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Abstract. We prove an upper bound for the supremum norm of homoge-
neous Bernoulli polynomials on the unit ball of finite-dimensional complex
Banach spaces. This result is inspired by the famous Kahane–Salem–Zygmund
inequality and its recent extensions; in contrast to the known results, our esti-
mates are on the scale of Orlicz spaces instead of `p-spaces. Applications are
given to multidimensional Bohr radii for holomorphic functions in several com-
plex variables, and to the study of unconditionality of spaces of homogenous
polynomials in Banach spaces.

1. Introduction

The famous Kahane–Salem–Zygmund inequality on the maximum modulus of
random polynomials in several complex variables (see [6, Theorem 4, Chapter 6])
states that, given a polynomial P (z) =

∑
α∈Nn

0
cαz

α on Cn, there is a choice of

signs εα = ±1, α ∈ Nn
0 , for which

sup
z∈Dn

∣∣∣∑
α∈Nn

0

εαcαz
α
∣∣∣ ≤ C

(
n log(degP )

∑
α∈Nn

0

|cα|2
)1/2

,

where C > 0 is a universal constant, degP := max{|α|; cα 6= 0} is the degree
of P , and D is the open unit disk in C. Here, as usual for α = (α1, . . . , αn) ∈ Nn

0

and z = (z1, . . . , zn) ∈ Cn, zα := zα1
1 · · · zαn

n denotes the αth monomial and
|α| := α1 + · · · + αn.
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The inequality above is a fundamental tool to assure the existence of polyno-
mials with small supremum norms on the n-dimensional polydisk Dn, and it has
found deep applications in many areas of modern analysis. Of particular impor-
tance is the case of m-homogeneous polynomials P (z) =

∑
α∈Nn

0
cαz

α in Cn, that

is, polynomials such that all monomial coefficients cα = 0 when |α| < m = degP .
In recent years, many different types of extensions of the Kahane–Salem–

Zygmund inequality were obtained where the supremum is taken over various
Reinhard domains R ⊂ Cn (as, e.g., the unit ball B`np of the Banach space `np ,
1 ≤ p <∞) instead of the unit polydisk B`n∞ = Dn (see [1]).

We highlight an estimate of Bayart from [1] which motivates large parts of
what we intend to do: Given 1 < p ≤ 2, it states that, for every m-homogeneous
polynomial P (z) =

∑
α∈Nn

0
cαz

α on Cn, every Banach space X = (Cn, ‖ · ‖), and

every choice (cα)|α|=m of scalars, there are signs (εα)|α|=m such that

sup
z∈BX

∣∣∣ ∑
|α|=m

εαcαz
α
∣∣∣

≤ C(n logm)1/q sup
|α|=m

|cα|
(m!
α!

)1/p
sup
z∈BX

( n∑
k=1

|zk|p
)m/p

, (1.1)

where C > 0 is a constant depending only on p. Here and in what follows later,
we have 1/q := 1 − 1/p and α! := α1! · · ·αn! for each α = (α1, . . . , αn) ∈ Nn

0 .
Estimates of this type have been used, for example, in studies of multidimen-
sional Bohr radii, Bohnenblust–Hille inequalities, unconditionality in spaces of
m-homogenous polynomials on Banach spaces, and the modern theory of Dirich-
let series.

We point out that the approaches given in [1]–[3], and [4] are based on the scale
of `p-spaces. The main aim of this paper is to find homogeneous polynomials
with small sup-norms on the unit ball of arbitrary finite-dimensional Banach
spaces where the upper estimates for the norms involve, instead of `p-norms,
the more general Orlicz norms. Our tools are mainly based on the Calderón–
Lozanovskii interpolation theory and the methods developed in the cited works,
in particular the one used by Bayart. We give two applications.

2. Main result and preliminaries

We will consider complex Banach spaces X, and denote their duals by X∗. In
particular, we are interested in Banach sequence spaces (X(I), ‖ ·‖X) of C-valued
sequences (xi)i∈I which are defined over arbitrarily given (index) sets I. For each
m, n ∈ N the following two finite index sets will be of special interest:

M(m,n) =
{
i = (i1, . . . , im); 1 ≤ ik ≤ n

}
= {1, . . . , n}m,

J (m,n) =
{
j = (j1, . . . , jm) ∈ M(m,n); 1 ≤ j1 ≤ j2 ≤ · · · ≤ jm ≤ n

}
.

For indices i, j ∈ M(m,n), we write i ∼ j whenever there exists a permutation
σ of {1, . . . ,m} such that (i1, . . . , im) = (jσ(1), . . . , jσ(m)). Obviously, ∼ defines
an equivalence relation on M(m,n). We denote by [i] the equivalence class of i,
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and we put |[i]| := card[i]. For every finite subset {x∗1, . . . , x∗n} in the dual X∗ of
a Banach space X and j ∈ M(m,n), we define the function x∗j : X → C by

x∗j (x) = x∗j1(x) · · · x∗jm(x), x ∈ X.

We note that i ∼ j implies that x∗i = x∗j . Given an n-dimensional Banach
space X = (Cn, ‖ · ‖), we write {e1, . . . , en} for its canonical basis, and we write
{e∗1, . . . , e∗n} for the corresponding dual basis in X∗.

Our study of Kahane–Salem–Zygmund type estimates motivates the follow-
ing definition: Let ψ : N>1 × N → [1,∞) and φ : N → [1,∞) be given increas-
ing functions. Then a Banach sequence space E (modeled on N) is said to be
(ψ, φ)-admissible provided there is a constant C > 0 such that, for every choice
of scalars (cj)j∈J (m,n) with m > 1 and n ≥ 1, and functionals x∗1, . . . , x

∗
n ∈ X∗

on an n-dimensional Banach space X, there exists a choice of signs εj = ±1,
j ∈ J (m,n) such that

sup
z∈BX

∣∣∣ ∑
j∈J (m,n)

εjcjx
∗
j (z)

∣∣∣
≤ Cψ(m,n) sup

j∈J (m,n)

|cj|
φ(|[j]|)

sup
z∈BX

∥∥∥ n∑
k=1

x∗k(z)ek

∥∥∥m
E
.

The following observation motivates our definition.

Remark 2.1. Let E be a (ψ, φ)-admissible Banach sequence space. Then, for every
Banach space X = (Cn, ‖ · ‖) and every choice (cα)|α|=m of scalars, there exist
signs (εα)|α|=m such that

sup
z∈BX

∣∣∣ ∑
|α|=m

εαcαz
α
∣∣∣ ≤ Cψ(m,n) sup

|α|=m

|cα|
φ(m!

α!
)

sup
z∈BX

∥∥∥ n∑
k=1

zkek

∥∥∥m
E
,

where C = C(ψ, φ,E).

Since |[j]| = m!
α!

for each j ∈ J (m,n), the preceding estimate is an immediate
consequence of the definition of (ψ, φ)-admissability of E applied to the dual basis
e∗1, . . . , e

∗
n ∈ X∗ of the canonical basis {e1, . . . , en} of X.

Let us give our first example.

Example 2.2. Let ψ(m,n) = 1 and φ(n) = n for m > 1, n ≥ 1. Then E = `1 is
(ψ, φ)-admissible.

Proof. Take a family (cj)j∈J (m,n) of scalars, and extend it to the index set M(m,n)
by defining ci = cj whenever i ∼ j. Then we clearly have

sup
z∈BX

∣∣∣ ∑
j∈J (m,n)

εjcjx
∗
j (z)

∣∣∣ ≤ sup
z∈BX

∑
j∈J (m,n)

∣∣cjx∗j (z)
∣∣

= sup
z∈BX

∑
j∈M(m,n)

|cj|
|[j]|

∣∣x∗j (z)
∣∣
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≤ sup
j∈M(m,n)

|cj|
|[j]|

sup
z∈BX

∑
j∈M(m,n)

∣∣x∗j (z)
∣∣

= sup
j∈M(m,n)

|cj|
|[j]|

sup
z∈BX

( n∑
k=1

∣∣x∗k(z)
∣∣)m,

which is what we aimed for. �

Inspired by the work of Boas from [2], Bayart in [1, Theorem 5.1] proved
a strong extension of the preceding example. The following theorem reformulates
his result in terms of our notion of (ψ, φ)-admissability of sequence spaces E.

Theorem 2.3. Define for 1 < p ≤ 2 the functions ψ(m,n) = (logm)1/qn1/q

and φ(n) = n1/p where m > 1, n ≥ 1, and 1/p + 1/q = 1. Then E = `p is
(ψ, φ)-admissible.

Note that Theorem 2.3 includes (1.1) as a simple corollary.
Our main aim is to continue this work within the framework of Orlicz spaces.

We will describe some class of Orlicz sequence spaces E = `ϕ and two associated
functions ψ and φ such that E is (ψ, φ)-admissible. Before we formulate our result
we recall some of the basics of the theory of Orlicz function spaces and more
generally Calderón–Lozanovskii spaces. By U we denote the set of all positive,
concave, and positively homogeneous continuous functions ψ : [0,∞) × [0,∞) →
[0,∞) for which ψ(0, 0) = 0. Let (Ω, µ) = (Ω,Σ, µ) be a σ-finite and complete
measure space, and let (X0, X1) be a couple of Banach lattices on this measure
space. For a given function ψ ∈ U , the Calderón–Lozanovskii space ψ(X0, X1)
consists of all f ∈ L0(µ) such that |f | ≤ λψ(|f0|, |f1|) µ-a.e. for some fj ∈ Xj

with ‖fj‖Xj
≤ 1, j = 0, 1. Equipped with the norm

‖f‖ψ(X0,X1) = inf
{
λ > 0; |f | ≤ λψ

(
|f0|, |f1|

)
, ‖f0‖X0 ≤ 1, ‖f1‖X1 ≤ 1

}
,

the space ψ(X0, X1) forms a Banach lattice.
Calderón–Lozanovskii spaces are closely related to Orlicz spaces. A function

ϕ : [0,∞) → [0,∞) is an Orlicz function whenever it is increasing, convex, and
left-continuous with ϕ(0) = 0. Let ϕ−1 be the right-continuous inverse of ϕ. Define
ψ by ψ(s, t) = tϕ−1(s/t) for s ≥ 0, t > 0, and ψ(0, 0) = 0. Then ψ ∈ U , and, for
any measure space (Ω, µ), the space ψ(L1, L∞) coincides isometrically with the
Orlicz space

Lϕ :=
{
f ∈ L0(µ);ϕ

(
|f |/λ

)
∈ L1(µ)

}
,

where the norm on Lϕ is given by

‖f‖Lϕ = inf
{
λ > 0;

∫
Ω

ϕ
(
|f |/λ

)
dµ ≤ 1

}
.

If on a set Ω we consider Σ = 2Ω and the counting measure µ, then we write
`ϕ(Ω) instead of Lϕ, and we write `ϕ for short whenever Ω = N.

For every Orlicz function ϕ : [0,∞) → [0,∞), we define the associated conju-
gate function ϕ∗ by the formula

ϕ∗(t) = sup
{
st− ϕ(s); s ≥ 0

}
, t ≥ 0.
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The function ϕ∗ may take values 0 and ∞ on some intervals. Clearly, ϕ∗ fulfils
the Young inequality:

st ≤ ϕ(s) + ϕ∗(t), s, t ≥ 0.

An Orlicz function ϕ is said to be an N -function if

lim
t→0+

ϕ(t)

t
= 0 and lim

t→∞

ϕ(t)

t
= ∞.

Note that ϕ∗ takes value zero only at zero if and only if the first of the preceding
conditions holds, and it is finite valued if and only if the second condition holds.
Moreover, if ϕ is an N -function, then this is also true for ϕ∗, and the following
estimates hold (see [7], [10]):

s ≤ ϕ−1(s)ϕ−1
∗ (s) ≤ 2s, s ≥ 0. (2.1)

For more details on the theory of Orlicz spaces, we refer to [7], [8], and [10].
Before we state our main result, it should be pointed out that Example 2.2

explains why throughout the rest of this paper we consider only Orlicz functions
ϕ which satisfy limt→0+ ϕ(t)/t = 0. The reason is that limt→0+ ϕ(t)/t > 0 is
equivalent to `ϕ = `1 (up to equivalence of norms), and hence this case in fact is
covered by Example 2.2.

Theorem 2.4. Let ϕ be an N-function such that t 7→ ϕ(
√
t) is equivalent to

a concave function, ϕ(st) ≤ ϕ(s)ϕ(t) whenever 0 < s, t ≤ 1, and, for some
K ≥ 1, ϕ(st) ≤ Kϕ(s)ϕ(t) whenever 0 < s ≤ 1 ≤ t < ∞. Then there exists
a constant C > 0 such that, for any n-dimensional Banach space X, any finite
set of functionals x∗1, . . . , x

∗
n ∈ X∗, and any family (cj)j∈J (m,n) of scalars, there

exists a choice of signs (εj)j∈J (m,n) for which

sup
z∈BX

∣∣∣ ∑
j∈J (m,n)

εjcjx
∗
j (z)

∣∣∣
≤ Cϕ−1

∗ (n logm) sup
j∈J (m,n)

|cj|
ϕ−1(|[j]|)

sup
z∈BX

∥∥∥ n∑
k=1

x∗k(z)ek

∥∥∥m
`ϕ
.

Equivalently, `ϕ is (ψ, φ)-admissible, where ψ(m,n) = ϕ−1
∗ (n logm) and φ(n) =

ϕ−1(n). Moreover, for all m ≥ 2 and n ≥ 1, we have

n logm

ϕ−1(n logm)
≤ ψ(m,n) ≤ 2n logm

ϕ−1(n logm)
.

We conclude this section with the remark that in the case 1 < p ≤ 2 and
ϕ(t) = tp, for all t ≥ 0, we recover Bayart’s theorem (our Theorem 2.3).

3. The proof

In the proof of the main Theorem 2.4, we use the following two lemmas. The
first one is obvious, and so we omit its proof.
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Lemma 3.1. Let ϕ be an Orlicz function, and let (Ωj,Aj, µj) be measure spaces
for each 1 ≤ j ≤ m. If ϕ(st) ≤ ϕ(s)ϕ(t) for every s, t > 0, then the multiplication
operator ⊗ defined on Lϕ(µ1) × · · · × Lϕ(µm) by

⊗(f1, . . . , fm)(ω1, . . . , ωm) = f1(ω1) · · · fm(ωm)

for every fj ∈ Lϕ(µj), ωj ∈ Ωj, and each 1 ≤ j ≤ m is a bounded contraction
from Lϕ(µ1) × · · · × Lϕ(µm) into Lϕ(µ1 × · · · × µm). If in addition all measure
spaces are purely atomic with counting measures, then the above statement is also
true provided that ϕ(st) ≤ ϕ(s)ϕ(t) for all s, t ∈ (0, 1].

The second lemma, which seems to be of independent interest, is our main
technical tool. We note that, for 1 < p ≤ 2 and ϕ(t) = tp, t ≥ 0, this result is well
known (see, e.g., [11]) and is the key ingredient for the proof of Bayart’s theorem
(our Theorem 2.3).

Lemma 3.2. Let ϕ be an N-function such that t 7→ ϕ(
√
t) is equivalent to a con-

cave function and ϕ(t)ϕ(1/t) ≥ c for all t ≥ 1 and some c > 0. Let LΦ be the
Orlicz space of functions on the nonatomic probability space (Ω,A,P) generated by
the Orlicz function Φ(t) = exp(ϕ∗(t)) − 1, t ≥ 0. Then there is a constant C > 0
such that, for every sequence (εi) of independent Bernoulli random variables on
(Ω,A,P) and every (xi) ∈ `ϕ, we have∥∥∥ ∞∑

i=1

εixi

∥∥∥
LΦ

≤ C
∥∥(xi)

∥∥
`ϕ
.

Proof. Without loss of generality, we may assume that t 7→ ϕ(
√
t) is concave

on R+, and thus the function t 7→ ϕ(t)/t2 is nonincreasing. This implies that
the function t 7→ ϕ−1(t2)/t is quasiconcave, and hence equivalent to a concave
function, say, ρ:

ϕ−1(t2)/t � ρ(t).

Put ψ(s, t) := tρ(s/t) for s ≥ 0, t > 0, and ψ(s, 0) = 0 for s ≥ 0 and t = 0.
Clearly, ψ ∈ U and

ϕ−1(t) � ψ(t,
√
t).

Now take some sequence ε = (εi) of independent Bernoulli random variables on
(Ω,A,P). For every (xi) ∈ `2, the series

Tε(xi) =
∞∑
i=1

εixi

converges almost surely, and so Tε defines a linear operator from `2 into the
linear space L0(P) of all A-measurable functions on Ω. Clearly, Tε : `1 → L∞(P) is
bounded with norm 1. On the other hand, we know from [12, p. 342] that Tε : `2 →
Lϕ2(P) is bounded with ‖Tε‖ ≤

√
8e, where ϕ2(t) = exp(t2) − 1 for all t ≥ 0.

Altogether, Tε can be viewed as a bounded linear operator from the Banach couple
(`1, `2) into the Banach couple (L∞, Lϕ2). Applying the interpolation theorem for
Calderón–Lozanovskii spaces (see [9]) we conclude that, for any ψ ∈ U ,

Tε : ψ(`1, `2) → ψ(L∞, Lϕ2)

with ‖Tε‖ ≤ 2KG

√
8e, where KG > 1 is the Grothendieck constant.
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It is known that ψ(Lp, Lq) = LΥ for any 1 ≤ p, q < ∞, where Υ−1(t) =

ψ(t1/p, t1/q) (see again [9]). Since ϕ−1(t) � ψ(t,
√
t), we have up to equivalence of

norms that

ψ(`1, `2) = `ϕ.

On the other hand, it is easy to verify that ψ(L∞, Lφ) = LΨ for any Orlicz
function φ, where Ψ is given by Ψ−1(t) = ψ(1, φ−1(t)) for all t ≥ 0. Hence

ψ(L∞, Lϕ2) = LΨ,

where Ψ−1(t) = ψ(1, ln1/2(1 + t)) for all t ≥ 0.
Combining the above, we conclude that the operator Tε : `ϕ → LΨ is bounded,

where C > 0 is a universal constant. In other terms, for each sequence (xi) ∈ `ϕ,
we have ∥∥∥ ∞∑

i=1

εixi

∥∥∥
LΨ

≤ C
∥∥(xi)

∥∥
`ϕ
,

and hence, to finish the proof, it is enough to show that LΨ(P) ↪→ LΦ(P) is
a continuous inclusion. To see this, we recall that, for the N -function ϕ, we have
(by (2.1))

s

ϕ−1(s)
≤ ϕ−1

∗ (s) ≤ 2s

ϕ−1(s)
, s > 0.

We assume without loss of generality that ϕ(1) = 1. The left-hand side of the
above inequality combined with our hypothesis c ≤ ϕ(s)ϕ(1/s) for all s ≥ 1 yields
(by 0 < c ≤ 1)

csϕ−1(1/s) ≤ ϕ−1
∗ (s), s ≥ 1.

Since ϕ−1(t) � ψ(t,
√
t) and Ψ−1(t) = ψ(1, ln1/2(1 + t)) for all t ≥ 0,

Ψ−1(t) � ln(1 + t)ϕ−1
( 1

ln(1 + t)

)
, t ≥ 0.

This equivalence combined with Φ−1(t) = ϕ−1
∗ (ln(1 + t)) for all t ≥ 0 gives

cΨ−1(t) ≤ Φ−1(t) for large t (t ≥ e − 1). Thus Φ(ct) ≤ Ψ(t) for large t, and so
the required continuous inclusion follows. �

We are now ready to give the proof of Theorem 2.4.

Proof of Theorem 2.4. For a given sequence (εj)j∈J (m,n) of independent, identi-
cally distributed Bernoulli variables on a probability space (Ω,A,P) and a set
{x∗1, . . . , x∗n} of functionals on X∗, we define the random polynomials on X by

P (ω, z) =
∑

j∈J (m,n)

εj(ω)cjx
∗
j (z), ω ∈ Ω, z ∈ X.

Let Φ(t) := exp(ϕ∗(t))− 1 for all t ≥ 0. Then, applying Lemma 3.2, we find that
there exists a constant C > 1 such that, for all z ∈ BX ,∥∥P (·, z)

∥∥
LΦ

=
∥∥∥ ∑
j∈J (m,n)

εj(·)cjx∗j (z)
∥∥∥
LΦ

≤ C
∥∥(cjx∗j (z)

)∥∥
`ϕ(J (m,n))

.
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Recall that by the assumption on ϕ there exists K ≥ 1 such that ϕ(st) ≤
Kϕ(s)ϕ(t) for all 0 < s ≤ 1 ≤ t < ∞. We claim that this implies the following
estimate for every z ∈ BX :∥∥(cjx∗j (z)

)∥∥
`ϕ(J (m,n))

≤ K
(

sup
j∈J (m,n)

|cj|
ϕ−1(|[j]|)

)∥∥(x∗j (z)
)∥∥

`ϕ(M(m,n))
.

Indeed, to see this inequality, we may assume without loss of generality that
‖(x∗j (z))‖`ϕ(M(m,n)) ≤ 1. Hence∑

j∈M(m,n)

ϕ
(∣∣x∗j (z)

∣∣) ≤ 1,

and so |x∗j (z)| ≤ ϕ−1(1) for each j ∈ J (m,n). Now, if we use our hypotheses on
ϕ, then we see that |x∗j (z)| ≤ 1 and

ϕ
(
ϕ−1

(∣∣[j]∣∣)∣∣x∗j (z)
∣∣) ≤ K

∣∣[j]∣∣ϕ(∣∣x∗j (z)
∣∣), j ∈ J (m,n).

Put λ := supj∈J (m,n)
|cj|

ϕ−1(|[j]|) . Then |cj| ≤ λϕ−1(|[j]|) for each j ∈ J (m,n). Since

ϕ is convex and K ≥ 1, ϕ(s/K) ≤ ϕ(s)/K for all s > 0. Thus the inequalities
above imply∑

j∈J (m,n)

ϕ
( |cj||x∗j (z)|

Kλ

)
=

∑
j∈J (m,n)

∑
i∈[j]

ϕ
( |cj||x∗j (z)|

Kλ

) 1

|[j]|

≤ 1

K

∑
j∈M(m,n)

ϕ
(
ϕ−1

(∣∣[j]∣∣)∣∣x∗j (z)
∣∣) 1

|[j]|

≤
∑

j∈M(m,n)

ϕ
(∣∣x∗j (z)

∣∣) ≤ 1,

and so this finally proves the above claim. Together with Lemma 3.1 (applied for
purely atomic measure spaces), this gives that, for each z ∈ BX ,∥∥P (·, z)

∥∥
LΦ

≤ C sup
j∈J (m,n)

|cj|
ϕ−1(|[j]|)

sup
x∈BX

∥∥∥ n∑
k=1

x∗k(x)ek

∥∥∥m
`ϕ

=: A. (3.1)

We fix ω ∈ Ω, and define the m-homogeneous polynomial Pω := P (ω, ·) : X → C.
Then there is a unique symmetric m-linear form P̌ω on X for which Pω(z) =
P̌ω(z, . . . , z) for all z ∈ X. By a polarization estimate of Harris [5] we know that

sup
v,ζ∈BX

∣∣P̌ω(v, ζ, . . . , ζ)
∣∣ ≤ ( m

m− 1

)m−1

sup
x∈BX

∣∣Pω(x)
∣∣,

and hence, for all z, u ∈ BX ,∣∣P (ω, z) − P (ω, u)
∣∣ ≤ m‖z − u‖X sup

v,ζ∈BX

∣∣P̌ω(v, ζ, . . . , ζ)
∣∣

≤ m
( m

m− 1

)m−1

‖z − u‖X sup
x∈BX

∣∣P (ω, x)
∣∣
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≤ m sup
t≥2

( t

t− 1

)t−1

‖z − u‖X sup
x∈BX

∣∣P (ω, x)
∣∣

≤ 3m‖z − u‖X sup
x∈BX

∣∣P (ω, x)
∣∣.

Since X is of dimension n, there exists a finite subset F of BX (independent of
ω) with card(F ) ≤ (1 + 12m)2n and such that, for every z ∈ BX , there exists
u ∈ F with ‖z − u‖X ≤ 1/(6m). Combining this with∣∣P (ω, z)

∣∣ ≤ ∣∣P (ω, z) − P (ω, u)
∣∣ +

∣∣P (ω, u)
∣∣

≤ 1

2
sup
x∈BX

∣∣P (ω, x)
∣∣ + sup

x∈F

∣∣P (ω, x)
∣∣,

we obtain

sup
x∈BX

∣∣P (ω, x)
∣∣ ≤ 2 sup

x∈F

∣∣P (ω, x)
∣∣, ω ∈ Ω. (3.2)

From the estimate (3.1) we have that ‖P (·, z)/A‖LΦ
≤ 1 for every z ∈ BX . Thus

it follows by Chebyshev’s inequality that, for every R > 0,

P
({
ω ∈ Ω;

∣∣P (ω, z)
∣∣ > R

})
≤ 1

Φ(R
A

)
, z ∈ BX ,

and so we get

P
({
ω ∈ Ω; sup

x∈F

∣∣P (ω, z)
∣∣ > R

})
= P

(⋃
x∈F

{
ω ∈ Ω;

∣∣P (ω, x)
∣∣ > R

})
≤

∑
x∈F

P
({
ω ∈ Ω;

∣∣P (ω, x)
∣∣ > R

})
≤ card(F )

Φ(R
A

)
≤ (1 + 12m)2n

Φ(R
A

)
.

Applying inequality (3.2) yields

P
({
ω ∈ Ω; sup

x∈BX

∣∣P (ω, x)
∣∣ > 2R

})
≤ (1 + 12m)2n

Φ(R
A

)
.

We now observe that, for R = δϕ−1
∗ (n logm)A with δ ≥ 1,

(1 + 12m)2n

Φ(R
A

)
≤ (1 + 12m)2n

exp(δn logm) − 1
.

This inequality allows us to find δ > 1 independent of n,m ∈ N such that

(1 + 12m)2n

Φ(R
A

)
<

1

2
.

Summarizing, we obtain P({ω ∈ Ω; supx∈BX
|P (ω, z)| > 2R}) < 1/2, and thus

P
({
ω ∈ Ω; sup

x∈BX

∣∣P (ω, z)
∣∣ ≤ 2R

})
≥ 1

2
.
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In consequence, we conclude that there exists ω ∈ Ω such that

sup
z∈BX

∣∣P (ω, z)
∣∣ ≤ 2δCϕ−1

∗ (n logm) sup
j∈J (m,n)

|cj|
ϕ−1(|[j]|)

sup
z∈BX

∥∥∥ n∑
k=1

x∗k(z)ek

∥∥∥m
`ϕ
,

and this completes the proof of the required inequality. To get the equivalent
statement, it is enough to apply the inequalities from (2.1). �

4. Applications

Inspired by [1], we present some applications of the main result. As usual, we
denote by P(mX) the Banach space of all m-homogenous scalar-valued polyno-
mials P on a Banach space X equipped with the norm

‖P‖P(mX) = sup
{∣∣P (x)

∣∣; ‖x‖ ≤ 1
}
.

Given an n-dimensional Banach space X = (Cn, ‖ ·‖), we exhibit some lower esti-
mates of the unconditional basis constant of the monomials zα, α ∈ Nn

0 denoted
by

χmon

(
P(mX)

)
.

We recall that a basis (xn) of a Banach space X is said to be unconditional if
there exists C ≥ 1 such that∥∥∥ n∑

k=1

θkλkxk

∥∥∥ ≤ C
∥∥∥ n∑
k=1

λkxk

∥∥∥
for each n ∈ N and all λ1, . . . , λn, θ1, . . . , θn ∈ C with |θk| = 1; the best of
these constants C is the unconditional basis constant of (xn). For lower estimates
of χmon(P(mX)), we again refer to [1], where former results of [3] and [4] were
improved.

A simple consequence of our definitions gives the following abstract lower
bound.

Lemma 4.1. Let E be a (ψ, φ)-admissible Banach sequence space such that
(k/φ(k))k is nondecreasing. Then there is some constant C > 0 such that, for
each Banach space X = (Cn, ‖ · ‖) and each m ≥ 2, we have

Cφ(m!)

ψ(m,n)m!

( supz∈BX

∑n
k=1 |zk|

supz∈BX
‖
∑n

k=1 zkek‖E

)m
≤ χmon

(
P(mX)

)
.

Proof. It follows from the definition of χmon(P(mX)) that, for any choice of signs
εα = ±1, |α| = m, we have(

sup
z∈BX

n∑
k=1

|zk|
)m

= sup
z∈BX

∣∣∣ ∑
|α|=m

m!

α!
zα
∣∣∣ = sup

z∈BX

∣∣∣ ∑
|α|=m

m!

α!
εαεαz

α
∣∣∣

≤ χmon

(
P(mX)

)
sup
z∈BX

∣∣∣ ∑
|α|=m

m!

α!
εαz

α
∣∣∣.
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By Remark 2.1 we can find signs (εα)|α|=m such that

sup
z∈BX

∣∣∣ ∑
|α|=m

m!

α!
εαz

α
∣∣∣ ≤ Cψ(m,n) sup

|α|=m

m!/α!

φ(m!/α!)
sup
z∈BX

∥∥∥ n∑
k=1

zkek

∥∥∥m
E
.

Combining the above two inequalities with our hypothesis on φ yields the desired
estimate. �

Now we are ready to give a lower bound of χmon(P(mX)) on the scale of Orlicz
spaces `ϕ extending Bayart’s theorem [1, Theorem 5.1], which is on the scale of
`p-spaces for p ∈ (1, 2].

Corollary 4.2. Assume that an N-function ϕ satisfies the conditions of
Theorem 2.4. Then there exists a constant C such that, for every Banach space
X = (Cn, ‖ · ‖) and each m ≥ 2, we have

C

ϕ−1
∗ (n logm)ϕ−1

∗ (m!)

( supz∈BX

∑n
k=1 |zk|

supz∈BX
‖
∑n

k=1 zkek‖`ϕ

)m
≤ χmon

(
P(mX)

)
.

Proof. From Theorem 2.4 it follows that `ϕ is (ψ, φ)-admissible with ψ(m,n) =
ϕ−1
∗ (m,n) and φ(n) = ϕ−1(n) for each m ≥ 2, n ≥ 1. Since

1

2
ϕ−1
∗ (t) ≤ t/ϕ−1(t) ≤ ϕ−1

∗ (t), t > 0,

the estimate follows immediately from Corollary 4.1. �

As an application we apply the preceding result to the n-dimensional Orlicz
space `nφ. Note that by the Köthe duality between Orlicz spaces we have

sup
z∈B`nϕ

n∑
k=1

|zk| =
∥∥∥ n∑
k=1

ek

∥∥∥
(`ϕ)′

= nϕ−1(1/n),

and hence Corollary 4.2 gives the following lower bound for χmon(P(m`nϕ)) in
terms of the original Orlicz function ϕ instead of its conjugate function ϕ∗.

Corollary 4.3. Assume that an N-function ϕ satisfies the conditions of
Theorem 2.4. Then there exists a constant C such that, for each n ≥ 1, m ≥ 2,
we have

χmon

(
P(m`nϕ)

)
≥ C

ϕ−1(n logm)

n logm

ϕ−1(m!)

m!

(
nϕ−1(1/n)

)m
.

Finally, we indicate how these estimates can be applied to get upper bounds
for multidimensional Bohr radii of certain Reinhardt domains in several com-
plex variables. We recall that if the canonical basis (ek)

n
k=1 forms a normalized

1-unconditional basis of the Banach space X = (Cn, ‖ · ‖), then the Bohr radius
K(BX) is defined to be the supremum over all r ∈ [0, 1] such that, for each
holomorphic function f on BX , we have∑

α

∣∣∣∂αf(0)

α!
zα
∣∣∣ ≤ sup

z∈BX

∣∣f(z)
∣∣.
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We note that in [1] the following upper bound for K(BX) was given:

K(BX) ≤ C(log n)1−1/p
sup‖z‖X≤1(

∑n
k=1 |zk|p)1/p

sup‖z‖X≤1

∑n
k=1 |zk|

, 1 < p ≤ 2. (4.1)

The case p = 2 had been shown earlier in [3] (see also [4]). The following link
from [3, Theorem 2.2] shows how to use upper (lower) estimates for unconditional
basis constants χmon(P(mX)) in order to get lower (upper) estimates for the Bohr
radius K(BX):

1

3

1

supm χmonP(mX)1/m
≤ K(BX) ≤ min

(1

3
,

1

supm χmonP(mX)1/m

)
.

Combining this inequality with the Corollaries 4.2 and 4.3, we obtain an extension
of (4.1) to the scale of Orlicz spaces. We leave the details to the reader.
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