx1}+ Span{x2, Fx2} is direct,
(2) F| Span{xi,Fxi} has rank 1 for 1 ≤ i ≤ 2.

Then there exists T ∈ Dn(X) satisfying T + F ∈ Dn(X) and T − cF /∈ Dn(X)
for every c ∈ {1,±2}.
Proof. We can pick two subspaces Xi ⊆ ker(F ), 1 ≤ i ≤ 2, of dimension n + 2
such that the sum

Span{x1, Fx1}+ Span{x2, Fx2}+X1 +X2
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is direct. Let Yi = Span{xi, Fxi} ⊕ Xi, and let Fi = F|Yi
, i = 1, 2. Write Y =

Y1 ⊕ Y2, and write Fo = F1 ⊕ F2. Since Fi has rank 1 and dimYi ≥ n + 3 for
i = 1, 2, it follows from Lemma 2.10 that there are two linear operators S1 and
S2 acting on Y1 and Y2, respectively, such that{

i(Sk) = i(Sk + Fk) = n and i(Sk − Fk) = n− 1 for 1 ≤ k ≤ 2,

i(S1 + 2F1) > n and i(S2 − 2F2) > n.

Letting S = S1 ⊕ S2, we have

i(S + cFo) = max
{
i(S1 + cF1), i(S2 + cF2)

}
for every c ∈ C,

and so i(S) = i(S+Fo) = n, i(S−Fo) = n−1, i(S+2Fo) > n, and i(S−2Fo) > n.
Thus Lemma 2.9 gives the desired operator T . �

For a positive integer k we denote by Ik the k × k identity complex matrix.
The following lemma is a special case of Theorem 2.7(2) with F being algebraic.

Recall that an operator F ∈ B(X) is said to be algebraic if there exists a nonzero
complex polynomial p such that p(F ) = 0.

Lemma 2.12. Let F ∈ B(X) be an algebraic operator such that dim ran(F ) ≥ 2.
Then there exists T ∈ Dn(X) such that T +F ∈ Dn(X) and T − cF /∈ Dn(X) for
every c ∈ {1,±2}.

Proof. Assume that ker(F ) has finite dimension. Then there exists a nonzero
λ ∈ C such that ker(F − λ) is infinite-dimensional. Let L ⊂ ker(F − λ) be
a subspace of dimension 2n. Let G = F|L = λIn, and define R ∈ B(L) by
R = Jn ⊕ (Jn − λIn) with respect to an arbitrary basis of L. Clearly, R and
R + G are Drazin invertible of index n. However, R − cG is invertible for every
c ∈ {1,±2}. The proof is completed by using Lemma 2.9.

Assume now that ker(F ) has infinite dimension. We note that σ(F ) is contained
in {0, α1, . . . , αr}, where 0 and αi, 1 ≤ i ≤ r, are the zeros of a nonzero complex
polynomial annihilating T . Put

m = dim
[(
ran(F ) ∩ ker(F )

)
⊕ ker(F − α1)⊕ · · · ⊕ ker(F − αr)

]
.

Then m ≥ 1. In fact, if F is nilpotent, then X = ker(F p) for some p ≥ 2 because
dim ran(F ) ≥ 2, and so ran(F ) ∩ ker(F ) 6= {0}. We shall discuss three cases.

Case 1. If m ≥ 2, then there are x1, x2 ∈ X such that Fx1 and Fx2 are linearly
independent, and F 2xi = 0 or Fxi is collinear with xi for 1 ≤ i ≤ 2. Perturbing
x1, x2 by suitable elements of ker(F ), we may assume that {x1, Fx1, x2, Fx2} is
linearly independent. Thus, using the previous lemma, we get the desired opera-
tor.

Case 2. Ifm = dim ran(F )∩ker(F ) = 1, then σ(T ) = {0} and ran(F ) * ker(F ).
Thus F 2 6= 0, and hence there are linearly independent vectors y2, y1, y0 such that

Fy2 = y1, Fy1 = y0, and Fy0 = 0.

Choose vectors yi ∈ ker(F ), 3 ≤ i ≤ 2n, forming with {y2, y1, y0} a linearly
independent set. Let Y = Span{y2n, . . . , y0}, and let S ∈ Dn(Y ) be the operator
given by S = Jn ⊕ (−Jn)⊕ 0. If we put Fo = F|Y , then it follows that S + Fo =
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Jn ⊕ (−Jn−1)⊕ J2, and hence S + Fo ∈ Dn(Y ). Letting c ∈ {1,±2}, we have{
(S − cFo)yi = Syi = −yi−1 for 3 ≤ i ≤ n,

(S − cFo)y2 = (−1− c)y1, (S − cFo)y1 = −cy0, and (S + cFo)y0 = 0.

Therefore, a(S − cFo) ≥ n + 1, and so S − cFo /∈ Dn(Y ). Using Lemma 2.9, we
get the desired operator T .

Case 3. Assume that m = dimker(F − α) = 1 with α 6= 0. From this and the
fact that dimker(F ) = ∞, we infer that σ(F ) = {0, α}. Furthermore, we have
a(F ) = 1 because ran(F ) ∩ ker(F ) = {0}, and hence X = ker(F )⊕ ker(F − α)k

for some positive integer k ≥ 1. Consequently, ran(F ) = ker(F − α)k, and since
dim ran(F ) ≥ 2 and dimker(F−α) = 1, we obtain that ker(F−α)  ker(F−α)2.
Hence there are linearly independent vectors {x0, x1} such that

(F − α)x1 = x0 and (F − α)x0 = 0.

Choose vectors xi ∈ ker(F ), 2 ≤ i ≤ n, that constitute with {x0, x1} a linearly
independent set. Let Z = Span{xn, . . . , x0}, and let F1 = F|Z . Consider also the
operator K ∈ B(Z) defined by

Kx0 = 0, Kx1 = −αx1 − x0, and Kxi = xi−1 for 2 ≤ i ≤ n.

We have K + F1 = Jn ⊕ αI1, and hence K + F1 ∈ Dn(Z). Let c ∈ {1,±2}. Then
we can express K − cF1 as follows:

K − cF1 =

[
Jn−1 0
A B

]
where B =

[
−(c+ 1)α 0
−c− 1 −cα

]
.

Since B is invertible, Lemma 2.8 yields that i(K−cF1) = n−1. Let ui = αxi+xi−1

for 2 ≤ i ≤ n, u1 = −x0, and u0 = αx1 + x0. Then we get easily that

Kui = ui−1 for 2 ≤ i ≤ n, Ku1 = 0, and Ku0 = −αu0.

Thus K = Jn⊕ (−αI1) relative to the basis un, . . . , u0, and so K ∈ Dn(Z). Using
again Lemma 2.9, we get the desired operator T . �

Proof of Theorem 2.7. (2) Suppose that F has at least rank 2. According to
Lemma 2.11, we may assume that F is not algebraic. It follows by [1, Theo-
rem 4.2.7] that there is x ∈ X such that {F ix : 0 ≤ i ≤ 2n + 4} is a linearly
independent set. Write X = X1 ⊕ X2 ⊕ X3, where X1 = Span{x, . . . , F n+3x},
X2 = Span{F n+4x, . . . , F 2n+3x}, and X3 is a closed subspace containing F 2n+4x.
With respect to this decomposition, F can be expressed as follows:

F =

Jn+4 0 A
B Jn C
0 D E

 .

Consider a nonzero α ∈ C such that αI + E is invertible, and let T ∈ B(X) be
the operator given by

T =

S 0 −A
0 Jn −C
0 0 αI

 ,
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where the operator S is defined by
SF kx = 3F k+1x for 0 ≤ k ≤ n− 1,

SF nx = F n+1x and SF n+1x = −2F n+2x,

SF n+2x = 2F n+3x and SF n+3x = x.

One can easily verify that S and S + Jn+4 are invertible. Hence we obtain by
Lemma 2.8 that T and T + F are Drazin invertible, and i(T ) = i(T + F ) = n.
Furthermore, for any c ∈ {1,±2}, we have

(T − cF )F ix = (3− c)F i+1x for 0 ≤ i ≤ n− 1,

(T − cF )F nx = (1− c)F n+1x,

(T − cF )F n+1x = (−2− c)F n+2x,

(T − cF )F n+2x = (2− c)F n+3x.

Therefore, (T − F )nx = 2nF nx 6= 0 and (T − F )n+1x = 0, and, consequently,
a(T − F ) > n and T − F /∈ Dn(X). Similarly, we get that T + 2F /∈ Dn(X) and
T − 2F /∈ Dn(X).

(1) If dim ran(F ) ≥ 2, then the second assertion implies the first one. If F has
rank 1, then Lemma 2.10 ensures the existence of the desired operator. �

3. Proof of main result

With these results at hand, we are ready to prove our main results in this
section.

Lemma 3.1. Let Φ : B(X) → B(X) be an additive surjective map preserving
Dn(X) in both directions. Then

(1) Φ is injective,
(2) Φ preserves the set of rank 1 operators in both directions.

Proof. (1) Suppose to the contrary that there exists F 6= 0 such that Φ(F ) = 0.
Then, by Theorem 2.7, we can find T ∈ Dn(X) satisfying T + 2F /∈ Dn(X). But
Φ(T + 2F ) = Φ(T ) ∈ Dn(X), the desired contradiction.

(2) Let F ∈ B(X) with dim ran(F ) ≥ 2. Then it follows again by Theorem 2.7
that there exists T ∈ Dn(X) such that T + F ∈ Dn(X) and T − cF /∈ Dn(X) for
every c ∈ {1,±2}. Thus Φ(T ) and Φ(T ) + Φ(F ) belong to Dn(X), but Φ(T ) −
cΦ(F ) /∈ Dn(X) for every c ∈ {1,±2}. Therefore, we obtain by Proposition 2.4
that dim ran(Φ(F )) ≥ 2. Since Φ is bijective and Φ−1 satisfies the same properties
as Φ, we obtain that Φ preserves the set of rank 1 operators in both directions. �

Recall that an operator T ∈ B(X) is said to be semi-Fredholm if ran(T ) is
closed and either dimker(T ) or codim ran(T ) is finite. For such an operator T ,
the index is defined by

ind(T ) = dimker(T )− codim ran(T ),

and if the index is finite, T is said to be Fredholm.

Remark 3.2. Let T ∈ B(X) be a semi-Fredholm operator. The following assertions
hold.



DRAZIN INVERTIBLE OPERATORS OF INDEX n 427

(1) If K ∈ B(X) is a compact operator, then T +K is semi-Fredholm of the
same index as T (see [19, Theorem 16.16]).

(2) If ind(T ) = 0, then a(T ) = d(T ) (see [14, Lemma 2.3]). In particular, in
this case, T ∈ Dn(X) if and only if a(T ) = n.

(3) If T ∈ Dn(X), then ind(T ) = 0 (see [19, Theorem 16.12]).

Proposition 3.3. Let T ∈ B(X) be invertible, and let x ∈ X and f ∈ X∗ be
nonzero. Then T + x⊗ f ∈ Dn(X) if and only if

f(T−ix) = −δi1 for 1 ≤ i ≤ n and f(T−(n+1)x) 6= 0. (3.1)

Proof. Let F = x ⊗ f . Suppose that T + F ∈ Dn(X). It follows from [13,
Lemma 2.2] that there exist linearly independent vectors x0, . . . , xn−1 such that

(T + F )x0 = 0, (T + F )xi = xi−1 for 1 ≤ i ≤ n− 1,

and

f(xi) = δi0 for 0 ≤ i ≤ n− 1.

Hence Tx0 = −x and Txi = xi−1 for 1 ≤ i ≤ n− 1. Consequently, x = −T ixi−1,
and so f(T−ix) = f(−xi−1) = −δi1 for 1 ≤ i ≤ n. If f(T−(n+1)x) = 0, then

(T + F )nT−(n+1)x = (T + F )n−1T−nx

= −(T + F )n−1xn−1

= −x0 ∈ ker(T + F ),

and hence a(T + F ) ≥ n+ 1. This contradiction shows that f(T−(n+1)x) 6= 0.
Conversely, assume that (3.1) holds. Let ui = −T−(i+1)x for 0 ≤ i ≤ n − 1.

Then it follows that f(ui) = δi0 for 0 ≤ i ≤ n− 1, Tu0 = −x, and Tui = ui−1 for
1 ≤ i ≤ n− 1. Hence

(T + F )u0 = 0 and (T + F )ui = ui−1 for 1 ≤ i ≤ n− 1.

In particular, this implies that a(T+F ) ≥ n. To finish, let us show that a(T+F ) =
n. Suppose to the contrary that a(T + F ) > n, and let y0, . . . , yn be linearly
independent vectors such that

(T + F )y0 = 0, (T + F )yi = yi−1 for 1 ≤ i ≤ n,

and

f(yi) = δi0 for 0 ≤ i ≤ n.

Then, just as above, we get that f(T−(n+1)x) = f(−yn) = 0. This contradiction
completes the proof. �

Let T ∈ B(X). We associate for each x ∈ X the following subset:

Mx(T ) =
{
f ∈ X∗ : T + x⊗ f ∈ Dn(X)

}
.
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Corollary 3.4. Let T be a bounded invertible operator on X, and let x ∈ X be
nonzero. Then

Mx(T ) 6= ∅ ⇔ {T−kx : 1 ≤ k ≤ n} is linearly independent.

Moreover, in this case we have My(T ) 6= ∅ for all y ∈ {T ix : i ∈ Z}.

Proof. The direct implication follows immediately from the previous proposition.
Conversely, assume that {T−kx : 1 ≤ k ≤ n} is linearly independent. If T−(n+1)x
is not a linear combination of T−kx, 1 ≤ k ≤ n, then the existence of a linear
form f ∈ X∗ satisfying (3.1) is obvious. Suppose that T−(n+1)x =

∑n
k=1 αkT

−kx.
Since T is bijective and T−kx, 1 ≤ k ≤ n, are linearly independent, we infer that
α1 6= 0. Choose an arbitrary linear form f ∈ X∗ satisfying f(T−kx) = −δk1 for
1 ≤ k ≤ n. It follows that f(T−(n+1)x) = −α1 6= 0, and thus f fulfils (3.1). This
shows that f ∈ Mx(T ).

Now, let y = T ix where i is an arbitrary integer. Since also the set T−ky,
1 ≤ k ≤ n, is linearly independent, we get that My(T ) is not empty. �

Let T, S ∈ B(X). We will write T ∼ S if the following equivalence holds:

T + F ∈ Dn(X) ⇔ S + F ∈ Dn(X)

for every finite rank operator F ∈ B(X). Clearly, (∼) defines an equivalence
relation on B(X). Furthermore, if T ∼ S, then Mx(T ) = Mx(S) for all x ∈ X,
and T + F ∼ S + F for all finite rank operators F ∈ B(X).

Remark 3.5. Let T ∈ B(X) be invertible, and let x ∈ X be nonzero. The following
assertions follow immediately from Proposition 3.3 and Corollary 3.4:

(1) Mx(T ) = {f ∈ X∗ : f(T−ix) = −δi1 for 1 ≤ i ≤ n and f(T−(n+1)x) 6= 0};
(2) Mx(T ) 6= ∅ if and only if MT ix(T ) 6= ∅ for every i ∈ Z.

Proposition 3.6. Let T, S ∈ B(X) be invertible operators such that T ∼ S. Then
T = S.

Before presenting the proof of this proposition, we need the following lemma.
For a subset G ⊆ X, G⊥ = {f ∈ X∗ : G ⊆ ker(f)} is the polar or annihilator

of G.

Lemma 3.7. Let T, S ∈ B(X) be invertible operators such that T ∼ S. If there
exists a vector x ∈ X such that {x, Tx, . . . , T 2nx} is linearly independent, then
Ty = Sy for all y ∈ Span{T ix : i ∈ Z}.

Proof. Note that since T ix satisfies the same hypothesis as x for all i ∈ Z, it
suffices to show that ST−nx = T−(n−1)x. Let y ∈ {T ix, Six : i ∈ Z}. It follows
from the previous corollary that My(T ) = My(S) is not empty. Let f ∈ My(T ),
and consider an arbitrary g ∈ {T−jy : 2 ≤ j ≤ n}⊥. Multiplying g by a suitable
scalar, we may assume that

g(T−1y) 6= −1 and g(T−(n+1)y) 6= −
(
g(T−1y) + 1

)
f(T−(n+1)y).

Let h = g + (g(T−1y) + 1)f . Then we have

h(T−1y) = −1, h(T−iy) = 0 for 2 ≤ i ≤ n, and h(T−(n+1)y) 6= 0,
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and so h ∈ My(T ) = My(S). Therefore, h(S
−1y) = −1 and h(S−iy) = 0 for

2 ≤ i ≤ n, and, consequently, g(S−1y − T−1y) = g(S−iy) = 0 for 2 ≤ i ≤ n. This
implies that

{S−1y − T−1y, S−iy : 2 ≤ i ≤ n} ⊆ Span{T−jy : 2 ≤ j ≤ n}. (3.2)

Let us show that

S−ix− T−ix ∈ Span{T−kx : i+ 1 ≤ k ≤ n} for 1 ≤ i ≤ n. (3.3)

Clearly, replacing y by x in (3.2), we obtain that (3.3) is satisfied for i = 1.
Suppose that (3.3) holds for i < n. We have

S−(i+1)x− T−(i+1)x = S−1(S−ix− T−ix) + S−1T−ix− T−1T−ix.

Utilizing (3.3) and (3.2) for y = T−kx, we get that

S−1(S−ix− T−ix) ∈ Span{S−1T−kx : i+ 1 ≤ k ≤ n}
∈ Span{T−(j+k)x : 1 ≤ j ≤ n, i+ 1 ≤ k ≤ n}
∈ Span{T−px : i+ 2 ≤ p ≤ 2n}.

Moreover, formula (3.2) for y = T−ix asserts that

S−1T−ix− T−1T−ix ∈ Span{T−(j+i)x : 2 ≤ j ≤ n}
⊆ Span{T−px : i+ 2 ≤ p ≤ 2n}.

Thus S−(i+1)x − T−(i+1)x ∈ Span{T−px : i + 2 ≤ p ≤ 2n}. On the other hand,
replacing y by x in (3.2), we recover that S−(i+1)x is a linear combination of T−jx,
2 ≤ j ≤ n, and hence so is S−(i+1)x− T−(i+1)x. Therefore,

S−(i+1)x− T−(i+1)x ∈ Span{T−px : i+ 2 ≤ p ≤ 2n} ∩ Span{T−jx : 2 ≤ j ≤ n}
⊆ Span{T−kx : i+ 2 ≤ k ≤ n},

which establishes (3.3). Hence S−nx = T−nx and S−(n−1)x = T−(n−1)x + βT−nx
for some β ∈ C. Moreover, it follows from (3.2) with y = S−(n−1)x that there
exist complex numbers α1, . . . , αn such that α1 = 1 and

S−1S−(n−1)x =
n∑

j=1

αjT
−jS−(n−1)x.

Therefore,

S−nx =
n∑

j=1

αjT
−j(T−(n−1)x+ βT−nx)

=
n∑

j=1

αj(T
−(n−1+j)x+ βT−(n+j)x)

= T−nx+ (α1β + α2)T
−(n+1)x+ · · ·

+ (αn−1β + αn)T
−(2n−1)x+ αnβT

−(2n)x.
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Since S−nx = T−nx and {T−(n+1)x, . . . , T−2nx} is a linearly independent set,
we infer that β + α2 = α2β + α3 = · · · = αn−1β + αn = αnβ = 0 so that
β = −α2 and αi = αi−1

2 for 2 ≤ i ≤ n. But, as αnβ = −αn
2 = 0, we obtain

that β = αi = 0 for 2 ≤ i ≤ n. Thus S−(n−1)x = T−(n−1)x. Finally, we have
ST−nx = SS−nx = S−(n−1)x = T−(n−1)x. �

Proof of Proposition 3.6. Notice first that, for a finite-codimensional subspace Y
of X, it is an elementary fact that

dim[Y ∩ T−1Y ∩ · · · ∩ T−2nY ∩ T−1SY ] = ∞.

Let x0 ∈ X be nonzero, and let us show that Tx0 = Sx0. Let Y be a complement
of Span{x0, Tx0, . . . , T

2nx0, S
−1Tx0}. Then Y ∩ T−1Y ∩ · · · ∩ T−2nY ∩ T−1SY

contains a nonzero vector x1, and the sum

Span{x0, Tx0, . . . , T
2nx0, S

−1Tx0}+ Span{x1, Tx1, . . . , T
2nx1, S

−1Tx1}

is direct. Repeating the same argument, we get the existence of nonzero vectors
x2, . . . , x2n ∈ X such that the sum of the subspaces

Zi = Span{xi, Txi, . . . , T
2nxi, S

−1Txi}, 0 ≤ i ≤ 2n,

is direct. Let f0, . . . , f2n−1 ∈ X∗ be such that fi ∈ Z⊥
j for i 6= j, and let f0(x0) =

fi(Txi) = 1 for 1 ≤ i ≤ 2n− 1. Consider also the operators H,R ∈ B(X) defined
by

H = T +
2n∑
i=1

Txi ⊗ fi−1 and R = S +
2n∑
i=1

Txi ⊗ fi−1.

Clearly, we have H ∼ R. Note also that

I +
2n∑
i=1

xi ⊗ fi−1 =
2n∏
i=1

(I + xi ⊗ fi−1)

and

I +
2n∑
i=1

S−1Txi ⊗ fi−1 =
2n∏
i=1

(I + S−1Txi ⊗ fi−1).

Since fi−1(xi) = fi−1(S
−1Txi) = 0 for 1 ≤ i ≤ 2n, we obtain that these operators

are invertible. Therefore, H and R are invertible. Furthermore, one can easily
verify that Hkx0 = vk−1 + Txk for 1 ≤ k ≤ 2n, where vk−1 ∈ Z0 ⊕ · · · ⊕ Zk−1.
Consequently, the vectors x0, . . . , H

2nx0 are linearly independent. Thus Hx0 =
Rx0 by Lemma 3.7. But, we have also Hx0 = Tx0 + Tx1 and Rx0 = Sx0 + Tx1.
Hence Tx0 = Sx0. This completes the proof. �

Proposition 3.8. Let Φ : B(X) → B(X) be an additive surjective map. If Φ
preserves Dn(X) in both directions, then there exists a nonzero α ∈ C such that
Φ(I) = αI.

For proving this proposition, we need to establish some auxiliary lemmas.
Throughout the sequel, we shall denote by Fn(X) the set of all operators F ∈
B(X) with dim ran(F ) < n.
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Remark 3.9. Let F ∈ Fn(X), and let U ∈ B(X) be an invertible operator. If
UF = F , then U + F /∈ Dn(X). Indeed, we have (U + F )n = Un + FV for
some V ∈ B(X). Hence it follows that ker((U + F )n) ⊆ U−n ran(F ), and so
dimker((U + F )n) ≤ n− 1. Consequently, U + F /∈ Dn(X).

Lemma 3.10. Let x ∈ X, f ∈ X∗ and x1, . . . , xn−1 ∈ ker(f) be linearly indepen-
dent vectors. Then f(x) = −1 if and only if there exist f1, . . . , fn−1 ∈ X∗ such
that

I + x⊗ f + x1 ⊗ f1 + · · ·+ xn−1 ⊗ fn−1 ∈ Dn(X).

Proof. Suppose that f(x) = −1. Let x0 = x, and write X = Span{x0, . . . , xn−1}⊕
Z where Z is a closed subspace of ker(f). Consider the linear forms f1, . . . , fn−1 ∈
Z⊥ given by

fi(xi−1) = 1, fi(xi) = −1, and fi(xj) = 0 otherwise for 1 ≤ i ≤ n−1.

If we let F = x⊗ f + x1 ⊗ f1 + · · ·+ xn−1 ⊗ fn−1, then we get easily that Fxi =
xi+1−xi for 0 ≤ i ≤ n−2, and Fxn−1 = −xn−1. Consequently, F = (Jn− In)⊕0
with respect to the above decomposition. Thus I + F ∈ Dn(X) as desired.

Conversely, suppose that f(x) 6= −1. Let f1, . . . , fn−1 ∈ X∗ be arbitrary. Then
U = I+x⊗f is invertible, and K = x1⊗f1+ · · ·+xn−1⊗fn−1 belongs to Fn(X).
Furthermore, we have UK = K, and so U +K /∈ Dn(X) by the previous remark.
This finishes the proof. �

Lemma 3.11. Let S ∈ B(X) be such that, for every T ∈ Dn(X), there exists
ε0 > 0 such that T + εS /∈ Dn(X) for all rational number 0 < ε < ε0. Then
dimker(Sn) ≤ n− 1.

Proof. Suppose to the contrary that dimker(Sn) ≥ n. Then there exist linearly
independent vectors xi, 0 ≤ i ≤ n − 1, such that Sx0 = 0 and Sxi = εixi−1 for
1 ≤ i ≤ n − 1 where εi ∈ {0, 1}. Write X = Span{xn−1, . . . , x0} ⊕ Y where Y is
a closed subspace, and write

S =

[
S1 S2

0 S3

]
.

Consider also the operator T ∈ B(X) represented by the matrix

T =

[
Jn 0
0 I

]
.

For η > 0 choose a rational number 0 < r < min{η, ‖S3‖−1}. Then it follows that
I + rS3 is invertible. We have (Jn + rS1)x0 = 0 and (Jn + rS1)xi = (1 + rεi)xi−1

for 1 ≤ i ≤ n−1, and hence the matrix Jn+rS1 is nilpotent with i(Jn+rS1) = n.
Since

T + rS =

[
Jn + rS1 rS2

0 I + rS3

]
,

we get by Lemma 2.8 that T + rS ∈ Dn(X), the desired contradiction. �

We note that the set of algebraic operators is invariant under finite rank per-
turbation (see [3, Proposition 3.6]).
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Lemma 3.12. Let S ∈ B(X) be an invertible operator such that S +F /∈ Dn(X)
for all F ∈ Fn(X). Then S = αI, where α ∈ C is nonzero.

Proof. It follows immediately that Mx(S) = ∅, and hence {S−ix : 1 ≤ i ≤ n}
is a linearly dependent set for every x ∈ X. Consequently, we obtain by [1,
Theorem 4.2.7] that S is an algebraic operator. Suppose to the contrary that S is
not a scalar multiple of the identity. Then there exists x ∈ X such that S−1x and
S−2x are linearly independent. It follows from Corollary 3.4 that there exists a
rank 1 operator F ∈ B(X) such that S+F is the Drazin invertible of index 2. This
yields to a contradiction if n = 2, and hence we may assume that n ≥ 3. Since the
restriction of F to ker(S + F ) is an injective rank 1 operator, we get easily that
dimker(S+F ) = 1. But we also have X = ker(S+F )2⊕ ran(S+F )2. Therefore,
dim ker(S + F )2 = 2. On the other hand, since S + F is algebraic, then so is its
restriction to ran(S + F )2, and hence there exist an (S + F )-invariant subspace
Y of dimension n− 2 and a closed subspace Z such that ran(S + F )2 = Y ⊕ Z.
With respect to this decomposition, we have

(S + F )| ran(S+F )2 =

[
U V
0 C

]
,

where U and C are invertible operators (see [9, Corollary 8]). Let {x2, x1} be
a basis of ker((S + F )2) such that (S + F )x2 = x1 and (S + F )x1 = 0, and
let {xn, . . . , x3} be an arbitrary basis of Y . Relative to the decomposition X =
Span{xn, . . . , x1} ⊕ Z, the operator S + F can be expressed as follows:

S + F =

[
A B
0 C

]
.

Consider now the operator R ∈ B(X) represented by

R =

[
Jn − A 0

0 0

]
.

Clearly, dim ran(R) ≤ n − 2 because Rx2 = Rx1 = 0, and so F + R ∈ Fn(X).
Since C is invertible, S + F + R ∈ Dn(X) by Lemma 2.8. This contradiction
completes the proof. �

The following lemma generalizes Lemma 3.12.

Lemma 3.13. Let S ∈ B(X) be a Fredholm operator of index zero such that
S + F /∈ Dn(X) for all F ∈ Fn(X). If dimker(Sn) ≤ n− 1, then S = αI, where
α ∈ C is nonzero.

Proof. Note that since dimker(Sn) ≤ n − 1, the operator S has finite ascent
p ≤ n − 1, and so a(S) = d(S) = p. In particular, X = ker(Sp) ⊕ ran(Sp),
So = S| ker(Sp) is nilpotent with i(So) = p, and S1 = S| ran(Sp) is invertible.

Let F1 be a bounded operator on ran(Sp) with dim ran(F1) ≤ n − 1, and let
F = 0 ⊕ F1 with respect to the above decomposition. Since F ∈ Fn(X) and
S+F = So⊕ (S1+F1) /∈ Dn(X), then S1+F1 is not Drazin invertible of index n.
It follows from the previous lemma that S1 = αI for some nonzero α ∈ C.
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To finish, let us show that ker(Sp) = {0}. Suppose to the contrary that
ker(Sp) is not trivial. Let {yr, . . . , y0} be a basis of ker(Sp) such that Sy0 = 0,
and let yn−1, . . . , yr+1 be linearly independent vectors in ran(Sp). Write X =
Span{yn−1, . . . , y0}⊕Y , where Y is a closed subspace of ran(Sp) and S = N⊕αI.
Consider the operator R ∈ B(X) given by R = (Jn − N) ⊕ 0. Then R ∈ Fn(X)
because Ry0 = 0, and S +R = Jn ⊕ I ∈ Dn(X), the desired contradiction. �

Proof of Proposition 3.8. Put S = Φ(I). First, we claim that dimker(Sn) ≤ n−1.
Let T ∈ Dn(X), and let R ∈ Dn(X) be such that T = Φ(R). Since 0 is an
isolated point of σ(R), there exists ε0 > 0 such that R + εI is invertible, and
hence Φ(R + εI) = T + εS /∈ Dn(X) for all rational numbers 0 < ε < ε0. Thus,
by Lemma 3.11, dim ker(Sn) ≤ n− 1.

Next, let us show that S + F /∈ Dn(X) for all F ∈ Fn(X). Since Φ is bijective
and preserves rank 1 operators in both directions, it follows that Φ preserves
Fn(X) in both directions. Let F ∈ Fn(X). Then there exists R ∈ Fn(X) such
that F = Φ(R). Hence I+R /∈ Dn(X) by Remark 3.9, and so S+F = Φ(I+R) /∈
Dn(X).

Now, according to the previous lemma, it suffices to establish that S is a Fred-
holm operator of index zero. By Lemma 3.10 there exists a finite rank operator
G ∈ B(X) such that I + G ∈ Dn(X), and hence Φ(I + G) = S + K ∈ Dn(X)
where K = Φ(G) is finite rank. Since ran(S +K)n is closed, then so is ran(Sn).
On the other hand, as dim ker(Sn) ≤ n − 1, the operator S, and so S + K, is
semi-Fredholm. Finally, it follows from Remark 3.2 (3) that S +K, and thus S,
is a Fredholm operator of index zero. �

Let τ be a field automorphism of C. An additive map A : X → X will be called
τ -semilinear if A(λx) = τ(λ)Ax holds for all x ∈ X and λ ∈ C. Moreover, we
simply say that A is conjugate linear when τ is the complex conjugation. Notice
that if A is nonzero and bounded, then τ is continuous, and, consequently, τ is
either the identity or the complex conjugation (see [12, Lemma 14.5.1]). Moreover,
in this case, the adjoint operator A∗ : X∗ → X∗ defined by

A∗(g) = τ−1 ◦ g ◦ A for all g ∈ X∗

is again τ -semilinear.

Lemma 3.14. Let Φ : B(X) → B(X) be an additive surjective map preserving
Dn(X) in both directions. Then there exists a nonzero α ∈ C such that Φ(I) = αI,
and either

(1) there exists a bounded invertible linear, or conjugate linear, operator A :
X → X such that Φ(F ) = αAFA−1 for all finite rank operators F ∈
B(X), or

(2) there exists a bounded invertible linear, or conjugate linear, operator B :
X∗ → X such that Φ(F ) = αBF ∗B−1 for all finite rank operators F ∈
B(X). In this case, X is reflexive.

Proof. The existence of a nonzero α ∈ C such that Φ(I) = αI is ensured by
Proposition 3.8. Clearly, we can suppose without loss of generality that Φ(I) = I.
Since Φ is bijective and preserves the set of rank 1 operators in both directions
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(compare Lemma 3.1), then, by [20, Theorem 3.3], there exist a ring automor-
phism τ : C→ C and either two bijective τ -semilinear mappings A : X → X and
C : X∗ → X∗ such that

Φ(x⊗ f) = Ax⊗ Cf for all x ∈ X and f ∈ X∗, (3.4)

or two bijective τ -semilinear mappings B : X∗ → X and D : X → X∗ such that

Φ(x⊗ f) = Bf ⊗Dx for all x ∈ X and f ∈ X∗. (3.5)

Suppose that Φ satisfies (3.4), and let us show that

C(f)(Ax) = τ
(
f(x)

)
for all x ∈ X and f ∈ X∗. (3.6)

Clearly, it suffices to establish that, for all x ∈ X and f ∈ X∗,

f(x) = −1 if and only if C(f)(Ax) = −1.

Let x ∈ X, and let f ∈ X∗. Consider arbitrary linearly independent vectors zi,
1 ≤ i ≤ n− 1, in ker(f) ∩ ker(C(f)A). Then it follows from Lemma 3.10 that

f(x) = −1 ⇔ ∃{gi}n−1
i=1 ⊆ X∗ : I + x⊗ f +

n−1∑
i=1

zi ⊗ gi ∈ Dn(X)

⇔ ∃{gi}n−1
i=1 ⊆ X∗ : I + Ax⊗ Cf +

n−1∑
i=1

Azi ⊗ Cgi ∈ Dn(X)

⇔ C(f)(Ax) = −1.

Thus equation (3.6) holds, and, arguing as in [20, p. 252], we get that τ , A, C
are continuous, τ is the identity or the complex conjugation, and C = (A−1)∗.
Therefore, τ−1 = τ and, for every u ∈ X, we have

Φ(x⊗ f)u = τ(fA−1u)Ax = A
(
f(A−1u)x

)
= A(x⊗ f)A−1u.

Thus Φ(x⊗f) = A(x⊗f)A−1 for all x ∈ X and f ∈ X∗; that is, Φ(F ) = AFA−1

for all finite rank operators F ∈ B(X).
Now, suppose that Φ satisfies (3.5), and let us show that

D(x)(Bf) = τ
(
f(x)

)
for all x ∈ X and f ∈ X∗. (3.7)

Let x ∈ X, and let f ∈ X∗. Let h1, . . . , hn−1 ∈ X∗ be linearly independent linear
forms such that hi(x) = (D(x)B)(hi) = 0 for 1 ≤ i ≤ n− 1. Then, using the fact
that D is bijective, it follows from Lemma 3.10 that

D(x)(Bf) = −1 ⇔ ∃{ui}n−1
i=1 ⊆ X : I +Bf ⊗Dx+

n−1∑
i=1

Bhi ⊗Dui ∈ Dn(X)

⇔ ∃{ui}n−1
i=1 ⊆ X : I + x⊗ f +

n−1∑
i=1

ui ⊗ hi ∈ Dn(X)

⇔ ∃{ui}n−1
i=1 ⊆ X : I + f ⊗ Jx+

n−1∑
i=1

hi ⊗ Jui ∈ Dn(X
∗)

⇔ f(x) = −1,
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where J : X → X∗∗ is the natural embedding. Thus equation (3.7) holds, and,
arguing as in [20, p. 252], we get that τ , B, D are continuous, τ is the identity
or the complex conjugation, and D = (B−1)∗J. But the operators D and (B−1)∗,
and therefore also J, are bijections which imply the reflexivity of X. Furthermore,
τ−1 = τ and, for every u ∈ X, we have

Φ(x⊗ f)u =
(
Bf ⊗ (B−1)∗J(x)

)
u = (B−1)∗J(x)(u) ·Bf

= τ
(
J(x)(B−1u)

)
·Bf = B

(
J(x)(B−1u)f

)
= B

(
f ⊗ J(x)

)
B−1u = B(x⊗ f)∗B−1u.

Thus Φ(x⊗f) = B(x⊗f)∗B−1 for all x ∈ X and f ∈ X∗. Hence Φ(F ) = BF ∗B−1

for all finite rank operators F ∈ B(X). This completes the proof. �

Proof of Theorem 1.1. The “if” part is obvious. We prove the “only if” part.
Suppose that Φ preserves Dn(X) in both directions. It follows that Φ takes one
of the two forms in Lemma 3.14.

Assume that Φ(F ) = αAFA−1 for all finite rank operators F ∈ B(X). Let

Ψ(T ) = α−1A−1Φ(T )A for all T ∈ B(X).

Clearly, Ψ satisfies the same properties as Φ. Furthermore, Ψ(I) = I, and Ψ(F ) =
F for all finite rank operators F ∈ B(X). Let T ∈ B(X), and choose a rational
number λ such that T − λ and Ψ(T )− λ are invertible. We have

T − λ+ F ∈ Dn(X) ⇔ Ψ(T − λ) + F ∈ Dn(X)

for all finite rank operators F ∈ B(X). Hence we get by Proposition 3.6 that
Ψ(T ) = T . This shows that Φ(T ) = αATA−1 for all T ∈ B(X).

Now suppose that Φ(F ) = αBF ∗B−1 for all finite rank operators F ∈ B(X).
Then Lemma 3.14 ensures that X is reflexive. By considering

Γ(T ) = α−1J−1
(
B−1Φ(T )B

)∗
J for all T ∈ B(X),

we get in a similar way that Γ(T ) = T for all T ∈ B(X). Thus Φ(T ) = αBT ∗B−1

for all T ∈ B(X), as desired. �

Proof of Corollary 1.2. The “if” part is obvious. We prove the “only if” part.
Suppose that Pn(Φ(T )) = Pn(T ) for all T ∈ B(X). Clearly, Φ preserves Dn(X)
in both directions, and so one of the two assertions in Theorem 1.1 holds. To
show that the constant α = 1, consider an arbitrary F ∈ Dn(X) of rank less than
n, and let T = F + I. It follows from Remark 3.9 that

{1} = Pn(T ) = Pn

(
Φ(T )

)
= {α}.

This completes the proof. �

We close this article by the following remarks.

Remark 3.15. Let X and Y be infinite-dimensional complex Banach spaces. The-
orem 1.1 can be without any change formulated for additive surjective mappings
Φ : B(X) → B(Y ), preserving Drazin invertible operators of index n in both
directions.
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Remark 3.16. Combining Theorem 1.1 and [15, Theorem 1.1], we obtain a com-
plete characterization of additive surjective mappings Φ : B(X) → B(X), pre-
serving Drazin invertible operators of index m ≥ 1 in both directions.
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